1
|
Freund B, Nair D, Bulacio J, Najm I, Taylor K, Moosa AN. Pupillary constriction on stimulation of the parietal cortex-A novel finding. Epileptic Disord 2024; 26:701-707. [PMID: 38943530 DOI: 10.1002/epd2.20252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 07/01/2024]
Abstract
Pupillary changes can be an important semiologic feature in focal epilepsy. Though the subcortical networks involving pupillomotor function have been described, cortical generators of pupillary dilation and constriction in humans are not well known. In this report, we describe a case of pupillary constriction occurring during seizures in a patient with drug resistant focal epilepsy. On stereoelectroencephalography, onset was noted within the posterior segment of the right intraparietal sulcus and direct cortical electrical stimulation of these electrode contacts reproduced pupillary constriction associated with habitual seizures. This is the first case report to describe ictal pupillary constriction during SEEG with confirmation of the cortical localization by direct cortical electrical stimulation. The posterior segment of the right intraparietal sulcus localization of pupillary constriction may aid in surgical evaluation patients with drug resistant focal epilepsy.
Collapse
Affiliation(s)
- Brin Freund
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Dileep Nair
- Epilepsy Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Juan Bulacio
- Epilepsy Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Imad Najm
- Epilepsy Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kenneth Taylor
- Epilepsy Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ahsan N Moosa
- Epilepsy Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Hays MA, Daraie AH, Smith RJ, Sarma SV, Crone NE, Kang JY. Network excitability of stimulation-induced spectral responses helps localize the seizure onset zone. Clin Neurophysiol 2024; 166:43-55. [PMID: 39096821 PMCID: PMC11401764 DOI: 10.1016/j.clinph.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/11/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE While evoked potentials elicited by single pulse electrical stimulation (SPES) may assist seizure onset zone (SOZ) localization during intracranial EEG (iEEG) monitoring, induced high frequency activity has also shown promising utility. We aimed to predict SOZ sites using induced cortico-cortical spectral responses (CCSRs) as an index of excitability within epileptogenic networks. METHODS SPES was conducted in 27 epilepsy patients undergoing iEEG monitoring and CCSRs were quantified by significant early (10-200 ms) increases in power from 10 to 250 Hz. Using response power as CCSR network connection strengths, graph centrality measures (metrics quantifying each site's influence within the network) were used to predict whether sites were within the SOZ. RESULTS Across patients with successful surgical outcomes, greater CCSR centrality predicted SOZ sites and SOZ sites targeted for surgical treatment with median AUCs of 0.85 and 0.91, respectively. We found that the alignment between predicted and targeted SOZ sites predicted surgical outcome with an AUC of 0.79. CONCLUSIONS These findings indicate that network analysis of CCSRs can be used to identify increased excitability of SOZ sites and discriminate important surgical targets within the SOZ. SIGNIFICANCE CCSRs may supplement traditional passive iEEG monitoring in seizure localization, potentially reducing the need for recording numerous seizures.
Collapse
Affiliation(s)
- Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Amir H Daraie
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rachel J Smith
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neuroengineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Nagata K, Kunii N, Fujitani S, Shimada S, Saito N. Evaluating cortical excitatory and inhibitory activity through interictal intracranial electroencephalography in mesial temporal lobe epilepsy. Front Neurosci 2024; 18:1424401. [PMID: 39381684 PMCID: PMC11458560 DOI: 10.3389/fnins.2024.1424401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Gamma oscillation regularity (GOR) indicates the synchronization of inhibitory interneurons, while the reactivity of cortico-cortical evoked potentials (CCEPs) is supposed to reflect local cortical excitability. Under the assumption that the early response of CCEP near the stimulation site also indicates excitatory activity primarily mediated by pyramidal cells, we aimed to visualize the cortical inhibitory and excitatory activities using GOR and CCEP in combination and to use them to predict the epileptogenic zone (EZ) in mesial temporal lobe epilepsy (MTLE). In five patients who underwent intracranial electrode implantation, GOR and CCEP reactivity in the vicinity of the stimulation site was quantified. The interictal GOR was calculated using multiscale entropy (MSE), the decrease of which was related to the enhanced GOR. These parameters were compared on an electrode-and-electrode basis, and spatially visualized on the brain surface. As a result, elevated GOR and CCEP reactivities, indicative of enhanced inhibitory and excitatory activities, were observed in the epileptogenic regions. Elevated CCEP reactivity was found to be localized to a restricted area centered on the seizure onset region, whereas GOR elevation was observed in a broader region surrounding it. Although these parameters independently predicted the EZ with high specificity, we combined the two to introduce a novel parameter, the excitatory and inhibitory (EI) index. The EI index predicted EZ with increased specificity compared with GOR or CCEP reactivity alone. Our results demonstrate that GOR and CCEP reactivity provided a quantitative visualization of the distribution of cortical inhibitory and excitatory activities and highlighted the relationship between the two parameters. The combination of GOR and CCEP reactivities are expected to serve as biomarkers for localizing the epileptogenic zone in MTLE from interictal intracranial electroencephalograms.
Collapse
Affiliation(s)
- Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoto Kunii
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Nagata K, Kunii N, Shimada S, Saito N. Utilizing Excitatory and Inhibitory Activity Derived from Interictal Intracranial Electroencephalography as Potential Biomarkers for Epileptogenicity. Neurol Med Chir (Tokyo) 2024; 64:65-70. [PMID: 38220164 PMCID: PMC10918453 DOI: 10.2176/jns-nmc.2023-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2024] Open
Abstract
Epileptogenic zones (EZs), where epileptic seizures cease after resection, are localized by assessing the seizure-onset zone using ictal electroencephalography (EEG). Owing to the difficulty in capturing unpredictable seizures, biomarkers capable of identifying EZs from interictal EEG are anticipated. Recent studies using intracranial EEG have identified several potential candidate biomarkers for epileptogenicity. High-frequency oscillation (HFO) was initially expected to be a robust biomarker of abnormal excitatory activity in the ictogenic region. However, HFO-guided resection failed to improve seizure prognosis. Meanwhile, the regularity of low-gamma oscillations (30-80 Hz) indicates inhibitory interneurons' hypersynchronization, which could be used to localize the EZ. Besides resting-state EEG assessments, evoked potentials elicited by single-pulse electrical stimulation, such as corticocortical evoked potentials (CCEP), became valuable tools for assessing epileptogenic regions. CCEP responses recorded in the cortex remote from the stimulation site indicate functional connectivity, revealing increased internal connectivity within the ictogenic region and elevated inhibitory input from the non-involved regions to the ictogenic region. Conversely, large responses close to the stimulation site reflect local excitability, manifesting as an increased N1 amplitude and overriding HFO. Further research is required to establish whether these novel electrophysiological methods, either individually or in combination, can function as robust biomarkers of epileptogenicity and hold promise for improving seizure prognosis.
Collapse
Affiliation(s)
| | - Naoto Kunii
- Department of Neurosurgery, Jichi Medical University
| | | | | |
Collapse
|
5
|
van den Boom MA, Gregg NM, Valencia GO, Lundstrom BN, Miller KJ, van Blooijs D, Huiskamp GJ, Leijten FS, Worrell GA, Hermes D. ER-detect: a pipeline for robust detection of early evoked responses in BIDS-iEEG electrical stimulation data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574915. [PMID: 38260687 PMCID: PMC10802406 DOI: 10.1101/2024.01.09.574915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. To provide a robust workflow to process these cortico-cortical evoked potential (CCEP) data and detect early evoked responses in a fully automated and reproducible fashion, we developed Early Response (ER)-detect. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three response detection methods, which were validated against 14-manually annotated CCEP datasets from two different sites by four independent raters. Results showed that ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results.
Collapse
Affiliation(s)
- Max A. van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
- Department of Neurosurgery, Mayo Clinic; Rochester, MN, USA
| | | | | | | | - Kai J. Miller
- Department of Neurosurgery, Mayo Clinic; Rochester, MN, USA
| | - Dorien van Blooijs
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
- Stichting Epilepsie Instellingen Nederland (SEIN); Zwolle, The Netherlands
| | - Geertjan J.M. Huiskamp
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
| | - Frans S.S. Leijten
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
| | - Gregory A. Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN; USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
| |
Collapse
|
6
|
Frauscher B, Bartolomei F, Baud MO, Smith RJ, Worrell G, Lundstrom BN. Stimulation to probe, excite, and inhibit the epileptic brain. Epilepsia 2023; 64 Suppl 3:S49-S61. [PMID: 37194746 PMCID: PMC10654261 DOI: 10.1111/epi.17640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Direct cortical stimulation has been applied in epilepsy for nearly a century and has experienced a renaissance, given unprecedented opportunities to probe, excite, and inhibit the human brain. Evidence suggests stimulation can increase diagnostic and therapeutic utility in patients with drug-resistant epilepsies. However, choosing appropriate stimulation parameters is not a trivial issue, and is further complicated by epilepsy being characterized by complex brain state dynamics. In this article derived from discussions at the ICTALS 2022 Conference (International Conference on Technology and Analysis for Seizures), we succinctly review the literature on cortical stimulation applied acutely and chronically to the epileptic brain for localization, monitoring, and therapeutic purposes. In particular, we discuss how stimulation is used to probe brain excitability, discuss evidence on the usefulness of stimulation to trigger and stop seizures, review therapeutic applications of stimulation, and finally discuss how stimulation parameters are impacted by brain dynamics. Although research has advanced considerably over the past decade, there are still significant hurdles to optimizing use of this technique. For example, it remains unclear to what extent short timescale diagnostic biomarkers can predict long-term outcomes and to what extent these biomarkers add information to already existing biomarkers from passive electroencephalographic recordings. Further questions include the extent to which closed loop stimulation offers advantages over open loop stimulation, what the optimal closed loop timescales may be, and whether biomarker-informed stimulation can lead to seizure freedom. The ultimate goal of bioelectronic medicine remains not just to stop seizures but rather to cure epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France. AP-HM, Service de Neurophysiologie Clinique, Hôpital de la Timone, Marseille, France
| | - Maxime O. Baud
- Sleep-Wake-Epilepsy Center, NeuroTec and Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern
| | - Rachel J. Smith
- University of Alabama at Birmingham, Electrical and Computer Engineering Department, Birmingham, Alabama, US. University of Alabama at Birmingham, Neuroengineering Program, Birmingham, Alabama, US
| | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, US
| | | |
Collapse
|
7
|
