1
|
Wang S, Liu Y, Kou N, Chen Y, Liu T, Wang Y, Wang S. Impact of age-related hearing loss on decompensation of left DLPFC during speech perception in noise: a combined EEG-fNIRS study. GeroScience 2024:10.1007/s11357-024-01393-9. [PMID: 39446223 DOI: 10.1007/s11357-024-01393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
Understanding speech-in-noise is a significant challenge for individuals with age-related hearing loss (ARHL). Evidence suggests that increased activity in the frontal cortex compensates for impaired speech perception in healthy aging older adults. However, whether older adults with ARHL still show preserved compensatory function and the specific neural regulatory mechanisms underlying such compensation remains largely unclear. Here, by utilizing a synchronized EEG-fNIRS test, we investigated the neural oscillatory characteristics of the theta band and synchronous hemodynamic changes in the frontal cortex during a speech recognition task in noise. The study included healthy older adults (n = 26, aged 65.4 ± 2.8), those with mild hearing loss (n = 26, aged 66.3 ± 3.8), and those with moderate to severe hearing loss (n = 26, aged 67.5 ± 3.7). Results showed that, relative to healthy older adults, older adults with ARHL exhibited lower activation and weakened theta band neural oscillations in the left dorsolateral prefrontal cortex (DLPFC) under noisy conditions, and this decreased activity correlated with high-frequency hearing loss. Meanwhile, we found that the connectivity of the frontoparietal network was significantly reduced, which might depress the top-down articulatory prediction function affecting speech recognition performance in ARHL older adults. The results suggested that healthy aging older adults might exhibit compensatory attentional resource recruitment through a top-down auditory-motor integration mechanism. In comparison, older adults with ARHL reflected decompensation of the left DLPFC involving the frontoparietal integration network during speech recognition tasks in noise.
Collapse
Affiliation(s)
- Songjian Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Dongcheng District, Capital Medical University, 17 Chongnei Hougou Hutong, Beijing, 100005, China
| | - Yi Liu
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Dongcheng District, Capital Medical University, 17 Chongnei Hougou Hutong, Beijing, 100005, China
| | - Nuonan Kou
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Dongcheng District, Capital Medical University, 17 Chongnei Hougou Hutong, Beijing, 100005, China
| | - Younuo Chen
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Dongcheng District, Capital Medical University, 17 Chongnei Hougou Hutong, Beijing, 100005, China
| | - Tong Liu
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Dongcheng District, Capital Medical University, 17 Chongnei Hougou Hutong, Beijing, 100005, China
| | - Yuan Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Dongcheng District, Capital Medical University, 17 Chongnei Hougou Hutong, Beijing, 100005, China
| | - Shuo Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Dongcheng District, Capital Medical University, 17 Chongnei Hougou Hutong, Beijing, 100005, China.
| |
Collapse
|
2
|
Küçük KM, Wienke AS, Mathes B, Başar-Eroğlu C. Multistable perception elicits compensatory alpha activity in older adults. Front Aging Neurosci 2023; 15:1136124. [PMID: 37304078 PMCID: PMC10249475 DOI: 10.3389/fnagi.2023.1136124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Multistable stimuli lead to the perception of two or more alternative perceptual experiences that spontaneously reverse from one to the other. This property allows researchers to study perceptual processes that endogenously generate and integrate perceptual information. These endogenous processes appear to be slowed down around the age of 55 where participants report significantly lower perceptual reversals. This study aimed to identify neural correlates of this aging effect during multistable perception utilizing a multistable version of the stroboscopic alternative motion paradigm (SAM: endogenous task) and a control condition (exogenous task). Specifically, age-related differences in perceptual destabilization and maintenance processes were examined through alpha responses. Electroencephalography (EEG) of 12 older and 12 young adults were recorded during SAM and control tasks. Alpha band activity (8-14 Hz) was obtained by wavelet-transformation of the EEG signal and analyzed for each experimental condition. Endogenous reversals induced gradual decrease in posterior alpha activity in young adults which is a replication of previous studies' findings. Alpha desynchronization was shifted to anterior areas and prevalent across the cortex except the occipital area for older adults. Alpha responses did not differ between the groups in the control condition. These findings point to recruitment of compensatory alpha networks for maintenance of endogenously generated percepts. Increased number of networks responsible for maintenance might have extended the neural satiation duration and led to decreased reversal rates in older adults.
