1
|
Wang Z, Wang L, Gao F, Dai Y, Liu C, Wu J, Wang M, Yan Q, Chen Y, Wang C, Wang L. Exploring cerebellar transcranial magnetic stimulation in post-stroke limb dysfunction rehabilitation: a narrative review. Front Neurosci 2025; 19:1405637. [PMID: 39963260 PMCID: PMC11830664 DOI: 10.3389/fnins.2025.1405637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
This review delves into the emerging field of cerebellar Transcranial Magnetic Stimulation (TMS) in the rehabilitation of limb dysfunction following a stroke. It synthesizes findings from randomized controlled trials and case studies, examining the efficacy, safety, and underlying mechanisms of cerebellar TMS. The review outlines advancements in TMS technologies, such as low-frequency repetitive TMS, intermittent Theta Burst Stimulation, and Cerebello-Motor Paired Associative Stimulation, and their integration with physiotherapy. The role of the cerebellum in motor control, the theoretical underpinnings of cerebellar stimulation on motor cortex excitability, and the indirect effects on cognition and motor learning are explored. Additionally, the review discusses current challenges, including coil types, safety, and optimal timing and modes of stimulation, and suggests future research directions. This comprehensive analysis highlights cerebellar TMS as a promising, though complex, approach in stroke rehabilitation, offering insights for its clinical optimization.
Collapse
Affiliation(s)
- Zhan Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Likai Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Gao
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yongli Dai
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chunqiao Liu
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Jingyi Wu
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinjie Yan
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaning Chen
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chengbin Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Raies N, Nankoo JF, Madan CR, Chen R. Cerebellar Theta Burst Stimulation Impairs Working Memory. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2324-2331. [PMID: 39172206 DOI: 10.1007/s12311-024-01732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Working memory refers to the process of temporarily storing and manipulating information. The role of the cerebellum in working memory is thought to be achieved through its connections with the prefrontal cortex. Previous studies showed that theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation, of the cerebellum changes its functional connectivity with the prefrontal cortex. Specifically, excitatory intermittent TBS (iTBS) increases, whereas inhibitory continuous TBS (cTBS) decreases this functional connectivity. We hypothesized that iTBS on the cerebellum will improve working memory, whereas cTBS will disrupt it. Sixteen healthy participants (10 women) participated in this study. Bilateral cerebellar stimulation was applied with a figure-of-eight coil at 3 cm lateral and 1 cm below the inion. The participants received iTBS, cTBS, and sham iTBS in three separate sessions in random order. Within 30 min after TBS, the participants performed four working memory tasks: letter 1-Back and 2-Back, digit span forward, and digit span backward. Repeated measures analysis of variance revealed a significant effect of the type of stimulation (iTBS/cTBS/Sham) on performance in the digit span backward task (p = 0.02). The planned comparison showed that the cTBS condition had significantly lower scores than the sham condition (p = 0.01). iTBS and cTBS did not affect performance in the 1- and 2-Back and the digit span forward tasks compared to sham stimulation. The findings support the hypothesis that the cerebellum is involved in working memory, and this contribution may be disrupted by cTBS.
Collapse
Affiliation(s)
- Nasem Raies
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Krembil Research Institute, University Health Network, Toronto, Canada.
| | | | | | - Robert Chen
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Spampinato DA, Casula EP, Koch G. The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. Neuroscientist 2024; 30:723-743. [PMID: 37649430 DOI: 10.1177/10738584231189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.
Collapse
|
4
|
Matsugi A, Tsuzaki A, Jinai S, Okada Y, Mori N, Hosomi K. Cerebellar repetitive transcranial magnetic stimulation has no effect on contraction-induced facilitation of corticospinal excitability. PLoS One 2024; 19:e0310173. [PMID: 39485742 PMCID: PMC11530076 DOI: 10.1371/journal.pone.0310173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/27/2024] [Indexed: 11/03/2024] Open
Abstract
This study aimed to investigate whether the cerebellum contributes to contraction-induced facilitation (CIF) of contralateral corticospinal excitability. To this end, repetitive cerebellar transcranial magnetic stimulation (TMS) was used to test whether it modulates CIF. Overall, 20 healthy young individuals participated in the study. Single-pulse TMS was applied to the left primary motor cortex to induce motor-evoked potentials (MEP) on electromyography of the right first dorsal interosseous (FDI) muscle to test corticospinal excitability. This measurement was conducted during contraction (10% maximum voluntary contraction [MVC]) and rest (0% MVC) of the FDI muscle. CIF, cerebellar brain inhibition (CBI), cortical silent period (cSP), and resting motor threshold (rMT) were measured before and after low-frequency repetitive TMS (crTMS) of the right cerebellum to downregulate cerebellar output. The CIF (contraction/rest of the MEP), CBI (conditioned/unconditioned MEP) during contraction, cSP, and rMT were not affected by crTMS. At rest, CBI was decreased. These findings indicated that the primary motor cortex function for the increase in corticospinal excitability was not affected by crTMS. This study contributes to our understanding of the role of the cerebellum in motor control. Additionally, it may inform decision-making for the site of cerebellar ataxia treatment using non-invasive brain stimulation.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Aki Tsuzaki
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Soichi Jinai
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Yohei Okada
- Neurorehabilitation Research Center of Kio University, Koryo-cho, Kitakatsuragi-gun, Nara, Japan
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Department of Neurosurgery, Toyonaka Municipal Hospital, Toyonaka City, Osaka, Japan
| |
Collapse
|
5
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
6
|
El-Adawy AFI, Reda MABMG, Ahmed AM, Rashad MH, Zaki MA, Mohamed MET, Hassan MAS, Abdulsalam MF, Hassan AM, Mohamed AF, Fayed AGI, Meshref M, Mansour FM, Sarhan AE, Elsheshiny AH, Abed E. Efficacy of Cerebellar Transcranial Magnetic Stimulation in Treating Essential Tremor: A Randomized, Sham-Controlled Trial. J Clin Neurol 2024; 20:378-384. [PMID: 38951972 PMCID: PMC11220355 DOI: 10.3988/jcn.2023.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Repetitive transcranial magnetic stimulation (rTMS) of the cerebellar hemisphere represents a new option in treating essential tremor (ET) patients. We aimed to determine the efficacy of cerebellar rTMS in treating ET using different protocols regarding the number of sessions, exposure duration, and follow-up duration. METHODS A randomized sham-controlled trial was conducted, in which 45 recruit patients were randomly allocated to 2 groups. The first (active group) comprised 23 patients who were exposed to 12 sessions of active rTMS with 900 pulses of 1-Hz rTMS at 90% of the resting motor threshold daily on each side of the cerebellar hemispheres over 4 weeks. The second group (sham group) comprised 22 patients who were exposed to 12 sessions of sham rTMS. Both groups were reassessed at baseline and after 1 day, 1 month, 2 months, and 3 months using the Fahn-Tolosa-Marin tremor-rating scale (FTM). RESULTS Demographic characteristics did no differ between the two groups. There were significant reductions both in FTM subscores A and B and in the FTM total score in the active-rTMS group during the period of assessment and after 3 months (p=0.031 and 0.011, respectively). However, subscore C did not change significantly from baseline when assessed at 2 and 3 months (p=0.073 and 0.236, respectively). Furthermore, the global assessment score was significantly higher in the active-rTMS group (p>0.001). CONCLUSIONS Low-frequency rTMS over the cerebellar cortex for 1 month showed relative safety and long-lasting efficacy in patients with ET. Further large-sample clinical trials are needed that include different sites of stimulation and longer follow-ups.
Collapse
Affiliation(s)
| | | | - Ali Mahmoud Ahmed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Neurology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK.
| | | | - Mohamed Ahmed Zaki
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Abdelmonem M Hassan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Fathy Mohamed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed E Sarhan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Elsayed Abed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Sveva V, Cruciani A, Mancuso M, Santoro F, Latorre A, Monticone M, Rocchi L. Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy. J Pers Med 2024; 14:675. [PMID: 39063929 PMCID: PMC11277881 DOI: 10.3390/jpm14070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic pain poses a widespread and distressing challenge; it can be resistant to conventional therapies, often having significant side effects. Non-invasive brain stimulation (NIBS) techniques offer promising avenues for the safe and swift modulation of brain excitability. NIBS approaches for chronic pain management targeting the primary motor area have yielded variable outcomes. Recently, the cerebellum has emerged as a pivotal hub in human pain processing; however, the clinical application of cerebellar NIBS in chronic pain treatment remains limited. This review delineates the cerebellum's role in pain modulation, recent advancements in NIBS for cerebellar activity modulation, and novel biomarkers for assessing cerebellar function in humans. Despite notable progress in NIBS techniques and cerebellar activity assessment, studies targeting cerebellar NIBS for chronic pain treatment are limited in number. Nevertheless, positive outcomes in pain alleviation have been reported with cerebellar anodal transcranial direct current stimulation. Our review underscores the potential for further integration between cerebellar NIBS and non-invasive assessments of cerebellar function to advance chronic pain treatment strategies.
Collapse
Affiliation(s)
- Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Marco Mancuso
- Department of Human Neuroscience, University of Rome “Sapienza”, Viale dell’Università 30, 00185 Rome, Italy;
| | - Francesca Santoro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Marco Monticone
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
8
|
Wang J, Wu Z, Hong S, Ye H, Zhang Y, Lin Q, Chen Z, Zheng L, Qin J. Cerebellar transcranial magnetic stimulation for improving balance capacity and activity of daily living in stroke patients: a systematic review and meta-analysis. BMC Neurol 2024; 24:205. [PMID: 38879485 PMCID: PMC11179288 DOI: 10.1186/s12883-024-03720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The application of cerebellar transcranial magnetic stimulation (TMS) in stroke patients has received increasing attention due to its neuromodulation mechanisms. However, studies on the effect and safety of cerebellar TMS to improve balance capacity and activity of daily living (ADL) for stroke patients are limited. This systematic review and meta-analysis aimed to investigate the effect and safety of cerebellar TMS on balance capacity and ADL in stroke patients. METHOD A systematic search of seven electronic databases (PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Wanfang and Chinese Scientific Journal) were conducted from their inception to October 20, 2023. The randomized controlled trials (RCTs) of cerebellar TMS on balance capacity and/or ADL in stroke patients were enrolled. The quality of included studies were assessed by Physiotherapy Evidence Database (PEDro) scale. RESULTS A total of 13 studies involving 542 participants were eligible. The pooled results from 8 studies with 357 participants showed that cerebellar TMS could significantly improve the post-intervention Berg balance scale (BBS) score (MD = 4.24, 95%CI = 2.19 to 6.29, P < 0.00001; heterogeneity, I2 = 74%, P = 0.0003). The pooled results from 4 studies with 173 participants showed that cerebellar TMS could significantly improve the post-intervention Time Up and Go (TUG) (MD=-1.51, 95%CI=-2.8 to -0.22, P = 0.02; heterogeneity, I2 = 0%, P = 0.41). The pooled results from 6 studies with 280 participants showed that cerebellar TMS could significantly improve the post-intervention ADL (MD = 7.75, 95%CI = 4.33 to 11.17, P < 0.00001; heterogeneity, I2 = 56%, P = 0.04). The subgroup analysis showed that cerebellar TMS could improve BBS post-intervention and ADL post-intervention for both subacute and chronic stage stroke patients. Cerebellar high frequency TMS could improve BBS post-intervention and ADL post-intervention. Cerebellar TMS could still improve BBS post-intervention and ADL post-intervention despite of different cerebellar TMS sessions (less and more than 10 TMS sessions), different total cerebellar TMS pulse per week (less and more than 4500 pulse/week), and different cerebellar TMS modes (repetitive TMS and Theta Burst Stimulation). None of the studies reported severe adverse events except mild side effects in three studies. CONCLUSIONS Cerebellar TMS is an effective and safe technique for improving balance capacity and ADL in stroke patients. Further larger-sample, higher-quality, and longer follow-up RCTs are needed to explore the more reliable evidence of cerebellar TMS in the balance capacity and ADL, and clarify potential mechanisms.
