1
|
Novak TS, McGregor KM, Krishnamurthy LC, Evancho A, Mammino K, Walters CE, Weber A, Nocera JR. GABA, Aging and Exercise: Functional and Intervention Considerations. Neurosci Insights 2024; 19:26331055241285880. [PMID: 39377050 PMCID: PMC11457286 DOI: 10.1177/26331055241285880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
The global growth of an aging population is expected to coincide with an increase in aging-related pathologies, including those related to brain health. Thus, the potential for accelerated cognitive health declines due to adverse aging is expected to have profound social and economic implications. However, the progression to pathological conditions is not an inevitable part of aging. In fact, engaging in activities that improve cardiovascular fitness appears to be a means that offers the benefits of maintaining and/or improving cognitive health in older age. However, to date, the underlying mechanisms responsible for improved central nervous system health and function with exercise are not yet fully elucidated. Consequently, there is considerable interest in studies aimed at understanding the neurophysiological benefits of exercise on aging. One such area of study suggests that the improvements in brain health via exercise are, in part, driven by the recovery of inhibitory processes related to the neurotransmitter gamma-aminobutyric acid (GABA). In the present review, we highlight the opposing effects of aging and exercise on cortical inhibition and the GABAergic system's functional integrity. We highlight these changes in GABA function by reviewing work with in vivo measurements: transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS). We also highlight recent and significant technological and methodological advances in assessing the GABAergic system's integrity with TMS and MRS. We then discuss potential future research directions to inform mechanistic GABA study targeted to improve health and function in aging. We conclude by highlighting the significance of understanding the effects of exercise and aging, its influence on GABA levels, and why a better understanding is crucial to allow for more targeted and effective interventions aimed to ultimately improve age-related decline in aging.
Collapse
Affiliation(s)
| | - Keith M McGregor
- Birmingham VA Health Care System, Birmingham, AL, USA
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa C Krishnamurthy
- Emory University, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
- Georgia State University, Atlanta, GA, USA
| | | | - Kevin Mammino
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
| | | | - Ashton Weber
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joe R Nocera
- Emory University, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
| |
Collapse
|
2
|
Simmonite M, Khammash D, Michon KJ, Hamlin A, Taylor SF, Vesia M, Polk TA. Age and visual cortex inhibition: a TMS-MRS study. Cereb Cortex 2024; 34:bhae352. [PMID: 39227309 DOI: 10.1093/cercor/bhae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Paired-pulse transcranial magnetic stimulation is a valuable tool for investigating inhibitory mechanisms in motor cortex. We recently demonstrated its use in measuring cortical inhibition in visual cortex, using an approach in which participants trace the size of phosphenes elicited by stimulation to occipital cortex. Here, we investigate age-related differences in primary visual cortical inhibition and the relationship between primary visual cortical inhibition and local GABA+ in the same region, estimated using magnetic resonance spectroscopy. GABA+ was estimated in 28 young (18 to 28 years) and 47 older adults (65 to 84 years); a subset (19 young, 18 older) also completed a paired-pulse transcranial magnetic stimulation session, which assessed visual cortical inhibition. The paired-pulse transcranial magnetic stimulation measure of inhibition was significantly lower in older adults. Uncorrected GABA+ in primary visual cortex was also significantly lower in older adults, while measures of GABA+ that were corrected for the tissue composition of the magnetic resonance spectroscopy voxel were unchanged with age. Furthermore, paired-pulse transcranial magnetic stimulation-measured inhibition and magnetic resonance spectroscopy-measured tissue-corrected GABA+ were significantly positively correlated. These findings are consistent with an age-related decline in cortical inhibition in visual cortex and suggest paired-pulse transcranial magnetic stimulation effects in visual cortex are driven by GABAergic mechanisms, as has been demonstrated in motor cortex.