Collapse
Affiliation(s)
| | - Annika S. Wienke
- Bremen Initiative to Foster Early Childhood Development (BRISE), University of Bremen, Bremen, Germany
| | - Birgit Mathes
- Bremen Initiative to Foster Early Childhood Development (BRISE), University of Bremen, Bremen, Germany
| | | |
Collapse
|
3
|
Küçük KM, Mathes B, Schmiedt-Fehr C, Başar-Eroğlu C. Aging attenuated theta response during multistable perception. Psychophysiology 2023; 60:e14286. [PMID: 36912398 DOI: 10.1111/psyp.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023]
Abstract
Multistable stimuli are physically unchanging, but elicit spontaneous perceptual reversals between multiple internally generated perceptual alternatives. Perceptual reversal rates seem to decrease in older adults; however, there is no literature on the electrophysiological correlates of this performance decrease. Here, we aimed to identify age-related changes in theta activity that relate to decreased reversal rates of older adults. Electroencephalography (EEG) of young (n = 15) and older adults (n = 15) was recorded during presentation of stroboscopic alternative motion (SAM) and a control stimulus. Time-frequency amplitudes were extracted in 4-8 Hz via Morlet wavelet convolution. Older adults had lower SAM reversals as well as decreased accuracy, increased reaction time (RT) and increased RT variability in the control task. In older adults, reversal-related frontal theta response was diminished, yet parietal theta was intact. In the parietal area, the relationship between theta response and reversal rates was robust, but in the frontal area, was dependent on age-related variance. Result indicated that, in older adults, top-down facilitation of perceptual reversals was impaired. This appears to result in a predominantly bottom-up resolution of perceptual multistability. Age-related degradation of sensory areas in this bottom-up-driven resolution process might have slowed reversals. This study presents the first electrophysiological correlates of age-related impairment in multistable perceptual integration.
Collapse
Affiliation(s)
| | - Birgit Mathes
- Bremen Initiative to Foster Early Childhood Development (BRISE), University of Bremen, Bremen, Germany
| | | | | |
Collapse
|
4
|
Costa ALL, Costa DL, Pessoa VF, Caixeta FV, Maior RS. Systematic review of visual illusions in schizophrenia. Schizophr Res 2023; 252:13-22. [PMID: 36610221 DOI: 10.1016/j.schres.2022.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Visual illusions have long been used as tools to investigate sensory-perceptual deficits in schizophrenia. Recent conflicting accounts have called into question the assumption of abnormal illusion perception in patients and, therefore, the validity of this approach. Here, we present a systematic review of the current evidence regarding visual illusion perception abnormalities in patients with schizophrenia. Relevant publications were identified by a systematic search of PubMed, Literatura LILACS, PsycINFO, Embase, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), IBECS, BIOSIS, and Web of Science. Forty-five studies were selected which included illusions classified as 'Motion illusions', 'Geometric-optical illusions', 'Illusory contours', 'Depth inversion illusion', and 'Non-specific'. There is concordant evidence of abnormal processing of illusions in patients for most categories, especially in facial Depth Inversion and Müller-Lyer illusions. There were significant methodological disparities and shortcomings, but risk of bias was overall low for individual studies. The usefulness of visual illusions as tools in clinical settings as well as in basic research may be contingent on significant methodological refinements.
Collapse
Affiliation(s)
- Ana Luísa Lamounier Costa
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Dorcas Lamounier Costa
- Maternal and Childhood Department, Federal University of Piauí, 64049-550 Teresina, PI, Brazil; Intelligence Center for Emerging and Neglected Tropical Diseases (CIATEN), 64.001-450 Teresina, PI, Brazil
| | - Valdir Filgueiras Pessoa
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Fábio Viegas Caixeta
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Rafael S Maior
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, 70910-900 Brasilia, DF, Brazil.