Collapse
Affiliation(s)
- Jingfeng Wang
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhisheng Wu
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Shanshan Hong
- Department of Obstetrics and Gynecology, Quan Zhou Women's and Children's Hospital, Quanzhou, China
| | - Honghong Ye
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yi Zhang
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Qiuxiang Lin
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zehuang Chen
- Huada Street Community Health Service Center, Quanzhou, China
| | - Liling Zheng
- Department of Cardiovascular Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
| | - Jiawei Qin
- Department of Rehabilitation Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
| |
Collapse
|
9
|
Sanna A, Pau M, Pilia G, Porta M, Casu G, Secci V, Cartella E, Demattia A, Firinu S, Pau C, Milia A, Cocco E, Tacconi P. Comparison of Two Therapeutic Approaches of Cerebellar Transcranial Direct Current Stimulation in a Sardinian Family Affected by Spinocerebellar Ataxia 38: a Clinical and Computerized 3D Gait Analysis Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:973-980. [PMID: 37540312 DOI: 10.1007/s12311-023-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Spinocerebellar ataxia 38 (SCA 38) is a very rare autosomal dominant inherited disorder caused by a mutation in ELOV5 gene, specifically expressed in cerebellar Purkinje cells, encoding an enzyme involved in the synthesis of fatty acids. Seven symptomatic SCA 38 patients of a Sardinian family were administered 15 sessions of cerebellar anodal transcranial direct current stimulation (tDCS) in a cross-over study, employing deltoid cerebellar-only (C-tDCS) and cerebello-spinal (CS-tDCS) cathodal montage. Clinical evaluation was performed at baseline (T0), after 15 sessions of tDCS (T1) and after 1 month of follow-up (T2). Modified International Cooperative Ataxia Rating Scale (MICARS) and the Robertson dysarthria profile were used to rate ataxic and dysarthric symptoms, respectively. Alertness and split attention tests from Zimmermann test battery for attentional performance were employed to rate attentive functions. Moreover, 3D computerized gait analysis was employed to obtain a quantitative measure of efficacy of tDCS on motor symptoms. While clinical data showed that both CS and C-tDCS improved motor, dysarthric, and cognitive scores, the quantitative analysis of gait revealed significant improvement in spatio-temporal parameters only for C-tDCS treatment. Present findings, yet preliminary and limited by the small size of the tested sample, confirm the therapeutic potential of cerebellar tDCS in improving motor and cognitive symptoms in spinocerebellar ataxias and underline the need to obtain quantitative and objective measures to monitor the efficacy of a therapeutic treatment and to design tailored rehabilitative interventions. ClinicalTrials.gov identifier: NCT05951010.
Collapse
Affiliation(s)
- Angela Sanna
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy.
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | | | - Micaela Porta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Giulia Casu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Valentina Secci
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | | | | | - Stefano Firinu
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | - Chiara Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Antonio Milia
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Cagliari, Italy
| | - Paolo Tacconi
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Dolfini E, Cardellicchio P, Fadiga L, D'Ausilio A. The role of dorsal premotor cortex in joint action inhibition. Sci Rep 2024; 14:4675. [PMID: 38409309 PMCID: PMC10897189 DOI: 10.1038/s41598-024-54448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Behavioral interpersonal coordination requires smooth negotiation of actions in time and space (joint action-JA). Inhibitory control may play a role in fine-tuning appropriate coordinative responses. To date, little research has been conducted on motor inhibition during JA and on the modulatory influence that premotor areas might exert on inhibitory control. Here, we used an interactive task in which subjects were required to reach and open a bottle using one hand. The bottle was held and stabilized by a co-actor (JA) or by a mechanical holder (vice clamp, no-JA). We recorded two TMS-based indices of inhibition (short-interval intracortical inhibition-sICI; cortical silent period-cSP) during the reaching phase of the task. These reflect fast intracortical (GABAa-mediated) and slow corticospinal (GABAb-mediated) inhibition. Offline continuous theta burst stimulation (cTBS) was used to interfere with dorsal premotor cortex (PMd), ventral premotor cortex (PMv), and control site (vertex) before the execution of the task. Our results confirm a dissociation between fast and slow inhibition during JA coordination and provide evidence that premotor areas drive only slow inhibitory mechanisms, which in turn may reflect behavioral co-adaptation between trials. Exploratory analyses further suggest that PMd, more than PMv, is the key source of modulatory drive sculpting movements, according to the socio-interactive context.
Collapse
Affiliation(s)
- Elisa Dolfini
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy.
| | - Pasquale Cardellicchio
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| |
Collapse
|
11
|
Picazio S, Magnani B, Koch G, Oliveri M, Petrosini L. Frontal and cerebellar contributions to pitch and rhythm processing: a TMS study. Brain Struct Funct 2024:10.1007/s00429-024-02764-w. [PMID: 38403781 DOI: 10.1007/s00429-024-02764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
Music represents a salient stimulus for the brain with two key features: pitch and rhythm. Few data are available on cognitive analysis of music listening in musically naïve healthy participants. Beyond auditory cortices, neuroimaging data showed the involvement of prefrontal cortex in pitch and of cerebellum in rhythm. The present study is aimed at investigating the role of prefrontal and cerebellar cortices in both pitch and rhythm processing. The performance of fifteen participants without musical expertise was investigated in a listening discrimination task. The task required to decide whether two eight-element melodic sequences were equal or different according to pitch or rhythm characteristics. Before the task, we applied a protocol of continuous theta burst transcranial magnetic stimulation interfering with the activity of the left cerebellar hemisphere (lCb), right inferior frontal gyrus (rIFG), or vertex (Cz-control site), in a within cross-over design. Our results showed that participants were more accurate in pitch than rhythm tasks. Importantly, the reaction times were slower following rIFG or lCb stimulations in both tasks. Notably, frontal and cerebellar stimulations did not induce any motor effect in right and left hand. The present findings point to the role of the fronto-cerebellar network in music processing with a single mechanism for both pitch and rhythm patterns.
Collapse
Affiliation(s)
| | - Barbara Magnani
- Department of Humanities, Social Sciences and Cultural Industries, University of Parma, Parma, Italy
| | - Giacomo Koch
- Santa Lucia Foundation IRCCS, Rome, Italy
- Human Physiology Section, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Massimiliano Oliveri
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy
- Neuroteam Life and Science, Palermo, Italy
| | | |
Collapse
|
12
|
Fox-Hesling J, Wisseman D, Kantak S. Noninvasive cerebellar stimulation and behavioral interventions: A crucial synergy for post-stroke motor rehabilitation. NeuroRehabilitation 2024; 54:521-542. [PMID: 38943401 DOI: 10.3233/nre-230371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
BACKGROUND Improvement of functional movements after supratentorial stroke occurs through spontaneous biological recovery and training-induced reorganization of remnant neural networks. The cerebellum, through its connectivity with the cortex, brainstem and spinal cord, is actively engaged in both recovery and reorganization processes within the cognitive and sensorimotor systems. Noninvasive cerebellar stimulation (NiCBS) offers a safe, clinically feasible and potentially effective way to modulate the excitability of spared neural networks and promote movement recovery after supratentorial stroke. NiCBS modulates cerebellar connectivity to the cerebral cortex and brainstem, as well as influences the sensorimotor and frontoparietal networks. OBJECTIVE Our objective was twofold: (a) to conduct a scoping review of studies that employed NiCBS to influence motor recovery and learning in individuals with stroke, and (b) to present a theory-driven framework to inform the use of NiCBS to target distinct stroke-related deficits. METHODS A scoping review of current research up to August 2023 was conducted to determine the effect size of NiCBS effect on movement recovery of upper extremity function, balance, walking and motor learning in humans with stroke. RESULTS Calculated effect sizes were moderate to high, offering promise for improving upper extremity, balance and walking outcomes after stroke. We present a conceptual framework that capitalizes on cognitive-motor specialization of the cerebellum to formulate a synergy between NiCBS and behavioral interventions to target specific movement deficits. CONCLUSION NiCBS enhances recovery of upper extremity impairments, balance and walking after stroke. Physiologically-informed synergies between NiCBS and behavioral interventions have the potential to enhance recovery. Finally, we propose future directions in neurophysiological, behavioral, and clinical research to move NiCBS through the translational pipeline and augment motor recovery after stroke.
