1
|
Orui J, Shiraiwa K, Tazaki F, Inoue T, Ueda M, Ueno K, Naito Y, Ishii R. Psychophysiological and interpersonal effects of parallel group crafting: a multimodal study using EEG and ECG. Sci Rep 2024; 14:17883. [PMID: 39095523 PMCID: PMC11297208 DOI: 10.1038/s41598-024-68980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
In occupational therapy, crafts and groups are used as therapeutic tools, but their electrophysiological effects have not been well described. This study aimed to investigate the effects of group crafting on the physiological synchrony (PS) of dyadic heartbeats and on the autonomic activity and electroencephalogram (EEG) of individuals. In this cross-sectional study, individuals' EEG and dyadic electrocardiogram (ECG) were measured during the task in a variety of conditions. The three conditions were alone, parallel, nonparallel. Autonomic activity from the subjects' ECG, PS from the dyadic ECG, and current source density from exact Low Resolution Brain Electromagnetic Tomography (eLORETA) from subjects' EEG were analyzed. Measurements from 30 healthy young adults showed that the parallel condition significantly increased subjects' parasympathetic activity and dyadic PS. Parallel condition and frontal midline theta influenced parasympathetic activity, whereas parasympathetic activity was not associated with PS. Dyadic lag value were correlated with frontal delta, beta, and gamma activity. The results suggest that crafting in parallel groups increases parasympathetic activity and PS through different mechanisms, despite the absence of direct interaction. They also explain the electrophysiological evidence for the use of crafts and groups in psychiatric occupational therapy, such as increased relaxation and PS.
Collapse
Affiliation(s)
- Junya Orui
- Department of Health Science, Osaka Health Science University, 1-9-27 Tenma, Kita-Ku, Osaka, Osaka, 530-0043, Japan
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Keigo Shiraiwa
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka, 597-0104, Japan
| | - Fumie Tazaki
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka, 597-0104, Japan
| | - Takao Inoue
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Masaya Ueda
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Keita Ueno
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Yasuo Naito
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Ryouhei Ishii
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan.
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka, 597-0104, Japan.
- Department of Psychiatry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Tan H, Paulk AC, Stedelin B, Cleary DR, Nerison C, Tchoe Y, Brown E, Bourhis A, Russman S, Lee J, Tonsfeldt K, Yang JC, Oh H, Ro YG, Lee K, Ganji M, Galton I, Siler D, Jude Han S, Collins KL, Ben-Haim S, Halgren E, Cash SS, Dayeh S, Raslan AM. Intraoperative application and early experience with novel high-resolution, high-channel-count thin-film electrodes for human microelectrocorticography. J Neurosurg 2024; 140:665-676. [PMID: 37874692 PMCID: PMC11103266 DOI: 10.3171/2023.7.jns23885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/18/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE The study objective was to evaluate intraoperative experience with newly developed high-spatial-resolution microelectrode grids composed of poly(3,4-ethylenedioxythiophene) with polystyrene sulfonate (PEDOT:PSS), and those composed of platinum nanorods (PtNRs). METHODS A cohort of patients who underwent craniotomy for pathological tissue resection and who had high-spatial-resolution microelectrode grids placed intraoperatively were evaluated. Patient demographic and baseline clinical variables as well as relevant microelectrode grid characteristic data were collected. The primary and secondary outcome measures of interest were successful microelectrode grid utilization with usable resting-state or task-related data, and grid-related adverse intraoperative events and/or grid dysfunction. RESULTS Included in the analysis were 89 cases of patients who underwent a craniotomy for resection of neoplasms (n = 58) or epileptogenic tissue (n = 31). These cases accounted for 94 grids: 58 PEDOT:PSS and 36 PtNR grids. Of these 94 grids, 86 were functional and used successfully to obtain cortical recordings from 82 patients. The mean cortical grid recording duration was 15.3 ± 1.15 minutes. Most recordings in patients were obtained during experimental tasks (n = 52, 58.4%), involving language and sensorimotor testing paradigms, or were obtained passively during resting state (n = 32, 36.0%). There were no intraoperative adverse events related to grid placement. However, there were instances of PtNR grid dysfunction (n = 8) related to damage incurred by suboptimal preoperative sterilization (n = 7) and improper handling (n = 1); intraoperative recordings were not performed. Vaporized peroxide sterilization was the most optimal sterilization method for PtNR grids, providing a significantly greater number of usable channels poststerilization than did steam-based sterilization techniques (median 905.0 [IQR 650.8-935.5] vs 356.0 [IQR 18.0-597.8], p = 0.0031). CONCLUSIONS High-spatial-resolution microelectrode grids can be readily incorporated into appropriately selected craniotomy cases for clinical and research purposes. Grids are reliable when preoperative handling and sterilization considerations are accounted for. Future investigations should compare the diagnostic utility of these high-resolution grids to commercially available counterparts and assess whether diagnostic discrepancies relate to clinical outcomes.
Collapse
Affiliation(s)
- Hao Tan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Angelique C. Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Brittany Stedelin
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Daniel R. Cleary
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
- Department of Neurological Surgery, University of California San Diego, San Diego, California
| | - Caleb Nerison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Youngbin Tchoe
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
- Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Erik Brown
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
- Department of Neurological Surgery, Nicklaus Children’s Hospital, Miami, Florida
| | - Andrew Bourhis
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California
| | - Samantha Russman
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California
| | - Jihwan Lee
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California
| | - Karen Tonsfeldt
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California
| | - Jimmy C. Yang
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Hongseok Oh
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California
- Soongsil University, Seoul, Korea
| | - Yun Goo Ro
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California
- Soongsil University, Seoul, Korea
| | - Keundong Lee
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California
| | - Mehran Ganji
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California
| | - Ian Galton
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California
| | - Dominic Siler
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Seunggu Jude Han
- Department of Neurological Surgery, Stanford University, Palo Alto, California
| | - Kelly L. Collins
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon
| | - Sharona Ben-Haim
- Department of Neurological Surgery, University of California San Diego, San Diego, California
| | - Eric Halgren
- Department of Neurology, University of California San Diego, San Diego, California
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Shadi Dayeh
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California
| | - Ahmed M. Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
3
|
Zhang Y, Chung H, Ngo JP, Monsoor T, Hussain SA, Matsumoto JH, Walshaw PD, Fallah A, Sim MS, Asano E, Sankar R, Staba RJ, Engel J, Speier W, Roychowdhury V, Nariai H. Characterizing physiological high-frequency oscillations using deep learning. J Neural Eng 2022; 19:10.1088/1741-2552/aca4fa. [PMID: 36541546 PMCID: PMC10364130 DOI: 10.1088/1741-2552/aca4fa] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Objective.Intracranially-recorded interictal high-frequency oscillations (HFOs) have been proposed as a promising spatial biomarker of the epileptogenic zone. However, HFOs can also be recorded in the healthy brain regions, which complicates the interpretation of HFOs. The present study aimed to characterize salient features of physiological HFOs using deep learning (DL).Approach.We studied children with neocortical epilepsy who underwent intracranial strip/grid evaluation. Time-series EEG data were transformed into DL training inputs. The eloquent cortex (EC) was defined by functional cortical mapping and used as a DL label. Morphological characteristics of HFOs obtained from EC (ecHFOs) were distilled and interpreted through a novel weakly supervised DL model.Main results.A total of 63 379 interictal intracranially-recorded HFOs from 18 children were analyzed. The ecHFOs had lower amplitude throughout the 80-500 Hz frequency band around the HFO onset and also had a lower signal amplitude in the low frequency band throughout a one-second time window than non-ecHFOs, resembling a bell-shaped template in the time-frequency map. A minority of ecHFOs were HFOs with spikes (22.9%). Such morphological characteristics were confirmed to influence DL model prediction via perturbation analyses. Using the resection ratio (removed HFOs/detected HFOs) of non-ecHFOs, the prediction of postoperative seizure outcomes improved compared to using uncorrected HFOs (area under the ROC curve of 0.82, increased from 0.76).Significance.We characterized salient features of physiological HFOs using a DL algorithm. Our results suggested that this DL-based HFO classification, once trained, might help separate physiological from pathological HFOs, and efficiently guide surgical resection using HFOs.
Collapse
Affiliation(s)
- Yipeng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Hoyoung Chung
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Jacquline P. Ngo
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Tonmoy Monsoor
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Shaun A. Hussain
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Patricia D. Walshaw
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Myung Shin Sim
- Department of Medicine, Statistics Core, University of California, Los Angeles, CA, USA
| | - Eishi Asano
- Department of Pediatrics and Neurology, Children’s Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| | - Richard J. Staba
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- The Brain Research Institute, University of California, Los Angeles, CA, USA
| | - William Speier
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Vwani Roychowdhury
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| |
Collapse
|
4
|
Sakakura K, Sonoda M, Mitsuhashi T, Kuroda N, Firestone E, O'Hara N, Iwaki H, Lee MH, Jeong JW, Rothermel R, Luat AF, Asano E. Developmental organization of neural dynamics supporting auditory perception. Neuroimage 2022; 258:119342. [PMID: 35654375 PMCID: PMC9354710 DOI: 10.1016/j.neuroimage.2022.119342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose: A prominent view of language acquisition involves learning to ignore irrelevant auditory signals through functional reorganization, enabling more efficient processing of relevant information. Yet, few studies have characterized the neural spatiotemporal dynamics supporting rapid detection and subsequent disregard of irrelevant auditory information, in the developing brain. To address this unknown, the present study modeled the developmental acquisition of cost-efficient neural dynamics for auditory processing, using intracranial electrocorticographic responses measured in individuals receiving standard-of-care treatment for drug-resistant, focal epilepsy. We also provided evidence demonstrating the maturation of an anterior-to-posterior functional division within the superior-temporal gyrus (STG), which is known to exist in the adult STG. Methods: We studied 32 patients undergoing extraoperative electrocorticography (age range: eight months to 28 years) and analyzed 2,039 intracranial electrode sites outside the seizure onset zone, interictal spike-generating areas, and MRI lesions. Patients were given forward (normal) speech sounds, backward-played speech sounds, and signal-correlated noises during a task-free condition. We then quantified sound processing-related neural costs at given time windows using high-gamma amplitude at 70–110 Hz and animated the group-level high-gamma dynamics on a spatially normalized three-dimensional brain surface. Finally, we determined if age independently contributed to high-gamma dynamics across brain regions and time windows. Results: Group-level analysis of noise-related neural costs in the STG revealed developmental enhancement of early high-gamma augmentation and diminution of delayed augmentation. Analysis of speech-related high-gamma activity demonstrated an anterior-to-posterior functional parcellation in the STG. The left anterior STG showed sustained augmentation throughout stimulus presentation, whereas the left posterior STG showed transient augmentation after stimulus onset. We found a double dissociation between the locations and developmental changes in speech sound-related high-gamma dynamics. Early left anterior STG high-gamma augmentation (i.e., within 200 ms post-stimulus onset) showed developmental enhancement, whereas delayed left posterior STG high-gamma augmentation declined with development. Conclusions: Our observations support the model that, with age, the human STG refines neural dynamics to rapidly detect and subsequently disregard uninformative acoustic noises. Our study also supports the notion that the anterior-to-posterior functional division within the left STG is gradually strengthened for efficient speech sound perception after birth.