Johnson GW, Doss DJ, Morgan VL, Paulo DL, Cai LY, Shless JS, Negi AS, Gummadavelli A, Kang H, Reddy SB, Naftel RP, Bick SK, Williams Roberson S, Dawant BM, Wallace MT, Englot DJ. The Interictal Suppression Hypothesis in focal epilepsy: network-level supporting evidence. Brain 2023; 146:2828-2845. [PMID: 36722219 PMCID: PMC10316780 DOI: 10.1093/brain/awad016] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Why are people with focal epilepsy not continuously having seizures? Previous neuronal signalling work has implicated gamma-aminobutyric acid balance as integral to seizure generation and termination, but is a high-level distributed brain network involved in suppressing seizures? Recent intracranial electrographic evidence has suggested that seizure-onset zones have increased inward connectivity that could be associated with interictal suppression of seizure activity. Accordingly, we hypothesize that seizure-onset zones are actively suppressed by the rest of the brain network during interictal states. Full testing of this hypothesis would require collaboration across multiple domains of neuroscience. We focused on partially testing this hypothesis at the electrographic network level within 81 individuals with drug-resistant focal epilepsy undergoing presurgical evaluation. We used intracranial electrographic resting-state and neurostimulation recordings to evaluate the network connectivity of seizure onset, early propagation and non-involved zones. We then used diffusion imaging to acquire estimates of white-matter connectivity to evaluate structure-function coupling effects on connectivity findings. Finally, we generated a resting-state classification model to assist clinicians in detecting seizure-onset and propagation zones without the need for multiple ictal recordings. Our findings indicate that seizure onset and early propagation zones demonstrate markedly increased inwards connectivity and decreased outwards connectivity using both resting-state (one-way ANOVA, P-value = 3.13 × 10-13) and neurostimulation analyses to evaluate evoked responses (one-way ANOVA, P-value = 2.5 × 10-3). When controlling for the distance between regions, the difference between inwards and outwards connectivity remained stable up to 80 mm between brain connections (two-way repeated measures ANOVA, group effect P-value of 2.6 × 10-12). Structure-function coupling analyses revealed that seizure-onset zones exhibit abnormally enhanced coupling (hypercoupling) of surrounding regions compared to presumably healthy tissue (two-way repeated measures ANOVA, interaction effect P-value of 9.76 × 10-21). Using these observations, our support vector classification models achieved a maximum held-out testing set accuracy of 92.0 ± 2.2% to classify early propagation and seizure-onset zones. These results suggest that seizure-onset zones are actively segregated and suppressed by a widespread brain network. Furthermore, this electrographically observed functional suppression is disproportionate to any observed structural connectivity alterations of the seizure-onset zones. These findings have implications for the identification of seizure-onset zones using only brief electrographic recordings to reduce patient morbidity and augment the presurgical evaluation of drug-resistant epilepsy. Further testing of the interictal suppression hypothesis can provide insight into potential new resective, ablative and neuromodulation approaches to improve surgical success rates in those suffering from drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Derek J Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Danika L Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Jared S Shless
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aarushi S Negi
- Department of Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Abhijeet Gummadavelli
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA
| | - Shilpa B Reddy
- Department of Pediatrics, Vanderbilt Children’s Hospital, Nashville, TN 37232, USA
| | - Robert P Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah K Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Benoit M Dawant
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
8
|
Bernabei JM, Li A, Revell AY, Smith RJ, Gunnarsdottir KM, Ong IZ, Davis KA, Sinha N, Sarma S, Litt B. Quantitative approaches to guide epilepsy surgery from intracranial EEG. Brain 2023; 146:2248-2258. [PMID: 36623936 PMCID: PMC10232272 DOI: 10.1093/brain/awad007] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Over the past 10 years, the drive to improve outcomes from epilepsy surgery has stimulated widespread interest in methods to quantitatively guide epilepsy surgery from intracranial EEG (iEEG). Many patients fail to achieve seizure freedom, in part due to the challenges in subjective iEEG interpretation. To address this clinical need, quantitative iEEG analytics have been developed using a variety of approaches, spanning studies of seizures, interictal periods, and their transitions, and encompass a range of techniques including electrographic signal analysis, dynamical systems modeling, machine learning and graph theory. Unfortunately, many methods fail to generalize to new data and are sensitive to differences in pathology and electrode placement. Here, we critically review selected literature on computational methods of identifying the epileptogenic zone from iEEG. We highlight shared methodological challenges common to many studies in this field and propose ways that they can be addressed. One fundamental common pitfall is a lack of open-source, high-quality data, which we specifically address by sharing a centralized high-quality, well-annotated, multicentre dataset consisting of >100 patients to support larger and more rigorous studies. Ultimately, we provide a road map to help these tools reach clinical trials and hope to improve the lives of future patients.
Collapse
Affiliation(s)
- John M Bernabei
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Li
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Andrew Y Revell
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel J Smith
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Neuroengineering Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristin M Gunnarsdottir
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ian Z Ong
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nishant Sinha
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sridevi Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brian Litt
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Hays MA, Kamali G, Koubeissi MZ, Sarma SV, Crone NE, Smith RJ, Kang JY. Towards optimizing single pulse electrical stimulation: High current intensity, short pulse width stimulation most effectively elicits evoked potentials. Brain Stimul 2023; 16:772-782. [PMID: 37141936 PMCID: PMC10330807 DOI: 10.1016/j.brs.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND While single pulse electrical stimulation (SPES) is increasingly used to study effective connectivity, the effects of varying stimulation parameters on the resulting cortico-cortical evoked potentials (CCEPs) have not been systematically explored. OBJECTIVE We sought to understand the interacting effects of stimulation pulse width, current intensity, and charge on CCEPs through an extensive testing of this parameter space and analysis of several response metrics. METHODS We conducted SPES in 11 patients undergoing intracranial EEG monitoring using five combinations of current intensity (1.5, 2.0, 3.0, 5.0, and 7.5 mA) and pulse width at each of three charges (0.750, 1.125, and 1.500 μC/phase) to study how CCEP amplitude, distribution, latency, morphology, and stimulus artifact amplitude vary with each parameter. RESULTS Stimulations with a greater charge or a greater current intensity and shorter pulse width at a given charge generally resulted in greater CCEP amplitudes and spatial distributions, shorter latencies, and increased waveform correlation. These effects interacted such that stimulations with the lowest charge and highest current intensities resulted in greater response amplitudes and spatial distributions than stimulations with the highest charge and lowest current intensities. Stimulus artifact amplitude increased with charge, but this could be mitigated by using shorter pulse widths. CONCLUSIONS Our results indicate that individual combinations of current intensity and pulse width, in addition to charge, are important determinants of CCEP magnitude, morphology, and spatial extent. Together, these findings suggest that high current intensity, short pulse width stimulations are optimal SPES settings for eliciting strong and consistent responses while minimizing charge.
Collapse
Affiliation(s)
- Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Golnoosh Kamali
- Johns Hopkins Technology Ventures, Johns Hopkins University, Baltimore, MD, USA
| | | | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Rachel J Smith
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neuroengineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Cornblath EJ, Lucas A, Armstrong C, Greenblatt AS, Stein JM, Hadar PN, Raghupathi R, Marsh E, Litt B, Davis KA, Conrad EC. Quantifying trial-by-trial variability during cortico-cortical evoked potential mapping of epileptogenic tissue. Epilepsia 2023; 64:1021-1034. [PMID: 36728906 PMCID: PMC10480141 DOI: 10.1111/epi.17528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Measuring cortico-cortical evoked potentials (CCEPs) is a promising tool for mapping epileptic networks, but it is not known how variability in brain state and stimulation technique might impact the use of CCEPs for epilepsy localization. We test the hypotheses that (1) CCEPs demonstrate systematic variability across trials and (2) CCEP amplitudes depend on the timing of stimulation with respect to endogenous, low-frequency oscillations. METHODS We studied 11 patients who underwent CCEP mapping after stereo-electroencephalography electrode implantation for surgical evaluation of drug-resistant epilepsy. Evoked potentials were measured from all electrodes after each pulse of a 30 s, 1 Hz bipolar stimulation train. We quantified monotonic trends, phase dependence, and standard deviation (SD) of N1 (15-50 ms post-stimulation) and N2 (50-300 ms post-stimulation) amplitudes across the 30 stimulation trials for each patient. We used linear regression to quantify the relationship between measures of CCEP variability and the clinical seizure-onset zone (SOZ) or interictal spike rates. RESULTS We found that N1 and N2 waveforms exhibited both positive and negative monotonic trends in amplitude across trials. SOZ electrodes and electrodes with high interictal spike rates had lower N1 and N2 amplitudes with higher SD across trials. Monotonic trends of N1 and N2 amplitude were more positive when stimulating from an area with higher interictal spike rate. We also found intermittent synchronization of trial-level N1 amplitude with low-frequency phase in the hippocampus, which did not localize the SOZ. SIGNIFICANCE These findings suggest that standard approaches for CCEP mapping, which involve computing a trial-averaged response over a .2-1 Hz stimulation train, may be masking inter-trial variability that localizes to epileptogenic tissue. We also found that CCEP N1 amplitudes synchronize with ongoing low-frequency oscillations in the hippocampus. Further targeted experiments are needed to determine whether phase-locked stimulation could have a role in localizing epileptogenic tissue.
Collapse
Affiliation(s)
- Eli J. Cornblath
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alfredo Lucas
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, School of Engineering & Applied Science, Philadelphia, Pennsylvania, USA
| | - Caren Armstrong
- Pediatric Epilepsy Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adam S. Greenblatt
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joel M. Stein
- Department of Radiology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter N. Hadar
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ramya Raghupathi
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric Marsh
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Pediatric Epilepsy Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Litt
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kathryn A. Davis
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Erin C. Conrad
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Hays MA, Smith RJ, Wang Y, Coogan C, Sarma SV, Crone NE, Kang JY. Cortico-cortical evoked potentials in response to varying stimulation intensity improves seizure localization. Clin Neurophysiol 2023; 145:119-128. [PMID: 36127246 PMCID: PMC9771930 DOI: 10.1016/j.clinph.2022.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE As single pulse electrical stimulation (SPES) is increasingly utilized to help localize the seizure onset zone (SOZ), it is important to understand how stimulation intensity can affect the ability to use cortico-cortical evoked potentials (CCEPs) to delineate epileptogenic regions. METHODS We studied 15 drug-resistant epilepsy patients undergoing intracranial EEG monitoring and SPES with titrations of stimulation intensity. The N1 amplitude and distribution of CCEPs elicited in the SOZ and non-seizure onset zone (nSOZ) were quantified at each intensity. The separability of the SOZ and nSOZ using N1 amplitudes was compared between models using responses to titrations, responses to one maximal intensity, or both. RESULTS At 2 mA and above, the increase in N1 amplitude with current intensity was greater for responses within the SOZ, and SOZ response distribution was maximized by 4-6 mA. Models incorporating titrations achieved better separability of SOZ and nSOZ compared to those using one maximal intensity. CONCLUSIONS We demonstrated that differences in CCEP amplitude over a range of current intensities can improve discriminability of SOZ regions. SIGNIFICANCE This study provides insight into the underlying excitability of the SOZ and how differences in current-dependent amplitudes of CCEPs may be used to help localize epileptogenic sites.