Collapse
Affiliation(s)
- Molly Simmonite
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, United States
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States
| | - Dalia Khammash
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States
| | - Katherine J Michon
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States
| | - Abbey Hamlin
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, United States
| | - Michael Vesia
- School of Kinesiology, University of Michigan, 830 North University, Ann Arbor, MI 48109, United States
| | - Thad A Polk
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States
| |
Collapse
|
3
|
Punacha S, Huang K, Arce-McShane FI. Effects of healthy aging on tongue-jaw kinematics during feeding behavior in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605680. [PMID: 39131307 PMCID: PMC11312521 DOI: 10.1101/2024.07.31.605680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Several age-related oral health problems have been associated with neurodegenerative diseases such as Alzheimer's Disease (AD), yet how oromotor dysfunction in healthy aging differ from those found in pathological aging is still unknown. This is partly because changes in the cortical and biomechanical ("neuromechanical") control of oromotor behavior in healthy aging are poorly understood. To this end, we investigated the natural feeding behavior of young and aged rhesus macaques (Macaca mulatta) to understand the age-related differences in tongue and jaw kinematics. We tracked tongue and jaw movements in 3D using high-resolution biplanar videoradiography and X-ray Reconstruction of Moving Morphology (XROMM). Older subjects exhibited a reduced stereotypy in tongue movements during chews and a greater lag in tongue movements relative to jaw movements compared to younger subjects. Overall, our findings reveal age-related changes in tongue and jaw kinematics, which may indicate impaired tongue-jaw coordination. Our results have important implications for the discovery of potential neuromechanical biomarkers for early diagnosis of AD.
Collapse
Affiliation(s)
- Shreyas Punacha
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
| | - Kevin Huang
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
| | - Fritzie I. Arce-McShane
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Division of Neuroscience, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Gökçe E, Adıgüzel E, Koçak ÖK, Kılınç H, Langeard A, Boran E, Cengiz B. Impact of Acute High-intensity Interval Training on Cortical Excitability, M1-related Cognitive Functions, and Myokines: A Randomized Crossover Study. Neuroscience 2024; 551:290-298. [PMID: 38851379 DOI: 10.1016/j.neuroscience.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
High-intensity interval training (HIIT) is a time-efficient, safe, and feasible exercise type that can be utilized across different ages and health status. This randomized cross-over study aimed to investigate the effect of acute HIIT on cortical excitability, M1-related cognitive functions, cognition-related myokines, brain-derived neurotrophic factor (BDNF), and Cathepsin B (CTSB). Twenty-three sedentary young adults (mean age: 22.78 years ± 2.87; 14 female) participated in a cross-over design involving two sessions: either 23 min of HIIT or seated rest. Before and after the sessions, cortical excitability was measured using transcranial magnetic stimulation, and M1-related cognitive functions were assessed by the n-back test and mental rotation test. Serum levels of BDNF and CTSB were assessed using the ELISA method before and after the HIIT intervention. We demonstrated that HIIT improved mental rotation and working memory, and increased serum levels of BDNF and CTSB, whereas cortical excitability did not change. Our findings provide evidence that one session of HIIT is effective on M1-related cognitive functions and cognition-related myokines. Future research is warranted to determine whether such findings are transferable to different populations, such as cognitively at-risk children, adults, and older adults, and to prescribe effective exercise programs.
Collapse
Affiliation(s)
- Evrim Gökçe
- Physical Medicine and Rehabilitation Hospital, Ankara City Hospital, Ankara, Turkey.