Collapse
Affiliation(s)
- Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, University of Tsukuba, Tsukuba, 3058575, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa, 2360004, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo, 1138421, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Nolan O'Hara
- Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA
| | - Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Min-Hee Lee
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA
| | - Robert Rothermel
- Department of Psychiatry, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA..
| |
Collapse
|
5
|
Sonoda M, Rothermel R, Carlson A, Jeong JW, Lee MH, Hayashi T, Luat AF, Sood S, Asano E. Naming-related spectral responses predict neuropsychological outcome after epilepsy surgery. Brain 2022; 145:517-530. [PMID: 35313351 PMCID: PMC9014727 DOI: 10.1093/brain/awab318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
This prospective study determined the use of intracranially recorded spectral responses during naming tasks in predicting neuropsychological performance following epilepsy surgery. We recruited 65 patients with drug-resistant focal epilepsy who underwent preoperative neuropsychological assessment and intracranial EEG recording. The Clinical Evaluation of Language Fundamentals evaluated the baseline and postoperative language function. During extra-operative intracranial EEG recording, we assigned patients to undergo auditory and picture naming tasks. Time-frequency analysis determined the spatiotemporal characteristics of naming-related amplitude modulations, including high gamma augmentation at 70-110 Hz. We surgically removed the presumed epileptogenic zone based on the intracranial EEG and MRI abnormalities while maximally preserving the eloquent areas defined by electrical stimulation mapping. The multivariate regression model incorporating auditory naming-related high gamma augmentation predicted the postoperative changes in Core Language Score with r2 of 0.37 and in Expressive Language Index with r2 of 0.32. Independently of the effects of epilepsy and neuroimaging profiles, higher high gamma augmentation at the resected language-dominant hemispheric area predicted a more severe postoperative decline in Core Language Score and Expressive Language Index. Conversely, the model incorporating picture naming-related high gamma augmentation predicted the change in Receptive Language Index with an r2 of 0.50. Higher high gamma augmentation independently predicted a more severe postoperative decline in Receptive Language Index. Ancillary regression analysis indicated that naming-related low gamma augmentation and alpha/beta attenuation likewise independently predicted a more severe Core Language Score decline. The machine learning-based prediction model suggested that naming-related high gamma augmentation, among all spectral responses used as predictors, most strongly contributed to the improved prediction of patients showing a >5-point Core Language Score decline (reflecting the lower 25th percentile among patients). We generated the model-based atlas visualizing sites, which, if resected, would lead to such a language decline. With a 5-fold cross-validation procedure, the auditory naming-based model predicted patients who had such a postoperative language decline with an accuracy of 0.80. The model indicated that virtual resection of an electrical stimulation mapping-defined language site would have increased the relative risk of the Core Language Score decline by 5.28 (95% confidence interval: 3.47-8.02). Especially, that of an electrical stimulation mapping-defined receptive language site would have maximized it to 15.90 (95% confidence interval: 9.59-26.33). In summary, naming-related spectral responses predict neuropsychological outcomes after epilepsy surgery. We have provided our prediction model as an open-source material, which will indicate the postoperative language function of future patients and facilitate external validation at tertiary epilepsy centres.
Collapse
Affiliation(s)
- Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Robert Rothermel
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Alanna Carlson
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Min-Hee Lee
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Takahiro Hayashi
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Correspondence to: Eishi Asano, MD, PhD, MS (CRDSA) Division of Pediatric Neurology, Children’s Hospital of Michigan Wayne State University. 3901 Beaubien St., Detroit, MI 48201, USA E-mail:
| |
Collapse
|
6
|
Sonoda M, Silverstein BH, Jeong JW, Sugiura A, Nakai Y, Mitsuhashi T, Rothermel R, Luat AF, Sood S, Asano E. Six-dimensional dynamic tractography atlas of language connectivity in the developing brain. Brain 2021; 144:3340-3354. [PMID: 34849596 PMCID: PMC8677551 DOI: 10.1093/brain/awab225] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 11/12/2022] Open
Abstract
During a verbal conversation, our brain moves through a series of complex linguistic processing stages: sound decoding, semantic comprehension, retrieval of semantically coherent words, and overt production of speech outputs. Each process is thought to be supported by a network consisting of local and long-range connections bridging between major cortical areas. Both temporal and extratemporal lobe regions have functional compartments responsible for distinct language domains, including the perception and production of phonological and semantic components. This study provides quantitative evidence of how directly connected inter-lobar neocortical networks support distinct stages of linguistic processing across brain development. Novel six-dimensional tractography was used to intuitively visualize the strength and temporal dynamics of direct inter-lobar effective connectivity between cortical areas activated during each linguistic processing stage. We analysed 3401 non-epileptic intracranial electrode sites from 37 children with focal epilepsy (aged 5-20 years) who underwent extra-operative electrocorticography recording. Principal component analysis of auditory naming-related high-gamma modulations determined the relative involvement of each cortical area during each linguistic processing stage. To quantify direct effective connectivity, we delivered single-pulse electrical stimulation to 488 temporal and 1581 extratemporal lobe sites and measured the early cortico-cortical spectral responses at distant electrodes. Mixed model analyses determined the effects of naming-related high-gamma co-augmentation between connecting regions, age, and cerebral hemisphere on the strength of effective connectivity independent of epilepsy-related factors. Direct effective connectivity was strongest between extratemporal and temporal lobe site pairs, which were simultaneously activated between sentence offset and verbal response onset (i.e. response preparation period); this connectivity was approximately twice more robust than that with temporal lobe sites activated during stimulus listening or overt response. Conversely, extratemporal lobe sites activated during overt response were equally connected with temporal lobe language sites. Older age was associated with increased strength of inter-lobar effective connectivity especially between those activated during response preparation. The arcuate fasciculus supported approximately two-thirds of the direct effective connectivity pathways from temporal to extratemporal auditory language-related areas but only up to half of those in the opposite direction. The uncinate fasciculus consisted of <2% of those in the temporal-to-extratemporal direction and up to 6% of those in the opposite direction. We, for the first time, provided an atlas which quantifies and animates the strength, dynamics, and direction specificity of inter-lobar neural communications between language areas via the white matter pathways. Language-related effective connectivity may be strengthened in an age-dependent manner even after the age of 5.
Collapse
Affiliation(s)
- Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Ayaka Sugiura
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurological Surgery, Wakayama Medical University, Wakayama, Wakayama 6418509, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo, 1138421, Japan
| | - Robert Rothermel
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Numata-Uematsu Y, Uematsu M, Sakuraba R, Iwasaki M, Osawa S, Jin K, Nakasato N, Kure S. The Onset of Interictal Spike-Related Ripples Facilitates Detection of the Epileptogenic Zone. Front Neurol 2021; 12:724417. [PMID: 34803874 PMCID: PMC8599368 DOI: 10.3389/fneur.2021.724417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Accurate estimation of the epileptogenic zone (EZ) is essential for favorable outcomes in epilepsy surgery. Conventional ictal electrocorticography (ECoG) onset is generally used to detect the EZ but is insufficient in achieving seizure-free outcomes. By contrast, high-frequency oscillations (HFOs) could be useful markers of the EZ. Hence, we aimed to detect the EZ using interictal spikes and investigated whether the onset area of interictal spike-related HFOs was within the EZ. Methods: The EZ is considered to be included in the resection area among patients with seizure-free outcomes after surgery. Using a complex demodulation technique, we developed a method to determine the onset channels of interictal spike-related ripples (HFOs of 80-200 Hz) and investigated whether they are within the resection area. Results: We retrospectively examined 12 serial patients who achieved seizure-free status after focal resection surgery. Using the method that we developed, we determined the onset channels of interictal spike-related ripples and found that for all 12 patients, they were among the resection channels. The onset frequencies of ripples were in the range of 80-150 Hz. However, the ictal onset channels (evaluated based on ictal ECoG patterns) and ripple onset channels coincided in only 3 of 12 patients. Conclusions: Determining the onset area of interictal spike-related ripples could facilitate EZ estimation. This simple method that utilizes interictal ECoG may aid in preoperative evaluation and improve epilepsy surgery outcomes.
Collapse
Affiliation(s)
| | - Mitsugu Uematsu
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Rie Sakuraba
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, Tohoku University School of Medicine, Sendai, Japan.,Department of Neurosurgery, National Center Hospital of Neurology and Psychiatry, Tokyo, Japan
| | - Shinichiro Osawa
- Department of Neurosurgery, Tohoku University School of Medicine, Sendai, Japan
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Sonoda M, Carlson A, Rothermel R, Kuroda N, Iwaki H, Luat AF, Sood S, Asano E. Long-term satisfaction after extraoperative invasive EEG recording. Epilepsy Behav 2021; 124:108363. [PMID: 34717248 PMCID: PMC9043037 DOI: 10.1016/j.yebeh.2021.108363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
This retrospective cohort study investigated 53 patients with drug-resistant focal epilepsy and identified factors predictive of long-term satisfaction of patients and families following extraoperative intracranial EEG (iEEG) recording. The mixed model analysis assessed the utility of intracranial EEG (iEEG) predictor variables, including the seizure-onset zone (SOZ), modulation index (MI), and naming-related high-gamma activity. Modulation index, quantifying the coupling between high-frequency activity at >80 Hz and local slow wave at 3-4 Hz, effectively functions as a surrogate marker of the burden of interictal spike-and-slow-wave discharges. The mixed model specifically incorporated 'subtraction-MI', defined as the subtraction of mean z-score normalized MI across all preserved sites from that across all resected sites. Auditory naming-related high-gamma activity at 70-110 Hz is a biomarker to characterize the underlying language and speech function. The model incorporated 'maximum resected high-gamma', defined as the high-gamma percent change largest among sites included in the resected language-dominant hemispheric region. The model also incorporated the clinical and imaging profiles of given patients. The analysis revealed that complete removal of SOZ (p = 0.003) and younger patient age (p = 0.040) were independently associated with greater satisfaction. Neither 'subtraction-MI' nor 'maximum naming-related high-gamma' showed a significant and independent association with long-term satisfaction in our patient cohort. The observed impact of complete resection of SOZ and early surgery can be considered when counseling candidates for epilepsy surgery.
Collapse
Affiliation(s)
- Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Alanna Carlson
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Psychiatry, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Robert Rothermel
- Department of Psychiatry, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
9
|
Spontaneous modulations of high-frequency cortical activity. Clin Neurophysiol 2021; 132:2391-2403. [PMID: 34454266 DOI: 10.1016/j.clinph.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We clarified the clinical and mechanistic significance of physiological modulations of high-frequency broadband cortical activity associated with spontaneous saccadic eye movements during a resting state. METHODS We studied 30 patients who underwent epilepsy surgery following extraoperative electrocorticography and electrooculography recordings. We determined whether high-gamma activity at 70-110 Hz preceding saccade onset would predict upcoming ocular behaviors. We assessed how accurately the model incorporating saccade-related high-gamma modulations would localize the primary visual cortex defined by electrical stimulation. RESULTS The dynamic atlas demonstrated transient high-gamma suppression in the striatal cortex before saccade onset and high-gamma augmentation subsequently involving the widespread posterior brain regions. More intense striatal high-gamma suppression predicted the upcoming saccade directed to the ipsilateral side and lasting longer in duration. The bagged-tree-ensemble model demonstrated that intense saccade-related high-gamma modulations localized the visual cortex with an accuracy of 95%. CONCLUSIONS We successfully animated the neural dynamics supporting saccadic suppression, a principal mechanism minimizing the perception of blurred vision during rapid eye movements. The primary visual cortex per se may prepare actively in advance for massive image motion expected during upcoming prolonged saccades. SIGNIFICANCE Measuring saccade-related electrocorticographic signals may help localize the visual cortex and avoid misperceiving physiological high-frequency activity as epileptogenic.
Collapse
|
10
|
Aron O, Jonas J, Colnat-Coulbois S, Maillard L. Language Mapping Using Stereo Electroencephalography: A Review and Expert Opinion. Front Hum Neurosci 2021; 15:619521. [PMID: 33776668 PMCID: PMC7987679 DOI: 10.3389/fnhum.2021.619521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
Stereo-electroencephalography (sEEG) is a method that uses stereotactically implanted depth electrodes for extra-operative mapping of epileptogenic and functional networks. sEEG derived functional mapping is achieved using electrical cortical stimulations (ECS) that are currently the gold standard for delineating eloquent cortex. As this stands true especially for primary cortices (e.g., visual, sensitive, motor, etc.), ECS applied to higher order brain areas determine more subtle behavioral responses. While anterior and posterior language areas in the dorsal language stream seem to share characteristics with primary cortices, basal temporal language area (BTLA) in the ventral temporal cortex (VTC) behaves as a highly associative cortex. After a short introduction and considerations about methodological aspects of ECS using sEEG, we review the sEEG language mapping literature in this perspective. We first establish the validity of this technique to map indispensable language cortices in the dorsal language stream. Second, we highlight the contrast between the growing empirical ECS experience and the lack of understanding regarding the fundamental mechanisms underlying ECS behavioral effects, especially concerning the dispensable language cortex in the VTC. Evidences for considering network architecture as determinant for ECS behavioral response complexities are discussed. Further, we address the importance of designing new research in network organization of language as this could enhance ECS ability to map interindividual variability, pathology driven reorganization, and ultimately identify network resilience markers in order to better predict post-operative language deficit. Finally, based on a whole body of available studies, we believe there is strong evidence to consider sEEG as a valid, safe and reliable method for defining eloquent language cortices although there have been no proper comparisons between surgical resections with or without extra-operative or intra-operative language mapping.