Collapse
Affiliation(s)
| | - Darrell Wisseman
- Moss Rehabilitation, Elkins Park, PA, USA
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
| | - Shailesh Kantak
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
13
|
El-Adawy AFI, Reda MABMG, Ahmed AM, Rashad MH, Zaki MA, Mohamed MET, Hassan MAS, Abdulsalam MF, Hassan AM, Mohamed AF, Fayed AGI, Meshref M, Mansour FM, Sarhan AE, Elsheshiny AH, Abed E. Efficacy of Cerebellar Transcranial Magnetic Stimulation in Treating Essential Tremor: A Randomized, Sham-Controlled Trial. J Clin Neurol 2024; 20. [DOI: https:/doi.org/10.3988/jcn.2023.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 05/31/2024] Open
Affiliation(s)
| | | | - Ali Mahmoud Ahmed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Neurology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | | | - Mohamed Ahmed Zaki
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Abdelmonem M Hassan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Fathy Mohamed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed E. Sarhan
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Elsayed Abed
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
14
|
Kaethler LB, Brown KE, Meehan SK, Staines WR. Investigating Cerebellar Modulation of Premovement Beta-Band Activity during Motor Adaptation. Brain Sci 2023; 13:1523. [PMID: 38002483 PMCID: PMC10669216 DOI: 10.3390/brainsci13111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Enhancing cerebellar activity influences motor cortical activity and contributes to motor adaptation, though it is unclear which neurophysiological mechanisms contributing to adaptation are influenced by the cerebellum. Pre-movement beta event-related desynchronization (β-ERD), which reflects a release of inhibitory control in the premotor cortex during movement planning, is one mechanism that may be modulated by the cerebellum through cerebellar-premotor connections. We hypothesized that enhancing cerebellar activity with intermittent theta burst stimulation (iTBS) would improve adaptation rates and increase β-ERD during motor adaptation. Thirty-four participants were randomly assigned to an active (A-iTBS) or sham cerebellar iTBS (S-iTBS) group. Participants performed a visuomotor task, using a joystick to move a cursor to targets, prior to receiving A-iTBS or S-iTBS, following which they completed training with a 45° rotation to the cursor movement. Behavioural adaptation was assessed using the angular error of the cursor path relative to the ideal trajectory. The results showed a greater adaptation rate following A-iTBS and an increase in β-ERD, specific to the high β range (20-30 Hz) during motor planning, compared to S-iTBS, indicative of cerebellar modulation of the motor cortical inhibitory control network. The enhanced release of inhibitory activity persisted throughout training, which suggests that the cerebellar influence over the premotor cortex extends beyond adaptation to other stages of motor learning. The results from this study further understanding of cerebellum-motor connections as they relate to acquiring motor skills and may inform future skill training and rehabilitation protocols.
Collapse
Affiliation(s)
| | | | | | - W. Richard Staines
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada; (L.B.K.); (K.E.B.); (S.K.M.)
| |
Collapse
|
15
|
Chen S, Zhang S, Yang W, Chen Y, Wang B, Chen J, Li X, Xie L, Huang H, Zeng Y, Tian L, Ji W, Wei X, Lan Y, Li H. The effectiveness of intermittent theta burst stimulation for upper limb motor recovery after stroke: a systematic review and meta-analysis of randomized controlled trials. Front Neurosci 2023; 17:1272003. [PMID: 37901439 PMCID: PMC10602812 DOI: 10.3389/fnins.2023.1272003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Background Intermittent theta burst stimulation (iTBS) is a promising noninvasive therapy to restore the excitability of the cortex, and subsequently improve the function of the upper extremities. Several studies have demonstrated the effectiveness of iTBS in restoring upper limb function and modulating cortical excitability. We aimed to evaluate the effects of iTBS on upper limb motor recovery after stroke. Objective The purpose of this article is to evaluate the influence of intermittent theta-burst stimulation on upper limb motor recovery and improve the quality of life. Method A literature search was conducted using PubMed, EMBASE, MEDLINE, The Cochrane Library, Web of Science, and CBM, including only English studies, to identify studies that investigated the effects of iTBS on upper limb recovery, compared with sham iTBS used in control groups. Effect size was reported as standardized mean difference (SMD) or weighted mean difference (WMD). Results Ten studies were included in the meta-analysis. The results of the meta-analysis indicated that when compared to the control group, the iTBS group had a significant difference in the Fugl-Meyer Assessment (FMA) and Action Research Arm Test (ARAT) (WMD: 3.20, 95% CI: 1.42 to 4.97; WMD: 3.72, 95% CI: 2.13 to 5.30, respectively). In addition, there was also a significant improvement in the modified Ashworth scale (MAS) compared to the sham group (WMD: -0.56; 95% CI: -0.85 to -0.28). More evidence is still needed to confirm the effect of Barthel Index (BI) scores after interventions. However, no significant effect was found for the assessment of Motor Evoked Potential (MEP) amplitude and MEP latency (SMD: 0.35; 95% CI: -0.21 to 0.90; SMD: 0.35, 95% CI: -0.18 to 0.87; SMD: 0.03, 95% CI: -0.49 to 0.55; respectively). Conclusion Our results showed that iTBS significantly improved motor impairment, functional activities, and reduced muscle tone of upper limbs, thereby increasing the ability to perform Activities of Daily Living (ADL) in stroke patients, while there were no significant differences in MEPs. In conclusion, iTBS is a promising non-invasive brain stimulation as an adjunct to therapy and enhances the therapeutic effect of conventional physical therapy. In the future, more randomized controlled trials with large sample sizes, high quality, and follow-up are necessary to explore the neurophysiological effects. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023392739.
Collapse
Affiliation(s)
- Songbin Chen
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shunxi Zhang
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenqing Yang
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yujie Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Bingshui Wang
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jixiang Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaotong Li
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lanfang Xie
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Huangjie Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangkang Zeng
- Department of Rehabilitation Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Lingling Tian
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenxue Ji
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xijun Wei
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hai Li
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
16
|
Xia Y, Wang M, Zhu Y. The Effect of Cerebellar rTMS on Modulating Motor Dysfunction in Neurological Disorders: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:954-972. [PMID: 36018543 DOI: 10.1007/s12311-022-01465-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The effectiveness of cerebellar repetitive transcranial magnetic stimulation (rTMS) on motor dysfunction in patients with neurological disorders has received increasing attention because of its potential for neuromodulation. However, studies on the neuromodulatory effects, parameters, and safety of rTMS implementation in the cerebellum to alleviate motor dysfunction are limited. This systematic review aimed to evaluate the effectiveness and safety of cerebellar rTMS treatment for motor dysfunction caused by neurological disorders and to review popular stimulation parameters. Five electronic databases-Medline, Web of Science, Scopus, Cochrane Library, and Embase-were searched for relevant research published from inception to July 2022. All randomized controlled trials (RCTs) that reported the effects of cerebellar rTMS combined with behavioral rating scales on motor dysfunction were eligible for enrollment. Additionally, reference lists of the enrolled studies were manually checked. Among 1156 articles screened, 21 RCTs with 666 subjects were included. rTMS conducted on the cerebellum showed an improvement in stroke (spasticity, balance, and gait), cervical dystonia, Parkinson's disease (tremor), cerebellar ataxia, and essential tremor but not in multiple sclerosis. The 8-shaped coil with a diameter of 70 mm was determined as the most common therapeutic choice. None of the studies reported severe adverse events except mild side effects in three. Therefore, rTMS appears to be a promising and safe technique for the treatment of motor dysfunction, targeting the cerebellum to induce motor behavioral improvement. Further rigorous RCTs, including more samples and longer follow-up periods, are required to precisely explore the effective stimulation parameters and possible mechanisms.
Collapse
Affiliation(s)
- Yifei Xia
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Mingqi Wang
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Yulian Zhu
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Jing'an District, No. 12 Wulumuqi road, Shanghai, 200040, China.
| |
Collapse
|
17
|
Abubshait A, Kompatsiari K, Cardellicchio P, Vescovo E, De Tommaso D, Fadiga L, D'Ausilio A, Wykowska A. Modulatory Effects of Communicative Gaze on Attentional Orienting Are Driven by Dorsomedial Prefrontal Cortex but Not Right Temporoparietal Junction. J Cogn Neurosci 2023; 35:1670-1680. [PMID: 37432740 DOI: 10.1162/jocn_a_02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Communicative gaze (e.g., mutual or averted) has been shown to affect attentional orienting. However, no study to date has clearly separated the neural basis of the pure social component that modulates attentional orienting in response to communicative gaze from other processes that might be a combination of attentional and social effects. We used TMS to isolate the purely social effects of communicative gaze on attentional orienting. Participants completed a gaze-cueing task with a humanoid robot who engaged either in mutual or in averted gaze before shifting its gaze. Before the task, participants received either sham stimulation (baseline), stimulation of right TPJ (rTPJ), or dorsomedial prefrontal cortex (dmPFC). Results showed, as expected, that communicative gaze affected attentional orienting in baseline condition. This effect was not evident for rTPJ stimulation. Interestingly, stimulation to rTPJ also canceled out attentional orienting altogether. On the other hand, dmPFC stimulation eliminated the socially driven difference in attention orienting between the two gaze conditions while maintaining the basic general attentional orienting effect. Thus, our results allowed for separation of the pure social effect of communicative gaze on attentional orienting from other processes that are a combination of social and generic attentional components.
Collapse
Affiliation(s)
| | | | | | - Enrico Vescovo
- Istituto Italiano di Tecnologia, Ferrara, Italy
- Universita di Ferrara, Italy
| | | | - Luciano Fadiga
- Istituto Italiano di Tecnologia, Ferrara, Italy
- Universita di Ferrara, Italy
| | | | | |
Collapse
|
18
|
Yao J, Song B, Shi J, Yin K, Du W. Effects of Repetitive Transcranial Magnetic Stimulation at the Cerebellum on Working Memory. Brain Sci 2023; 13:1158. [PMID: 37626514 PMCID: PMC10452734 DOI: 10.3390/brainsci13081158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Transcranial magnetic stimulation is a widely used brain intervention technique in clinical settings. In recent years, the role of the cerebellum in learning and memory has become one of the hotspots in the field of cognitive neuroscience. In this study, we recruited 36 healthy college or graduate students as subjects and divided them into groups, with 10 to 14 subjects in each group. We performed 5 Hz and 20 Hz repeated transcranial magnetic stimulation and sham stimulation on the Crus II subregion of the cerebellum in different groups, then let them complete the 2-back working memory task before and after the stimulation. We simultaneously recorded the electroencephalogram in the experiment and analyzed the data. We found that after repeated transcranial magnetic stimulation of the cerebellum at 5 Hz and 20 Hz, the N170 and P300 event-related potential components in the prefrontal cortex showed significant differences compared to those in the sham stimulation group. Using phase-locked values to construct brain networks and conduct further analysis, we discovered that stimulation frequencies of 5 Hz and 20 Hz had significant effects on the local and global efficiency of brain networks in comparison to the sham stimulation group. The results showed that repeated transcranial magnetic stimulation on cerebellar targets can effectively affect the subjects' working memory tasks. Repeated transcranial magnetic stimulation at 5 Hz and 20 Hz could enhance the excitatory responses of the frontal lobes. After stimulation at 5 Hz and 20 Hz, the efficiency of the brain network significantly improved.