| | - Emre Adıgüzel
- Physical Medicine and Rehabilitation Hospital, Ankara City Hospital, Ankara, Turkey
| | - Özlem Kurtkaya Koçak
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Hasan Kılınç
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Antoine Langeard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, Caen, France
| | - Evren Boran
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bülent Cengiz
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey; Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey
| |
Collapse
|
5
|
Pascarella A, Manzo L, Ferlazzo E. Modern neurophysiological techniques indexing normal or abnormal brain aging. Seizure 2024:S1059-1311(24)00194-8. [PMID: 38972778 DOI: 10.1016/j.seizure.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Brain aging is associated with a decline in cognitive performance, motor function and sensory perception, even in the absence of neurodegeneration. The underlying pathophysiological mechanisms remain incompletely understood, though alterations in neurogenesis, neuronal senescence and synaptic plasticity are implicated. Recent years have seen advancements in neurophysiological techniques such as electroencephalography (EEG), magnetoencephalography (MEG), event-related potentials (ERP) and transcranial magnetic stimulation (TMS), offering insights into physiological and pathological brain aging. These methods provide real-time information on brain activity, connectivity and network dynamics. Integration of Artificial Intelligence (AI) techniques promise as a tool enhancing the diagnosis and prognosis of age-related cognitive decline. Our review highlights recent advances in these electrophysiological techniques (focusing on EEG, ERP, TMS and TMS-EEG methodologies) and their application in physiological and pathological brain aging. Physiological aging is characterized by changes in EEG spectral power and connectivity, ERP and TMS parameters, indicating alterations in neural activity and network function. Pathological aging, such as in Alzheimer's disease, is associated with further disruptions in EEG rhythms, ERP components and TMS measures, reflecting underlying neurodegenerative processes. Machine learning approaches show promise in classifying cognitive impairment and predicting disease progression. Standardization of neurophysiological methods and integration with other modalities are crucial for a comprehensive understanding of brain aging and neurodegenerative disorders. Advanced network analysis techniques and AI methods hold potential for enhancing diagnostic accuracy and deepening insights into age-related brain changes.
Collapse
Affiliation(s)
- Angelo Pascarella
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy.
| | - Lucia Manzo
- Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy
| |
Collapse
|
6
|
Siddique U, Frazer AK, Avela J, Walker S, Ahtiainen JP, Tanel M, Uribe S, Akalu Y, Rostami M, Tallent J, Kidgell DJ. Differential modulation of corticomotor excitability in older compared to young adults following a single bout of strength -exercise. Arch Gerontol Geriatr 2024; 122:105384. [PMID: 38394740 DOI: 10.1016/j.archger.2024.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Evidence shows corticomotor plasticity diminishes with age. Nevertheless, whether strength-training, a proven intervention that induces corticomotor plasticity in younger adults, also takes effect in older adults, remains untested. This study examined the effect of a single-session of strength-exercise on corticomotor plasticity in older and younger adults. Thirteen older adults (72.3 ± 6.5 years) and eleven younger adults (29.9 ± 6.9 years), novice to strength-exercise, participated. Strength-exercise involved four sets of 6-8 repetitions of a dumbbell biceps curl at 70-75% of their one-repetition maximum (1-RM). Muscle strength, cortical, corticomotor and spinal excitability, before and up to 60-minutes after the strength-exercise session were assessed. We observed significant changes over time (p < 0.05) and an interaction between time and age group (p < 0.05) indicating a decrease in corticomotor excitability (18% p < 0.05) for older adults at 30- and 60-minutes post strength-exercise and an increase (26% and 40%, all p < 0.05) in younger adults at the same time points. Voluntary activation (VA) declined in older adults immediately post and 60-minutes post strength-exercise (36% and 25%, all p < 0.05). Exercise had no effect on the cortical silent period (cSP) in older adults however, in young adults cSP durations were shorter at both 30- and 60- minute time points (17% 30-minute post and 9% 60-minute post, p < 0.05). There were no differences in short-interval cortical inhibition (SICI) or intracortical facilitation (ICF) between groups. Although the corticomotor responses to strength-exercise were different within groups, overall, the neural responses seem to be independent of age.
Collapse
Affiliation(s)
- Ummatul Siddique
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Ashlyn K Frazer
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Juha P Ahtiainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Meghan Tanel
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sergio Uribe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Care, Monash University, Clayton, Australia
| | - Yonas Akalu
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia; Department of Human Physiology, School of Medicine, University of Gondar, Gondar, Ethiopia
| | - Mohamad Rostami
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Jamie Tallent
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia; School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Dawson J Kidgell
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia.