Collapse
Affiliation(s)
- Olivier Aron
- Department of Neurology, Nancy University Hospital Center, Nancy, France
- CRAN, Université́ de Lorraine, CNRS, Nancy, France
| | - Jacques Jonas
- Department of Neurology, Nancy University Hospital Center, Nancy, France
- CRAN, Université́ de Lorraine, CNRS, Nancy, France
| | | | - Louis Maillard
- Department of Neurology, Nancy University Hospital Center, Nancy, France
- CRAN, Université́ de Lorraine, CNRS, Nancy, France
| |
Collapse
|
11
|
Iwaki H, Sonoda M, Osawa SI, Silverstein BH, Mitsuhashi T, Ukishiro K, Takayama Y, Kambara T, Kakinuma K, Suzuki K, Tominaga T, Nakasato N, Iwasaki M, Asano E. Your verbal questions beginning with 'what' will rapidly deactivate the left prefrontal cortex of listeners. Sci Rep 2021; 11:5257. [PMID: 33664359 PMCID: PMC7933162 DOI: 10.1038/s41598-021-84610-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
The left prefrontal cortex is essential for verbal communication. It remains uncertain at what timing, to what extent, and what type of phrase initiates left-hemispheric dominant prefrontal activation during comprehension of spoken sentences. We clarified this issue by measuring event-related high-gamma activity during a task to respond to three-phrase questions configured in different orders. Questions beginning with a wh-interrogative deactivated the left posterior prefrontal cortex right after the 1st phrase offset and the anterior prefrontal cortex after the 2nd phrase offset. Left prefrontal high-gamma activity augmented subsequently and maximized around the 3rd phrase offset. Conversely, questions starting with a concrete phrase deactivated the right orbitofrontal region and then activated the left posterior prefrontal cortex after the 1st phrase offset. Regardless of sentence types, high-gamma activity emerged earlier, by one phrase, in the left posterior prefrontal than anterior prefrontal region. Sentences beginning with a wh-interrogative may initially deactivate the left prefrontal cortex to prioritize the bottom-up processing of upcoming auditory information. A concrete phrase may obliterate the inhibitory function of the right orbitofrontal region and facilitate top-down lexical prediction by the left prefrontal cortex. The left anterior prefrontal regions may be recruited for semantic integration of multiple concrete phrases.
Collapse
Affiliation(s)
- Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.,Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.,Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Kanagawa, 2360004, Japan
| | - Shin-Ichiro Osawa
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan.
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI, 48201, USA
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.,Department of Neurosurgery, School of Medicine, Juntendo University, Tokyo, 1138421, Japan
| | - Kazushi Ukishiro
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan.,Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Kanagawa, 2360004, Japan
| | - Yutaro Takayama
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan.,Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Kanagawa, 2360004, Japan.,Department of Neurosurgery, National Center of Neurology and Psychiatry, National Center Hospital, Tokyo, 1878551, Japan
| | - Toshimune Kambara
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.,Department of Psychology, Hiroshima University, Hiroshima, 7398524, Japan
| | - Kazuo Kakinuma
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Kyoko Suzuki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center of Neurology and Psychiatry, National Center Hospital, Tokyo, 1878551, Japan.
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA. .,Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
12
|
Clinical application of intraoperative trial-free online-based language mapping for patients with refractory epilepsy. Epilepsy Behav 2021; 116:107496. [PMID: 33582498 DOI: 10.1016/j.yebeh.2020.107496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The objective of the study was to develop and clinically test a trial-free online-based language mapping method for localizing the eloquent cortex easily in epilepsy operation. METHODS Nine patients with refractory epilepsy were included in this study according to the results of preoperative evaluation for their epileptogenic zones (EZs) located adjacent to the eloquent cortex. When patients were awakened up from general anesthesia during operation, the trial-free online-based language-mapping paradigm was performed. All positive points marked on the cortex in each test were labeled and superimposed together as the result of functional mapping for each patient. The eloquent cortex was mapped according to the results obtained both from the intraoperative trial-free task localization method and the traditional electrical cortical stimulation (ECS). RESULTS All patients completed this paradigms twice within 10 min. Based on the results of mapping, the EZs were tried to fully resected on the premise of preserving the mapped eloquent cortex as much as possible. The postoperative follow-up showed the outcome of Engel I in six patients and Engel II in three patients, whereas only two patients had aphemia after surgery and recovered within one week and three months, respectively. SIGNIFICANCE The intraoperative trial-free online-based language mapping method was primarily identified to be safe and effective. This novel method seems to be promising and worthy of improvement.
Collapse
|
13
|
Ervin B, Buroker J, Rozhkov L, Holloway T, Horn PS, Scholle C, Byars AW, Mangano FT, Leach JL, Greiner HM, Holland KD, Arya R. High-gamma modulation language mapping with stereo-EEG: A novel analytic approach and diagnostic validation. Clin Neurophysiol 2020; 131:2851-2860. [PMID: 33137575 DOI: 10.1016/j.clinph.2020.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/30/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE A novel analytic approach for task-related high-gamma modulation (HGM) in stereo-electroencephalography (SEEG) was developed and evaluated for language mapping. METHODS SEEG signals, acquired from drug-resistant epilepsy patients during a visual naming task, were analyzed to find clusters of 50-150 Hz power modulations in time-frequency domain. Classifier models to identify electrode contacts within the reference neuroanatomy and electrical stimulation mapping (ESM) speech/language sites were developed and validated. RESULTS In 21 patients (9 females), aged 4.8-21.2 years, SEEG HGM model predicted electrode locations within Neurosynth language parcels with high diagnostic odds ratio (DOR 10.9, p < 0.0001), high specificity (0.85), and fair sensitivity (0.66). Another SEEG HGM model classified ESM speech/language sites with significant DOR (5.0, p < 0.0001), high specificity (0.74), but insufficient sensitivity. Time to largest power change reliably localized electrodes within Neurosynth language parcels, while, time to center-of-mass power change identified ESM sites. CONCLUSIONS SEEG HGM mapping can accurately localize neuroanatomic and ESM language sites. SIGNIFICANCE Predictive modelling incorporating time, frequency, and magnitude of power change is a useful methodology for task-related HGM, which offers insights into discrepancies between HGM language maps and neuroanatomy or ESM.
Collapse
Affiliation(s)
- Brian Ervin
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Buroker
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leonid Rozhkov
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Timothy Holloway
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig Scholle
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Francesco T Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James L Leach
- Division of Pediatric Neuro-radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Sugiura A, Silverstein BH, Jeong JW, Nakai Y, Sonoda M, Motoi H, Asano E. Four-dimensional map of direct effective connectivity from posterior visual areas. Neuroimage 2020; 210:116548. [PMID: 31958582 DOI: 10.1016/j.neuroimage.2020.116548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022] Open
Abstract
Lower- and higher-order visual cortices in the posterior brain, ranging from the medial- and lateral-occipital to fusiform regions, are suggested to support visual object recognition, whereas the frontal eye field (FEF) plays a role in saccadic eye movements which optimize visual processing. Previous studies using electrophysiology and functional MRI techniques have reported that tasks requiring visual object recognition elicited cortical activation sequentially in the aforementioned posterior visual regions and FEFs. The present study aims to provide unique evidence of direct effective connectivity outgoing from the posterior visual regions by measuring the early component (10-50 ms) of cortico-cortical spectral responses (CCSRs) elicited by weak single-pulse direct cortical electrical stimulation. We studied 22 patients who underwent extraoperative intracranial EEG recording for clinical localization of seizure foci and functionally-important brain regions. We used animations to visualize the spatiotemporal dynamics of gamma band CCSRs elicited by stimulation of three different posterior visual regions. We quantified the strength of CCSR-defined effective connectivity between the lower- and higher-order posterior visual regions as well as from the posterior visual regions to the FEFs. We found that effective connectivity within the posterior visual regions was larger in the feedforward (i.e., lower-to higher-order) direction compared to the opposite direction. Specifically, connectivity from the medial-occipital region was largest to the lateral-occipital region, whereas that from the lateral-occipital region was largest to the fusiform region. Among the posterior visual regions, connectivity to the FEF was largest from the lateral-occipital region and the mean peak latency of CCSR propagation from the lateral-occipital region to FEF was 26 ms. Our invasive study of the human brain using a stimulation-based intervention supports the model that the posterior visual regions have direct cortico-cortical connectivity pathways in which neural activity is transferred preferentially from the lower-to higher-order areas. The human brain has direct cortico-cortical connectivity allowing a rapid transfer of neural activity from the lateral-occipital region to the FEF.
Collapse
Affiliation(s)
- Ayaka Sugiura
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI, 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, 6418509, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Hirotaka Motoi
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
15
|
Babajani-Feremi A, Fulton SP, Holder CM, Choudhri AF, Boop FA, Wheless JW. Localization of Expressive Language Cortex in a 2-Year-Old Child Using High-Gamma Electrocorticography. J Child Neurol 2019; 34:837-841. [PMID: 31339411 DOI: 10.1177/0883073819863999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cortical stimulation mapping is the gold standard for presurgical language mapping; however, it cannot be reliably performed in very young patients. Language mapping using noninvasive modalities is also challenging in very young patients. Although utility of language mapping using power of high-gamma in electrocorticographic recordings was demonstrated in adults and older children, there is a gap of knowledge in the ability of this procedure for localizing language-specific cortex in very young patients. We describe a case of a 2-year-old patient who, to our knowledge, is the youngest person to undergo successful high-gamma electrocorticographic presurgical language mapping for localization of the expressive language cortex (Broca area). The surgical plan was to resect a cortical tuber within the left inferior frontal gyrus and there was a strong concern about postoperative language deficit after resection. Presurgical language mapping using noninvasive modalities were attempted without success. Cortical stimulation mapping was not feasible in this patient. Therefore, high-gamma electrocorticography was the only viable option for language mapping, and it successfully localized the expressive language cortex. The patient underwent surgery for resection of the IFG tuber based on results of high-gamma electrocorticography and had no postoperative language deficit. High-gamma electrocorticography can be used for localizing language-specific cortex, especially Broca's area, in very young patients.
Collapse
Affiliation(s)
- Abbas Babajani-Feremi
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen P Fulton
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Christen M Holder
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Asim F Choudhri
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Frederick A Boop
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - James W Wheless
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| |
Collapse
|
16
|
Ikegaya N, Motoi H, Iijima K, Takayama Y, Kambara T, Sugiura A, Silverstein BH, Iwasaki M, Asano E. Spatiotemporal dynamics of auditory and picture naming-related high-gamma modulations: A study of Japanese-speaking patients. Clin Neurophysiol 2019; 130:1446-1454. [PMID: 31056408 DOI: 10.1016/j.clinph.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To characterize the spatiotemporal dynamics of auditory and picture naming-related cortical activation in Japanese-speaking patients. METHODS Ten patients were assigned auditory naming and picture naming tasks during extraoperative intracranial EEG recording in a tertiary epilepsy center. Time-frequency analysis determined at what electrode sites and at what time windows during each task the amplitude of high-gamma activity (65-95 Hz) was modulated. RESULTS The superior-temporal gyrus on each hemisphere showed high-gamma augmentation during sentence listening, whereas the left middle-temporal and inferior-frontal gyri showed high-gamma augmentation peaking around stimulus offset. Auditory naming-specific high-gamma augmentation was noted in the bilateral superior-temporal gyri as well as left frontal-parietal-temporal perisylvian network regions, whereas picture naming-specific augmentation was noted in the occipital-fusiform regions, bilaterally. The inferior pre- and postcentral gyri on each hemisphere showed modality-common high-gamma augmentation time-locked to overt responses. CONCLUSIONS The spatiotemporal dynamics of auditory and picture naming-related high-gamma augmentation in Japanese-speaking patients were qualitatively similar to those previously reported in studies of English-speaking patients. SIGNIFICANCE The cortical dynamics for auditory sentence recognition are at least partly shared by cohorts speaking two distinct languages. Multicenter studies regarding the clinical utility of high-gamma language mapping across Eastern and Western hemispheres may be feasible.
Collapse
Affiliation(s)
- Naoki Ikegaya
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan; Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Hirotaka Motoi
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan; Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan; Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Toshimune Kambara
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Psychology, Hiroshima University, Hiroshima 7398524, Japan
| | - Ayaka Sugiura
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48202, USA
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan.