Collapse
Affiliation(s)
- Jiangnan Yao
- Nanjing Research Institute of Electronic Technology, Nanjing 210019, China
| | - Bo Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronic Technology, Nanjing 210019, China
| | - Wentao Du
- Nanjing Research Institute of Electronic Technology, Nanjing 210019, China
| |
Collapse
|
19
|
Gundogdu Celebi L, Sirin NG, Elmali AD, Baykan B, Oge AE, Bebek N. Continuous theta-burst stimulation in patients with drug-resistant epilepsy: A single-blind placebo-controlled cross-over pilot study. Neurophysiol Clin 2023; 53:102896. [PMID: 37657363 DOI: 10.1016/j.neucli.2023.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVES To evaluate the effect of continuous theta-burst stimulation (cTBS) in patients with drug-resistant epilepsy (DRE). METHODS Twelve patients with DRE (five with idiopathic generalized and seven with focal epilepsy) were included in this cross-over design study and randomized to either first sham or first active stimulation, each applied for 5 consecutive days. A round coil over the vertex was used in generalized epilepsy or a figure-of-8 coil over the "epileptogenic area" in focal epilepsy. Sham stimulation was given by placing the coil 90° perpendicular to the head. The number of seizures, electroencephalography findings, Quality of Life in Epilepsy Inventory (QOLIE-84), and Symptom Check List (SCL-90) scores evaluated during the 8-12 weeks before and after active and sham stimulations were compared statistically. RESULTS Eight patients could complete both active and sham stimulation periods of 5 days and two patients completed active stimulation sessions, without any significant adverse effects. The number of seizures significantly reduced after active cTBS, but not after sham stimulation, when compared with those recorded before the stimulation period. QOLIE scores were increased, but interictal epileptiform discharges and SCL-90 scores showed no difference after cTBS. Active stimulation was stopped in one patient after he experienced an aggravation of myoclonic seizures. CONCLUSIONS cTBS seemed to be relatively safe and gave promising results in reducing the frequency of seizures in patients with both generalized and focal DRE. This time-saving technique may ease the introduction of repetitive transcranial magnetic stimulation into the routine practice of busy epilepsy clinics.
Collapse
Affiliation(s)
- Lale Gundogdu Celebi
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nermin Gorkem Sirin
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Ayse Deniz Elmali
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Betul Baykan
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ali Emre Oge
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
20
|
Wang Y, Zhang D, Wang J, Ma J, Lu L, Jin S. Effects of transcranial magnetic stimulation on cerebellar ataxia: A systematic review and meta-analysis. Front Neurol 2023; 14:1049813. [PMID: 36779066 PMCID: PMC9911422 DOI: 10.3389/fneur.2023.1049813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023] Open
Abstract
Objective To determine the effectiveness of transcranial magnetic stimulation in improving cerebellar ataxia. Data sources PubMed, EMBASE, the Cochrane Library, Springer, Science Direct, the China National Knowledge Infrastructure (CNKI) and the China Science and Technology Journal Database (VIP) were searched until 2022. Review methods Trials with transcranial magnetic stimulation on the effects on cerebellar ataxia were included, and the effect size was evaluated using the standardized mean difference (SMD) or mean difference (MD) and a 95% confidence interval (CI). Results Eight studies comprising 272 participants, published between 2014 and 2022, were included. The results revealed that the effect of TMS on patients with cerebellar ataxia as assessed by the International Cooperative Ataxia Rating Scale (ICRAS), the Scale for the Assessment and Rating of Ataxia (SARA), the Berg Balance Scale (BBS), and the Timed Up and Go (TUG) test was statistically significant (P < 0.01) with low heterogeneity among the studies (I2 = 4, 27, 0, and 0% respectively). Conclusion The effects of transcranial magnetic stimulation in improving cerebellar ataxia in the affected patients are significant. TMS targeting the cerebellar structures can induce changes in the excitability of the cerebellar-thalamus-cortical pathways; thus, it is necessary to carry out large-scale research with good design and high quality in the future.
Collapse
Affiliation(s)
- Ying Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Di Zhang
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ju Wang
- Department of Rehabilitation, Traditional Chinese Medicine Hospital of Qingyang District, Chengdu, Sichuan, China
| | - Jiang Ma
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Lu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Song Jin
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,*Correspondence: Song Jin ✉
| |
Collapse
|
21
|
Xia Y, Tang X, Hu R, Liu J, Zhang Q, Tian S, Wang W, Li C, Zhu Y. Cerebellum-Cerebrum paired target magnetic stimulation on balance function and brain network of patients with stroke: A functional near-infrared spectroscopy pilot study. Front Neurol 2022; 13:1071328. [PMID: 36619935 PMCID: PMC9813387 DOI: 10.3389/fneur.2022.1071328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) modulation over the cerebellum, primary motor cortex, and supplementary motor cortex individually can improve the balance function of patients with stroke. However, whether their combination could have a better balance modulation effect is uncertain. Therefore, we hypothesized that performing TMS over a combination of these targets can regulate the balance function of patients with stroke. We compared the effects of one-session TMS on eye-open and eye-closed balance conditions in patients with stroke, using different target pairs of unilateral cerebellar (CB-single), cerebellar-primary motor cortex (CB-M1), and cerebellar-supplementary motor area (CB-SMA) targets. A total of 31 patients with stroke were enrolled and randomly divided into three groups to receive single sessions of intermittent theta burst stimulation each. Functional near-infrared spectrum data on resting and standing task states (eye-open and eye-closed) and center of pressure parameters (eye-open and eye-closed) were collected before and after the intervention. Compared with the results in the CB-single group, five intergroup differences in the changes in the center of pressure parameters in the CB-M1 group and two significant differences in the CB-SMA group were observed after one session of intermittent theta burst stimulation. In the CB-SMA group, 12 out of the 14 parameters improved significantly in the EC condition after the intervention. Meanwhile, the functional near-infrared spectrum results showed that the CB-SMA group exhibited a significant inhibitory pattern in the resting-state functional connectivity, which was not observed in the other two groups. In conclusion, we believe that paired targeting of the CB-SMA can reshape the brain network and improve the balance function of patients with stroke.
Collapse
|
22
|
Ponce GV, Klaus J, Schutter DJLG. A Brief History of Cerebellar Neurostimulation. CEREBELLUM (LONDON, ENGLAND) 2022; 21:715-730. [PMID: 34403075 PMCID: PMC9325826 DOI: 10.1007/s12311-021-01310-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/28/2022]
Abstract
The first attempts at using electric stimulation to study human brain functions followed the experiments of Luigi Galvani and Giovanni Aldini on animal electricity during the eighteenth century. Since then, the cerebellum has been among the areas that have been studied by invasive and non-invasive forms of electrical and magnetic stimulation. During the nineteenth century, animal experiments were conducted to map the motor-related regions of cerebellar cortex by means of direct electric stimulation. As electric stimulation research on the cerebellum moved into the twentieth century, systematic research of electric cerebellar stimulation led to a better understanding of its effects and mechanism of action. In addition, the clinical potential of cerebellar stimulation in the treatment of motor diseases started to be explored. With the introduction of transcranial electric and magnetic stimulation, cerebellar research moved to non-invasive techniques. During the twenty-first century, following on groundbreaking research that linked the cerebellum to non-motor functions, non-invasive techniques have facilitated research into different aspects of cerebellar functioning. The present review provides a brief historical account of cerebellar neurostimulation and discusses current challenges and future direction in this field of research.
Collapse
Affiliation(s)
- Gustavo V Ponce
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Aïssa HB, Sala RW, Georgescu Margarint EL, Frontera JL, Varani AP, Menardy F, Pelosi A, Hervé D, Léna C, Popa D. Functional abnormalities in the cerebello-thalamic pathways in a mouse model of DYT25 dystonia. eLife 2022; 11:79135. [PMID: 35699413 PMCID: PMC9197392 DOI: 10.7554/elife.79135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Dystonia is often associated with functional alterations in the cerebello-thalamic pathways, which have been proposed to contribute to the disorder by propagating pathological firing patterns to the forebrain. Here, we examined the function of the cerebello-thalamic pathways in a model of DYT25 dystonia. DYT25 (Gnal+/−) mice carry a heterozygous knockout mutation of the Gnal gene, which notably disrupts striatal function, and systemic or striatal administration of oxotremorine to these mice triggers dystonic symptoms. Our results reveal an increased cerebello-thalamic excitability in the presymptomatic state. Following the first dystonic episode, Gnal+/- mice in the asymptomatic state exhibit a further increase of the cerebello-thalamo-cortical excitability, which is maintained after θ-burst stimulations of the cerebellum. When administered in the symptomatic state induced by a cholinergic activation, these stimulations decreased the cerebello-thalamic excitability and reduced dystonic symptoms. In agreement with dystonia being a multiregional circuit disorder, our results suggest that the increased cerebello-thalamic excitability constitutes an early endophenotype, and that the cerebellum is a gateway for corrective therapies via the depression of cerebello-thalamic pathways.
Collapse
Affiliation(s)
- Hind Baba Aïssa
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Romain W Sala
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Elena Laura Georgescu Margarint
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Jimena Laura Frontera
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Andrés Pablo Varani
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Fabien Menardy
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Assunta Pelosi
- Inserm UMR-S 1270, Paris, France.,Sorbonne Université, Sciences and Technology Faculty, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, Paris, France.,Sorbonne Université, Sciences and Technology Faculty, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Daniela Popa
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
24
|
Yao Q, Tang F, Wang Y, Yan Y, Dong L, Wang T, Zhu D, Tian M, Lin X, Shi J. Effect of cerebellum stimulation on cognitive recovery in patients with Alzheimer disease: A randomized clinical trial. Brain Stimul 2022; 15:910-920. [PMID: 35700915 DOI: 10.1016/j.brs.2022.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Evidence indicates that the cerebellum is involved in cognitive processing. However, the specific mechanisms through which the cerebellum repetitive transcranial magnetic stimulation (rTMS) contributes to the cognitive state are unclear. METHODS In the current randomized, double-blind, sham-controlled trial, 27 patients with Alzheimer's disease (AD) were randomly allotted to one of the two groups: rTMS-real or rTMS-sham. We investigated the efficacy of a four-week treatment of bilateral cerebellum rTMS to promote cognitive recovery and alter specific cerebello-cerebral functional connectivity. RESULTS The cerebellum rTMS significantly improves multi-domain cognitive functions, directly associated with the observed intrinsic functional connectivity between the cerebellum nodes and the dorsolateral prefrontal cortex (DLPFC), medial frontal cortex, and the cingulate cortex in the real rTMS group. In contrast, the sham stimulation showed no significant impact on the clinical improvements and the cerebello-cerebral connectivity. CONCLUSION Our results depict that 5 Hz rTMS of the bilateral cerebellum is a promising, non-invasive treatment of cognitive dysfunction in AD patients. This cognitive improvement is accompanied by brain connectivity modulation and is consistent with the pathophysiological brain disconnection model in AD patients.