| |
Collapse
|
7
|
Van Hoornweder S, Geraerts M, Verstraelen S, Nuyts M, Caulfield KA, Meesen R. Differences in scalp-to-cortex tissues across age groups, sexes and brain regions: Implications for neuroimaging and brain stimulation techniques. Neurobiol Aging 2024; 138:45-62. [PMID: 38531217 PMCID: PMC11141186 DOI: 10.1016/j.neurobiolaging.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
Aging affects the scalp-to-cortex distance (SCD) and the comprising tissues. This is crucial for noninvasive neuroimaging and brain stimulation modalities as they rely on traversing from the scalp to the cortex or vice versa. The specific relationship between aging and these tissues has not been comprehensively investigated. We conducted a study on 250 younger and older adults to examine age-related differences in SCD and its constituent tissues. We identified region-specific differences in tissue thicknesses related to age and sex. Older adults exhibit larger SCD in the frontocentral regions compared to younger adults. Men exhibit greater SCD in the inferior scalp regions, while women show similar-to-greater SCD values in regions closer to the vertex compared to men. Younger adults and men have thicker soft tissue layers, whereas women and older adults exhibit thicker compact bone layers. CSF is considerably thicker in older adults, particularly in men. These findings emphasize the need to consider age, sex, and regional differences when interpreting SCD and its implications for noninvasive neuroimaging and brain stimulation.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marc Geraerts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Raf Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Shah M, Suresh S, Paddick J, Mellow ML, Rees A, Berryman C, Stanton TR, Smith AE. Age-related changes in responsiveness to non-invasive brain stimulation neuroplasticity paradigms: A systematic review with meta-analysis. Clin Neurophysiol 2024; 162:53-67. [PMID: 38579515 DOI: 10.1016/j.clinph.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVES We aimed to summarise and critically appraise the available evidence for the effect of age on responsiveness to non-invasive brain stimulation (NBS) paradigms delivered to the primary motor cortex. METHODS Four databases (Medline, Embase, PsycINFO and Scopus) were searched from inception to February 7, 2023. Studies investigating age group comparisons and associations between age and neuroplasticity induction from NBS paradigms were included. Only studies delivering neuroplasticity paradigms to the primary motor cortex and responses measured via motor-evoked potentials (MEPs) in healthy adults were considered. RESULTS 39 studies, encompassing 40 experiments and eight NBS paradigms were included: paired associative stimulation (PAS; n = 12), repetitive transcranial magnetic stimulation (rTMS; n = 2), intermittent theta burst stimulation (iTBS; n = 8), continuous theta burst stimulation (cTBS; n = 7), transcranial direct and alternating current stimulation ((tDCS; n = 7; tACS; n = 2)), quadripulse stimulation (QPS; n = 1) and i-wave periodic transcranial magnetic stimulation (iTMS; n = 1). Pooled findings from PAS paradigms suggested older adults have reduced post-paradigm responses, although there was considerable heterogeneity. Mixed results were observed across all other NBS paradigms and post-paradigm timepoints. CONCLUSIONS/SIGNIFICANCE Whilst age-dependent reduction in corticospinal excitability is possible, there is extensive inter- and intra-individual variability both within and between studies, making it difficult to draw meaningful conclusions from pooled analyses.
Collapse
Affiliation(s)
- Mahima Shah
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
| | - Suraj Suresh
- Brain Stimulation, Imaging and Cognition Laboratory, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Johanna Paddick
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia; Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI)
| | - Maddison L Mellow
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
| | - Amy Rees
- Discipline of Physiology, School of Biomedicine. The University of Adelaide, Adelaide 5000, Australia
| | - Carolyn Berryman
- Brain Stimulation, Imaging and Cognition Laboratory, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; South Australian Health and Medical Research Institute (SAHMRI), North Tce, Adelaide 5000, Australia; IIMPACT in Health, University of South Australia, Adelaide 5000, Australia
| | - Tasha R Stanton
- Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI); IIMPACT in Health, University of South Australia, Adelaide 5000, Australia
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia.