| |
Collapse
|
5
|
Başar-Eroğlu C, Küçük KM, Rürup L, Schmiedt-Fehr C, Mathes B. Oscillatory Activities in Multiple Frequency Bands in Patients with Schizophrenia During Motion Perception. Clin EEG Neurosci 2022:15500594221141825. [PMID: 36437602 DOI: 10.1177/15500594221141825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Patients with schizophrenia show impairment in binding stimulus features into coherent objects, which are reflected in disturbed oscillatory activities. This study aimed to identify disturbances in multiple oscillatory bands during perceptual organization of motion perception in patients with schizophrenia. EEG was recorded from healthy controls and patients with schizophrenia during continuous presentation of a motion stimulus which induces reversals between two exogenously generated perceptions. This stimulus was used to investigate differences in motion binding processes between healthy controls and patients with schizophrenia. EEG signals were transformed into frequency components by means of the Morlet wavelet transformation in order to analyse inter-trial coherences (ITC) in the delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), and gamma (28-48 Hz) frequency bands during exogenous motion binding. Patients showed decreased delta-ITC in occipital and theta-ITC in central and parietal areas, while no significant differences were found for neither alpha nor gamma-ITCs. The present study provides one of the first insights on the oscillatory synchronizations related with the motion perception in schizophrenia. The ITC differences revealed alterations in the consistency of large-scale integration and transfer functions in patients with schizophrenia.
Collapse
Affiliation(s)
- C Başar-Eroğlu
- Department of Psychology, 52973İzmir University of Economics, Izmir, Turkey
| | - K M Küçük
- Department of Psychology, 52973İzmir University of Economics, Izmir, Turkey
| | - L Rürup
- 62546Hospital Bremen-East, Bremen, Germany
| | - C Schmiedt-Fehr
- Institute of Psychology, 9168University of Bremen, Bremen, Germany
| | - B Mathes
- Bremen Initiative to Foster Early Childhood Development, 9168University of Bremen, Bremen, Germany
| |
Collapse
|
6
|
Ghiani A, Maniglia M, Battaglini L, Melcher D, Ronconi L. Binding Mechanisms in Visual Perception and Their Link With Neural Oscillations: A Review of Evidence From tACS. Front Psychol 2021; 12:643677. [PMID: 33828509 PMCID: PMC8019716 DOI: 10.3389/fpsyg.2021.643677] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neurophysiological studies in humans employing magneto- (MEG) and electro- (EEG) encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation (tACS). tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms (8-12 Hz); however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta (~7 Hz) and beta (~18 Hz) frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma (~40-60 Hz) and alpha (10 Hz) tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations.
Collapse
Affiliation(s)
- Andrea Ghiani
- Department of General Psychology, University of Padua, Padua, Italy
| | - Marcello Maniglia
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luca Battaglini
- Department of General Psychology, University of Padua, Padua, Italy
- Neuro Vis.U.S. Laboratory, University of Padua, Padua, Italy
- Department of Physics and Astronomy “Galileo Galilei”, University of Padua, Padua, Italy
| | - David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
7
|
Rürup L, Mathes B, Schmiedt-Fehr C, Wienke AS, Özerdem A, Brand A, Basar-Eroglu C. Altered gamma and theta oscillations during multistable perception in schizophrenia. Int J Psychophysiol 2020; 155:127-139. [DOI: 10.1016/j.ijpsycho.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
|
8
|
Yener GG, Fide E, Özbek Y, Emek-Savaş DD, Aktürk T, Çakmur R, Güntekin B. The difference of mild cognitive impairment in Parkinson's disease from amnestic mild cognitive impairment: Deeper power decrement and no phase-locking in visual event-related responses. Int J Psychophysiol 2019; 139:48-58. [DOI: 10.1016/j.ijpsycho.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/28/2022]
|
9
|
Wienke AS, Basar-Eroglu C, Schmiedt-Fehr C, Mathes B. Novelty N2-P3a Complex and Theta Oscillations Reflect Improving Neural Coordination Within Frontal Brain Networks During Adolescence. Front Behav Neurosci 2018; 12:218. [PMID: 30319369 PMCID: PMC6170662 DOI: 10.3389/fnbeh.2018.00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/29/2018] [Indexed: 12/02/2022] Open
Abstract
Adolescents are easily distracted by novel items than adults. Maturation of the frontal cortex and its integration into widely distributed brain networks may result in diminishing distractibility with the transition into young adulthood. The aim of this study was to investigate maturational changes of brain activity during novelty processing. We hypothesized that during adolescence, timing and task-relevant modulation of frontal cortex network activity elicited by novelty processing improves, concurrently with increasing cognitive control abilities. A visual novelty oddball task was utilized in combination with EEG measurements to investigate brain maturation between 8–28 years of age (n = 84). Developmental changes of the frontal N2-P3a complex and concurrent theta oscillations (4–7 Hz) elicited by rare and unexpected novel stimuli were analyzed using regression models. N2 amplitude decreased, P3a amplitude increased, and latency of both components decreased with age. Pre-stimulus amplitude of theta oscillations decreased, while inter-trial consistency, task-related amplitude modulation and inter-site connectivity of frontal theta oscillations increased with age. Targets, intertwined in a stimulus train with regular non-targets and novels, were detected faster with increasing age. These results indicate that neural processing of novel stimuli became faster and the neural activation pattern more precise in timing and amplitude modulation. Better inter-site connectivity further implicates that frontal brain maturation leads to global neural reorganization and better integration of frontal brain activity within widely distributed brain networks. Faster target detection indicated that these maturational changes in neural activation during novelty processing may result in diminished distractibility and increased cognitive control to pursue the task.