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Xu H, Dong M, Lee MH, OrHara N, Asano E, Jeong JW. Objective Detection of Eloquent Axonal Pathways to Minimize Postoperative Deficits in Pediatric Epilepsy Surgery using Diffusion Tractography and Convolutional Neural Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:10.1109/TMI.2019.2902073. [PMID: 30835220 PMCID: PMC9016495 DOI: 10.1109/tmi.2019.2902073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Convolutional neural networks (CNNs) have recently been used in biomedical imaging applications with great success. In this paper, we investigated the classi?cation performance of CNN models on diffusion weighted imaging (DWI) streamlines de?ned by functional MRI (fMRI) and electrical stimulation mapping (ESM). To learn a set of discriminative and interpretable features from the extremely unbalanced dataset, we evaluated different CNN architectures with multiple loss functions (e.g., focal loss and center loss) and a soft attention mechanism, and compared our models with current state-ofthe-art methods. Through extensive experiments on streamlines collected from 70 healthy children and 70 children with focal epilepsy, we demonstrated that our deep CNN model with focal and central losses and soft attention outperforms all existing models in the literature and provides clinically acceptable accuracy (73 -100%) for the objective detection of functionally-important white matter pathways including ESM determined eloquent areas such as primary motor, aphasia, speech arrest, auditory, and visual functions. The ?ndings of this study encourage further investigations to determine if DWICNN analysis can serve as a noninvasive diagnostic tool during pediatric presurgical planning by estimating not only the location of essential cortices at the gyral level, but also the underlying ?bers connecting these cortical areas, to minimize or predict postsurgical functional de?cits. This study translates an advanced CNN model to clinical practice in the pediatric population where currently available approaches (e.g., ESM, fMRI) are suboptimal. The implementation will be released at https://github. com/HaotianMXu/Brain-?ber-classi?cation-using-CNNs.
Collapse
|
18
|
Arya R, Ervin B, Wilson JA, Byars AW, Rozhkov L, Buroker J, Horn PS, Scholle C, Fujiwara H, Greiner HM, Leach JL, Rose DF, Mangano FT, Glauser TA, Holland KD. Development of information sharing in language neocortex in childhood-onset drug-resistant epilepsy. Epilepsia 2019; 60:393-405. [PMID: 30740659 DOI: 10.1111/epi.14661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We studied age-related dynamics of information sharing among cortical language regions with electrocorticographic high-gamma modulation during picture-naming and story-listening tasks. METHODS Seventeen epilepsy patients aged 4-19 years, undergoing extraoperative monitoring with left-hemispheric subdural electrodes, were included. Mutual information (MI), a nondirectional measure of shared information, between 16 pairs of cortical regions of interest, was computed from trial-averaged 70-150 Hz power modulations during language tasks. Impact of age on pairwise MI between language regions and their determinants were ascertained with regression analysis. RESULTS During picture naming, significant increase in MI with age was seen between pairwise combinations of Broca's area, inferior precentral gyrus (iPreC), and frontal association cortex (FAC); Wernicke's area and posterior association cortex (PAC); and Broca's and Wernicke's areas. During story listening, significant age-related increase in MI was seen between Wernicke's area and either Broca's area, FAC, or PAC; and between Broca's area and FAC. Significant impact of baseline intelligence quotient was seen on the relationship between age and MI for all pairs, except between Broca's area and iPreC. The mean MI was higher during naming compared to listening for pairs including iPreC with Broca's area, FAC, or PAC and was lower for pairs of Wernicke's area or PAC with anterior language regions. SIGNIFICANCE Information sharing matures with age "within" frontal and temporoparietal language cortices, and "between" Broca's and Wernicke's areas. This study provides evidence for distinct patterns of developmental plasticity within perisylvian language cortex and has implications for planning epilepsy surgery.
Collapse
Affiliation(s)
- Ravindra Arya
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brian Ervin
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, Ohio
| | - J Adam Wilson
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anna W Byars
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Leonid Rozhkov
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jason Buroker
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul S Horn
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Craig Scholle
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hisako Fujiwara
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hansel M Greiner
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James L Leach
- Division of Pediatric Neuroradiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Douglas F Rose
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tracy A Glauser
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Katherine D Holland
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
19
|
Nakai Y, Sugiura A, Brown EC, Sonoda M, Jeong JW, Rothermel R, Luat AF, Sood S, Asano E. Four-dimensional functional cortical maps of visual and auditory language: Intracranial recording. Epilepsia 2019; 60:255-267. [PMID: 30710356 DOI: 10.1111/epi.14648] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The strength of presurgical language mapping using electrocorticography (ECoG) is its outstanding signal fidelity and temporal resolution, but the weakness includes limited spatial sampling at an individual patient level. By averaging naming-related high-gamma activity at nonepileptic regions across a large number of patients, we provided the functional cortical atlases animating the neural dynamics supporting visual-object and auditory-description naming at the whole brain level. METHODS We studied 79 patients who underwent extraoperative ECoG recording as epilepsy presurgical evaluation, and generated time-frequency plots and animation videos delineating the dynamics of naming-related high-gamma activity at 70-110 Hz. RESULTS Naming task performance elicited high-gamma augmentation in domain-specific lower-order sensory areas and inferior-precentral gyri immediately after stimulus onset. High-gamma augmentation subsequently involved widespread neocortical networks with left hemisphere dominance. Left posterior temporal high-gamma augmentation at several hundred milliseconds before response onset exhibited a double dissociation; picture naming elicited high-gamma augmentation preferentially in regions medial to the inferior-temporal gyrus, whereas auditory naming elicited high-gamma augmentation more laterally. The left lateral prefrontal regions including Broca's area initially exhibited high-gamma suppression subsequently followed by high-gamma augmentation at several hundred milliseconds before response onset during both naming tasks. Early high-gamma suppression within Broca's area was more intense during picture compared to auditory naming. Subsequent lateral-prefrontal high-gamma augmentation was more intense during auditory compared to picture naming. SIGNIFICANCE This study revealed contrasting characteristics in the spatiotemporal dynamics of naming-related neural modulations between tasks. The dynamic atlases of visual and auditory language might be useful for planning of epilepsy surgery. Differential neural activation well explains some of the previously reported observations of domain-specific language impairments following resective epilepsy surgery. Video materials might be beneficial for the education of lay people about how the brain functions differentially during visual and auditory naming.
Collapse
Affiliation(s)
- Yasuo Nakai
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan.,Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, Japan
| | - Ayaka Sugiura
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon
| | - Masaki Sonoda
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Jeong-Won Jeong
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan.,Department of Neurology, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Robert Rothermel
- Department of Psychiatry, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Aimee F Luat
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan.,Department of Neurology, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Sandeep Sood
- Department of Neurosurgery, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| | - Eishi Asano
- Department of Pediatrics, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan.,Department of Neurology, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
| |
Collapse
|
20
|
Arya R, Roth C, Leach JL, Middeler D, Wilson JA, Vannest J, Rozhkov L, Greiner HM, Buroker J, Scholle C, Fujiwara H, Horn PS, Rose DF, Crone NE, Mangano FT, Byars AW, Holland KD. Neuropsychological outcomes after resection of cortical sites with visual naming associated electrocorticographic high-gamma modulation. Epilepsy Res 2019; 151:17-23. [PMID: 30721879 DOI: 10.1016/j.eplepsyres.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Language mapping with high-gamma modulation (HGM) has compared well with electrical cortical stimulation mapping (ESM). However, there is limited prospective data about its functional validity. We compared changes in neuropsychological evaluation (NPE) performed before and 1-year after epilepsy surgery, between patients with/without resection of cortical sites showing HGM during a visual naming task. METHODS Pediatric drug-resistant epilepsy (DRE) patients underwent pre-surgical language localization with ESM and HGM using a visual naming task. Surgical decisions were based solely on ESM results. NPE difference scores were compared between patients with/without resection of HGM naming sites using principal component (PC) analysis. Follow-up NPE scores were modeled with resection group as main effect and respective pre-surgical score as a covariate, using analysis of covariance. RESULTS Seventeen native English speakers (12 females), aged 6.5-20.2 years, were included. One year after epilepsy surgery, first PC score increased by (mean ± standard deviation) 14.4 ± 16.5 points in patients without resection, whereas it decreased by 7.6 ± 24.6 points in those with resection of HGM naming sites (p = 0.040). This PC score represented verbal comprehension, working memory, perceptual reasoning (Wechsler subscales); Woodcock-Johnson Tests of Achievement; and Peabody Picture Vocabulary Test. Subsequent analysis showed significant difference in working memory score between patients with/without resection of HGM naming sites (-15.2 points, 95% confidence limits -29.7 to -0.7, p = 0.041). CONCLUSION We highlight the functional consequences of resecting HGM language sites, and suggest that NPE of DRE patients should include comprehensive assessment of multiple linguistic and cognitive domains besides naming ability.
Collapse
Affiliation(s)
- Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Celie Roth
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James L Leach
- Division of Pediatric Neuroradiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Denise Middeler
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Adam Wilson
- Pediatric Neuroimaging Research Consortium, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Vannest
- Pediatric Neuroimaging Research Consortium, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leonid Rozhkov
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jason Buroker
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig Scholle
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hisako Fujiwara
- Pediatric Neuroimaging Research Consortium, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas F Rose
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
21
|
Swift JR, Coon WG, Guger C, Brunner P, Bunch M, Lynch T, Frawley B, Ritaccio AL, Schalk G. Passive functional mapping of receptive language areas using electrocorticographic signals. Clin Neurophysiol 2018; 129:2517-2524. [PMID: 30342252 DOI: 10.1016/j.clinph.2018.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To validate the use of passive functional mapping using electrocorticographic (ECoG) broadband gamma signals for identifying receptive language cortex. METHODS We mapped language function in 23 patients using ECoG and using electrical cortical stimulation (ECS) in a subset of 15 subjects. RESULTS The qualitative comparison between cortical sites identified by ECoG and ECS show a high concordance. A quantitative comparison indicates a high level of sensitivity (95%) and a lower level of specificity (59%). Detailed analysis reveals that 82% of all cortical sites identified by ECoG were within one contact of a site identified by ECS. CONCLUSIONS These results show that passive functional mapping reliably localizes receptive language areas, and that there is a substantial concordance between the ECoG- and ECS-based methods. They also point to a more refined understanding of the differences between ECoG- and ECS-based mappings. This refined understanding helps to clarify the instances in which the two methods disagree and can explain why neurosurgical practice has established the concept of a "safety margin." SIGNIFICANCE Passive functional mapping using ECoG signals provides a fast, robust, and reliable method for identifying receptive language areas without many of the risks and limitations associated with ECS.
Collapse
Affiliation(s)
- J R Swift
- g.tec neurotechnology USA, Rensselaer, NY, USA; Dept. of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - W G Coon
- g.tec neurotechnology USA, Rensselaer, NY, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Dept. of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - C Guger
- g.tec neurotechnology USA, Rensselaer, NY, USA.
| | - P Brunner
- Dept. of Neurology, Albany Medical College, Albany, NY, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - M Bunch
- Dept. of Neurology, Albany Medical College, Albany, NY, USA.
| | - T Lynch
- Dept. of Neurology, Albany Medical College, Albany, NY, USA.
| | - B Frawley
- Dept. of Neurology, Albany Medical College, Albany, NY, USA.
| | - A L Ritaccio
- Dept. of Neurology, Mayo Clinic, Jacksonville, FL, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - G Schalk
- Dept. of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; Dept. of Neurology, Albany Medical College, Albany, NY, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| |
Collapse
|
22
|
Electrical Stimulation Mapping of the Brain: Basic Principles and Emerging Alternatives. J Clin Neurophysiol 2018; 35:86-97. [PMID: 29499015 DOI: 10.1097/wnp.0000000000000440] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The application of electrical stimulation mapping (ESM) of the brain for clinical use is approximating a century. Despite this long-standing history, the value of ESM for guiding surgical resections and sparing eloquent cortex is documented largely by small retrospective studies, and ESM protocols are largely inherited and lack standardization. Although models are imperfect and mechanisms are complex, the probabilistic causality of ESM has guaranteed its perpetuation into the 21st century. At present, electrical stimulation of cortical tissue is being revisited for network connectivity. In addition, noninvasive and passive mapping techniques are rapidly evolving to complement and potentially replace ESM in specific clinical situations. Lesional and epilepsy neurosurgery cases now offer different opportunities for multimodal functional assessments.