Collapse
Affiliation(s)
- Qun Yao
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Fanyu Tang
- Department of Neurology, The Second People's Hospital of Bengbu, Bengbu, Anhui, China.
| | - Yingying Wang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Yixin Yan
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Lin Dong
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Tong Wang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Donglin Zhu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Minjie Tian
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Xingjian Lin
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Jingping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Sasaki R, Hand BJ, Liao WY, Rogasch NC, Fernandez L, Semmler JG, Opie GM. Utilising TMS-EEG to Assess the Response to Cerebellar-Brain Inhibition. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01419-y. [PMID: 35661100 DOI: 10.1007/s12311-022-01419-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Cerebellar-brain inhibition (CBI) is a transcranial magnetic stimulation (TMS) paradigm indexing excitability of cerebellar projections to motor cortex (M1). Stimulation involved with CBI is often considered to be uncomfortable, and alternative ways to index connectivity between cerebellum and the cortex would be valuable. We therefore sought to assess the utility of electroencephalography in conjunction with TMS (combined TMS-EEG) to record the response to CBI. A total of 33 volunteers (25.7 ± 4.9 years, 20 females) participated across three experiments. These investigated EEG responses to CBI induced with a figure-of-eight (F8; experiment 1) or double cone (DC; experiment 2) conditioning coil over cerebellum, in addition to multisensory sham stimulation (experiment 3). Both F8 and DC coils suppressed early TMS-evoked EEG potentials (TEPs) produced by TMS to M1 (P < 0.05). Furthermore, the TEP produced by CBI stimulation was related to the motor inhibitory response to CBI recorded in a hand muscle (P < 0.05), but only when using the DC coil. Multisensory sham stimulation failed to modify the M1 TEP. Cerebellar conditioning produced changes in the M1 TEP that were not apparent following sham stimulation, and that were related to the motor inhibitory effects of CBI. Our findings therefore suggest that it is possible to index the response to CBI using TMS-EEG. In addition, while both F8 and DC coils appear to recruit cerebellar projections, the nature of these may be different.
Collapse
Affiliation(s)
- R Sasaki
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - B J Hand
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - W Y Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - N C Rogasch
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - L Fernandez
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - J G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - G M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
26
|
Zheng K, Chen M, Shen Y, Xu X, Gao F, Huang G, Ji Y, Su B, Song D, Fang H, Liu P, Ren C. Cerebellar Continuous Theta Burst Stimulation for Aphasia Rehabilitation: Study Protocol for a Randomized Controlled Trial. Front Aging Neurosci 2022; 14:909733. [PMID: 35721014 PMCID: PMC9201405 DOI: 10.3389/fnagi.2022.909733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Language recovery is limited in moderate to severe post-stroke aphasia patients. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising tool in improving language dysfunctions caused by post-stroke aphasia, but the treatment outcome is as yet mixed. Considerable evidence has demonstrated the essential involvement of the cerebellum in a variety of language functions, suggesting that it may be a potential stimulation target of TMS for the treatment of post-stroke aphasia. Theta burst stimulation (TBS) is a specific pattern of rTMS with shorter stimulation times and better therapeutic effects. The effect of continuous TBS (cTBS) on the cerebellum in patients with aphasia with chronic stroke needs further exploration. Methods In this randomized, sham-controlled clinical trial, patients (n = 40) with chronic post-stroke aphasia received 10 sessions of real cTBS (n = 20) or sham cTBS (n = 20) over the right cerebellar Crus I+ a 30-min speech-language therapy. The Western Aphasia Battery (WAB) serves as the primary measure of the treatment outcome. The secondary outcome measures include the Boston Diagnostic Aphasia Examination, Boston Naming Test and speech acoustic parameters. Resting-state fMRI data were also obtained to examine treatment-induced changes in functional connectivity of the cerebro-cerebellar network. These outcome measures are assessed before, immediately after, and 12 weeks after cerebellar cTBS intervention. Discussion This protocol holds promise that cerebellar cTBS is a potential strategy to improve language functions in chronic post-stroke aphasia. The resting-state fMRI may explore the neural mechanism underlying the aphasia rehabilitation with cerebellar cTBS.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Mingyun Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinlei Xu
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Fanglan Gao
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Guilan Huang
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Yingying Ji
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Bin Su
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Da Song
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Hui Fang
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caili Ren
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| |
Collapse
|
27
|
Transcranial direct current stimulation and transcranial random noise stimulation over the cerebellum differentially affect the cerebellum and primary motor cortex pathway. J Clin Neurosci 2022; 100:59-65. [DOI: 10.1016/j.jocn.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
28
|
Cerebellar noninvasive neuromodulation influences the reactivity of the contralateral primary motor cortex and surrounding areas: a TMS-EMG-EEG study. CEREBELLUM (LONDON, ENGLAND) 2022; 22:319-331. [PMID: 35355218 DOI: 10.1007/s12311-022-01398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
Understanding cerebellar-cortical physiological interactions is of fundamental importance to advance the efficacy of neurorehabilitation strategies for patients with cerebellar damage. Previous works have aimed to modulate this pathway by applying transcranial electrical or magnetic stimulation (TMS) over the cerebellum and probing the resulting changes in the primary motor cortex (M1) excitability with motor-evoked potentials (MEPs). While these protocols produce changes in cerebellar excitability, their ability to modulate MEPs has produced inconsistent results, mainly due to the MEP being a highly variable outcome measure that is susceptible to fluctuations in the excitability of M1 neurons and spinal interneurons. To overcome this limitation, we combined TMS with electroencephalography (EEG) to directly record TMS-evoked potentials (TEPs) and oscillations from the scalp. In three sessions, we applied intermittent theta-burst stimulation (iTBS), cathodal direct current stimulation (c-DC) or sham stimulation to modulate cerebellar activity. To assess the effects on M1 and nearby cortex, we recorded TMS-EEG and MEPs before, immediately after (T1) and 15 min (T2) following cerebellar neuromodulation. We found that cerebellar iTBS immediately increased TMS-induced alpha oscillations and produced lasting facilitatory effects on TEPs, whereas c-DC immediately decreased TMS-induced alpha oscillations and reduced TEPs. We also found increased MEP following iTBS but not after c-DC. All of the TMS-EEG measures showed high test-retest repeatability. Overall, this work importantly shows that cerebellar neuromodulation influences both cortical and corticospinal physiological measures; however, they are more pronounced and detailed when utilizing TMS-EEG outcome measures. These findings highlight the advantage of using TMS-EEG over MEPs when assessing the effects of neuromodulation.
Collapse
|
29
|
Klaus J, Schutter DJLG. Non-invasive Brain Stimulation of the Cerebellum in Emotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:109-121. [DOI: 10.1007/978-3-030-99550-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Cardellicchio P, Dolfini E, D'Ausilio A. The role of dorsal premotor cortex in joint action stopping. iScience 2021; 24:103330. [PMID: 34805791 PMCID: PMC8586805 DOI: 10.1016/j.isci.2021.103330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/08/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Human sensorimotor interaction requires mutual behavioral adaptation as well as shared cognitive task representations (Joint Action, JA). Yet, an under-investigated aspect of JA is the neurobehavioral mechanisms employed to stop actions if the context calls for it. Sparse evidence points to the possible contribution of the left dorsal premotor cortex (lPMd) in sculpting movements according to the socio-interactive context. To clarify this issue, we ran two experiments integrating a classical stop signal paradigm with an ecological JA task. The first behavioral study shows longer Stop performance in the JA condition. In the second, we use transcranial magnetic stimulation to inhibit the lPMd or a control site (vertex). Results show that lPMd modulates the JA stopping performance. Action stopping is an important component of JA coordination, and here we provide evidence that lPMd is a key node of a brain network recruited for online mutual co-adaptation in social contexts. Interaction requires mutual adaptation and a shared cognitive task representation Sensorimotor representations must be negotiated between partners to achieve the goal Motor suppression mechanisms might be essential in Joint Action coordination Dorsal premotor cortex (PMd) plays a key role in guiding Joint Action coordination
Collapse
Affiliation(s)
- Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Elisa Dolfini
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| |
Collapse
|
31
|
Ortelli P, Ferrazzoli D, Maestri R, Saltuari L, Kofler M, Alibardi A, Koch G, Spampinato D, Castagna A, Sebastianelli L, Versace V. Experimental Protocol to Test Explicit Motor Learning–Cerebellar Theta Burst Stimulation. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:720184. [PMID: 36188833 PMCID: PMC9397715 DOI: 10.3389/fresc.2021.720184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022]
Abstract
Implicit and explicit motor learning processes work interactively in everyday life to promote the creation of highly automatized motor behaviors. The cerebellum is crucial for motor sequence learning and adaptation, as it contributes to the error correction and to sensorimotor integration of on-going actions. A non-invasive cerebellar stimulation has been demonstrated to modulate implicit motor learning and adaptation. The present study aimed to explore the potential role of cerebellar theta burst stimulation (TBS) in modulating explicit motor learning and adaptation, in healthy subjects. Cerebellar TBS will be applied immediately before the learning phase of a computerized task based on a modified Serial Reaction Time Task (SRTT) paradigm. Here, we present a study protocol aimed at evaluating the behavioral effects of continuous (cTBS), intermittent TBS (iTBS), or sham Theta Burst Stimulation (TBS) on four different conditions: learning, adaptation, delayed recall and re-adaptation of SRTT. We are confident to find modulation of SRTT performance induced by cerebellar TBS, in particular, processing acceleration and reduction of error in all the conditions induced by cerebellar iTBS, as already known for implicit processes. On the other hand, we expect that cerebellar cTBS could induce opposite effects. Results from this protocol are supposed to advance the knowledge about the role of non-invasive cerebellar modulation in neurorehabilitation, providing clinicians with useful data for further exploiting this technique in different clinical conditions.