Collapse
Affiliation(s)
- Annika Susann Wienke
- Institute of Psychology and Cognition Research & Center of Cognitive Science, University of Bremen, Bremen, Germany
| | - Canan Basar-Eroglu
- Institute of Psychology and Cognition Research & Center of Cognitive Science, University of Bremen, Bremen, Germany.,Izmir University of Economy, Izmir, Turkey
| | - Christina Schmiedt-Fehr
- Institute of Psychology and Cognition Research & Center of Cognitive Science, University of Bremen, Bremen, Germany
| | - Birgit Mathes
- Institute of Psychology and Cognition Research & Center of Cognitive Science, University of Bremen, Bremen, Germany
| |
Collapse
|
10
|
Wang X, Pinto-Duarte A, Behrens MM, Zhou X, Sejnowski TJ. Ketamine independently modulated power and phase-coupling of theta oscillations in Sp4 hypomorphic mice. PLoS One 2018. [PMID: 29513708 PMCID: PMC5841791 DOI: 10.1371/journal.pone.0193446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reduced expression of Sp4, the murine homolog of human SP4, a risk gene of multiple psychiatric disorders, led to N-methyl-D-aspartate (NMDA) hypofunction in mice, producing behavioral phenotypes reminiscent of schizophrenia, including hypersensitivity to ketamine. As accumulating evidence on molecular mechanisms and behavioral phenotypes established Sp4 hypomorphism as a promising animal model, systems-level neural circuit mechanisms of Sp4 hypomorphism, especially network dynamics underlying cognitive functions, remain poorly understood. We attempted to close this gap in knowledge in the present study by recording multi-channel epidural electroencephalogram (EEG) from awake behaving wildtype and Sp4 hypomorphic mice. We characterized cortical theta-band power and phase-coupling phenotypes, a known neural circuit substrate underlying cognitive functions, and further studied the effects of a subanesthetic dosage of ketamine on theta abnormalities unique to Sp4 hypomorphism. Sp4 hypomorphic mice had markedly elevated theta power localized frontally and parietally, a more pronounced theta phase progression along the neuraxis, and a stronger frontal-parietal theta coupling. Acute subanesthetic ketamine did not affect theta power in wildtype animals but significantly reduced it in Sp4 hypomorphic mice, nearly completely neutralizing their excessive frontal/parietal theta power. Ketamine did not significantly alter cortical theta phase progression in either wildtype or Sp4 hypomorphic animals, but significantly strengthened cortical theta phase-coupling in wildtype, but not in Sp4 hypomorphic animals. Our results suggested that the resting-state phenotypes of cortical theta oscillations unique to Sp4 hypomorphic mice closely mimicked a schizophrenic endophenotype. Further, ketamine independently modulated Sp4 hypomorphic anomalies in theta power and phase-coupling, suggesting separate underlying neural circuit mechanisms.