Collapse
Affiliation(s)
- Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rachel J Smith
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Smith RJ, Hays MA, Kamali G, Coogan C, Crone NE, Kang JY, Sarma SV. Stimulating native seizures with neural resonance: a new approach to localize the seizure onset zone. Brain 2022; 145:3886-3900. [PMID: 35703986 PMCID: PMC10200285 DOI: 10.1093/brain/awac214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Successful outcomes in epilepsy surgery rely on the accurate localization of the seizure onset zone. Localizing the seizure onset zone is often a costly and time-consuming process wherein a patient undergoes intracranial EEG monitoring, and a team of clinicians wait for seizures to occur. Clinicians then analyse the intracranial EEG before each seizure onset to identify the seizure onset zone and localization accuracy increases when more seizures are captured. In this study, we develop a new approach to guide clinicians to actively elicit seizures with electrical stimulation. We propose that a brain region belongs to the seizure onset zone if a periodic stimulation at a particular frequency produces large amplitude oscillations in the intracranial EEG network that propagate seizure activity. Such responses occur when there is 'resonance' in the intracranial EEG network, and the resonant frequency can be detected by observing a sharp peak in the magnitude versus frequency response curve, called a Bode plot. To test our hypothesis, we analysed single-pulse electrical stimulation response data in 32 epilepsy patients undergoing intracranial EEG monitoring. For each patient and each stimulated brain region, we constructed a Bode plot by estimating a transfer function model from the intracranial EEG 'impulse' or single-pulse electrical stimulation response. The Bode plots were then analysed for evidence of resonance. First, we showed that when Bode plot features were used as a marker of the seizure onset zone, it distinguished successful from failed surgical outcomes with an area under the curve of 0.83, an accuracy that surpassed current methods of analysis with cortico-cortical evoked potential amplitude and cortico-cortical spectral responses. Then, we retrospectively showed that three out of five native seizures accidentally triggered in four patients during routine periodic stimulation at a given frequency corresponded to a resonant peak in the Bode plot. Last, we prospectively stimulated peak resonant frequencies gleaned from the Bode plots to elicit seizures in six patients, and this resulted in an induction of three seizures and three auras in these patients. These findings suggest neural resonance as a new biomarker of the seizure onset zone that can guide clinicians in eliciting native seizures to more quickly and accurately localize the seizure onset zone.
Collapse
Affiliation(s)
- Rachel J Smith
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Golnoosh Kamali
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Scheid BH, Bernabei JM, Khambhati AN, Mouchtaris S, Jeschke J, Bassett DS, Becker D, Davis KA, Lucas T, Doyle W, Chang EF, Friedman D, Rao VR, Litt B. Intracranial electroencephalographic biomarker predicts effective responsive neurostimulation for epilepsy prior to treatment. Epilepsia 2022; 63:652-662. [PMID: 34997577 PMCID: PMC9887634 DOI: 10.1111/epi.17163] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Despite the overall success of responsive neurostimulation (RNS) therapy for drug-resistant focal epilepsy, clinical outcomes in individuals vary significantly and are hard to predict. Biomarkers that indicate the clinical efficacy of RNS-ideally before device implantation-are critically needed, but challenges include the intrinsic heterogeneity of the RNS patient population and variability in clinical management across epilepsy centers. The aim of this study is to use a multicenter dataset to evaluate a candidate biomarker from intracranial electroencephalographic (iEEG) recordings that predicts clinical outcome with subsequent RNS therapy. METHODS We assembled a federated dataset of iEEG recordings, collected prior to RNS implantation, from a retrospective cohort of 30 patients across three major epilepsy centers. Using ictal iEEG recordings, each center independently calculated network synchronizability, a candidate biomarker indicating the susceptibility of epileptic brain networks to RNS therapy. RESULTS Ictal measures of synchronizability in the high-γ band (95-105 Hz) significantly distinguish between good and poor RNS responders after at least 3 years of therapy under the current RNS therapy guidelines (area under the curve = .83). Additionally, ictal high-γ synchronizability is inversely associated with the degree of therapeutic response. SIGNIFICANCE This study provides a proof-of-concept roadmap for collaborative biomarker evaluation in federated data, where practical considerations impede full data sharing across centers. Our results suggest that network synchronizability can help predict therapeutic response to RNS therapy. With further validation, this biomarker could facilitate patient selection and help avert a costly, invasive intervention in patients who are unlikely to benefit.
Collapse
Affiliation(s)
- Brittany H. Scheid
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John M. Bernabei
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ankit N. Khambhati
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Sofia Mouchtaris
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jay Jeschke
- Comprehensive Epilepsy Center, NYU Langone Health, New York, New York, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Danielle Becker
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn A. Davis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Werner Doyle
- Department of Neurosurgery, NYU Langone, New York, New York, USA
| | - Edward F. Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Daniel Friedman
- Comprehensive Epilepsy Center, NYU Langone Health, New York, New York, USA,Department of Neurology, NYU Langone, New York, New York, USA
| | - Vikram R. Rao
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Brian Litt
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Boulogne S, Pizzo F, Chatard B, Roehri N, Catenoix H, Ostrowsky‐Coste K, Giusiano B, Guenot M, Carron R, Bartolomei F, Rheims S. Functional connectivity and epileptogenicity of nodular heterotopias: A single‐pulse stimulation study. Epilepsia 2022; 63:961-973. [DOI: 10.1111/epi.17168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Sébastien Boulogne
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Lyon 1 University Villeurbanne France
| | - Francesca Pizzo
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Benoit Chatard
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
| | - Nicolas Roehri
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
| | - Karine Ostrowsky‐Coste
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Epileptology, Sleep Disorders and Functional Pediatric Neurology Hospices Civils de Lyon and University of Lyon Lyon France
| | - Bernard Giusiano
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Marc Guenot
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Department of Functional Neurosurgery Hospices Civils de Lyon and University of Lyon Lyon France
| | - Romain Carron
- Department of Functional Neurosurgery Assistance Publique –Hôpitaux de Marseille Marseille France
| | - Fabrice Bartolomei
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Lyon 1 University Villeurbanne France
| |
Collapse
|
15
|
Hays MA, Smith RJ, Haridas B, Coogan C, Crone NE, Kang JY. Effects of stimulation intensity on intracranial cortico-cortical evoked potentials: A titration study. Clin Neurophysiol 2021; 132:2766-2777. [PMID: 34583119 DOI: 10.1016/j.clinph.2021.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the optimal stimulation parameters for eliciting cortico-cortical evoked potentials (CCEPs) for mapping functional and epileptogenic networks. METHODS We studied 13 patients with refractory epilepsy undergoing intracranial EEG monitoring. We systematically titrated the intensity of single-pulse electrical stimulation at multiple sites to assess the effect of increasing current on salient features of CCEPs such as N1 potential magnitude, signal to noise ratio, waveform similarity, and spatial distribution of responses. Responses at each incremental stimulation setting were compared to each other and to a final set of responses at the maximum intensity used in each patient (3.5-10 mA, median 6 mA). RESULTS We found that with a biphasic 0.15 ms/phase pulse at least 2-4 mA is needed to differentiate between non-responsive and responsive sites, and that stimulation currents of 6-7 mA are needed to maximize amplitude and spatial distribution of N1 responses and stabilize waveform morphology. CONCLUSIONS We determined a minimum stimulation threshold necessary for eliciting CCEPs, as well as a point at which the current-dependent relationship of several response metrics all saturate. SIGNIFICANCE This titration study provides practical, immediate guidance on optimal stimulation parameters to study specific features of CCEPs, which have been increasingly used to map both functional and epileptic brain networks in humans.
Collapse
Affiliation(s)
- Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rachel J Smith
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Babitha Haridas
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Taylor KN, Joshi AA, Hirfanoglu T, Grinenko O, Liu P, Wang X, Gonzalez‐Martinez JA, Leahy RM, Mosher JC, Nair DR. Validation of semi-automated anatomically labeled SEEG contacts in a brain atlas for mapping connectivity in focal epilepsy. Epilepsia Open 2021; 6:493-503. [PMID: 34033267 PMCID: PMC8408609 DOI: 10.1002/epi4.12499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Stereotactic electroencephalography (SEEG) has been widely used to explore the epileptic network and localize the epileptic zone in patients with medically intractable epilepsy. Accurate anatomical labeling of SEEG electrode contacts is critically important for correctly interpreting epileptic activity. We present a method for automatically assigning anatomical labels to SEEG electrode contacts using a 3D-segmented cortex and coregistered postoperative CT images. METHOD Stereotactic electroencephalography electrode contacts were spatially localized relative to the brain volume using a standard clinical procedure. Each contact was then assigned an anatomical label by clinical epilepsy fellows. Separately, each contact was automatically labeled by coregistering the subject's MRI to the USCBrain atlas using the BrainSuite software and assigning labels from the atlas based on contact locations. The results of both labeling methods were then compared, and a subsequent vetting of the anatomical labels was performed by expert review. RESULTS Anatomical labeling agreement between the two methods for over 17 000 SEEG contacts was 82%. This agreement was consistent in patients with and without previous surgery (P = .852). Expert review of contacts in disagreement between the two methods resulted in agreement with the atlas based over manual labels in 48% of cases, agreement with manual over atlas-based labels in 36% of cases, and disagreement with both methods in 16% of cases. Labels deemed incorrect by the expert review were then categorized as either in a region directly adjacent to the correct label or as a gross error, revealing a lower likelihood of gross error from the automated method. SIGNIFICANCE The method for semi-automated atlas-based anatomical labeling we describe here demonstrates potential to assist clinical workflow by reducing both analysis time and the likelihood of gross anatomical error. Additionally, it provides a convenient means of intersubject analysis by standardizing the anatomical labels applied to SEEG contact locations across subjects.
Collapse
Affiliation(s)
| | - Anand A. Joshi
- Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Tugba Hirfanoglu
- Epilepsy CenterNeurological InstituteCleveland ClinicClevelandOHUSA
- Department of Pediatric NeurologyGazi University School of MedicineAnkaraTurkey
| | | | - Ping Liu
- Epilepsy CenterNeurological InstituteCleveland ClinicClevelandOHUSA
| | - Xiaofeng Wang
- Epilepsy CenterNeurological InstituteCleveland ClinicClevelandOHUSA
| | - Jorge A. Gonzalez‐Martinez
- Department of Neurological Surgery and Epilepsy CenterUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Richard M. Leahy
- Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - John C. Mosher
- Department of NeurologyMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Dileep R. Nair
- Epilepsy CenterNeurological InstituteCleveland ClinicClevelandOHUSA
| |
Collapse
|
17
|
Hays MA, Coogan C, Crone NE, Kang JY. Graph theoretical analysis of evoked potentials shows network influence of epileptogenic mesial temporal region. Hum Brain Mapp 2021; 42:4173-4186. [PMID: 34165233 PMCID: PMC8356982 DOI: 10.1002/hbm.25418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
It is now widely accepted that seizures arise from the coordinated activity of epileptic networks, and as a result, traditional methods of analyzing seizures have been augmented by techniques like single-pulse electrical stimulation (SPES) that estimate effective connectivity in brain networks. We used SPES and graph analytics in 18 patients undergoing intracranial EEG monitoring to investigate effective connectivity between recording sites within and outside mesial temporal structures. We compared evoked potential amplitude, network density, and centrality measures inside and outside the mesial temporal region (MTR) across three patient groups: focal epileptogenic MTR, multifocal epileptogenic MTR, and non-epileptogenic MTR. Effective connectivity within the MTR had significantly greater magnitude (evoked potential amplitude) and network density, regardless of epileptogenicity. However, effective connectivity between MTR and surrounding non-epileptogenic regions was of greater magnitude and density in patients with focal epileptogenic MTR compared to patients with multifocal epileptogenic MTR and those with non-epileptogenic MTR. Moreover, electrodes within focal epileptogenic MTR had significantly greater outward network centrality compared to electrodes outside non-epileptogenic regions and to multifocal and non-epileptogenic MTR. Our results indicate that the MTR is a robustly connected subnetwork that can exert an overall elevated propagative influence over other brain regions when it is epileptogenic. Understanding the underlying effective connectivity and roles of epileptogenic regions within the larger network may provide insights that eventually lead to improved surgical outcomes.