Collapse
Affiliation(s)
- Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
- *Correspondence: Paola Ortelli
| | - Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Roberto Maestri
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Alessia Alibardi
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Giacomo Koch
- Non-invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Danny Spampinato
- Non-invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Anna Castagna
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| |
Collapse
|
32
|
Sanna A, Follesa P, Tacconi P, Serra M, Pisu MG, Cocco V, Figorilli M, Defazio G, Puligheddu M. Therapeutic Use of Cerebellar Intermittent Theta Burst Stimulation (iTBS) in a Sardinian Family Affected by Spinocerebellar Ataxia 38 (SCA 38). THE CEREBELLUM 2021; 21:623-631. [PMID: 34410614 PMCID: PMC9325795 DOI: 10.1007/s12311-021-01313-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/27/2022]
Abstract
Spinocerebellar ataxia 38 (SCA 38) is an autosomal dominant disorder caused by conventional mutations in the ELOVL5 gene which encodes an enzyme involved in the synthesis of very long fatty acids, with a specific expression in cerebellar Purkinje cells. Three Italian families carrying the mutation, one of which is of Sardinian descent, have been identified and characterized. One session of cerebellar intermittent theta burst stimulation (iTBS) was applied to 6 affected members of the Sardinian family to probe motor cortex excitability measured by motor-evoked potentials (MEPs). Afterwards, patients were exposed to ten sessions of cerebellar real and sham iTBS in a cross-over study and clinical symptoms were evaluated before and after treatment by Modified International Cooperative Ataxia Rating Scale (MICARS). Moreover, serum BDNF levels were evaluated before and after real and sham cerebellar iTBS and the role of BDNF Val66Met polymorphism in influencing iTBS effect was explored. Present data show that one session of cerebellar iTBS was able to increase MEPs in all tested patients, suggesting an enhancement of the cerebello-thalamo-cortical pathway in SCA 38. MICARS scores were reduced after ten sessions of real cerebellar iTBS showing an improvement in clinical symptoms. Finally, although serum BDNF levels were not affected by cerebellar iTBS when considering all samples, segregating for genotype a difference was found between Val66Val and Val66Met carriers. These preliminary data suggest a potential therapeutic use of cerebellar iTBS in improving motor symptoms of SCA38.
Collapse
Affiliation(s)
- Angela Sanna
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Paolo Follesa
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Paolo Tacconi
- Section of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | | | - Viola Cocco
- Department of Medical Science and Public Health, Section of Neurology, University of Cagliari, Cagliari, Italy
| | - Michela Figorilli
- Department of Medical Science and Public Health, Section of Neurology, University of Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Department of Medical Science and Public Health, Section of Neurology, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Department of Medical Science and Public Health, Section of Neurology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
33
|
Gatti D, Rinaldi L, Cristea I, Vecchi T. Probing cerebellar involvement in cognition through a meta-analysis of TMS evidence. Sci Rep 2021; 11:14777. [PMID: 34285287 PMCID: PMC8292349 DOI: 10.1038/s41598-021-94051-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Traditionally, the cerebellum has been linked to motor coordination, but growing evidence points to its involvement in a wide range of non-motor functions. Though the number of studies using transcranial magnetic stimulation (TMS) to investigate cerebellar involvement in cognitive processes is growing exponentially, these findings have not yet been synthesized in a meta-analysis. Here, we used meta-analysis to estimate the effects of cerebellar TMS on performance in cognitive tasks for healthy participants. Outcomes included participants' accuracy and response times (RTs) of several non-motor tasks performed either during or after the administration of TMS. We included overall 41 studies, of which 44 single experiments reported effects on accuracy and 41 on response times (RTs). The meta-analyses showed medium effect sizes (for accuracy: d = 0.61 [95% CI = 0.48, .073]; for RTs: d = 0.40 [95% CI = 0.30, 0.49]), with leave-one-out analyses indicating that cumulative effects were robust, and with moderate heterogeneity. For both accuracy and RTs, the effect of TMS was moderated by the stimulation paradigm adopted but not by the cognitive function investigated, while the timing of the stimulation moderated only the effects on RTs. Further analyses on lateralization revealed no moderation effects of the TMS site. Taken together, these findings indicate that TMS administered over the cerebellum is able to modulate cognitive performance, affecting accuracy or RTs, and suggest that the various stimulation paradigms play a key role in determining the efficacy of cerebellar TMS.
Collapse
Affiliation(s)
- Daniele Gatti
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Luca Rinaldi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Ioana Cristea
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Tomaso Vecchi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
34
|
Intermittent Cerebellar Theta Burst Stimulation Improves Visuo-motor Learning in Stroke Patients: a Pilot Study. THE CEREBELLUM 2021; 19:739-743. [PMID: 32462496 DOI: 10.1007/s12311-020-01146-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The cerebellum plays a critical role in promoting learning of new motor tasks, which is an essential function for motor recovery. Repetitive transcranial magnetic stimulation (rTMS) of the cerebellum can be used to enhance learning. In this study, we investigated the effects of cerebellar intermittent theta burst stimulation (c-iTBS), a high-frequency rTMS protocol, on visuo-motor learning in a sample of hemiparetic patients due to recent stroke in the territory of the contralateral middle cerebral artery. Eight stroke patients were enrolled for the purposes of the study in the chronic stage of recovery (i.e., at least 6 months after stroke). In two sessions, Patients were randomly assigned to treatment with real or sham c-iTBS applied over the cerebellar hemisphere ipsilateral to the affected body side. c-iTBS was applied immediately before the learning phase of a visuo-motor adaptation task. Real, but not sham, c-iTBS improved visuo-motor learning as revealed by an increased performance in of the learning phase of the visuo-moto adaptation task. Moreover, we also found that real but not sham c-iTBS induced a sustained improvement in the re-adaptation of the recently learned skill (i.e., when patients were re-tested after 30 min). Taken together, these data point to c-iTBS as a potential novel strategy to promote motor learning in patients with stroke.
Collapse
|
35
|
Guder S, Frey BM, Backhaus W, Braass H, Timmermann JE, Gerloff C, Schulz R. The Influence of Cortico-Cerebellar Structural Connectivity on Cortical Excitability in Chronic Stroke. Cereb Cortex 2021; 30:1330-1344. [PMID: 31647536 DOI: 10.1093/cercor/bhz169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022] Open
Abstract
Brain imaging has recently evidenced that the structural state of distinct reciprocal cortico-cerebellar fiber tracts, the dentato-thalamo-cortical tract (DTCT), and the cortico-ponto-cerebellar tract (CPCeT), significantly influences residual motor output in chronic stroke patients, independent from the level of damage to the corticospinal tract (CST). Whether such structural information might also directly relate to measures of cortical excitability is an open question. Eighteen chronic stroke patients with supratentorial ischemic lesions and 17 healthy controls underwent transcranial magnetic stimulation to assess recruitment curves of motor evoked potentials of both hemispheres. Diffusion-weighted imaging and probabilistic tractography were applied to reconstruct reciprocal cortico-cerebellar motor tracts between the primary motor cortex and the cerebellum. Tract-related microstructure was estimated by means of fractional anisotropy, and linear regression modeling was used to relate it to cortical excitability. The main finding was a significant association between cortical excitability and the structural integrity of the DTCT, the main cerebellar outflow tract, independent from the level of damage to the CST. A comparable relationship was neither detectable for the CPCeT nor for the healthy controls. This finding contributes to a mechanistic understanding of the putative supportive role of the cerebellum for residual motor output by facilitating cortical excitability after stroke.
Collapse
Affiliation(s)
- Stephanie Guder
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Winifried Backhaus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hanna Braass
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jan E Timmermann
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
36
|
Opie GM, Liao WY, Semmler JG. Interactions Between Cerebellum and the Intracortical Excitatory Circuits of Motor Cortex: a Mini-Review. CEREBELLUM (LONDON, ENGLAND) 2021; 21:159-166. [PMID: 33978934 DOI: 10.1007/s12311-021-01278-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Interactions between cerebellum (CB) and primary motor cortex (M1) are critical for effective motor function. Although the associated neurophysiological processes are yet to be fully characterised, a growing body of work using non-invasive brain stimulation (NIBS) techniques has significantly progressed our current understanding. In particular, recent developments with both transcranial magnetic (TMS) and direct current (tDCS) stimulation suggest that CB modulates the activity of local excitatory interneuronal circuits within M1. These circuits are known to be important both physiologically and functionally, and understanding the nature of their connectivity with CB therefore has the potential to provide important insight for NIBS applications. Consequently, this mini-review provides an overview of the emerging literature that has investigated interactions between CB and the intracortical excitatory circuits of M1.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Wei-Yeh Liao
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
37
|
Mirdamadi JL, Block HJ. Somatosensory versus cerebellar contributions to proprioceptive changes associated with motor skill learning: A theta burst stimulation study. Cortex 2021; 140:98-109. [PMID: 33962318 DOI: 10.1016/j.cortex.2021.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/22/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well established that proprioception (position sense) is important for motor control, yet its role in motor learning and associated plasticity is not well understood. We previously demonstrated that motor skill learning is associated with enhanced proprioception and changes in sensorimotor neurophysiology. However, the neural substrates mediating these effects are unclear. OBJECTIVE To determine whether suppressing activity in the cerebellum and somatosensory cortex (S1) affects proprioceptive changes associated with motor skill learning. METHODS 54 healthy young adults practiced a skill involving visually-guided 2D reaching movements through an irregular-shaped track using a robotic manipulandum with their right hand. Proprioception was measured using a passive two-alternative choice task before and after motor practice. Continuous theta burst stimulation (cTBS) was delivered over S1 or the cerebellum (CB) at the end of training for two consecutive days. We compared group differences (S1, CB, Sham) in proprioception and motor skill, quantified by a speed-accuracy function, measured on a third consecutive day (retention). RESULTS As shown previously, the Sham group demonstrated enhanced proprioceptive sensitivity after training and at retention. The S1 group had impaired proprioceptive function at retention through online changes during practice, whereas the CB group demonstrated offline decrements in proprioceptive function. All groups demonstrated motor skill learning. However, the magnitude of learning differed between the CB and Sham groups, consistent with a role for the cerebellum in motor learning. CONCLUSION Overall, these findings suggest that the cerebellum and S1 are important for distinct aspects of proprioceptive changes during skill learning.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| | - Hannah J Block
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
38
|
Billeri L, Naro A. A narrative review on non-invasive stimulation of the cerebellum in neurological diseases. Neurol Sci 2021; 42:2191-2209. [PMID: 33759055 DOI: 10.1007/s10072-021-05187-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
IMPORTANCE The cerebellum plays an important role in motor, cognitive, and affective functions owing to its dense interconnections with basal ganglia and cerebral cortex. This review aimed at summarizing the non-invasive cerebellar stimulation (NICS) approaches used to modulate cerebellar output and treat cerebellar dysfunction in the motor domain. OBSERVATION The utility of NICS in the treatment of cerebellar and non-cerebellar neurological diseases (including Parkinson's disease, dementia, cerebellar ataxia, and stroke) is discussed. NICS induces meaningful clinical effects from repeated sessions alone in both cerebellar and non-cerebellar diseases. However, there are no conclusive data on this issue and several concerns need to be still addressed before NICS could be considered a valuable, standard therapeutic tool. CONCLUSIONS AND RELEVANCE Even though some challenges must be overcome to adopt NICS in a wider clinical setting, this tool might become a useful strategy to help patients with lesions in the cerebellum and cerebral areas that are connected with the cerebellum whether one could enhance cerebellar activity with the intention of facilitating the cerebellum and the entire, related network, rather than attempting to facilitate a partially damaged cortical region or inhibiting the homologs' contralateral area. The different outcome of each approach would depend on the residual functional reserve of the cerebellum, which is confirmed as a critical element to be probed preliminary in order to define the best patient-tailored NICS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy.