Collapse
Affiliation(s)
- Xin Wang
- Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| | - António Pinto-Duarte
- Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - M. Margarita Behrens
- Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Xianjin Zhou
- Department of Psychiatry, University of California at San Diego, La Jolla, California, United States of America
| | - Terrence J. Sejnowski
- Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California, United States of America
- Division of Biology, University of California at San Diego, La Jolla, California, United States of America
| |
Collapse
|
11
|
Gajewski PD, Falkenstein M, Hengstler JG, Golka K. Reduced ERPs and theta oscillations underlie working memory deficits in Toxoplasma gondii infected seniors. Biol Psychol 2016; 120:35-45. [PMID: 27516127 DOI: 10.1016/j.biopsycho.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 01/16/2023]
Abstract
Toxoplasma gondii is one of the most widespread infections in humans. Recent studies give evidence for memory deficits in infected older adults. To investigate working memory dysfunction in infected elderly, a double-blinded electrophysiological study was conducted. 84 persons derived from a sample of 131 healthy participants with the mean age of 70 years were assigned to two groups of 42 non-infected and 42 infected individuals. The outcome measures were behavioral performance, target and response-related ERPs, and time-frequency wavelets during performance in a n-back working-memory task. The infected individuals showed a reduced rate of detected targets and diminished P3b amplitude both in target-locked as well as response-locked data compared to the non-infected group. Time-frequency decomposition of the EEG-signals revealed lower evoked power in the theta frequency range in the target-locked as well as in the response-locked data in infected individuals. The reported effects were comparable with differences between healthy young and old adults described previously. Taking together, the reduced working-memory performance accompanied by an attenuated P3b and frontal theta activity may suggest neurotransmitter imbalance like dopamine and norepinephrine in T. gondii infected individuals. In face of a high prevalence of T. gondii infection and the increasing ratio of older population their accelerated memory decline may have substantial socioeconomic consequences.
Collapse
Affiliation(s)
- Patrick D Gajewski
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany.
| | - Michael Falkenstein
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Klaus Golka
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
12
|
Roa Romero Y, Keil J, Balz J, Gallinat J, Senkowski D. Reduced frontal theta oscillations indicate altered crossmodal prediction error processing in schizophrenia. J Neurophysiol 2016; 116:1396-407. [PMID: 27358314 DOI: 10.1152/jn.00096.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/24/2016] [Indexed: 01/24/2023] Open
Abstract
Our brain generates predictions about forthcoming stimuli and compares predicted with incoming input. Failures in predicting events might contribute to hallucinations and delusions in schizophrenia (SZ). When a stimulus violates prediction, neural activity that reflects prediction error (PE) processing is found. While PE processing deficits have been reported in unisensory paradigms, it is unknown whether SZ patients (SZP) show altered crossmodal PE processing. We measured high-density electroencephalography and applied source estimation approaches to investigate crossmodal PE processing generated by audiovisual speech. In SZP and healthy control participants (HC), we used an established paradigm in which high- and low-predictive visual syllables were paired with congruent or incongruent auditory syllables. We examined crossmodal PE processing in SZP and HC by comparing differences in event-related potentials and neural oscillations between incongruent and congruent high- and low-predictive audiovisual syllables. In both groups event-related potentials between 206 and 250 ms were larger in high- compared with low-predictive syllables, suggesting intact audiovisual incongruence detection in the auditory cortex of SZP. The analysis of oscillatory responses revealed theta-band (4-7 Hz) power enhancement in high- compared with low-predictive syllables between 230 and 370 ms in the frontal cortex of HC but not SZP. Thus aberrant frontal theta-band oscillations reflect crossmodal PE processing deficits in SZ. The present study suggests a top-down multisensory processing deficit and highlights the role of dysfunctional frontal oscillations for the SZ psychopathology.