Collapse
Affiliation(s)
- Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Galloway G. Use of CCEPs of the arcuate fasciculus under general anesthesia for language evaluation. Clin Neurophysiol 2021; 132:1957-1958. [PMID: 34099408 DOI: 10.1016/j.clinph.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Gloria Galloway
- Neurology Department of Neurology, 395 W 12th Avenue 7th Floor, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Crocker B, Ostrowski L, Williams ZM, Dougherty DD, Eskandar EN, Widge AS, Chu CJ, Cash SS, Paulk AC. Local and distant responses to single pulse electrical stimulation reflect different forms of connectivity. Neuroimage 2021; 237:118094. [PMID: 33940142 DOI: 10.1016/j.neuroimage.2021.118094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/13/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Measuring connectivity in the human brain involves innumerable approaches using both noninvasive (fMRI, EEG) and invasive (intracranial EEG or iEEG) recording modalities, including the use of external probing stimuli, such as direct electrical stimulation. To examine how different measures of connectivity correlate with one another, we compared 'passive' measures of connectivity during resting state conditions to the more 'active' probing measures of connectivity with single pulse electrical stimulation (SPES). We measured the network engagement and spread of the cortico-cortico evoked potential (CCEP) induced by SPES at 53 out of 104 total sites across the brain, including cortical and subcortical regions, in patients with intractable epilepsy (N=11) who were undergoing intracranial recordings as a part of their clinical care for identifying seizure onset zones. We compared the CCEP network to functional, effective, and structural measures of connectivity during a resting state in each patient. Functional and effective connectivity measures included correlation or Granger causality measures applied to stereoEEG (sEEGs) recordings. Structural connectivity was derived from diffusion tensor imaging (DTI) acquired before intracranial electrode implant and monitoring (N=8). The CCEP network was most similar to the resting state voltage correlation network in channels near to the stimulation location. In contrast, the distant CCEP network was most similar to the DTI network. Other connectivity measures were not as similar to the CCEP network. These results demonstrate that different connectivity measures, including those derived from active stimulation-based probing, measure different, complementary aspects of regional interrelationships in the brain.
Collapse
Affiliation(s)
- Britni Crocker
- Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lauren Ostrowski
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ziv M Williams
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Neurosurgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129; Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02124; Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
20
|
Kamali G, Smith RJ, Hays M, Coogan C, Crone NE, Kang JY, Sarma SV. Transfer Function Models for the Localization of Seizure Onset Zone From Cortico-Cortical Evoked Potentials. Front Neurol 2020; 11:579961. [PMID: 33362689 PMCID: PMC7758451 DOI: 10.3389/fneur.2020.579961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
Surgical resection of the seizure onset zone (SOZ) could potentially lead to seizure-freedom in medically refractory epilepsy patients. However, localizing the SOZ can be a time consuming and tedious process involving visual inspection of intracranial electroencephalographic (iEEG) recordings captured during passive patient monitoring. Cortical stimulation is currently performed on patients undergoing invasive EEG monitoring for the main purpose of mapping functional brain networks such as language and motor networks. We hypothesized that evoked responses from single pulse electrical stimulation (SPES) can also be used to localize the SOZ as they may express the natural frequencies and connectivity of the iEEG network. To test our hypothesis, we constructed patient specific transfer function models from the evoked responses recorded from 22 epilepsy patients that underwent SPES evaluation and iEEG monitoring. We then computed the frequency and connectivity dependent “peak gain” of the system as measured by the H∞ norm from systems theory. We found that in cases for which clinicians had high confidence in localizing the SOZ, the highest peak gain transfer functions with the smallest “floor gain” (gain at which the dipped H∞ 3dB below DC gain) corresponded to when the clinically annotated SOZ and early spread regions were stimulated. In more complex cases, there was a large spread of the peak-to-floor (PF) ratios when the clinically annotated SOZ was stimulated. Interestingly for patients who had successful surgeries, our ratio of gains, agreed with clinical localization, no matter the complexity of the case. For patients with failed surgeries, the PF ratio did not match clinical annotations. Our findings suggest that transfer function gains and their corresponding frequency responses computed from SPES evoked responses may improve SOZ localization and thus surgical outcomes.
Collapse
Affiliation(s)
- Golnoosh Kamali
- Neuromedical Control Systems Laboratory, Department of Electrical and Computer Engineering, Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Rachel June Smith
- Neuromedical Control Systems Laboratory, Department of Biomedical Engineering, Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Mark Hays
- Cognitive Research, Online Neuroengineering and Electrophysiology Laboratory, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Christopher Coogan
- Cognitive Research, Online Neuroengineering and Electrophysiology Laboratory, Department of Neurology-Epilepsy, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Nathan E Crone
- Cognitive Research, Online Neuroengineering and Electrophysiology Laboratory, Department of Neurology-Epilepsy, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Joon Y Kang
- Department of Neurology-Epilepsy, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sridevi V Sarma
- Neuromedical Control Systems Laboratory, Department of Electrical and Computer Engineering, Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, United States.,Neuromedical Control Systems Laboratory, Department of Biomedical Engineering, Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
21
|
Mitsuhashi T, Sonoda M, Jeong JW, Silverstein BH, Iwaki H, Luat AF, Sood S, Asano E. Four-dimensional tractography animates propagations of neural activation via distinct interhemispheric pathways. Clin Neurophysiol 2020; 132:520-529. [PMID: 33450573 DOI: 10.1016/j.clinph.2020.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To visualize and validate the dynamics of interhemispheric neural propagations induced by single-pulse electrical stimulation (SPES). METHODS This methodological study included three patients with drug-resistant focal epilepsy who underwent measurement of cortico-cortical spectral responses (CCSRs) during bilateral stereo-electroencephalography recording. We delivered SPES to 83 electrode pairs and analyzed CCSRs recorded at 268 nonepileptic electrode sites. Diffusion-weighted imaging (DWI) tractography localized the interhemispheric white matter pathways as streamlines directly connecting two electrode sites. We localized and visualized the putative SPES-related fiber activation, at each 1-ms time window, based on the propagation velocity defined as the DWI-based streamline length divided by the early CCSR peak latency. RESULTS The resulting movie, herein referred to as four-dimensional tractography, delineated the spatiotemporal dynamics of fiber activation via the corpus callosum and anterior commissure. Longer streamline length was associated with delayed peak latency and smaller amplitude of CCSRs. The cortical regions adjacent to each fiber activation site indeed exhibited CCSRs at the same time window. CONCLUSIONS Our four-dimensional tractography successfully animated neural propagations via distinct interhemispheric pathways. SIGNIFICANCE Our novel animation method has the potential to help investigators in addressing the mechanistic significance of the interhemispheric network dynamics supporting physiological function.
Collapse
Affiliation(s)
- Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Juntendo University, Tokyo, 1138421, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama, 2360004, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48202, USA
| | - Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
22
|
Bykanov AE, Pitskhelauri DI, Titov OY, Lin MC, Gulaev EV, Ogurtsova AA, Maryashev SA, Zhukov VY, Buklina SB, Lubnin AY, Beshplav ST, Konakova TA, Pronin IN. [Broca's area intraoperative mapping with cortico-cortical evoked potentials]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:49-58. [PMID: 33306299 DOI: 10.17116/neiro20208406149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Mapping of effective speech connections between the frontal and temporal lobes with cortico-cortical evoked potentials. MATERIAL AND METHODS There were 3 patients with brain tumors in the left frontoparietal region. The neoplasms were localized in the dominant hemisphere near cortical speech centers and pathways. Cortico-cortical evoked potentials were intraoperatively recorded in response to bipolar stimulation with a direct current delivered through the subdural electrodes (single rectangular biphasic impulses with duration of 300 μs and frequency of 1 Hz). Stimulation intensity was gradually increased from 2 mA within 3-4 mA. Registration was carried out by averaging ECoG (30-50 stimuli in each session) in the 300-ms epoch after stimulus. Direct cortical stimulation was used to validate the results of cortico-cortical speech mapping with cortico-cortical evoked potentials. RESULTS In our cases, we obtained cortico-cortical evoked potentials from inferior frontal gyrus after stimulation of superior temporal gyrus. In one case, this effective relationship was unidirectional, in the other two patients reciprocal. Mean latency of N1 peak was 65 ms (range 49.6-90 ms), mean amplitude 71 µV (range 50-100 µV). Cortico-cortical mapping data were confirmed by detection of Broca's area in 2 out of 3 cases out during direct cortical stimulation with maximum amplitude of N1 wave. «Awake craniotomy» protocol was applied. In one case, Broca's area was not detected during direct stimulation. No postoperative speech impairment was noted. CONCLUSION Initial results of cortical mapping with cortico-cortical evoked potentials in a small sample confirmed its practical significance for analysis of cortical projections of effective speech communications between the frontal and temporal lobes. Further study of this method in large samples is required.
Collapse
Affiliation(s)
- A E Bykanov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - O Yu Titov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - E V Gulaev
- Ivanovo Regional Hospital, Ivanovo, Russia
| | | | | | - V Yu Zhukov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - S B Buklina
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A Yu Lubnin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
23
|
Stereotactic EEG Practices: A Survey of United States Tertiary Referral Epilepsy Centers. J Clin Neurophysiol 2020; 39:474-480. [PMID: 33181594 DOI: 10.1097/wnp.0000000000000794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Stereotactic EEG (SEEG) is being increasingly used in the intracranial evaluation of refractory epilepsy in the United States. In this study, the authors describe current practice of SEEG among National Association of Epilepsy Centers tertiary referral (level IV) centers. METHODS Using the Survey Monkey platform, a survey was sent to all National Association of Epilepsy Centers level IV center directors. RESULTS Of 192 centers polled, 104 directors completed the survey (54% response rate). Ninety-two percent currently perform SEEG. Of these, 55% of institutions reported that greater than 75% of their invasive electrode cases used SEEG. Stereotactic EEG was commonly used over subdural electrodes in cases of suspected mesial temporal lobe epilepsy (87%), nonlesional frontal lobe epilepsy (79%), insular epilepsy (100%), and individuals with prior epilepsy surgery (74%). Most centers (72%) used single-lead electrocardiogram monitoring concurrently with SEEG, but less than half used continuous pulse oximetry (47%) and only a few used respiratory belts (3%). Other significant intercenter technical variabilities included electrode nomenclature and choice of reference electrode. Patient care protocols varied among centers in patient-to-nurse ratio and allowed patient activity. Half of all centers had personnel who had prior experience in SEEG (50.5%); 20% of centers had adopted SEEG without any formal training. CONCLUSIONS Stereotactic EEG has become the principal method for intracranial EEG monitoring in the majority of epilepsy surgery centers in the United States. Most report similar indications for use of SEEG, though significant variability exists in the utilization of concurrent cardiopulmonary monitoring as well as several technical and patient care practices. There is significant variability in level of background training in SEEG among practitioners. The study highlights the need for consensus statements and guidelines to benchmark SEEG practice and develop uniform standards in the United States.