| |
Collapse
|
39
|
Out with the Old and in with the New: the Contribution of Prefrontal and Cerebellar Areas to Backward Inhibition. THE CEREBELLUM 2021; 19:426-436. [PMID: 32140845 DOI: 10.1007/s12311-020-01115-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The inhibitory mechanism named backward inhibition (BI) counteracts interference of previous tasks supporting task switching. For instance, if task set A is inhibited when switching to task B, then it should take longer to immediately return to task set A (as occurring in an ABA sequence), as compared to a task set that has not been just inhibited (as occurring in a CBA sequence), because extra time will be needed to overcome the inhibition of task set A.The evidenced prefrontal and cerebellar role in inhibitory control suggests their involvement even in BI. Here, for the first time, we modulated the excitability of multiple brain sites (right presupplementary motor area (pre-SMA), left and right cerebellar hemispheres) through continuous theta burst stimulation (cTBS) in a valuable sham-controlled order-balanced within-subject experimental design in healthy individuals performing two domain-selective (verbal and spatial) task-switching paradigms. Verbal BI was abolished by prefrontal or cerebellar stimulations through opposite alterations of the basal pattern: cTBS on pre-SMA increased CBA reaction times, disclosing the current prefrontal inhibition of any interfering old task. Conversely, cerebellar cTBS decreased ABA reaction times, disclosing the current cerebellar recognition of sequences in which it is necessary to overcome previously inhibited events.
Collapse
|
40
|
Korai SA, Ranieri F, Di Lazzaro V, Papa M, Cirillo G. Neurobiological After-Effects of Low Intensity Transcranial Electric Stimulation of the Human Nervous System: From Basic Mechanisms to Metaplasticity. Front Neurol 2021; 12:587771. [PMID: 33658972 PMCID: PMC7917202 DOI: 10.3389/fneur.2021.587771] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Non-invasive low-intensity transcranial electrical stimulation (tES) of the brain is an evolving field that has brought remarkable attention in the past few decades for its ability to directly modulate specific brain functions. Neurobiological after-effects of tES seems to be related to changes in neuronal and synaptic excitability and plasticity, however mechanisms are still far from being elucidated. We aim to review recent results from in vitro and in vivo studies that highlight molecular and cellular mechanisms of transcranial direct (tDCS) and alternating (tACS) current stimulation. Changes in membrane potential and neural synchronization explain the ongoing and short-lasting effects of tES, while changes induced in existing proteins and new protein synthesis is required for long-lasting plastic changes (LTP/LTD). Glial cells, for decades supporting elements, are now considered constitutive part of the synapse and might contribute to the mechanisms of synaptic plasticity. This review brings into focus the neurobiological mechanisms and after-effects of tDCS and tACS from in vitro and in vivo studies, in both animals and humans, highlighting possible pathways for the development of targeted therapeutic applications.
Collapse
Affiliation(s)
- Sohaib Ali Korai
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federico Ranieri
- Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, University Campus Bio-Medico, Rome, Italy
| | - Michele Papa
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy.,ISBE Italy, SYSBIO Centre of Systems Biology, Milan, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy.,Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
41
|
Pauly MG, Steinmeier A, Bolte C, Hamami F, Tzvi E, Münchau A, Bäumer T, Weissbach A. Cerebellar rTMS and PAS effectively induce cerebellar plasticity. Sci Rep 2021; 11:3070. [PMID: 33542291 PMCID: PMC7862239 DOI: 10.1038/s41598-021-82496-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Non-invasive brain stimulation techniques including repetitive transcranial magnetic stimulation (rTMS), continuous theta-burst stimulation (cTBS), paired associative stimulation (PAS), and transcranial direct current stimulation (tDCS) have been applied over the cerebellum to induce plasticity and gain insights into the interaction of the cerebellum with neo-cortical structures including the motor cortex. We compared the effects of 1 Hz rTMS, cTBS, PAS and tDCS given over the cerebellum on motor cortical excitability and interactions between the cerebellum and dorsal premotor cortex / primary motor cortex in two within subject designs in healthy controls. In experiment 1, rTMS, cTBS, PAS, and tDCS were applied over the cerebellum in 20 healthy subjects. In experiment 2, rTMS and PAS were compared to sham conditions in another group of 20 healthy subjects. In experiment 1, PAS reduced cortical excitability determined by motor evoked potentials (MEP) amplitudes, whereas rTMS increased motor thresholds and facilitated dorsal premotor-motor and cerebellum-motor cortex interactions. TDCS and cTBS had no significant effects. In experiment 2, MEP amplitudes increased after rTMS and motor thresholds following PAS. Analysis of all participants who received rTMS and PAS showed that MEP amplitudes were reduced after PAS and increased following rTMS. rTMS also caused facilitation of dorsal premotor-motor cortex and cerebellum-motor cortex interactions. In summary, cerebellar 1 Hz rTMS and PAS can effectively induce plasticity in cerebello-(premotor)-motor pathways provided larger samples are studied.
Collapse
Affiliation(s)
- Martje G Pauly
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Annika Steinmeier
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Christina Bolte
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Feline Hamami
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Elinor Tzvi
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany. .,Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
42
|
Spampinato D, Avci E, Rothwell J, Rocchi L. Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Brain Stimul 2021; 14:277-283. [PMID: 33482375 PMCID: PMC7970622 DOI: 10.1016/j.brs.2021.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
Background it is well-known that the cerebellum is critical for the integrity of motor and cognitive actions. Applying non-invasive brain stimulation techniques over this region results in neurophysiological and behavioural changes, which have been associated with the modulation of cerebellar-cerebral cortex connectivity. Here, we investigated whether online application of cerebellar transcranial alternating current stimulation (tACS) results in changes to this pathway. Methods thirteen healthy individuals participated in two sessions of cerebellar tACS delivered at different frequencies (5Hz and 50Hz). We used transcranial magnetic stimulation to measure cerebellar-motor cortex (M1) inhibition (CBI), short-intracortical inhibition (SICI) and short-afferent inhibition (SAI) before, during and after the application of tACS. Results we found that CBI was specifically strengthened during the application of 5Hz cerebellar tACS. No changes were detected immediately following the application of 5Hz stimulation, nor at any time point with 50Hz stimulation. We also found no changes to M1 intracortical circuits (i.e. SICI) or sensorimotor interaction (i.e. SAI), indicating that the effects of 5Hz tACS over the cerebellum are site-specific. Conclusions cerebellar tACS can modulate cerebellar excitability in a time- and frequency-dependent manner. Additionally, cerebellar tACS does not appear to induce any long-lasting effects (i.e. plasticity), suggesting that stimulation enhances oscillations within the cerebellum only throughout the stimulation period. As such, cerebellar tACS may have significant implications for diseases manifesting with abnormal cerebellar oscillatory activity and also for future behavioural studies. Cerebellar tACS increases the inhibitory tone that the cerebellum exerts over M1 (CBI). CBI changes were found only during the online application of 5Hz tACS and not immediately following stimulation. The effects are specific to the cerebellum, as no changes were found in intracortical measures (e.g. SICI and SAI).
Collapse
Affiliation(s)
- Danny Spampinato
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom; Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy.
| | - Esin Avci
- Department of Sport and Sport Science, Institute of Biology, University of Freiburg, Germany
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
43
|
Swinkin E, Lizárraga KJ, Algarni M, Garcia Dominguez L, Baarbé JK, Saravanamuttu J, Chen R, Slow E, Lang AE, Wennberg RA. A Distinct EEG Marker of Celiac Disease-Related Cortical Myoclonus. Mov Disord 2020; 36:999-1005. [PMID: 33251639 DOI: 10.1002/mds.28407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Celiac disease is associated with motor cortex hyperexcitability and neurological manifestations including cortical myoclonus. Electroencephalography abnormalities have been described, but no distinct pattern has been reported. METHODS We describe the neurophysiological characteristics of 3 patients with celiac-associated cortical myoclonus using electroencephalography, magnetoencephalography, and transcranial magnetic stimulation. RESULTS Electroencephalography in all cases demonstrated lateralized low-amplitude, electropositive beta-frequency polyspike activity over the central head region, corresponding to motor cortex contralateral to the myoclonic limb. Jerk-locked back-averaging demonstrated a preceding cortical potential; magnetoencephalography source localization revealed a cortical generator in the posterior wall of the precentral gyrus for the back-averaged potential and oscillatory abnormality. In 1 patient, cerebellar inhibition of the motor cortex was physiologically normal. CONCLUSIONS Central head oscillatory, low-amplitude, electropositive electroencephalography polyspike activity may be a distinct marker of celiac-related cortical myoclonus and is consistent with celiac-related motor cortex hyperexcitability, which may not necessarily result from cerebellar disinhibition. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Emily Swinkin
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Karlo J Lizárraga
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Motor Physiology and Neuromodulation Program, Division of Movement Disorders and Center for Health and Technology (CHeT), Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Musleh Algarni
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, East Jeddah Hospital, Jeddah, Saudi Arabia
| | - Luis Garcia Dominguez
- Mitchell Goldhar MEG Unit, Clinical Neurophysiology Laboratory, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Julianne K Baarbé
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, Ontario, Canada
| | - James Saravanamuttu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Elizabeth Slow
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Richard A Wennberg
- Mitchell Goldhar MEG Unit, Clinical Neurophysiology Laboratory, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Cerebral Cortical Activity Following Non-invasive Cerebellar Stimulation-a Systematic Review of Combined TMS and EEG Studies. THE CEREBELLUM 2020; 19:309-335. [PMID: 31907864 DOI: 10.1007/s12311-019-01093-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cerebellum sends dense projections to both motor and non-motor regions of the cerebral cortex via the cerebellarthalamocortical tract. The integrity of this tract is crucial for healthy motor and cognitive function. This systematic review examines research using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to the cerebellum with combined cortical electroencephalography (EEG) to explore the temporal features of cerebellar-cortical connectivity. A detailed discussion of the outcomes and limitations of the studies meeting review criteria is presented. Databases were searched between 1 December 2017 and 6 December 2017, with Scopus alerts current as of 23 July 2019. Of the 407 studies initially identified, 10 met review criteria. Findings suggested that cerebellar-cortical assessment is suited to combined TMS and EEG, although work is required to ensure experimental procedures are optimal for eliciting a reliable cerebellar response from stimulation. A distinct variation in methodologies and outcome measures employed across studies, and small sample sizes limited the conclusions that could be drawn regarding the electrophysiological signatures of cerebellar-cortical communication. This review highlights the need for stringent protocols and methodologies for cerebellar-cortical assessments via combined TMS and EEG. With these in place, combined TMS and EEG will provide a valuable means for exploring cerebellar connectivity with a wide range of cortical sites. Assessments have the potential to aid in the understanding of motor and cognitive function in both healthy and clinical groups, and provide insights into long-range neural communication generally.