| |
Collapse
|
9
|
Guanyabens N, Tomsen N, Palomeras E, Mundet L, Clavé P, Ortega O. Neurophysiological characterization of oropharyngeal dysphagia in older patients. Clin Neurophysiol 2024; 162:129-140. [PMID: 38615499 DOI: 10.1016/j.clinph.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE To characterize swallowing biomechanics and neurophysiology in older patients with oropharyngeal dysphagia (OD). METHODS Observational study in 12 young healthy volunteers (HV), 9 older HV (OHV) and 12 older patients with OD with no previous diseases causing OD (OOD). Swallowing biomechanics were measured by videofluoroscopy, neurophysiology with pharyngeal sensory (pSEP) and motor evoked-potentials (pMEP) to intrapharyngeal electrical and transcranial magnetic stimulation (TMS), respectively, and salivary neuropeptides with enzyme-linked immunosorbent assay (ELISA). RESULTS 83.3% of OOD patients had unsafe swallows (Penetration-Aspiration scale = 4.3 ± 2.1; p < 0.0001) with delayed time to laryngeal vestibule closure (362.5 ± 73.3 ms; p < 0.0001) compared to both HV groups. OOD patients had: (a) higher pharyngeal sensory threshold (p = 0.009) and delayed pSEP P1 and N2 latencies (p < 0.05 vs HV) to electrical stimulus; and (b) higher pharyngeal motor thresholds to TMS in both hemispheres (p < 0.05) and delayed pMEPs latencies (right, p < 0.0001 HV vs OHV/OOD; left, p < 0.0001 HV vs OHV/OOD). CONCLUSIONS OOD patients have unsafe swallow and delayed swallowing biomechanics, pharyngeal hypoesthesia with disrupted conduction of pharyngeal sensory inputs, and reduced excitability and delayed cortical motor response. SIGNIFICANCE These findings suggest new elements in the pathophysiology of aging-associated OD and herald new and more specific neurorehabilitation treatments for these patients.
Collapse
Affiliation(s)
- Nicolau Guanyabens
- Gastrointestinal Physiology Laboratory, Department of Surgery, Hospital de Mataró, Universitat Autónoma de Barcelona, Barcelona, Spain; Neurology Department, Hospital de Mataró, Barcelona, Spain
| | - Noemí Tomsen
- Gastrointestinal Physiology Laboratory, Department of Surgery, Hospital de Mataró, Universitat Autónoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Lluís Mundet
- Gastrointestinal Physiology Laboratory, Department of Surgery, Hospital de Mataró, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Pere Clavé
- Gastrointestinal Physiology Laboratory, Department of Surgery, Hospital de Mataró, Universitat Autónoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Omar Ortega
- Gastrointestinal Physiology Laboratory, Department of Surgery, Hospital de Mataró, Universitat Autónoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Cullins MJ, Connor NP. Differential impact of unilateral stroke on the bihemispheric motor cortex representation of the jaw and tongue muscles in young and aged rats. Front Neurol 2024; 15:1332916. [PMID: 38572491 PMCID: PMC10987714 DOI: 10.3389/fneur.2024.1332916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Dysphagia commonly occurs after stroke, yet the mechanisms of post-stroke corticobulbar plasticity are not well understood. While cortical activity associated with swallowing actions is bihemispheric, prior research has suggested that plasticity of the intact cortex may drive recovery of swallowing after unilateral stroke. Age may be an important factor as it is an independent predictor of dysphagia after stroke and neuroplasticity may be reduced with age. Based on previous clinical studies, we hypothesized that cranial muscle activating volumes may be expanded in the intact hemisphere and would contribute to swallowing function. We also hypothesized that older age would be associated with limited map expansion and reduced function. As such, our goal was to determine the impact of stroke and age on corticobulbar plasticity by examining the jaw and tongue muscle activating volumes within the bilateral sensorimotor cortices. Methods Using the middle cerebral artery occlusion rat stroke model, intracortical microstimulation (ICMS) was used to map regions of sensorimotor cortex that activate tongue and jaw muscles in both hemispheres. Young adult (7 months) and aged (30 months) male F344 × BN rats underwent a stroke or sham-control surgery, followed by ICMS mapping 8 weeks later. Videofluoroscopy was used to assess oral-motor functions. Results Increased activating volume of the sensorimotor cortex within the intact hemisphere was found only for jaw muscles, whereas significant stroke-related differences in tongue activating cortical volume were limited to the infarcted hemisphere. These stroke-related differences were correlated with infarct size, such that larger infarcts were associated with increased jaw representation in the intact hemisphere and decreased tongue representation in the infarcted hemisphere. We found that both age and stroke were independently associated with swallowing differences, weight loss, and increased corticomotor thresholds. Laterality of tongue and jaw representations in the sham-control group revealed variability between individuals and between muscles within individuals. Conclusion Our findings suggest the role of the intact and infarcted hemispheres in the recovery of oral motor function may differ between the tongue and jaw muscles, which may have important implications for rehabilitation, especially hemisphere-specific neuromodulatory approaches. This study addressed the natural course of recovery after stroke; future work should expand to focus on rehabilitation.