Collapse
|
24
|
Kamali G, Smith RJ, Hays M, Coogan C, Crone NE, Sarma SV, Kang JY. Localizing the seizure onset zone from single pulse electrical stimulation responses using transfer function models. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2524-2527. [PMID: 33018520 DOI: 10.1109/embc44109.2020.9175954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Surgical resection of the seizure onset zone (SOZ) could potentially lead to seizure-freedom in medically refractory epilepsy patients. However, localizing the SOZ can be a time consuming and tedious process involving visual inspection of intracranial electroencephalographic (iEEG) recordings captured during passive patient monitoring. Single pulse electrical stimulation (SPES) is currently performed on patients undergoing invasive EEG monitoring for the main purposes of mapping functional brain networks such as language and motor networks. We hypothesize that evoked responses from SPES can also be used to localize the SOZ as they may express the natural frequencies and connectivity of the iEEG network. To test our hypothesis, we construct patient specific single-input multi-output transfer function models from the evoked responses recorded from five epilepsy patients that underwent SPES evaluation and iEEG monitoring. Our preliminary results suggest that the stimulation electrodes that produced the highest gain transfer functions, as measured by the ${\mathcal{H}_\infty }$ norm, correspond to those electrodes clinically defined in the SOZ in successfully treated patients.Clinical Relevance- This study creates an innovative tool that allows clinicians to identify the seizure onset zone in medically refractory epilepsy patients using quantitative metrics thereby increasing surgical success outcomes, mitigating patient risks, and decreasing costs.
Collapse
|
25
|
Zhang L, Wang Q, Baier G. Spontaneous transitions to focal-onset epileptic seizures: A dynamical study. CHAOS (WOODBURY, N.Y.) 2020; 30:103114. [PMID: 33138464 DOI: 10.1063/5.0021693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Given the complex temporal evolution of epileptic seizures, understanding their dynamic nature might be beneficial for clinical diagnosis and treatment. Yet, the mechanisms behind, for instance, the onset of seizures are still unknown. According to an existing classification, two basic types of dynamic onset patterns plus a number of more complex onset waveforms can be distinguished. Here, we introduce a basic three-variable model with two time scales to study potential mechanisms of spontaneous seizure onset. We expand the model to demonstrate how coupling of oscillators leads to more complex seizure onset waveforms. Finally, we test the response to pulse perturbation as a potential biomarker of interictal changes.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100124 Beijing, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, 100191 Beijing, China
| | - Gerold Baier
- Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
26
|
Guo ZH, Zhao BT, Toprani S, Hu WH, Zhang C, Wang X, Sang L, Ma YS, Shao XQ, Razavi B, Parvizi J, Fisher R, Zhang JG, Zhang K. Epileptogenic network of focal epilepsies mapped with cortico-cortical evoked potentials. Clin Neurophysiol 2020; 131:2657-2666. [PMID: 32957038 DOI: 10.1016/j.clinph.2020.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/23/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The goal of this study was to investigate the spatial extent and functional organization of the epileptogenic network through cortico-cortical evoked potentials (CCEPs) in patients being evaluated with intracranial stereoelectroencephalography. METHODS We retrospectively included 25 patients. We divided the recorded sites into three regions: epileptogenic zone (EZ); propagation zone (PZ); and noninvolved zone (NIZ). The root mean square of the amplitudes was calculated to reconstruct effective connectivity network. We also analyzed the N1/N2 amplitudes to explore the responsiveness influenced by epileptogenicity. Prognostic analysis was performed by comparing intra-region and inter-region connectivity between seizure-free and non-seizure-free groups. RESULTS Our results confirmed that stimulation of the EZ caused the strongest responses on other sites within and outside the EZ. Moreover, we found a hierarchical connectivity pattern showing the highest connectivity strength within EZ, and decreasing connectivity gradient from EZ, PZ to NIZ. Prognostic analysis indicated a stronger intra-EZ connection in the seizure-free group. CONCLUSION The EZ showed highest excitability and dominantly influenced other regions. Quantitative CCEPs can be useful in mapping epileptic networks and predicting surgical outcome. SIGNIFICANCE The generated computational connectivity model may enhance our understanding of epileptogenic networks and provide useful information for surgical planning and prognosis prediction.
Collapse
Affiliation(s)
- Zhi-Hao Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bao-Tian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sheela Toprani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wen-Han Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Yan-Shan Ma
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Babak Razavi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Robert Fisher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
27
|
Zhang L, Wang Q, Baier G. Dynamical Features of a Focal Epileptogenic Network Model for Stimulation-Based Control. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1856-1865. [DOI: 10.1109/tnsre.2020.3002350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Prime D, Woolfe M, O'Keefe S, Rowlands D, Dionisio S. Quantifying volume conducted potential using stimulation artefact in cortico-cortical evoked potentials. J Neurosci Methods 2020; 337:108639. [PMID: 32156547 DOI: 10.1016/j.jneumeth.2020.108639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Cortico-cortical evoked potentials (CCEP) are a technique using low frequency stimulation to infer regions of cortical connectivity in patients undergoing Stereo-electroencephalographic (SEEG) monitoring for refractory epilepsy. Little attention has been given to volume conducted components of CCEP responses, and how they may inflate CCEP connectivity. NEW METHOD Using data from 37 SEEG-CCEPs patients, a novel method was developed to quantify stimulation artefact by measuring the peak-to-peak voltage difference in the first 10 ms after CCEP stimulation. Early responses to CCEP stimulation were also quantified by calculating the root mean square of the 10-100 ms period after each stimulation pulse. Both the early CCEP responses and amplitude of stimulation artefact were regressed by physical distance, stimulation waveform, stimulation intensity and tissue type to identify conduction related properties. RESULTS Both stimulation artefact and early responses were correlated strongly with the inverse square of the distance from the stimulating electrode. Once corrected for the inverse square distance from the electrode, stimulation artefact and CCEP responses showed a linear relationship, indicating a volume conducted component. COMPARISON WITH EXISTING METHODS This is the first study to use stimulation artefact to quantify volume conducted potentials, and is the first to quantify volume conducted potentials in SEEG. A single prior study utilizing electrocorticography has shown that parts of early CCEP responses are due to volume conduction. CONCLUSIONS The linear relationship between stimulation artefact amplitude and CCEP early responses, once corrected for distance, suggests that stimulation artefact can be used as a measure to quantify the volume conducted components.
Collapse
Affiliation(s)
- David Prime
- Griffith University School of Engineering, Nathan, QLD, Australia; Mater Advanced Epilepsy Unit, Brisbane, QLD, Australia.
| | - Matthew Woolfe
- Griffith University School of Engineering, Nathan, QLD, Australia; Mater Advanced Epilepsy Unit, Brisbane, QLD, Australia
| | - Steven O'Keefe
- Griffith University School of Engineering, Nathan, QLD, Australia
| | - David Rowlands
- Griffith University School of Engineering, Nathan, QLD, Australia
| | | |
Collapse
|
29
|
Prime D, Woolfe M, Rowlands D, O'Keefe S, Dionisio S. Comparing connectivity metrics in cortico-cortical evoked potentials using synthetic cortical response patterns. J Neurosci Methods 2020; 334:108559. [PMID: 31927000 DOI: 10.1016/j.jneumeth.2019.108559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cortico-Cortical Evoked Potentials (CCEPs) are a novel low frequency stimulation method used for brain mapping during intracranial epilepsy investigations. Only a handful of metrics have been applied to CCEP data to infer connectivity, and no comparison as to which is best has been performed. NEW METHOD We implement a novel method which involved superimposing synthetic cortical responses onto stereoelectroencephalographic (SEEG) data, and use this to compare several metric's ability to detect the simulated patterns. In this we compare two commonly employed metrics currently used in CCEP analysis against eight time series similarity metrics (TSSMs), which have been widely used in machine learning and pattern matching applications. RESULTS Root Mean Square (RMS), a metric commonly employed in CCEP analysis, was sensitive to a wide variety of response patterns, but insensitive to simulated epileptiform patterns. Autoregressive (AR) coefficients calculated by Burg's method were also sensitive to a wide range of patterns, but were extremely sensitive to epileptiform patterns. Other metrics which employed elastic warping techniques were less sensitive to the simulated response patterns. COMPARISON WITH EXISTING METHODS Our study is the first to compare CCEP connectivity metrics against one-another. Our results found that RMS, which has been used in many CCEP studies previously, was the most sensitive metric across a wide range of patterns. CONCLUSIONS Our novel method showed that RMS is a robust and sensitive measure, validating much of the findings of the SEEG-CCEP literature to date. Autoregressive coefficients may also be a useful metric to investigate epileptic networks.
Collapse
Affiliation(s)
- David Prime
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia; Mater Advanced Epilepsy Unit, Brisbane, QLD, Australia.
| | - Matthew Woolfe
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia; Mater Advanced Epilepsy Unit, Brisbane, QLD, Australia
| | - David Rowlands
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia
| | - Steven O'Keefe
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia
| | | |
Collapse
|
30
|
Klorig DC, Alberto GE, Smith T, Godwin DW. Optogenetically-Induced Population Discharge Threshold as a Sensitive Measure of Network Excitability. eNeuro 2019; 6:ENEURO.0229-18.2019. [PMID: 31619450 PMCID: PMC6838688 DOI: 10.1523/eneuro.0229-18.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Network excitability is governed by synaptic efficacy, intrinsic excitability, and the circuitry in which these factors are expressed. The complex interplay between these factors determines how circuits function and, at the extreme, their susceptibility to seizure. We have developed a sensitive, quantitative estimate of network excitability in freely behaving mice using a novel optogenetic intensity-response procedure. Synchronous activation of deep sublayer CA1 pyramidal cells produces abnormal network-wide epileptiform population discharges (PDs) that are nearly indistinguishable from spontaneously-occurring interictal spikes (IISs). By systematically varying light intensity, and therefore the magnitude of the optogenetically-mediated current, we generated intensity-response curves using the probability of PD as the dependent variable. Manipulations known to increase excitability, such as sub-convulsive doses (20 mg/kg) of the chemoconvulsant pentylenetetrazol (PTZ), produced a leftward shift in the curve compared to baseline. The anti-epileptic drug levetiracetam (LEV; 40 mk/kg), in combination with PTZ, produced a rightward shift. Optogenetically-induced PD threshold (oPDT) baselines were stable over time, suggesting the metric is appropriate for within-subject experimental designs with multiple pharmacological manipulations.
Collapse
Affiliation(s)
- D C Klorig
- Department of Neurobiology and Anatomy
- Neuroscience Program
| | - G E Alberto
- Department of Neurobiology and Anatomy
- Neuroscience Program
| | - T Smith
- Department of Neurobiology and Anatomy
| | - D W Godwin
- Department of Neurobiology and Anatomy
- Neuroscience Program
- Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC
| |
Collapse
|
31
|
File B, Nánási T, Tóth E, Bokodi V, Tóth B, Hajnal B, Kardos Z, Entz L, Erőss L, Ulbert I, Fabó D. Reorganization of Large-Scale Functional Networks During Low-Frequency Electrical Stimulation of the Cortical Surface. Int J Neural Syst 2019; 30:1950022. [DOI: 10.1142/s0129065719500229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the functional network reorganization caused by low-frequency electrical stimulation (LFES) of human brain cortical surface. Intracranial EEG data from subdural grid positions were analyzed in 16 pre-surgery epileptic patients. LFES was performed by injecting current pulses (10[Formula: see text]mA, 0.2[Formula: see text]ms pulse width, 0.5[Formula: see text]Hz, 25 trials) into all adjacent electrode contacts. Dynamic functional connectivity analysis was carried out on two frequency bands (low: 1–4[Formula: see text]Hz; high: 10–40[Formula: see text]Hz) to investigate the early, high frequency and late, low frequency responses elicited by the stimulation. The centralization increased in early compared to late responses, suggesting a more prominent role of direct neural links between primarily activated areas and distant brain regions. Injecting the current into the seizure onset zone (SOZ) evoked a more integrated functional topology during the early (N1) period of the response, whereas during the late (N2) period — regardless of the stimulation site — the connectedness of the SOZ was elevated compared to the non-SOZ tissue. The abnormal behavior of the epileptic sub-network during both part of the responses supports the idea of the pathogenic role of impaired inhibition and excitation mechanisms in epilepsy.