Collapse
|
45
|
Liao LY, Xie YJ, Chen Y, Gao Q. Cerebellar Theta-Burst Stimulation Combined With Physiotherapy in Subacute and Chronic Stroke Patients: A Pilot Randomized Controlled Trial. Neurorehabil Neural Repair 2020; 35:23-32. [PMID: 33166213 DOI: 10.1177/1545968320971735] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intermittent theta-burst stimulation (iTBS) has been suggested to improve poststroke rehabilitation. The cerebellum is considered crucial for motor control. However, the effects of cerebellar iTBS with routine physical therapy on balance and motor recovery in subacute and chronic stroke patients have not been explored. OBJECTIVE To measure the short-term effects of cerebellar iTBS with physiotherapy on the balance and functional outcomes in subacute and chronic stroke patients with hemiparesis. METHODS Thirty hemiparetic patients were recruited for this randomized, double-blinded, sham-controlled trial, and randomized into either the treatment or sham group. Both groups participated in physiotherapy 5 times per week for 2 weeks, and cerebellar iTBS or sham iTBS was performed daily, immediately before physiotherapy. The primary outcome was the Berg balance scale (BBS) score. Secondary outcomes included the trunk impairment scale (TIS) score, Fugl-Meyer assessment scale score for lower extremities (FMA-LE), Barthel index (BI), and corticospinal excitability, as measured by transcranial magnetic stimulation. The outcomes were measured before and 1 week and 2 weeks after the intervention. RESULTS Compared with those at baseline, significant increases were identified in all clinical scores (BBS, TIS, FMA-LE, and BI) in both groups after the 2-week intervention. The BBS and TIS scores improved more in the iTBS group than in the sham group. CONCLUSIONS Cerebellar iTBS with physiotherapy promotes balance and motor recovery in poststroke patients. Therefore, this method can be used in low-cost, fast, and efficient protocols for stroke rehabilitation (Chinese Clinical Trial Registry: ChiCTR1900026450).
Collapse
Affiliation(s)
- Ling-Yi Liao
- West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Daping Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Yun-Juan Xie
- West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Yi Chen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Qiang Gao
- West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Exp Brain Res 2020; 238:1707-1714. [PMID: 32671422 DOI: 10.1007/s00221-020-05880-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
Repetitive transcranial stimulation (rTMS) paradigms have been used to induce lasting changes in brain activity and excitability. Previous methods of stimulation were long, often ineffective and produced short-lived and variable results. A new non-invasive brain stimulation technique was developed in John Rothwell's laboratory in the early 2000s, which was named 'theta burst stimulation' (TBS). This used rTMS applied in burst patterns of newly acquired 50 Hz rTMS machines, which emulated long-term potentiation/depression-like effects in brain slices. This stimulation paradigm created long-lasting changes in brain excitability, using efficient, very rapid stimulation, which would affect behaviour, with the aim to influence neurological diseases in humans. We describe the development of this technique, including findings and limitations identified since then. We discuss how pitfalls facing TBS reflect those involving both older and newer, non-invasive stimulation techniques, with suggestions of how to overcome these, using personalised, 'closed loop' stimulation methods. The challenge in most non-invasive stimulation techniques remains in identifying their exact mechanisms of action in the context of neurological disease models. The development of TBS provides the backdrop for describing John's contribution to the field, inspiring our own scientific endeavour thanks to his unconditional support, and unfailing kindness.
Collapse
|
47
|
Hurtado-Puerto AM, Nestor K, Eldaief M, Camprodon JA. Safety Considerations for Cerebellar Theta Burst Stimulation. Clin Ther 2020; 42:1169-1190.e1. [PMID: 32674957 DOI: 10.1016/j.clinthera.2020.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE The cerebellum is an intricate neural structure that orchestrates various cognitive and behavioral functions. In recent years, there has been an increasing interest in neuromodulation of the cerebellum with transcranial magnetic stimulation (TMS) for therapeutic and basic science applications. Theta burst stimulation (TBS) is an efficient and powerful TMS protocol that is able to induce longer-lasting effects with shorter stimulation times compared with traditional TMS. Parameters for cerebellar TBS are traditionally framed in the bounds of TBS to the cerebral cortex, even when the 2 have distinct histologic, anatomical, and functional characteristics. Tolerability limits have not been systematically explored in the literature for this specific application. Therefore, we aimed to determine the stimulation parameters that have been used for cerebellar. TBS to date and evaluate adverse events and adverse effects related to stimulation parameters. METHODS We used PubMed to perform a critical review of the literature based on a systematic review of original research studies published between September 2008 and November 2019 that reported on cerebellar TBS. We recovered information from these publications and communication with authors about the stimulation parameters used and the occurrence of adverse events. FINDINGS We identified 61 research articles on interventions of TBS to the cerebellum. These articles described 3176 active sessions of cerebellar TBS in 1203 individuals, including healthy participants and patients with various neurologic conditions, including brain injuries. Some studies used substantial doses (eg, pulse intensity and number of pulses) in short periods. No serious adverse events were reported. The specific number of patients who experienced adverse events was established for 48 studies. The risk of an adverse event in this population (n = 885) was 4.1%. Adverse events consisted mostly of discomfort attributable to involuntary muscle contractions. Authors used a variety of methods for calculating stimulation dosages, ranging from the long-established reference of electromyography of a hand muscle to techniques that atone for some of the differences between cerebrum and cerebellum. IMPLICATIONS No serious adverse events have been reported for cerebellar TBS. There is no substantial evidence of a tolerable maximal-efficacy stimulation dose in humans. There is no assurance of equivalence in the translation of cortical excitability and stimulation intensities from the cerebral cortex to cerebellar regions. Further research for the stimulation dose in cerebellar TBS is warranted, along with consistent report of adverse events. © 2020 Elsevier HS Journals, Inc.
Collapse
Affiliation(s)
- Aura M Hurtado-Puerto
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Centro de Estudios Cerebrales, Facultad de Ciencias, Universidad del Valle, Cali, Colombia.
| | - Kimberly Nestor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark Eldaief
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joan A Camprodon
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
48
|
Di Lorenzo F, Bonnì S, Picazio S, Motta C, Caltagirone C, Martorana A, Koch G. Effects of Cerebellar Theta Burst Stimulation on Contralateral Motor Cortex Excitability in Patients with Alzheimer's Disease. Brain Topogr 2020; 33:613-617. [PMID: 32564167 DOI: 10.1007/s10548-020-00781-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/10/2020] [Indexed: 01/20/2023]
Abstract
Although the cerebellum is not among the most renowned brain structures affected in Alzheimer`s disease (AD), recent evidence suggest that it undergoes degenerative changes during the course of the disease. A main neurophysiological feature of AD patients is the remarkable impairment of long term potentiation (LTP)-like cortical plasticity assessed in the primary motor cortex (M1) using theta burst stimulation (TBS) protocols. In healthy conditions, continuous (cTBS) and intermittent TBS (iTBS) of the cerebellum induce respectively long term depression (LTD)-like and LTP-like after effects in the contralateral M1. Here we aimed at examining the effects of cerebellar TBS on contralateral M1 excitability in a sample of 15 AD patients and 12 healthy age matched controls (HS). Motor evoked potentials (MEPs) were obtained in the contralateral M1 before and after cerebellar cTBS and iTBS protocols. As compared to HS, AD patients showed an impairment of LTP-like cortical plasticity mechanisms following cerebellar iTBS. No difference was observed for the cTBS protocol, in which both populations exhibited the expected LTD-like after effect. This study shows that mechanisms of cerebellar-cortical plasticity are impaired in AD. Given its role in high order cognitive functions, new potential therapeutic strategies could be built up in the future to modulate neural activity in the cerebellum in AD.
Collapse
Affiliation(s)
- Francesco Di Lorenzo
- Non-invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 306, 00179, Rome, Italy
| | - Sonia Bonnì
- Non-invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 306, 00179, Rome, Italy
| | - Silvia Picazio
- Non-invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 306, 00179, Rome, Italy
| | - Caterina Motta
- Non-invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 306, 00179, Rome, Italy
| | - Carlo Caltagirone
- Non-invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 306, 00179, Rome, Italy
| | - Alessandro Martorana
- Non-invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 306, 00179, Rome, Italy.,Department of System Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Giacomo Koch
- Non-invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 306, 00179, Rome, Italy. .,Section of Human Physiology, eCampus University, Novedrate, Italy.
| |
Collapse
|
49
|
Israely S, Leisman G. Can neuromodulation techniques optimally exploit cerebello-thalamo-cortical circuit properties to enhance motor learning post-stroke? Rev Neurosci 2020; 30:821-837. [PMID: 31194694 DOI: 10.1515/revneuro-2019-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Individuals post-stroke sustain motor deficits years after the stroke. Despite recent advancements in the applications of non-invasive brain stimulation techniques and Deep Brain Stimulation in humans, there is a lack of evidence supporting their use for rehabilitation after brain lesions. Non-invasive brain stimulation is already in use for treating motor deficits in individuals with Parkinson's disease and post-stroke. Deep Brain Stimulation has become an established treatment for individuals with movement disorders, such as Parkinson's disease, essential tremor, epilepsy, cerebral palsy and dystonia. It has also been utilized for the treatment of Tourette's syndrome, Alzheimer's disease and neuropsychiatric conditions such as obsessive-compulsive disorder, major depression and anorexia nervosa. There exists growing scientific knowledge from animal studies supporting the use of Deep Brain Stimulation to enhance motor recovery after brain damage. Nevertheless, these results are currently not applicable to humans. This review details the current literature supporting the use of these techniques to enhance motor recovery, both from human and animal studies, aiming to encourage development in this domain.
Collapse
Affiliation(s)
- Sharon Israely
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Gerry Leisman
- Department of Physiotherapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Universidad de Ciencias Médicas Instituto de Neurología y Neurocirugía, Neurofisiología Clinica, Havana, Cuba
| |
Collapse
|
50
|
Improving visuo-motor learning with cerebellar theta burst stimulation: Behavioral and neurophysiological evidence. Neuroimage 2020; 208:116424. [DOI: 10.1016/j.neuroimage.2019.116424] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 11/19/2022] Open
|