Collapse
Affiliation(s)
- Miranda J. Cullins
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Nadine P. Connor
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Oberman LM, Benussi A. Transcranial Magnetic Stimulation Across the Lifespan: Impact of Developmental and Degenerative Processes. Biol Psychiatry 2024; 95:581-591. [PMID: 37517703 PMCID: PMC10823041 DOI: 10.1016/j.biopsych.2023.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a pivotal noninvasive technique for investigating cortical excitability and plasticity across the lifespan, offering valuable insights into neurodevelopmental and neurodegenerative processes. In this review, we explore the impact of TMS applications on our understanding of normal development, healthy aging, neurodevelopmental disorders, and adult-onset neurodegenerative diseases. By presenting key developmental milestones and age-related changes in TMS measures, we provide a foundation for understanding the maturation of neurotransmitter systems and the trajectory of cognitive functions throughout the lifespan. Building on this foundation, the paper delves into the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, and adolescent depression. Highlighting recent findings on altered neurotransmitter circuits and dysfunctional cortical plasticity, we underscore the potential of TMS as a valuable tool for unraveling underlying mechanisms and informing future therapeutic interventions. We also review the emerging role of TMS in investigating and treating the most common adult-onset neurodegenerative disorders and late-onset depression. By outlining the therapeutic applications of noninvasive brain stimulation techniques in these disorders, we discuss the growing body of evidence supporting their use as therapeutic tools for symptom management and potentially slowing disease progression. The insights gained from TMS studies have advanced our understanding of the underlying mechanisms in both healthy and disease states, ultimately informing the development of more targeted diagnostic and therapeutic strategies for a wide range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Lindsay M Oberman
- National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
12
|
Tokatly Latzer I, Hanson E, Bertoldi M, García-Cazorla À, Tsuboyama M, MacMullin P, Rotenberg A, Roullet JB, Pearl PL. Autism spectrum disorder and GABA levels in children with succinic semialdehyde dehydrogenase deficiency. Dev Med Child Neurol 2023; 65:1596-1606. [PMID: 37246331 DOI: 10.1111/dmcn.15659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
AIM To elucidate the etiological aspects of autism spectrum disorder (ASD) in succinic semialdehyde dehydrogenase deficiency (SSADHD), related to dysregulation of γ-aminobutyric acid (GABA) and the imbalance of excitatory and inhibitory neurotransmission. METHOD In this prospective, international study, individuals with SSADHD underwent neuropsychological assessments, as well as biochemical, neurophysiological, and neuroimaging evaluations. RESULTS Of the 29 individuals (17 females) enrolled (median age [IQR] 10 years 5 months [5 years 11 months-18 years 1 month]), 16 were diagnosed with ASD. ASD severity significantly increased with age (r = 0.67, p < 0.001) but was inversely correlated with plasma GABA (r = -0.67, p < 0.001) and γ-hydroxybutyrate levels (r = -0.538, p = 0.004), and resting motor threshold as measured by transcranial magnetic stimulation (r = -0.44, p = 0.03). A discriminative analysis indicated that an age older than 7 years 2 months (p = 0.004) and plasma GABA levels less than 2.47 μM (p = 0.01) are the threshold values beyond which the likelihood of ASD presenting in individuals with SSADHD is increased. INTERPRETATION ASD is prevalent but not universal in SSADHD, and it can be predicted by lower levels of plasma GABA and GABA-related metabolites. ASD severity in SSADHD increases with age and the loss of cortical inhibition. These findings add insight into the pathophysiology of ASD and may facilitate its early diagnosis and intervention in individuals with SSADHD.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ellen Hanson
- Human Neurobehavioral Core Services, Division of Neurology, Boston Children's Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, MA, USA
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Àngeles García-Cazorla
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Melissa Tsuboyama
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul MacMullin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Curtin D, Cadwallader CJ, Taylor EM, Andrews SC, Stout JC, Hendrikse JJ, Chong TTJ, Coxon JP. Ageing attenuates exercise-enhanced motor cortical plasticity. J Physiol 2023; 601:5733-5750. [PMID: 37917116 DOI: 10.1113/jp285243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiorespiratory exercise is known to modulate motor cortical plasticity in young adults, but the influence of ageing on this relationship is unknown. Here, we compared the effects of a single session of cardiorespiratory exercise on motor cortical plasticity in young and older adults. We acquired measures of cortical excitatory and inhibitory activity of the primary motor cortex using transcranial magnetic stimulation (TMS) from 20 young (mean ± SD = 25.30 ± 4.00 years, 14 females) and 20 older (mean ± SD = 64.10 ± 6.50 years, 11 females) healthy adults. Single- and paired-pulse TMS measurements were collected before and after a 20 min bout of high-intensity interval cycling exercise or an equivalent period of rest, and again after intermittent theta burst stimulation (iTBS). In both young (P = 0.027, Cohen's d = 0.87) and older adults (P = 0.006, Cohen's d = 0.85), there was an increase in glutamatergic excitation and a reduction in GABAergic inhibition from pre- to postexercise. However, in contrast to younger adults, older adults showed an attenuated plasticity response to iTBS following exercise (P = 0.011, Cohen's d = 0.85). These results demonstrate an age-dependent decline in cortical plasticity and indicate that a preceding bout of high-intensity interval exercise might be less effective for enhancing primary motor cortex plasticity in older adults. Our findings align with the hypothesis that the capacity for cortical plasticity is altered in older age. KEY POINTS: Exercise enhances motor cortical plasticity in young adults, but how ageing influences this effect is unknown. Here, we compared primary motor cortical plasticity responses in young and older adults before and after a bout of high-intensity interval exercise and again after a plasticity-inducing protocol, intermittent theta burst stimulation. In both young and older adults, exercise led to an increase in glutamatergic excitation and a reduction in GABAergic inhibition. Our key result was that older adults showed an attenuated plasticity response to theta burst stimulation following exercise, relative to younger adults. Our findings demonstrate an age-dependent decline in exercise-enhanced cortical plasticity and indicate that a preceding bout of high-intensity interval exercise might be less effective for enhancing primary motor cortex plasticity in older adults.
Collapse
Affiliation(s)
- Dylan Curtin
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Claire J Cadwallader
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Eleanor M Taylor
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sophie C Andrews
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Julie C Stout
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joshua J Hendrikse
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Trevor T-J Chong
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - James P Coxon
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Abstract
Noninvasive brain stimulation (NIBS) techniques are widely used tools for the study and rehabilitation of cognitive functions. Different NIBS approaches aim to enhance or impair different cognitive processes. The methodological focus for achieving this has been on stimulation protocols that are considered either inhibitory or facilitatory. However, despite more than three decades of use, their application is based on incomplete and overly simplistic conceptualizations of mechanisms of action. Such misconception limits the usefulness of these approaches in the basic science and clinical domains. In this review, we challenge this view by arguing that stimulation protocols themselves are neither inhibitory nor facilitatory. Instead, we suggest that all induced effects reflect complex interactions of internal and external factors. Given these considerations, we present a novel model in which we conceptualize NIBS effects as an interaction between brain activity and the characteristics of the external stimulus. This interactive model can explain various phenomena in the brain stimulation literature that have been considered unexpected or paradoxical. We argue that these effects no longer seem paradoxical when considered from the viewpoint of state dependency.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Juha Silvanto
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
15
|
Izbicki P, Mendoza T, Zaman A, Stegemöller EL. Differences in motor inhibition in young and older musicians and non-musicians at rest. Front Aging Neurosci 2023; 15:1230865. [PMID: 37744390 PMCID: PMC10514489 DOI: 10.3389/fnagi.2023.1230865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Older adults experience a decline in motor inhibition. These declines have been implicated in instrumental activities of daily living. However, studies have revealed that older musicians have behavioral and neurophysiological enhancements in various motor domains compared to non-musicians. This suggests that music training may delay the decline in motor inhibition with aging. Nevertheless, motor inhibition has not been studied in young or older musicians and non-musicians. Thus, the present study aimed to investigate the neurophysiological differences in motor inhibition in aging musicians and non-musicians. Methods A total of 19 healthy young adult musicians, 16 healthy young non-musicians, 13 healthy older adult musicians, and 16 healthy older adult non-musicians were recruited for the study. Transcranial magnetic stimulation single-pulse (SP) and short interval cortical inhibition (SICI) were performed at rest and then converted into inhibition percentage. Results We did not observe significant differences between young and older musicians and non-musicians in resting SP MEP. Older adults had lower resting SICI MEP than young adults. Older adults (36%) had a greater percentage of inhibition than young adults (16%). However, when controlling for background EMG activity, musicians had a lower inhibition percentage than non-musicians. Discussion The results revealed that, despite the greater use of spinal mechanisms, decreased SICI, and increased inhibition percentage in older adults, motor inhibitory circuitry remains intact and functional in both young and older musicians and non-musicians. Future studies will reveal whether there are differences in motor inhibition during movement in musicians across a person's lifespan.