Collapse
Affiliation(s)
- Bálint File
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Computational Neuroscience Group, Wigner Research Centre for Physics, HAS, Budapest, H-1121, Hungary
| | - Tibor Nánási
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, H-1085, Hungary
| | - Emília Tóth
- Department of Neurology, University of Alabama at Birmingham, AL 35233, USA
| | - Virág Bokodi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, H-1145, Hungary
| | - Brigitta Tóth
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
| | - Boglárka Hajnal
- Juhász Pál Epilepsy Centrum, National Institute of Clinical Neuroscience, Budapest, H-1145, Hungary
| | - Zsófia Kardos
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
| | - László Entz
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, H-1145, Hungary
| | - Loránd Erőss
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, H-1145, Hungary
| | - István Ulbert
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083, Hungary
- Institute of Cognitive Neuroscience and Psychology, RCNS, HAS, Budapest, H-1117, Hungary
| | - Dániel Fabó
- Juhász Pál Epilepsy Centrum, National Institute of Clinical Neuroscience, Budapest, H-1145, Hungary
| |
Collapse
|
32
|
Dionisio S, Mayoglou L, Cho SM, Prime D, Flanigan PM, Lega B, Mosher J, Leahy R, Gonzalez-Martinez J, Nair D. Connectivity of the human insula: A cortico-cortical evoked potential (CCEP) study. Cortex 2019; 120:419-442. [PMID: 31442863 DOI: 10.1016/j.cortex.2019.05.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/02/2019] [Accepted: 05/22/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The human insula is increasingly being implicated as a multimodal functional network hub involved in a large variety of complex functions. Due to its inconspicuous location and highly vascular anatomy, it has historically been difficult to study. Cortico-cortical evoked potentials (CCEPs), utilize low frequency stimulation to map cerebral networks. They were used to study connections of the human insula. METHODS CCEP data was acquired from each sub-region of the dominant and non-dominant insula in 30 patients who underwent stereo-EEG. Connectivity strength to the various cortical regions was obtained via a measure of root mean square (RMS), calculated from each gyrus of the insula and ranked into weighted means. RESULTS The results of all cumulative CCEP responses for each individual gyrus were represented by circro plots. Forty-nine individual CCEP pairs were stimulated across all the gyri from the right and left insula. In brief, the left insula contributed more greatly to language areas. Sensory function, pain, saliency processing and vestibular function were more heavily implicated from the right insula. Connections to the primary auditory cortex arose from both insula regions. Both posterior insula regions showed significant contralateral connectivity. Ipsilateral mesial temporal connections were seen from both insula regions. In visual function, we further report the novel finding of a direct connection between the right posterior insula and left visual cortex. SIGNIFICANCE The insula is a major multi-modal network hub with the cerebral cortex having major roles in language, sensation, auditory, visual, limbic and vestibular functions as well as saliency processing. In temporal lobe epilepsy surgery failure, the insula may be implicated as an extra temporal cause, due to the strong mesial temporal connectivity findings.
Collapse
Affiliation(s)
- Sasha Dionisio
- Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA; Epilepsy Centre, Mater Centre for Neurosciences, Brisbane, Australia.
| | - Lazarus Mayoglou
- Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA; Epilepsy Center, UPMC Hamot, Erie, PA, USA
| | - Sung-Min Cho
- Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - David Prime
- Epilepsy Centre, Mater Centre for Neurosciences, Brisbane, Australia; Griffith School of Electrical Engineering, Nathan Campus, QLD, Australia
| | - Patrick M Flanigan
- Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - Bradley Lega
- Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA; Neurological Surgery, University of Texas-Southwestern, Dallas, TX, USA
| | - John Mosher
- Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - Richard Leahy
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | | | - Dileep Nair
- Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| |
Collapse
|
33
|
Delayed high-frequency suppression after automated single-pulse electrical stimulation identifies the seizure onset zone in patients with refractory epilepsy. Clin Neurophysiol 2018; 129:2466-2474. [DOI: 10.1016/j.clinph.2018.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 11/19/2022]
|
34
|
Huiskamp G, van Blooijs D, van der Stoel M. Harvesting responses to single pulse electrical stimulation for presurgical evaluation in epilepsy. Clin Neurophysiol 2018; 129:2444-2445. [DOI: 10.1016/j.clinph.2018.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
|
35
|
Mégevand P, Groppe DM, Bickel S, Mercier MR, Goldfinger MS, Keller CJ, Entz L, Mehta AD. The Hippocampus and Amygdala Are Integrators of Neocortical Influence: A CorticoCortical Evoked Potential Study. Brain Connect 2018; 7:648-660. [PMID: 28978234 DOI: 10.1089/brain.2017.0527] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain stimulation is increasingly viewed as an effective approach to treat neuropsychiatric disease. The brain's organization in distributed networks suggests that the activity of a remote brain structure could be modulated by stimulating cortical areas that strongly connect to the target. Most connections between cerebral areas are asymmetric, and a better understanding of the relative direction of information flow along connections could improve the targeting of stimulation to influence deep brain structures. The hippocampus and amygdala, two deep-situated structures that are crucial to memory and emotions, respectively, have been implicated in multiple neurological and psychiatric disorders. We explored the directed connectivity between the hippocampus and amygdala and the cerebral cortex in patients implanted with intracranial electrodes using corticocortical evoked potentials (CCEPs) evoked by single-pulse electrical stimulation. The hippocampus and amygdala were connected with most of the cortical mantle, either directly or indirectly, with the inferior temporal cortex being most directly connected. Because CCEPs assess the directionality of connections, we could determine that incoming connections from cortex to hippocampus were more direct than outgoing connections from hippocampus to cortex. We found a similar, although smaller, tendency for connections between the amygdala and cortex. Our results support the roles of the hippocampus and amygdala to be integrators of widespread cortical influence. These results can inform the targeting of noninvasive neurostimulation to influence hippocampus and amygdala function.
Collapse
Affiliation(s)
- Pierre Mégevand
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| | - David M Groppe
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| | - Stephan Bickel
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York.,2 Department of Neurology, Montefiore Medical Center , Bronx, New York
| | - Manuel R Mercier
- 2 Department of Neurology, Montefiore Medical Center , Bronx, New York.,3 Department of Neuroscience, Albert Einstein College of Medicine , Bronx, New York
| | - Matthew S Goldfinger
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| | - Corey J Keller
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York.,3 Department of Neuroscience, Albert Einstein College of Medicine , Bronx, New York
| | - László Entz
- 4 Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences , Hungarian Academy of Sciences, Budapest, Hungary .,5 National Institute of Clinical Neuroscience , Budapest, Hungary .,6 Faculty of Information Technology and Bionics, Péter Pázmány Catholic University , Budapest, Hungary
| | - Ashesh D Mehta
- 1 Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, and Feinstein Institute for Medical Research , Manhasset, New York
| |
Collapse
|
36
|
van Blooijs D, Leijten FSS, van Rijen PC, Meijer HGE, Huiskamp GJM. Evoked directional network characteristics of epileptogenic tissue derived from single pulse electrical stimulation. Hum Brain Mapp 2018; 39:4611-4622. [PMID: 30030947 PMCID: PMC6220882 DOI: 10.1002/hbm.24309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/07/2023] Open
Abstract
We investigated effective networks constructed from single pulse electrical stimulation (SPES) in epilepsy patients who underwent intracranial electrocorticography. Using graph analysis, we compared network characteristics of tissue within and outside the epileptogenic area. In 21 patients with subdural electrode grids (1 cm interelectrode distance), we constructed a binary, directional network derived from SPES early responses (<100 ms). We calculated in‐degree, out‐degree, betweenness centrality, the percentage of bidirectional, receiving and activating connections, and the percentage of connections toward the (non‐)epileptogenic tissue for each node in the network. We analyzed whether these network measures were significantly different in seizure onset zone (SOZ)‐electrodes compared to non‐SOZ electrodes, in resected area (RA)‐electrodes compared to non‐RA electrodes, and in seizure free compared to not seizure‐free patients. Electrodes in the SOZ/RA showed significantly higher values for in‐degree and out‐degree, both at group level, and at patient level, and more so in seizure‐free patients. These differences were not observed for betweenness centrality. There were also more bidirectional and fewer receiving connections in the SOZ/RA in seizure‐free patients. It appears that the SOZ/RA is densely connected with itself, with only little input arriving from non‐SOZ/non‐RA electrodes. These results suggest that meso‐scale effective network measures are different in epileptogenic compared to normal brain tissue. Local connections within the SOZ/RA are increased and the SOZ/RA is relatively isolated from the surrounding cortex. This offers the prospect of enhanced prediction of epilepsy‐prone brain areas using SPES.
Collapse
Affiliation(s)
- Dorien van Blooijs
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frans S S Leijten
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter C van Rijen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hil G E Meijer
- Department of Applied Mathematics, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Geertjan J M Huiskamp
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
37
|
Trebaul L, Deman P, Tuyisenge V, Jedynak M, Hugues E, Rudrauf D, Bhattacharjee M, Tadel F, Chanteloup-Foret B, Saubat C, Reyes Mejia GC, Adam C, Nica A, Pail M, Dubeau F, Rheims S, Trébuchon A, Wang H, Liu S, Blauwblomme T, Garcés M, De Palma L, Valentin A, Metsähonkala EL, Petrescu AM, Landré E, Szurhaj W, Hirsch E, Valton L, Rocamora R, Schulze-Bonhage A, Mindruta I, Francione S, Maillard L, Taussig D, Kahane P, David O. Probabilistic functional tractography of the human cortex revisited. Neuroimage 2018; 181:414-429. [PMID: 30025851 PMCID: PMC6150949 DOI: 10.1016/j.neuroimage.2018.07.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/21/2018] [Accepted: 07/15/2018] [Indexed: 12/13/2022] Open
Abstract
In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.