Collapse
Affiliation(s)
- Yadira Roa Romero
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin Hospital, St. Hedwig Hospital, Berlin, Germany; and
| | - Julian Keil
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin Hospital, St. Hedwig Hospital, Berlin, Germany; and
| | - Johanna Balz
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin Hospital, St. Hedwig Hospital, Berlin, Germany; and
| | - Jürgen Gallinat
- Department for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Senkowski
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin Hospital, St. Hedwig Hospital, Berlin, Germany; and
| |
Collapse
|
13
|
Mathes B, Khalaidovski K, Wienke AS, Schmiedt-Fehr C, Basar-Eroglu C. Maturation of the P3 and concurrent oscillatory processes during adolescence. Clin Neurophysiol 2016; 127:2599-609. [PMID: 27291879 DOI: 10.1016/j.clinph.2016.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE During adolescence event-related modulations of the neural response may increase. For slow event-related components, such as the P3, this developmental change may be masked due to increased amplitude levels of ongoing delta and theta oscillations in adolescents. METHODS In a cross-sectional study design, EEG was measured in 51 participants between 13 and 24years. A visual oddball paradigm was used to elicit the P3. Our analysis focused on fronto-parietal activations within the P3 time-window and the concurrent time-frequency characteristics in the delta (∼0.5-4Hz) and theta (∼4-7Hz) band. RESULTS The parietal P3 amplitude was similar across the investigated age range, while the amplitude at frontal regions increased with age. The pre-stimulus amplitudes of delta and theta oscillations declined with age, while post-stimulus amplitude enhancement and inter-trial phase coherence increased. These changes affected fronto-parietal electrode sites. CONCLUSIONS The parietal P3 maximum seemed comparable for adolescents and young adults. Detailed analysis revealed that within the P3 time-window brain maturation during adolescence may lead to reduced spontaneous slow-wave oscillations, increased amplitude modulation and time precision of event-related oscillations, and altered P3 scalp topography. SIGNIFICANCE Time-frequency analyses may help to distinguish selective neurodevelopmental changes within the P3 time window.
Collapse
Affiliation(s)
- Birgit Mathes
- University of Bremen, Institute of Psychology and Cognition Research, Bremen, Germany; Centre for Cognitive Science, Bremen, Germany.
| | - Ksenia Khalaidovski
- University of Bremen, Institute of Psychology and Cognition Research, Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Annika S Wienke
- University of Bremen, Institute of Psychology and Cognition Research, Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Christina Schmiedt-Fehr
- University of Bremen, Institute of Psychology and Cognition Research, Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Canan Basar-Eroglu
- University of Bremen, Institute of Psychology and Cognition Research, Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| |
Collapse
|
14
|
Basar-Eroglu C, Mathes B, Khalaidovski K, Brand A, Schmiedt-Fehr C. Altered alpha brain oscillations during multistable perception in schizophrenia. Int J Psychophysiol 2015; 103:118-28. [PMID: 25746892 DOI: 10.1016/j.ijpsycho.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Schizophrenia is a complex mental disorder with impairments in integrating sensory and cognitive functions, leading to severe problems in coherent perception. This impairment might be accelerated during multistable perception. Multistable perception is a phenomenon, where a visual pattern gives rise to at least two different perceptual representations. We addressed this issue by assessing event-related alpha oscillations during continuous viewing of an ambiguous and unambiguous control stimulus. Perceptual reversals were indicated by a manual response, allowing differentiation between phases of reversion and non-reversion (that is perceptual stability) in both tasks. During the ambiguous task, patients and controls showed a comparable number of perceptual reversals. Alpha amplitudes in patients were larger in non-reversion phases, accompanied by a stronger decrease of alpha activity preceding the perceptual reversal. This group difference was pronounced for lower alpha activity and not apparent during the unambiguous task. This indicates that ambiguous perception taps into the specific deficits that patients experience in maintaining coherent perception. Given that top-down influences in generating a meaningful percept seems to be low in patients, they appear more dependent on sensory information. Similar, bottom-up mechanisms might be more important in triggering perceptual reversals in patients than in controls.
Collapse
Affiliation(s)
- Canan Basar-Eroglu
- University of Bremen, Institute of Psychology and Cognition Research, Grazer Str.4, D-28359 Bremen, Germany; Centre for Cognitive Science, Bremen, Germany.
| | - Birgit Mathes
- University of Bremen, Institute of Psychology and Cognition Research, Grazer Str.4, D-28359 Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Ksenia Khalaidovski
- University of Bremen, Institute of Psychology and Cognition Research, Grazer Str.4, D-28359 Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Andreas Brand
- University of Bremen, Institute of Psychology and Cognition Research, Grazer Str.4, D-28359 Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Christina Schmiedt-Fehr
- University of Bremen, Institute of Psychology and Cognition Research, Grazer Str.4, D-28359 Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| |
Collapse
|