Collapse
|
23
|
Weaver KE, Poliakov A, Novotny EJ, Olson JD, Grabowski TJ, Ojemann JG. Electrocorticography and the early maturation of high-frequency suppression within the default mode network. J Neurosurg Pediatr 2018; 21:133-140. [PMID: 29192865 DOI: 10.3171/2017.7.peds17269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The acquisition and refinement of cognitive and behavioral skills during development is associated with the maturation of various brain oscillatory activities. Most developmental investigations have identified distinct patterns of low-frequency electrophysiological activity that are characteristic of various behavioral milestones. In this investigation, the authors focused on the cross-sectional developmental properties of high-frequency spectral power from the brain's default mode network (DMN) during goal-directed behavior. METHODS The authors contrasted regionally specific, time-evolving high gamma power (HGP) in the lateral DMN cortex between 3 young children (age range 3-6 years) and 3 adults by use of electrocorticography (ECoG) recordings over the left perisylvian cortex during a picture-naming task. RESULTS Across all participants, a nearly identical and consistent response suppression of HGP, which is a functional signature of the DMN, was observed during task performance recordings acquired from ECoG electrodes placed over the lateral DMN cortex. This finding provides evidence of relatively early maturation of the DMN. Furthermore, only HGP relative to evoked alpha and beta band power showed this level of consistency across all participants. CONCLUSIONS Regionally specific, task-evoked suppression of the high-frequency components of the cortical power spectrum is established early in brain development, and this response may reflect the early maturation of specific cognitive and/or computational mechanisms.
Collapse
Affiliation(s)
- Kurt E Weaver
- Departments of1Radiology.,8Integrated Brain Imaging Center, University of Washington, Seattle.,9Graduate Program in Neuroscience, University of Washington, Seattle.,11Center for Sensorimotor Neural Engineering, University of Washington, Seattle, Washington
| | | | - Edward J Novotny
- 6Neurology, and.,8Integrated Brain Imaging Center, University of Washington, Seattle.,10Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle; and
| | - Jared D Olson
- 4Rehabilitation Medicine, University of Washington, Seattle.,11Center for Sensorimotor Neural Engineering, University of Washington, Seattle, Washington
| | - Thomas J Grabowski
- Departments of1Radiology.,3Neurology, and.,8Integrated Brain Imaging Center, University of Washington, Seattle.,9Graduate Program in Neuroscience, University of Washington, Seattle.,11Center for Sensorimotor Neural Engineering, University of Washington, Seattle, Washington
| | - Jeffrey G Ojemann
- 2Neurological Surgery.,7Neurosurgery, Seattle Children's Hospital, Seattle.,11Center for Sensorimotor Neural Engineering, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Babajani-Feremi A, Holder CM, Narayana S, Fulton SP, Choudhri AF, Boop FA, Wheless JW. Predicting postoperative language outcome using presurgical fMRI, MEG, TMS, and high gamma ECoG. Clin Neurophysiol 2018; 129:560-571. [PMID: 29414401 DOI: 10.1016/j.clinph.2017.12.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To predict the postoperative language outcome using the support vector regression (SVR) and results of multimodal presurgical language mapping. METHODS Eleven patients with epilepsy received presurgical language mapping using functional MRI (fMRI), magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), and high-gamma electrocorticography (hgECoG), as well as pre- and postoperative neuropsychological evaluation of language. We constructed 15 (24-1) SVR models by considering the extent of resected language areas identified by all subsets of four modalities as input feature vector and the postoperative language outcome as output. We trained and cross-validated SVR models, and compared the cross-validation (CV) errors of all models for prediction of language outcome. RESULTS Seven patients had some level of postoperative language decline and two of them had significant postoperative decline in naming. Some parts of language areas identified by four modalities were resected in these patients. We found that an SVR model consisting of fMRI, MEG, and hgECoG provided minimum CV error, although an SVR model consisting of fMRI and MEG was the optimal model that facilitated the best trade-off between model complexity and prediction accuracy. CONCLUSIONS A multimodal SVR can be used to predict the language outcome. SIGNIFICANCE The developed multimodal SVR models in this study can be utilized to calculate the language outcomes of different resection plans prior to surgery and select the optimal surgical plan.
Collapse
Affiliation(s)
- Abbas Babajani-Feremi
- University of Tennessee Health Science Center, Department of Pediatrics and Department of Anatomy and Neurobiology, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA.
| | - Christen M Holder
- University of Tennessee Health Science Center, Department of Pediatrics, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - Shalini Narayana
- University of Tennessee Health Science Center, Department of Pediatrics and Department of Anatomy and Neurobiology, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - Stephen P Fulton
- University of Tennessee Health Science Center, Department of Pediatrics, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - Asim F Choudhri
- University of Tennessee Health Science Center, Department of Pediatrics, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - Frederick A Boop
- University of Tennessee Health Science Center, Department of Pediatrics, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - James W Wheless
- University of Tennessee Health Science Center, Department of Pediatrics, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| |
Collapse
|
25
|
Nakai Y, Nagashima A, Hayakawa A, Osuki T, Jeong JW, Sugiura A, Brown EC, Asano E. Four-dimensional map of the human early visual system. Clin Neurophysiol 2017; 129:188-197. [PMID: 29190524 DOI: 10.1016/j.clinph.2017.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We generated a large-scale, four-dimensional map of neuronal modulations elicited by full-field flash stimulation. METHODS We analyzed electrocorticography (ECoG) recordings from 63 patients with focal epilepsy, and delineated the spatial-temporal dynamics of visually-elicited high-gamma70-110 Hz amplitudes on a standard brain template. We then clarified the neuronal events underlying visual evoked potential (VEP) components, by correlating with high-gamma amplitude measures. RESULTS The medial-occipital cortex initially revealed rapid neural activation followed by prolonged suppression, reflected by augmentation of high-gamma activity lasting up to 100 ms followed by attenuation lasting up to 1000 ms, respectively. With a number of covariate factors incorporated into a prediction model, the eccentricity representation independently predicted the magnitude of post-activation suppression, which was more intense in regions representing more parafoveal visual fields compared to those of more peripheral fields. The initial negative component on VEP was sharply contoured and co-occurred with early high-gamma augmentation, whose offset then co-occurred with a large positive VEP peak. A delayed negative VEP peak was blunt and co-occurred with prolonged high-gamma attenuation. CONCLUSIONS Eccentricity-dependent gradient in neural suppression in the medial-occipital region may explain the functional difference between peripheral and parafoveal/central vision. Early negative and positive VEP components may reflect neural activation, whereas a delayed negative VEP peak reflecting neural suppression. SIGNIFICANCE Our observation provides the mechanistic rationale for transient scotoma or mild flash-blindness, characterized by physiological afterimage preferentially formed in central vision following intense but non-injurious light exposure.
Collapse
Affiliation(s)
- Yasuo Nakai
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, Wakayama 6418510, Japan
| | - Akari Nagashima
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Akane Hayakawa
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Takuya Osuki
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Ayaka Sugiura
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
26
|
Kambara T, Sood S, Alqatan Z, Klingert C, Ratnam D, Hayakawa A, Nakai Y, Luat AF, Agarwal R, Rothermel R, Asano E. Presurgical language mapping using event-related high-gamma activity: The Detroit procedure. Clin Neurophysiol 2017; 129:145-154. [PMID: 29190521 DOI: 10.1016/j.clinph.2017.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/25/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
A number of investigators have reported that event-related augmentation of high-gamma activity at 70-110 Hz on electrocorticography (ECoG) can localize functionally-important brain regions in children and adults who undergo epilepsy surgery. The advantages of ECoG-based language mapping over the gold-standard stimulation include: (i) lack of stimulation-induced seizures, (ii) better sensitivity of localization of language areas in young children, and (iii) shorter patient participant time. Despite its potential utility, ECoG-based language mapping is far less commonly practiced than stimulation mapping. Here, we have provided video presentations to explain, point-by-point, our own hardware setting and time-frequency analysis procedures. We also have provided standardized auditory stimuli, in multiple languages, ready to be used for ECoG-based language mapping. Finally, we discussed the technical aspects of ECoG-based mapping, including its pitfalls, to facilitate appropriate interpretation of the data.
Collapse
Affiliation(s)
- Toshimune Kambara
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 1020083, Japan
| | - Sandeep Sood
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Zahraa Alqatan
- Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | - Diksha Ratnam
- Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Akane Hayakawa
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Aimee F Luat
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Rajkumar Agarwal
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Robert Rothermel
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Psychiatry, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Eishi Asano
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
27
|
Nakai Y, Jeong JW, Brown EC, Rothermel R, Kojima K, Kambara T, Shah A, Mittal S, Sood S, Asano E. Three- and four-dimensional mapping of speech and language in patients with epilepsy. Brain 2017; 140:1351-1370. [PMID: 28334963 PMCID: PMC5405238 DOI: 10.1093/brain/awx051] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/14/2017] [Indexed: 11/13/2022] Open
Abstract
We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70-110 Hz) and beta (15-30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy.
Collapse
Affiliation(s)
- Yasuo Nakai
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, Wakayama, 6418510, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Robert Rothermel
- Department of Psychiatry, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Katsuaki Kojima
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Pediatrics, University of California San Francisco, CA, 94143, USA
| | - Toshimune Kambara
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, 1020083, Japan
| | - Aashit Shah
- Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| |
Collapse
|
28
|
Wen J, Yu T, Li Y, Li X. Using electrocorticography for presurgical language mapping in epilepsy patients. J Clin Neurosci 2017; 44:320-322. [DOI: 10.1016/j.jocn.2017.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 12/01/2022]
|
29
|
Wen J, Yu T, Liu L, Hu Z, Yan J, Li Y, Li X. Evaluating the roles of left middle frontal gyrus in word production using electrocorticography. Neurocase 2017; 23:263-269. [PMID: 29052465 DOI: 10.1080/13554794.2017.1387275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To assess the specific roles of left middle frontal gyrus (LMFG) in word production, electrocorticography signals were recorded from an epilepsy patient when he participated in language tasks. We found three sites of LMFG showed high-gamma perturbations with distinct patterns across tasks; and neural activities elicited in the same tasks shared similar patterns, while those elicited by stimuli leading to the same articulations did not. These findings confirmed that the LMFG takes active parts in word production, and suggested that it may serve as a temporal perceptual information storage space, supporting the hierarchical state feedback control model of word production.
Collapse
Affiliation(s)
- Jianbin Wen
- a State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research , Beijing Normal University , Beijing , China
| | - Tao Yu
- b Beijing Institute of Functional Neurosurgery , Xuanwu Hospital of Capital Medical University , Beijing , China
| | - Li Liu
- a State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research , Beijing Normal University , Beijing , China
| | - Zhenhong Hu
- a State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research , Beijing Normal University , Beijing , China
| | - Jiaqing Yan
- c School of Electrical and Control Engineering , North China University of Technology , Beijing , China
| | - Yongjie Li
- b Beijing Institute of Functional Neurosurgery , Xuanwu Hospital of Capital Medical University , Beijing , China
| | - Xiaoli Li
- a State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research , Beijing Normal University , Beijing , China
| |
Collapse
|
30
|
Nishida M, Korzeniewska A, Crone NE, Toyoda G, Nakai Y, Ofen N, Brown EC, Asano E. Brain network dynamics in the human articulatory loop. Clin Neurophysiol 2017. [PMID: 28622530 DOI: 10.1016/j.clinph.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The articulatory loop is a fundamental component of language function, involved in the short-term buffer of auditory information followed by its vocal reproduction. We characterized the network dynamics of the human articulatory loop, using invasive recording and stimulation. METHODS We measured high-gamma activity70-110 Hz recorded intracranially when patients with epilepsy either only listened to, or listened to and then reproduced two successive tones by humming. We also conducted network analyses, and analyzed behavioral responses to cortical stimulation. RESULTS Presentation of the initial tone elicited high-gamma augmentation bilaterally in the superior-temporal gyrus (STG) within 40ms, and in the precentral and inferior-frontal gyri (PCG and IFG) within 160ms after sound onset. During presentation of the second tone, high-gamma augmentation was reduced in STG but enhanced in IFG. The task requiring tone reproduction further enhanced high-gamma augmentation in PCG during and after sound presentation. Event-related causality (ERC) analysis revealed dominant flows within STG immediately after sound onset, followed by reciprocal interactions involving PCG and IFG. Measurement of cortico-cortical evoked-potentials (CCEPs) confirmed connectivity between distant high-gamma sites in the articulatory loop. High-frequency stimulation of precentral high-gamma sites in either hemisphere induced speech arrest, inability to control vocalization, or forced vocalization. Vocalization of tones was accompanied by high-gamma augmentation over larger extents of PCG. CONCLUSIONS Bilateral PCG rapidly and directly receives feed-forward signals from STG, and may promptly initiate motor planning including sub-vocal rehearsal for short-term buffering of auditory stimuli. Enhanced high-gamma augmentation in IFG during presentation of the second tone may reflect high-order processing of the tone sequence. SIGNIFICANCE The articulatory loop employs sustained reciprocal propagation of neural activity across a network of cortical sites with strong neurophysiological connectivity.