Collapse
Affiliation(s)
- Lena Trebaul
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Pierre Deman
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Viateur Tuyisenge
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Maciej Jedynak
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Etienne Hugues
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - David Rudrauf
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Manik Bhattacharjee
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - François Tadel
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Blandine Chanteloup-Foret
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Carole Saubat
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Gina Catalina Reyes Mejia
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Claude Adam
- Epilepsy Unit, Dept of Neurology, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Anca Nica
- Neurology Department, CHU, Rennes, France
| | - Martin Pail
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - François Dubeau
- Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Agnès Trébuchon
- Service de Neurophysiologie Clinique, APHM, Hôpitaux de la Timone, Marseille, France
| | - Haixiang Wang
- Yuquan Hospital Epilepsy Center, Tsinghua University, Beijing, China
| | - Sinclair Liu
- Canton Sanjiu Brain Hospital Epilepsy Center, Jinan University, Guangzhou, China
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Université Paris V Descartes, Sorbonne Paris Cité, Paris, France
| | - Mercedes Garcés
- Multidisciplinary Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Luca De Palma
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), London, UK
| | | | | | | | - William Szurhaj
- Epilepsy Unit, Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France
| | - Edouard Hirsch
- University Hospital, Department of Neurology, Strasbourg, France
| | - Luc Valton
- University Hospital, Department of Neurology, Toulouse, France
| | - Rodrigo Rocamora
- Epilepsy Monitoring Unit, Department of Neurology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ioana Mindruta
- Neurology Department, University Emergency Hospital, Bucharest, Romania
| | | | - Louis Maillard
- Centre Hospitalier Universitaire de Nancy, Nancy, France
| | - Delphine Taussig
- Service de neurochirurgie pédiatrique, Fondation Rothschild, Paris, France
| | - Philippe Kahane
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France; CHU Grenoble Alpes, Neurology Department, Grenoble, France
| | - Olivier David
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
| |
Collapse
|
38
|
Alarcón G, Jiménez-Jiménez D, Valentín A, Martín-López D. Characterizing EEG Cortical Dynamics and Connectivity with Responses to Single Pulse Electrical Stimulation (SPES). Int J Neural Syst 2018; 28:1750057. [DOI: 10.1142/s0129065717500575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objectives: To model cortical connections in order to characterize their oscillatory behavior and role in the generation of spontaneous electroencephalogram (EEG). Methods: We studied averaged responses to single pulse electrical stimulation (SPES) from the non-epileptogenic hemisphere of five patients assessed with intracranial EEG who became seizure free after contralateral temporal lobectomy. Second-order control system equations were modified to characterize the systems generating a given response. SPES responses were modeled as responses to a unit step input. EEG power spectrum was calculated on the 20[Formula: see text]s preceding SPES. Results: 121 channels showed responses to 32 stimulation sites. A single system could model the response in 41.3% and two systems were required in 58.7%. Peaks in the frequency response of the models tended to occur within the frequency range of most activity on the spontaneous EEG. Discrepancies were noted between activity predicted by models and activity recorded in the spontaneous EEG. These discrepancies could be explained by the existence of alpha rhythm or interictal epileptiform discharges. Conclusions: Cortical interactions shown by SPES can be described as control systems which can predict cortical oscillatory behavior. The method is unique as it describes connectivity as well as dynamic interactions.
Collapse
Affiliation(s)
- Gonzalo Alarcón
- Comprehensive Epilepsy Center Neuroscience Institute, Academic Health Systems, Hamad Medical Corporation, Doha, Qatar
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Weill Cornell Medical College, Doha, Qatar
| | - Diego Jiménez-Jiménez
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Universidad San Francisco de Quito, School of Medicine, Quito, Ecuador
| | - Antonio Valentín
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Weill Cornell Medical College, Doha, Qatar
| | - David Martín-López
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience London, UK
- Weill Cornell Medical College, Doha, Qatar
- Department of Clinical Neurophysiology, Kingston Hospital NHS FT, London, UK
- Department of Clinical Neurophysiology, St George’s University Hospitals NHS FT, London, UK
| |
Collapse
|
39
|
Zhang N, Zhang B, Rajah GB, Geng X, Singh R, Yang Y, Yan X, Li Z, Zhou W, Ding Y, Sun W. The effectiveness of cortico-cortical evoked potential in detecting seizure onset zones. Neurol Res 2018; 40:480-490. [PMID: 29575990 DOI: 10.1080/01616412.2018.1454092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Nan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Bingqing Zhang
- Epilepsy Center of YuQuan Hospital, Tsinghua University, Beijing, China
| | - Gary B. Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rasanjeet Singh
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yanfeng Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiupeng Yan
- Epilepsy Center of YuQuan Hospital, Tsinghua University, Beijing, China
| | - Zhe Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjing Zhou
- Epilepsy Center of YuQuan Hospital, Tsinghua University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Parker CS, Clayden JD, Cardoso MJ, Rodionov R, Duncan JS, Scott C, Diehl B, Ourselin S. Structural and effective connectivity in focal epilepsy. NEUROIMAGE-CLINICAL 2017. [PMID: 29527498 PMCID: PMC5842760 DOI: 10.1016/j.nicl.2017.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients with medically-refractory focal epilepsy may be candidates for neurosurgery and some may require placement of intracranial EEG electrodes to localise seizure onset. Assessing cerebral responses to single pulse electrical stimulation (SPES) may give diagnostically useful data. SPES produces cortico-cortical evoked potentials (CCEPs), which infer effective brain connectivity. Diffusion-weighted images and tractography may be used to estimate structural brain connectivity. This combination provides the opportunity to observe seizure onset and its propagation throughout the brain, spreading contiguously along the cortex explored with electrodes, or non-contiguously. We analysed CCEPs and diffusion tractography in seven focal epilepsy patients and reconstructed the effective and structural brain networks. We aimed to assess the inter-modal similarity of the networks at a large scale across the cortex, the effective and structural connectivity of the ictal-onset zone, and investigate potential mechanisms of non-contiguous seizure spread. We found a significant overlap between structural and effective networks. Effective network CCEP amplitude, baseline variation, and outward connectivity was higher at ictal-onset zones, while structural connection strength within the ictal-onset zone tended to be higher. These findings support the concept of hyperexcitable cortex being associated with seizure generation. The high prevalence of structural and effective connections from the ictal-onset zone to sites of non-contiguous spread suggests that macroscopic structural and effective connections are plausible routes for non-contiguous seizure spread. Inter-modal network agreement was higher than by chance and correlation was low. High CCEP amplitude, baseline variation and outdegree at the ictal-onset zone. Streamline density tended to be higher within the ictal-onset zone. High ictal-onset zone connectivity to early and late seizure spread sites.
Collapse
Affiliation(s)
- Christopher S Parker
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom; Developmental Imaging and Biophysics Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.
| | - Jonathan D Clayden
- Developmental Imaging and Biophysics Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - M Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Roman Rodionov
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - John S Duncan
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Catherine Scott
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Beate Diehl
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| |
Collapse
|
41
|
Kobayashi K, Matsumoto R, Matsuhashi M, Usami K, Shimotake A, Kunieda T, Kikuchi T, Yoshida K, Mikuni N, Miyamoto S, Fukuyama H, Takahashi R, Ikeda A. High frequency activity overriding cortico-cortical evoked potentials reflects altered excitability in the human epileptic focus. Clin Neurophysiol 2017; 128:1673-1681. [PMID: 28750290 DOI: 10.1016/j.clinph.2017.06.249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/10/2017] [Accepted: 06/22/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to clarify that high frequency activity (HFA) of cortico-cortical evoked potentials (CCEPs), elicited by single pulse electrical stimulation (SPES), reflects cortical excitability. METHODS We recruited 16 patients with refractory partial epilepsy who had chronic subdural electrode implantation for presurgical evaluation. A repetitive SPES was given to (1) the seizure onset zone (SOZ) and (2) the control cortices (non-seizure onset zone: nSOZ). CCEPs were recorded from the neighboring cortices within SOZ and nSOZ. We applied short-time Fourier transform to obtain the induced responses for the timing of early (<50ms after SPES) and late CCEP components and analyzed the logarithmic power change for ripple (<200Hz) and fast ripple (>200Hz) bands. RESULTS Twenty-one clear CCEPs were recorded for both the SOZ and nSOZ. The HFA power of early CCEPs in SOZ significantly increased compared to that in nSOZ in both frequency bands, particularly in mesial temporal lobe epilepsy (MTLE). CONCLUSION Similar to the features of spontaneous pathological HFOs, the power of stimulus-induced HFAs in SOZ were greater than that outside SOZ, particularly in MTLE. SIGNIFICANCE HFA overriding CCEPs can be a surrogate marker of cortical excitability in epileptic focus.
Collapse
Affiliation(s)
- Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Masao Matsuhashi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Shizukawa Toon City, Ehime 791-0295, Japan; Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo 060-8543, Japan.
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
42
|
Wang Y, Trevelyan AJ, Valentin A, Alarcon G, Taylor PN, Kaiser M. Mechanisms underlying different onset patterns of focal seizures. PLoS Comput Biol 2017; 13:e1005475. [PMID: 28472032 PMCID: PMC5417416 DOI: 10.1371/journal.pcbi.1005475] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Focal seizures are episodes of pathological brain activity that appear to arise from a localised area of the brain. The onset patterns of focal seizure activity have been studied intensively, and they have largely been distinguished into two types-low amplitude fast oscillations (LAF), or high amplitude spikes (HAS). Here we explore whether these two patterns arise from fundamentally different mechanisms. Here, we use a previously established computational model of neocortical tissue, and validate it as an adequate model using clinical recordings of focal seizures. We then reproduce the two onset patterns in their most defining properties and investigate the possible mechanisms underlying the different focal seizure onset patterns in the model. We show that the two patterns are associated with different mechanisms at the spatial scale of a single ECoG electrode. The LAF onset is initiated by independent patches of localised activity, which slowly invade the surrounding tissue and coalesce over time. In contrast, the HAS onset is a global, systemic transition to a coexisting seizure state triggered by a local event. We find that such a global transition is enabled by an increase in the excitability of the "healthy" surrounding tissue, which by itself does not generate seizures, but can support seizure activity when incited. In our simulations, the difference in surrounding tissue excitability also offers a simple explanation of the clinically reported difference in surgical outcomes. Finally, we demonstrate in the model how changes in tissue excitability could be elucidated, in principle, using active stimulation. Taken together, our modelling results suggest that the excitability of the tissue surrounding the seizure core may play a determining role in the seizure onset pattern, as well as in the surgical outcome.
Collapse
Affiliation(s)
- Yujiang Wang
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | - Andrew J Trevelyan
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Gonzalo Alarcon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Comprehensive Epilepsy Center, Neuroscience Institute, Academic Health Systems, Hamad Medical Corporation, Doha, Qatar
| | - Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
43
|
Shimada S, Kunii N, Kawai K, Matsuo T, Ishishita Y, Ibayashi K, Saito N. Impact of volume-conducted potential in interpretation of cortico-cortical evoked potential: Detailed analysis of high-resolution electrocorticography using two mathematical approaches. Clin Neurophysiol 2017; 128:549-557. [PMID: 28226289 DOI: 10.1016/j.clinph.2017.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Cortico-cortical evoked potential (CCEP) has been utilized to evaluate connectivity between cortices. However, previous reports have rarely referred to the impact of volume-conducted potential (VCP) which must be a confounding factor of large potential around the stimulation site. To address this issue, we challenged the null hypothesis that VCP accounts for the majority of the recorded potential, particularly around the stimulation site. METHODS CCEP was recorded with high-density intracranial electrodes in 8 patients with intractable epilepsy. First, we performed regression analysis for describing the relationship between the distance and potential of each electrode. Second, we performed principal component analysis (PCA) to reveal the temporal features of recorded waveforms. RESULTS The regression curve, declining by the inverse square of the distance, fitted tightly to the plots (R2: 0.878-0.991) with outliers. PCA suggested the responses around the stimulation site had the same temporal features. We also observed the continuous declination over the anatomical gap and the phase reversal phenomena around the stimulation site. CONCLUSIONS These results were consistent with the null hypothesis. SIGNIFICANCE This study highlighted the risk of misinterpreting CCEP mapping, and proposed mathematical removal of VCP, which could lead to more reliable mapping based on CCEP.
Collapse
Affiliation(s)
- Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Matsuo
- Department of Neurosurgery, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan
| | - Yohei Ishishita
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kenji Ibayashi
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
44
|
Matsumoto R, Kunieda T, Nair D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 2016; 44:27-36. [PMID: 27939100 DOI: 10.1016/j.seizure.2016.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
In the last decade, single pulse electrical stimulation (SPES) has been used as an investigational tool in the field of epilepsy surgery. Direct cortical stimulation applied at a frequency of ∼1Hz can probe cortico-cortical connections by averaging electrocorticogram time-lock to the stimuli (2×20-30 trials). These evoked potentials that emanate from adjacent and remote cortices have been termed cortico-cortical evoked potentials (CCEPs). Although limited to patients undergoing invasive presurgical evaluations with intracranial electrodes, CCEP provides a novel way to explore inter-areal connectivity in vivo in the living human brain to probe functional brain networks such as language and cognitive motor networks. In addition to its impact on systems neuroscience, this method, in combination with 50Hz electrical cortical stimulation, could contribute clinically to map the functional brain systems by tracking the cortico-cortical connections among the functional cortical regions in each individual patient. This approach may help identify the normal cortico-cortical network within pathology as well as reveal connections that might arise from neural plasticity. Because of its high practicality, it has been recently applied for intraoperative monitoring of the functional brain networks for patients with brain tumor. With regard to epilepsy, SPES has been used for the two major purposes, one to probe cortical excitability of the focus, namely, epileptogenicity, and the other to probe seizure networks. Both early (i.e., CCEP) and delayed responses, and probably their high frequency oscillation counterparts, are regarded as a surrogate marker of epileptogenicity. With regards to its impact on the human brain connectivity map, worldwide collaboration is warranted to establish the standardized CCEP connectivity map as a solid reference for non-invasive connectome researches.
Collapse
Affiliation(s)
- Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Dileep Nair
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
45
|
Boulogne S, Andre-Obadia N, Kimiskidis VK, Ryvlin P, Rheims S. Cortico-cortical and motor evoked potentials to single and paired-pulse stimuli: An exploratory transcranial magnetic and intracranial electric brain stimulation study. Hum Brain Mapp 2016; 37:3767-3778. [PMID: 27312488 DOI: 10.1002/hbm.23274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Paired-pulse (PP) paradigms are commonly employed to assess in vivo cortical excitability using transcranial magnetic stimulation (TMS) to stimulate the primary motor cortex and modulate the induced motor evoked potential (MEP). Single-pulse cortical direct electrical stimulation (DES) during intracerebral EEG monitoring allows the investigation of brain connectivity by eliciting cortico-cortical evoked potentials (CCEPs). However, PP paradigm using intracerebral DES has rarely been reported and has never been previously compared with TMS. OBJECTIVE The work was intended (i) to verify that the well-established modulations of MEPs following PP TMS remain similar using DES in the motor cortex, and (ii) to evaluate if a similar pattern could be observed in distant cortico-cortical connections through modulations of CCEP. METHODS Three patients undergoing intracerebral EEG monitoring with electrodes implanted in the central region were studied. Single-pulse DES (1-3 mA, 1 ms, 0.2 Hz) and PP DES using six interstimulus intervals (5, 15, 30, 50, 100, and 200 ms) in the motor cortex with concomitant recording of CCEPs and MEPs in contralateral muscles were performed. Finally, a navigated PP TMS session targeted the intracranial stimulation site to record TMS-induced MEPs in two patients. RESULTS MEP modulations elicited by PP intracerebral DES proved similar among the three patients and to those obtained by PP TMS. CCEP modulations elicited by PP intracerebral DES usually showed a pattern comparable to that of MEP, although a different pattern could be observed occasionally. CONCLUSION PP intracerebral DES seems to involve excitatory and inhibitory mechanisms similar to PP TMS and allows the recording of intracortical inhibition and facilitation modulation on cortico-cortical connections. Hum Brain Mapp 37:3767-3778, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sébastien Boulogne
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon, 59 Boulevard Pinel, Bron, 69675, France. .,Lyon's Research Neuroscience Center, Institut National De La Santé Et De La Recherche Médicale U1028, Centre National De La Recherche Scientifique 5292, Lyon, France, CH Le Vinatier, Bâtiment 452, 95 Boulevard Pinel, 69675 Bron, France. .,Lyon 1 University, 43 Boulevard Du 11 Novembre 1918, Villeurbanne, 69100, France.
| | - Nathalie Andre-Obadia
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon, 59 Boulevard Pinel, Bron, 69675, France
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Philippe Ryvlin
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon, 59 Boulevard Pinel, Bron, 69675, France.,Lyon's Research Neuroscience Center, Institut National De La Santé Et De La Recherche Médicale U1028, Centre National De La Recherche Scientifique 5292, Lyon, France, CH Le Vinatier, Bâtiment 452, 95 Boulevard Pinel, 69675 Bron, France.,Lyon 1 University, 43 Boulevard Du 11 Novembre 1918, Villeurbanne, 69100, France.,Department of Clinical neurosciences, CHU Vaudois, 46 Rue Du Bugnon, Lausanne, 1011, Switzerland
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon, 59 Boulevard Pinel, Bron, 69675, France.,Lyon's Research Neuroscience Center, Institut National De La Santé Et De La Recherche Médicale U1028, Centre National De La Recherche Scientifique 5292, Lyon, France, CH Le Vinatier, Bâtiment 452, 95 Boulevard Pinel, 69675 Bron, France.,Lyon 1 University, 43 Boulevard Du 11 Novembre 1918, Villeurbanne, 69100, France
| |
Collapse
|
46
|
Freestone DR, Karoly PJ, Peterson ADH, Kuhlmann L, Lai A, Goodarzy F, Cook MJ. Seizure Prediction: Science Fiction or Soon to Become Reality? Curr Neurol Neurosci Rep 2016; 15:73. [PMID: 26404726 DOI: 10.1007/s11910-015-0596-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This review highlights recent developments in the field of epileptic seizure prediction. We argue that seizure prediction is possible; however, most previous attempts have used data with an insufficient amount of information to solve the problem. The review discusses four methods for gaining more information above standard clinical electrophysiological recordings. We first discuss developments in obtaining long-term data that enables better characterisation of signal features and trends. Then, we discuss the usage of electrical stimulation to probe neural circuits to obtain robust information regarding excitability. Following this, we present a review of developments in high-resolution micro-electrode technologies that enable neuroimaging across spatial scales. Finally, we present recent results from data-driven model-based analyses, which enable imaging of seizure generating mechanisms from clinical electrophysiological measurements. It is foreseeable that the field of seizure prediction will shift focus to a more probabilistic forecasting approach leading to improvements in the quality of life for the millions of people who suffer uncontrolled seizures. However, a missing piece of the puzzle is devices to acquire long-term high-quality data. When this void is filled, seizure prediction will become a reality.
Collapse
Affiliation(s)
- Dean R Freestone
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia, 3065. .,Department of Statistics, Columbia University, New York, NY, 10027, USA.
| | - Philippa J Karoly
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia, 3065.,Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia, 3000
| | - Andre D H Peterson
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia, 3065
| | - Levin Kuhlmann
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia, 3000
| | - Alan Lai
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia, 3000
| | - Farhad Goodarzy
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia, 3000
| | - Mark J Cook
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia, 3065.
| |
Collapse
|
47
|
Boulogne S, Ryvlin P, Rheims S. Single and paired-pulse electrical stimulation during invasive EEG recordings. Rev Neurol (Paris) 2016; 172:174-81. [PMID: 26993563 DOI: 10.1016/j.neurol.2016.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 01/11/2016] [Accepted: 02/23/2016] [Indexed: 12/01/2022]
Abstract
Invasive EEG recordings are frequently required during the presurgical exploration of patients with drug-resistant focal epilepsy in order to clarify the epileptic zone location. Intracranial direct electrical stimulations (DES) induce EEG and/or clinical responses that participate in this evaluation. Clinical DES protocols (1Hz and/or 50Hz) trigger massive cortical activation that can elicit seizures, after-discharges or complex clinical signs. In contrast, low-energy (<1Hz) protocols activate more localized cortical regions using single-pulse electrical stimulations (SPES). SPES can elicit two main types of responses. Cortico-cortical evoked potentials (CCEPs) correspond to highly consistent early responses, appearing before 100ms after stimulation, with fixed latency; they are considered physiological and assess the effective connectivity between the recorded regions. Late responses appear after 100ms; they are rare, inconsistent with variable latency and are suggestive of an underlying epileptogenic cortex. Paired-pulse stimulation paradigm associates a conditioning and a test stimulation to induce intracortical inhibition or facilitation by modifying the response amplitude. Largely used in transcranial magnetic stimulation, it has rarely been applied to CCEP although the mechanisms put in place seem highly similar. Low frequency intracerebral stimulations allow analysing brain connectivity and cortical excitability with a high temporal and spatial resolution. The development of new stimulation protocols and the combination with imaging or statistical techniques recently offered promising results.
Collapse
Affiliation(s)
- S Boulogne
- Department of Functional Neurology and Epileptology, Hospices civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France; Lyon's Research Neuroscience Center, Inserm U1028/CNRS UMPR 5292, CH Le Vinatier, Bâtiment 452, 95, boulevard Pinel, 69675 Bron, France
| | - P Ryvlin
- Department of clinical neurosciences, CHU Vaudois, 46, rue du Bugnon, 1011 Lausanne, Switzerland
| | - S Rheims
- Department of Functional Neurology and Epileptology, Hospices civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France; Lyon's Research Neuroscience Center, Inserm U1028/CNRS UMPR 5292, CH Le Vinatier, Bâtiment 452, 95, boulevard Pinel, 69675 Bron, France.
| |
Collapse
|
48
|
A comparative study of the effects of pulse parameters for intracranial direct electrical stimulation in epilepsy. Clin Neurophysiol 2016; 127:91-101. [DOI: 10.1016/j.clinph.2015.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 12/31/2014] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
|
49
|
Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc Natl Acad Sci U S A 2015; 112:14694-9. [PMID: 26554021 DOI: 10.1073/pnas.1513716112] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pathological changes in excitability of cortical tissue commonly underlie the initiation and spread of seizure activity in patients suffering from epilepsy. Accordingly, monitoring excitability and controlling its degree using antiepileptic drugs (AEDs) is of prime importance for clinical care and treatment. To date, adequate measures of excitability and action of AEDs have been difficult to identify. Recent insights into ongoing cortical activity have identified global levels of phase synchronization as measures that characterize normal levels of excitability and quantify any deviation therefrom. Here, we explore the usefulness of these intrinsic measures to quantify cortical excitability in humans. First, we observe a correlation of such markers with stimulation-evoked responses suggesting them to be viable excitability measures based on ongoing activity. Second, we report a significant covariation with the level of AED load and a wake-dependent modulation. Our results indicate that excitability in epileptic networks is effectively reduced by AEDs and suggest the proposed markers as useful candidates to quantify excitability in routine clinical conditions overcoming the limitations of electrical or magnetic stimulation. The wake-dependent time course of these metrics suggests a homeostatic role of sleep, to rebalance cortical excitability.
Collapse
|
50
|
Sato Y, Doesburg SM, Wong SM, Okanishi T, Anderson R, Nita DA, Ochi A, Otsubo H. Dynamic changes of interictal post-spike slow waves toward seizure onset in focal cortical dysplasia type II. Clin Neurophysiol 2015; 126:1670-6. [DOI: 10.1016/j.clinph.2014.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 11/06/2014] [Accepted: 11/15/2014] [Indexed: 12/01/2022]
|