Collapse
Affiliation(s)
- Masaaki Nishida
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Anesthesiology, Hanyu General Hospital, Hanyu City, Saitama 348-8508, Japan
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA.
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Goichiro Toyoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Erik C Brown
- Department of Neurosurgery, Oregon Health and Science University, Portland, OR, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
31
|
Kambara T, Brown EC, Jeong JW, Ofen N, Nakai Y, Asano E. Spatio-temporal dynamics of working memory maintenance and scanning of verbal information. Clin Neurophysiol 2017; 128:882-891. [PMID: 28399442 DOI: 10.1016/j.clinph.2017.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE During verbal communication, humans briefly maintain mental representations of speech sounds conveying verbal information, and constantly scan these representations for comparison to incoming information. We determined the spatio-temporal dynamics of such short-term maintenance and subsequent scanning of verbal information, by intracranially measuring high-gamma activity at 70-110Hz during a working memory task. METHODS Patients listened to a stimulus set of two or four spoken letters and were instructed to remember those letters over a two-second interval, following which they were asked to determine if a subsequent target letter had been presented earlier in that trial's stimulus set. RESULTS Auditory presentation of letter stimuli sequentially elicited high-gamma augmentation bilaterally in the superior-temporal and pre-central gyri. During the two-second maintenance period, high-gamma activity was augmented in the left pre-central gyrus, and this effect was larger during the maintenance of stimulus sets consisting of four compared to two letters. During the scanning period following target presentation, high-gamma augmentation involved the left inferior-frontal and supra-marginal gyri. CONCLUSIONS Short-term maintenance of verbal information is, at least in part, supported by the left pre-central gyrus, whereas scanning by the left inferior-frontal and supra-marginal gyri. SIGNIFICANCE The cortical structures involved in short-term maintenance and scanning of speech stimuli were segregated with an excellent temporal resolution.
Collapse
Affiliation(s)
- Toshimune Kambara
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 1020083, Japan
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
32
|
Pastori C, Francione S, Pelle F, de Curtis M, Gnatkovsky V. Fluency tasks generate beta-gamma activity in language-related cortical areas of patients during stereo-EEG monitoring. BRAIN AND LANGUAGE 2016; 163:50-56. [PMID: 27684988 DOI: 10.1016/j.bandl.2016.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
A quantitative method was developed to map cortical areas responsive to cognitive tasks during intracerebral stereo-EEG recording sessions in drug-resistant patients candidate for epilepsy surgery. Frequency power changes were evaluated with a computer-assisted analysis in 7 patients during phonemic fluency tasks. All patients were right-handed and were explored with depth electrodes in the dominant frontal lobe. We demonstrate that fluency tasks enhance beta-gamma frequencies and reduce background activities in language network regions of the dominant hemisphere. Non-reproducible changes were observed in other explored brain areas during cognitive tests execution.
Collapse
Affiliation(s)
- Chiara Pastori
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Stefano Francione
- Claudio Munari Epilepsy Surgery Center, Ospedale Niguarda, Milano, Italy
| | - Federica Pelle
- Claudio Munari Epilepsy Surgery Center, Ospedale Niguarda, Milano, Italy
| | - Marco de Curtis
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Vadym Gnatkovsky
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy.
| |
Collapse
|
33
|
Billeci L, Tonacci A, Tartarisco G, Narzisi A, Di Palma S, Corda D, Baldus G, Cruciani F, Anzalone SM, Calderoni S, Pioggia G, Muratori F. An Integrated Approach for the Monitoring of Brain and Autonomic Response of Children with Autism Spectrum Disorders during Treatment by Wearable Technologies. Front Neurosci 2016; 10:276. [PMID: 27445652 PMCID: PMC4914552 DOI: 10.3389/fnins.2016.00276] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/02/2016] [Indexed: 11/26/2022] Open
Abstract
Autism Spectrum Disorders (ASD) are associated with physiological abnormalities, which are likely to contribute to the core symptoms of the condition. Wearable technologies can provide data in a semi-naturalistic setting, overcoming the limitations given by the constrained situations in which physiological signals are usually acquired. In this study an integrated system based on wearable technologies for the acquisition and analysis of neurophysiological and autonomic parameters during treatment is proposed and an application on five children with ASD is presented. Signals were acquired during a therapeutic session based on an imitation protocol in ASD children. Data were analyzed with the aim of extracting quantitative EEG (QEEG) features from EEG signals as well as heart rate and heart rate variability (HRV) from ECG. The system allowed evidencing changes in neurophysiological and autonomic response from the state of disengagement to the state of engagement of the children, evidencing a cognitive involvement in the children in the tasks proposed. The high grade of acceptability of the monitoring platform is promising for further development and implementation of the tool. In particular if the results of this feasibility study would be confirmed in a larger sample of subjects, the system proposed could be adopted in more naturalistic paradigms that allow real world stimuli to be incorporated into EEG/psychophysiological studies for the monitoring of the effect of the treatment and for the implementation of more individualized therapeutic programs.
Collapse
Affiliation(s)
- Lucia Billeci
- Institute of Clinical Physiology, National Research Council of ItalyPisa, Italy; Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy Pisa, Italy
| | - Gennaro Tartarisco
- Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", National Research Council of Italy Messina, Italy
| | - Antonio Narzisi
- Department of Developmental Neuroscience, IRCSS Stella Maris Foundation Pisa, Italy
| | - Simone Di Palma
- Department of Information Engineering, University of Pisa Pisa, Italy
| | | | | | | | - Salvatore M Anzalone
- Institute of Intelligent Systems and Robotics, University Pierre and Marie Curie Paris, France
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCSS Stella Maris Foundation Pisa, Italy
| | - Giovanni Pioggia
- Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", National Research Council of Italy Messina, Italy
| | - Filippo Muratori
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy; Department of Developmental Neuroscience, IRCSS Stella Maris FoundationPisa, Italy
| | | |
Collapse
|
34
|
Nonoda Y, Miyakoshi M, Ojeda A, Makeig S, Juhász C, Sood S, Asano E. Interictal high-frequency oscillations generated by seizure onset and eloquent areas may be differentially coupled with different slow waves. Clin Neurophysiol 2016; 127:2489-99. [PMID: 27178869 DOI: 10.1016/j.clinph.2016.03.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE High-frequency oscillations (HFOs) can be spontaneously generated by seizure-onset and functionally-important areas. We determined if consideration of the spectral frequency bands of coupled slow-waves could distinguish between epileptogenic and physiological HFOs. METHODS We studied a consecutive series of 13 children with focal epilepsy who underwent extraoperative electrocorticography. We measured the occurrence rate of HFOs during slow-wave sleep at each electrode site. We subsequently determined the performance of HFO rate for localization of seizure-onset sites and undesirable detection of nonepileptic sensorimotor-visual sites defined by neurostimulation. We likewise determined the predictive performance of modulation index: MI(XHz)&(YHz), reflecting the strength of coupling between amplitude of HFOsXHz and phase of slow-waveYHz. The predictive accuracy was quantified using the area under the curve (AUC) on receiver-operating characteristics analysis. RESULTS Increase in HFO rate localized seizure-onset sites (AUC⩾0.72; p<0.001), but also undesirably detected nonepileptic sensorimotor-visual sites (AUC⩾0.58; p<0.001). Increase in MI(HFOs)&(3-4Hz) also detected both seizure-onset (AUC⩾0.74; p<0.001) and nonepileptic sensorimotor-visual sites (AUC⩾0.59; p<0.001). Increase in subtraction-MIHFOs [defined as subtraction of MI(HFOs)&(0.5-1Hz) from MI(HFOs)&(3-4Hz)] localized seizure-onset sites (AUC⩾0.71; p<0.001), but rather avoided detection of nonepileptic sensorimotor-visual sites (AUC⩽0.42; p<0.001). CONCLUSION Our data suggest that epileptogenic HFOs may be coupled with slow-wave3-4Hz more preferentially than slow-wave0.5-1Hz, whereas physiologic HFOs with slow-wave0.5-1Hz more preferentially than slow-wave3-4Hz during slow-wave sleep. SIGNIFICANCE Further studies in larger samples are warranted to determine if consideration of the spectral frequency bands of slow-waves coupled with HFOs can positively contribute to presurgical evaluation of patients with focal epilepsy.
Collapse
Affiliation(s)
- Yutaka Nonoda
- Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA
| | - Makoto Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Alejandro Ojeda
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Csaba Juhász
- Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA; Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA
| | - Sandeep Sood
- Neurosurgery, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA
| | - Eishi Asano
- Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA; Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE To evaluate the use of the cortiQ-based mapping system (g.tec medication engineering GmbH, Austria) for real-time functional mapping (RTFM) and to compare it to results from electrical cortical stimulation mapping (ESM) and functional magnetic resonance imaging (fMRI). METHODS Electrocorticographic activity was recorded in 3 male patients with intractable epilepsy by using cortiQ mapping system and analyzed in real time. Activation related to motor, sensory, and receptive language tasks was determined by evaluating the power of the high gamma frequency band (60-170 Hz). The sensitivity and specificity of RTFM were tested against ESM and fMRI results. RESULTS "Next-neighbor" approach demonstrated [sensitivity/specificity %] (1) RTFM against ESM: 100.00/79.70 for hand motor; 100.00/73.87 for hand sensory; -/87 for language (it was not identified by the ESM); (2) RTFM against fMRI: 100.00/84.4 for hand motor; 66.70/85.35 for hand sensory; and 87.85/77.70 for language. CONCLUSIONS The results of the quantitative "next-neighbor" RTFM evaluation were concordant to those from ESM and fMRI. The RTFM correlates well with localization of hand motor function provided by ESM and fMRI, which may offer added localization in the operating room and guidance for extraoperative ESM mapping. Real-time functional mapping correlates with fMRI language activation when ESM findings are negative. It has fewer limitations than ESM and greater flexibility in activation paradigms and measuring responses.
Collapse
|
36
|
de Pesters A, Taplin AM, Adamo MA, Ritaccio AL, Schalk G. Electrocorticographic mapping of expressive language function without requiring the patient to speak: A report of three cases. EPILEPSY & BEHAVIOR CASE REPORTS 2016; 6:13-8. [PMID: 27408803 PMCID: PMC4925928 DOI: 10.1016/j.ebcr.2016.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 01/24/2023]
Abstract
Objective Patients requiring resective brain surgery often undergo functional brain mapping during perioperative planning to localize expressive language areas. Currently, all established protocols to perform such mapping require substantial time and patient participation during verb generation or similar tasks. These issues can make language mapping impractical in certain clinical circumstances (e.g., during awake craniotomies) or with certain populations (e.g., pediatric patients). Thus, it is important to develop new techniques that reduce mapping time and the requirement for active patient participation. Several neuroscientific studies reported that the mere auditory presentation of speech stimuli can engage not only receptive but also expressive language areas. Here, we tested the hypothesis that submission of electrocorticographic (ECoG) recordings during a short speech listening task to an appropriate analysis procedure can identify eloquent expressive language cortex without requiring the patient to speak. Methods Three patients undergoing temporary placement of subdural electrode grids passively listened to stories while we recorded their ECoG activity. We identified those sites whose activity in the broadband gamma range (70–170 Hz) changed immediately after presentation of the speech stimuli with respect to a prestimulus baseline. Results Our analyses revealed increased broadband gamma activity at distinct locations in the inferior frontal cortex, superior temporal gyrus, and/or perisylvian areas in all three patients and premotor and/or supplementary motor areas in two patients. The sites in the inferior frontal cortex that we identified with our procedure were either on or immediately adjacent to locations identified using electrical cortical stimulation (ECS) mapping. Conclusions The results of this study provide encouraging preliminary evidence that it may be possible that a brief and practical protocol can identify expressive language areas without requiring the patient to speak. This protocol could provide the clinician with a map of expressive language cortex within a few minutes. This may be useful as an adjunct to ECS interrogation or as an alternative to mapping using functional magnetic resonance imaging (fMRI). In conclusion, with further development and validation in more subjects, the approach presented here could help in identifying expressive language areas in situations where patients cannot speak in response to task instructions.
Collapse
Affiliation(s)
- Adriana de Pesters
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | - AmiLyn M Taplin
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA
| | - Matthew A Adamo
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA
| | | | - Gerwin Schalk
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; Department of Neurology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
37
|
Asano E, Gotman J. Is electrocorticography-based language mapping ready to replace stimulation? Neurology 2016; 86:1174-6. [PMID: 26935896 DOI: 10.1212/wnl.0000000000002533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Eishi Asano
- From the Departments of Pediatrics and Neurology (E.A.), Wayne State University; Department of Neurodiagnostics (E.A.), Children's Hospital of Michigan, Detroit; and Montreal Neurological Institute (J.G.), McGill University, Montréal, Canada.
| | - Jean Gotman
- From the Departments of Pediatrics and Neurology (E.A.), Wayne State University; Department of Neurodiagnostics (E.A.), Children's Hospital of Michigan, Detroit; and Montreal Neurological Institute (J.G.), McGill University, Montréal, Canada
| |
Collapse
|
38
|
Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis. Neuroimage 2016; 132:79-92. [PMID: 26899209 PMCID: PMC4885644 DOI: 10.1016/j.neuroimage.2016.02.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022] Open
Abstract
Local field potentials (LFPs) are commonly thought to reflect the aggregate dynamics in local neural circuits around recording electrodes. However, we show that when LFPs are recorded in awake behaving animals against a distal reference on the skull as commonly practiced, LFPs are significantly contaminated by non-local and non-neural sources arising from the reference electrode and from movement-related noise. In a data set with simultaneously recorded LFPs and electroencephalograms (EEGs) across multiple brain regions while rats perform an auditory oddball task, we used independent component analysis (ICA) to identify signals arising from electrical reference and from volume-conducted noise based on their distributed spatial pattern across multiple electrodes and distinct power spectral features. These sources of distal electrical signals collectively accounted for 23–77% of total variance in unprocessed LFPs, as well as most of the gamma oscillation responses to the target stimulus in EEGs. Gamma oscillation power was concentrated in volume-conducted noise and was tightly coupled with the onset of licking behavior, suggesting a likely origin of muscle activity associated with body movement or orofacial movement. The removal of distal signal contamination also selectively reduced correlations of LFP/EEG signals between distant brain regions but not within the same region. Finally, the removal of contamination from distal electrical signals preserved an event-related potential (ERP) response to auditory stimuli in the frontal cortex and also increased the coupling between the frontal ERP amplitude and neuronal activity in the basal forebrain, supporting the conclusion that removing distal electrical signals unmasked local activity within LFPs. Together, these results highlight the significant contamination of LFPs by distal electrical signals and caution against the straightforward interpretation of unprocessed LFPs. Our results provide a principled approach to identify and remove such contamination to unmask local LFPs.
Collapse
|
39
|
Babajani-Feremi A, Narayana S, Rezaie R, Choudhri AF, Fulton SP, Boop FA, Wheless JW, Papanicolaou AC. Language mapping using high gamma electrocorticography, fMRI, and TMS versus electrocortical stimulation. Clin Neurophysiol 2015; 127:1822-36. [PMID: 26679420 DOI: 10.1016/j.clinph.2015.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/30/2015] [Accepted: 11/19/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of the present study was to compare localization of the language cortex using cortical stimulation mapping (CSM), high gamma electrocorticography (hgECoG), functional magnetic resonance imaging (fMRI), and transcranial magnetic stimulation (TMS). METHODS Language mapping using CSM, hgECoG, fMRI, and TMS were compared in nine patients with epilepsy. Considering CSM as reference, we compared language mapping approaches based on hgECoG, fMRI, and TMS using their sensitivity, specificity, and the results of receiver operating characteristic (ROC) analyses. RESULTS Our results show that areas involved in language processing can be identified by hgECoG, fMRI, and TMS. The average sensitivity/specificity of hgECoG, fMRI, and TMS across all patients was 100%/85%, 50%/80%, and 67%/66%, respectively. The average area under the ROC curve of hgECoG, fMRI, and TMS across CSM-positive patients was 0.98, 0.76, and 0.68, respectively. CONCLUSIONS There is considerable concordance between CSM, hgECoG, fMRI, and TMS language mapping. Our results reveal that hgECoG, fMRI, and TMS are valuable tools for presurgical language mapping. SIGNIFICANCE Language mapping on the basis of hgECoG, fMRI, and TMS can provide important additional information, therefore, these methods can be used in conjunction with CSM or as an alternative, when the latter is deemed impractical.
Collapse
Affiliation(s)
- Abbas Babajani-Feremi
- Department of Pediatrics, Division of Clinical Neurosciences, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Shalini Narayana
- Department of Pediatrics, Division of Clinical Neurosciences, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roozbeh Rezaie
- Department of Pediatrics, Division of Clinical Neurosciences, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Asim F Choudhri
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Radiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen P Fulton
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Frederick A Boop
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - James W Wheless
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrew C Papanicolaou
- Department of Pediatrics, Division of Clinical Neurosciences, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
40
|
Spatial-temporal patterns of electrocorticographic spectral changes during midazolam sedation. Clin Neurophysiol 2015; 127:1223-1232. [PMID: 26613652 DOI: 10.1016/j.clinph.2015.10.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To better understand 'when' and 'where' wideband electrophysiological signals are altered by sedation. METHODS We generated animation movies showing electrocorticography (ECoG) amplitudes at eight spectral frequency bands across 1.0-116 Hz, every 0.1s, on three-dimensional surface images of 10 children who underwent epilepsy surgery. We measured the onset, intensity, and variance of each band amplitude change at given nonepileptic regions separately from those at affected regions. We also determined the presence of differential ECoG changes depending on the brain anatomy. RESULTS Within 20s following injection of midazolam, beta (16-31.5 Hz) and sigma (12-15.5 Hz) activities began to be multifocally augmented with increased variance in amplitude at each site. Beta-sigma augmentation was most prominent within the association neocortex. Augmentation of low-delta activity (1.0-1.5 Hz) was relatively modest and confined to the somatosensory-motor region. Conversely, injection of midazolam induced attenuation of theta (4.0-7.5 Hz) and high-gamma (64-116 Hz) activities. CONCLUSIONS Our observations support the notion that augmentation beta-sigma and delta activities reflects cortical deactivation or inactivation, whereas theta and high-gamma activities contribute to maintenance of consciousness. The effects of midazolam on the dynamics of cortical oscillations differed across regions. SIGNIFICANCE Sedation, at least partially, reflects a multi-local phenomenon at the cortical level rather than global brain alteration homogeneously driven by the common central control structure.
Collapse
|
41
|
Matsuzaki N, Schwarzlose RF, Nishida M, Ofen N, Asano E. Upright face-preferential high-gamma responses in lower-order visual areas: evidence from intracranial recordings in children. Neuroimage 2015; 109:249-59. [PMID: 25579446 DOI: 10.1016/j.neuroimage.2015.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/30/2014] [Accepted: 01/05/2015] [Indexed: 11/18/2022] Open
Abstract
Behavioral studies demonstrate that a face presented in the upright orientation attracts attention more rapidly than an inverted face. Saccades toward an upright face take place in 100-140 ms following presentation. The present study using electrocorticography determined whether upright face-preferential neural activation, as reflected by augmentation of high-gamma activity at 80-150 Hz, involved the lower-order visual cortex within the first 100 ms post-stimulus presentation. Sampled lower-order visual areas were verified by the induction of phosphenes upon electrical stimulation. These areas resided in the lateral-occipital, lingual, and cuneus gyri along the calcarine sulcus, roughly corresponding to V1 and V2. Measurement of high-gamma augmentation during central (circular) and peripheral (annular) checkerboard reversal pattern stimulation indicated that central-field stimuli were processed by the more polar surface whereas peripheral-field stimuli by the more anterior medial surface. Upright face stimuli, compared to inverted ones, elicited up to 23% larger augmentation of high-gamma activity in the lower-order visual regions at 40-90 ms. Upright face-preferential high-gamma augmentation was more highly correlated with high-gamma augmentation for central than peripheral stimuli. Our observations are consistent with the hypothesis that lower-order visual regions, especially those for the central field, are involved in visual cues for rapid detection of upright face stimuli.
Collapse
Affiliation(s)
- Naoyuki Matsuzaki
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Rebecca F Schwarzlose
- Institute of Gerontology, Wayne State University, Detroit, MI, USA; Trends in Cognitive Sciences, Cell Press, Cambridge, MA 02139, USA
| | - Masaaki Nishida
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Anesthesiology, Hanyu General Hospital, Hanyu City, Saitama 348-8505, Japan
| | - Noa Ofen
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
42
|
Jeong JW, Asano E, Juhász C, Chugani HT. Localization of specific language pathways using diffusion-weighted imaging tractography for presurgical planning of children with intractable epilepsy. Epilepsia 2014; 56:49-57. [PMID: 25489639 DOI: 10.1111/epi.12863] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine whether diffusion-weighted imaging (DWI) tractography can detect multiple white matter pathways connected to language cortices, we employed a maximum a posteriori probability (MAP) classification method, which has been recently validated for the corticospinal tract. METHODS DWI was performed in 12 normally developing children and 17 children with intractable focal epilepsy who underwent subsequent two-stage epilepsy surgery with intracranial functional mapping. First, whole-brain DWI tractography was performed to identify unique pathways originating from Broca's area, premotor area, and Wernicke's area on functional magnetic resonance imaging (fMRI) of normal children and intracranial electrical stimulation mapping (ESM) of children with epilepsy. Group averaging of these pathways based on fMRI was performed to construct the probability maps of language areas in standard MRI space. These maps were finally used to design a DWI-MAP classifier, which can automatically sort individual fibers originating from fMRI language areas as well as ESM language areas. RESULTS In normally developing children, the DWI-MAP classifier predicted language-activation areas on fMRI with up to 77% accuracy. In children with focal epilepsy, the DWI-MAP classifier also showed high accuracy (up to 82%) for the fibers terminating in proximity to essential language areas determined by ESM. Decreased volumes in DWI-MAP-defined pathways after epilepsy surgery were associated with postoperative language deficits. SIGNIFICANCE This study encourages further investigations to determine if DWI-MAP analysis can serve as a noninvasive diagnostic tool during pediatric presurgical planning by estimating not only the location of essential language cortices, but also the underlying fibers connecting these cortical areas.
Collapse
Affiliation(s)
- Jeong-Won Jeong
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, Michigan, U.S.A; Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, U.S.A; Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, Michigan, U.S.A
| | | | | | | |
Collapse
|
43
|
Contribution of research on 'Epilepsy & behavior' to the refinement of functional brain atlas in four dimensions. Epilepsy Behav 2014; 40:86-8. [PMID: 25262069 PMCID: PMC4254342 DOI: 10.1016/j.yebeh.2014.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022]
Abstract
Intracranial stimulation mapping by Penfield et al. largely contributed to our current knowledge of the functional organization of motor, sensory, and language systems. The functional maps were generated and printed in two dimensions, based on the summary results of direct cortical stimulation of which locations varied across patients. Intracranial measurement of electrocorticographic changes elicited by a task can localize the regions involved in or participating to the given task. Augmentation of high-gamma activity at >80 Hz is considered to reflect in situ cortical activation at each moment. In the late 2000s, the spatial-temporal profiles of event-related high-gamma activity began to be published as a video material in journals. We have referred to our animation movie as ‘in-vivo animation of event-related high-gamma activity’, that demonstrates ‘when’ and ‘where’ cortical regions are activated in a self-explanatory fashion. Summation of event-related high-gamma measures derived from a large cohort of patients, as previously performed by Penfield et al, is expected to generate unique four-dimensional functional brain atlas covering the whole cerebral cortex.
Collapse
|
44
|
Mapping mental calculation systems with electrocorticography. Clin Neurophysiol 2014; 126:39-46. [PMID: 24877680 DOI: 10.1016/j.clinph.2014.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/19/2014] [Accepted: 04/26/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We investigated intracranially-recorded gamma activity during calculation tasks to better understand the cortical dynamics of calculation. METHODS We studied 11 patients with focal epilepsy (age range: 9-28years) who underwent measurement of calculation- and naming-related gamma-augmentation during extraoperative electrocorticography (ECoG). The patients were instructed to overtly verbalize a one-word answer in response to auditorily-delivered calculation and naming questions. The assigned calculation tasks were addition and subtraction involving integers between 1 and 17. RESULTS Out of the 1001 analyzed cortical electrode sites, 63 showed gamma-augmentation at 50-120Hz elicited by both tasks, 88 specifically during naming, and 7 specifically during calculation. Common gamma-augmentation mainly took place in the Rolandic regions. Calculation-specific gamma-augmentation, involving the period between the question-offset and response-onset, was noted in the middle-temporal, inferior-parietal, inferior post-central, middle-frontal, and premotor regions of the left hemisphere. Calculation-specific gamma-augmentation in the middle-temporal, inferior-parietal, and inferior post-central regions peaked around the question offset, while that in the frontal lobe peaked after the question offset and before the response onset. This study failed to detect a significant difference in calculation-specific gamma amplitude between easy trials and difficult ones requiring multi-digit operations. CONCLUSIONS Auditorily-delivered stimuli can elicit calculation-specific gamma-augmentation in multiple regions of the left hemisphere including the parietal region. However, the additive diagnostic value of measurement of gamma-augmentation related to a simple calculation task appears modest. SIGNIFICANCE Further studies are warranted to determine the functional significance of calculation-specific gamma-augmentation in each site, and to establish the optimal protocol for mapping mental calculation.
Collapse
|
45
|
Comparison of high gamma electrocorticography and fMRI with electrocortical stimulation for localization of somatosensory and language cortex. Clin Neurophysiol 2014; 126:121-30. [PMID: 24845600 DOI: 10.1016/j.clinph.2014.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/17/2014] [Accepted: 04/16/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We investigated the contribution of electrocortical stimulation (ECS), induced high gamma electrocorticography (hgECoG) and functional magnetic resonance imaging (fMRI) for the localization of somatosensory and language cortex. METHODS 23 Epileptic patients with subdural electrodes underwent a protocol of somatosensory stimulation and/or an auditory semantic decision task. 14 Patients did the same protocol with fMRI prior to implantation. RESULTS ECS resulted in the identification of thumb somatosensory cortex in 12/16 patients. Taking ECS as a gold standard, hgECoG and fMRI identified 53.6/33% of true positive and 4/12% of false positive contacts, respectively. The hgECoG false positive sites were all found in the hand area of the post-central gyrus. ECS localized language-related sites in 7/12 patients with hgECoG and fMRI showing 50/64% of true positive and 8/23% of false positive contacts, respectively. All but one of the hgECoG/fMRI false positive contacts were located in plausible language areas. Four patients showed post-surgical impairments: the resection included the sites positively indicated by ECS, hgECoG and fMRI in 3 patients and a positive hgECoG site in one patient. CONCLUSIONS HgECoG and fMRI provide additional localization information in patients who cannot sufficiently collaborate during ECS. SIGNIFICANCE HgECoG and fMRI make the cortical mapping procedure more flexible not only by identifying priority cortical sites for ECS or when ECS is not feasible, but also when ECS does not provide any result.
Collapse
|
46
|
Cho-Hisamoto Y, Kojima K, Brown EC, Matsuzaki N, Asano E. Gamma activity modulated by naming of ambiguous and unambiguous images: intracranial recording. Clin Neurophysiol 2014; 126:17-26. [PMID: 24815577 DOI: 10.1016/j.clinph.2014.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Humans sometimes need to recognize objects based on vague and ambiguous silhouettes. Recognition of such images may require an intuitive guess. We determined the spatial-temporal characteristics of intracranially-recorded gamma activity (at 50-120Hz) augmented differentially by naming of ambiguous and unambiguous images. METHODS We studied 10 patients who underwent epilepsy surgery. Ambiguous and unambiguous images were presented during extraoperative electrocorticography recording, and patients were instructed to overtly name the object as it is first perceived. RESULTS Both naming tasks were commonly associated with gamma-augmentation sequentially involving the occipital and occipital-temporal regions, bilaterally, within 200ms after the onset of image presentation. Naming of ambiguous images elicited gamma-augmentation specifically involving portions of the inferior-frontal, orbitofrontal, and inferior-parietal regions at 400ms and after. Unambiguous images were associated with more intense gamma-augmentation in portions of the occipital and occipital-temporal regions. CONCLUSIONS Frontal-parietal gamma-augmentation specific to ambiguous images may reflect the additional cortical processing involved in exerting intuitive guess. Occipital gamma-augmentation enhanced during naming of unambiguous images can be explained by visual processing of stimuli with richer detail. SIGNIFICANCE Our results support the theoretical model that guessing processes in visual domain occur following the accumulation of sensory evidence resulting from the bottom-up processing in the occipital-temporal visual pathways.
Collapse
Affiliation(s)
- Yoshimi Cho-Hisamoto
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Katsuaki Kojima
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Erik C Brown
- MD-PhD Program, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Naoyuki Matsuzaki
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
47
|
Brown EC, Muzik O, Rothermel R, Juhász C, Shah AK, Fuerst D, Mittal S, Sood S, Asano E. Evaluating signal-correlated noise as a control task with language-related gamma activity on electrocorticography. Clin Neurophysiol 2013; 125:1312-23. [PMID: 24412331 DOI: 10.1016/j.clinph.2013.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Our recent electrocorticography (ECoG) study suggested reverse speech, a widely used control task, to be a poor control for non-language-related auditory activity. We hypothesized that this may be due to retained perception as a human voice. We report a follow-up ECoG study in which we contrast forward and reverse speech with a signal-correlated noise (SCN) control task that cannot be perceived as a human voice. METHODS Ten patients were presented 90 audible stimuli, including 30 each of corresponding forward speech, reverse speech, and SCN trials, during ECoG recording with evaluation of gamma activity between 50 and 150 Hz. RESULTS Sites of the lateral temporal gyri activated throughout speech stimuli were generally less activated by SCN, while some temporal sites seemed to process both human and non-human sounds. Reverse speech trials were associated with activities across the temporal lobe similar to those associated with forward speech. CONCLUSIONS Findings herein externally validate functional neuroimaging studies utilizing SCN as a control for non-language-specific auditory function. Our findings are consistent with the notion that stimuli perceived as originating from a human voice are poor controls for non-language auditory function. SIGNIFICANCE Our findings have implications in functional neuroimaging research as well as improved clinical mapping of auditory functions.
Collapse
Affiliation(s)
- Erik C Brown
- MD-PhD Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA; Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Otto Muzik
- Department of Pediatrics, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Robert Rothermel
- Department of Psychiatry, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Csaba Juhász
- Department of Pediatrics, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Aashit K Shah
- Department of Neurology, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Darren Fuerst
- Department of Neurology, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
48
|
Toyoda G, Brown EC, Matsuzaki N, Kojima K, Nishida M, Asano E. Electrocorticographic correlates of overt articulation of 44 English phonemes: intracranial recording in children with focal epilepsy. Clin Neurophysiol 2013; 125:1129-37. [PMID: 24315545 DOI: 10.1016/j.clinph.2013.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/11/2013] [Accepted: 11/02/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We determined the temporal-spatial patterns of electrocorticography (ECoG) signal modulation during overt articulation of 44 American English phonemes. METHODS We studied two children with focal epilepsy who underwent extraoperative ECoG recording. Using animation movies, we delineated 'when' and 'where' gamma- (70-110 Hz) and low-frequency-band activities (10-30 Hz) were modulated during self-paced articulation. RESULTS Regardless of the classes of phoneme articulated, gamma-augmentation initially involved a common site within the left inferior Rolandic area. Subsequently, gamma-augmentation and/or attenuation involved distinct sites within the left oral-sensorimotor area with a timing variable across phonemes. Finally, gamma-augmentation in a larynx-sensorimotor area took place uniformly at the onset of sound generation, and effectively distinguished voiced and voiceless phonemes. Gamma-attenuation involved the left inferior-frontal and superior-temporal regions simultaneously during articulation. Low-frequency band attenuation involved widespread regions including the frontal, temporal, and parietal regions. CONCLUSIONS Our preliminary results support the notion that articulation of distinct phonemes recruits specific sensorimotor activation and deactivation. Gamma attenuation in the left inferior-frontal and superior-temporal regions may reflect transient functional suppression in these cortical regions during automatic, self-paced vocalization of phonemes containing no semantic or syntactic information. SIGNIFICANCE Further studies are warranted to determine if measurement of event-related modulations of gamma-band activity, compared to that of the low-frequency-band, is more useful for decoding the underlying articulatory functions.
Collapse
Affiliation(s)
- Goichiro Toyoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Erik C Brown
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA; MD-PhD Program, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Naoyuki Matsuzaki
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Katsuaki Kojima
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Masaaki Nishida
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA; Department of Anesthesiology, Hanyu General Hospital, Hanyu City, Saitama 348-8508, Japan
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
49
|
Brown EC, Jeong JW, Muzik O, Rothermel R, Matsuzaki N, Juhász C, Sood S, Asano E. Evaluating the arcuate fasciculus with combined diffusion-weighted MRI tractography and electrocorticography. Hum Brain Mapp 2013; 35:2333-47. [PMID: 23982893 DOI: 10.1002/hbm.22331] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/08/2022] Open
Abstract
The conventional model of language-related brain structure describing the arcuate fasciculus as a key white matter tract providing a direct connection between Wernicke's region and Broca's area has been called into question. Specifically, the inferior precentral gyrus, possessing both primary motor (Brodmann Area [BA] 4) and premotor cortex (BA 6), has been identified as a potential alternative termination. The authors initially localized cortical sites involved in language using measurement of event-related gamma-activity on electrocorticography (ECoG). The authors then determined whether language-related sites of the temporal lobe were connected, via white matter structures, to the inferior frontal gyrus more tightly than to the precentral gyrus. The authors found that language-related sites of the temporal lobe were far more likely to be directly connected to the inferior precentral gyrus through the arcuate fasciculus. Furthermore, tractography was a significant predictor of frontal language-related ECoG findings. Analysis of an interaction between anatomy and tractography in this model revealed tractrography to have the highest predictive value for language-related ECoG findings of the precentral gyrus. This study failed to support the conventional model of language-related brain structure. More feasible models should include the inferior precentral gyrus as a termination of the arcuate fasciculus. The exact functional significance of direct connectivity between temporal language-related sites and the precentral gyrus requires further study.
Collapse
Affiliation(s)
- Erik C Brown
- MD/PhD Program, School of Medicine, Wayne State University, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kojima K, Brown EC, Matsuzaki N, Asano E. Animal category-preferential gamma-band responses in the lower- and higher-order visual areas: intracranial recording in children. Clin Neurophysiol 2013; 124:2368-77. [PMID: 23910987 DOI: 10.1016/j.clinph.2013.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We determined where and when category-preferential augmentation of gamma activity took place during naming of animal or non-animal pictures. METHODS We studied 41 patients with focal epilepsy who underwent measurement of naming-related gamma-augmentation at 50-120 Hz during extraoperative electrocorticography. The assigned task consisted of naming of a visually-presented object classified as either 'animal' or 'non-animal'. RESULTS Within 80 ms following the onset of picture presentation, regardless of stimulus type, gamma-activity in bilateral occipital regions began to be augmented compared to the resting period. Initially in the occipital poles (at 140 ms and after) and subsequently in the lateral, inferior and medial occipital regions (at 320 ms and after), the degree of gamma-augmentation elicited by 'animal naming' became larger (by up to 52%) than that by 'non-animal naming'. Immediately prior to the overt response, left inferior frontal gamma-augmentation became modestly larger during 'animal naming' compared to 'non-animal naming'. CONCLUSIONS Animal category-preferential gamma-augmentation sequentially involved the lower- and higher-order visual areas. Relatively larger occipital gamma-augmentation during 'animal naming' can be attributed to the more attentive analysis of animal stimuli including the face. Animal-preferential gamma-augmentation in the left inferior frontal region could be attributed to a need for selective semantic retrieval during 'animal naming'. SIGNIFICANCE A specific program of cortical processing to distinguish an animal (or face) from other objects might be initiated in the lower-order visual cortex.
Collapse
Affiliation(s)
- Katsuaki Kojima
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|