Collapse
Affiliation(s)
- Patricia Izbicki
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Tessa Mendoza
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Andrew Zaman
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | | |
Collapse
|
16
|
Liao W, Opie GM, Ziemann U, Semmler JG. Modulation of dorsal premotor cortex differentially influences I-wave excitability in primary motor cortex of young and older adults. J Physiol 2023; 601:2959-2974. [PMID: 37194369 PMCID: PMC10952229 DOI: 10.1113/jp284204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
Previous research using transcranial magnetic stimulation (TMS) has demonstrated weakened connectivity between dorsal premotor cortex (PMd) and motor cortex (M1) with age. While this alteration is probably mediated by changes in the communication between the two regions, the effect of age on the influence of PMd on specific indirect (I) wave circuits within M1 remains unclear. The present study therefore investigated the influence of PMd on early and late I-wave excitability in M1 of young and older adults. Twenty-two young (mean ± SD, 22.9 ± 2.9 years) and 20 older (66.6 ± 4.2 years) adults participated in two experimental sessions involving either intermittent theta burst stimulation (iTBS) or sham stimulation over PMd. Changes within M1 following the intervention were assessed with motor-evoked potentials (MEPs) recorded from the right first dorsal interosseous muscle. We applied posterior-anterior (PA) and anterior-posterior (AP) current single-pulse TMS to assess corticospinal excitability (PA1mV ; AP1mV ; PA0.5mV , early; AP0.5mV , late), and paired-pulse TMS short intracortical facilitation for I-wave excitability (PA SICF, early; AP SICF, late). Although PMd iTBS potentiated PA1mV and AP1mV MEPs in both age groups (both P < 0.05), the time course of this effect was delayed for AP1mV in older adults (P = 0.001). Furthermore, while AP0.5mV , PA SICF and AP SICF were potentiated in both groups (all P < 0.05), potentiation of PA0.5mV was only apparent in young adults (P < 0.0001). While PMd influences early and late I-wave excitability in young adults, direct PMd modulation of the early circuits is specifically reduced in older adults. KEY POINTS: Interneuronal circuits responsible for late I-waves within primary motor cortex (M1) mediate projections from dorsal premotor cortex (PMd), but this communication probably changes with advancing age. We investigated the effects of intermittent theta burst stimulation (iTBS) to PMd on transcranial magnetic stimulation (TMS) measures of M1 excitability in young and older adults. We found that PMd iTBS facilitated M1 excitability assessed with posterior-anterior (PA, early I-waves) and anterior-posterior (AP, late I-waves) current TMS in young adults, with a stronger effect for AP TMS. M1 excitability assessed with AP TMS also increased in older adults following PMd iTBS, but there was no facilitation for PA TMS responses. We conclude that changes in M1 excitability following PMd iTBS are specifically reduced for the early I-waves in older adults, which could be a potential target for interventions that enhance cortical excitability in older adults.
Collapse
Affiliation(s)
- Wei‐Yeh Liao
- Discipline of Physiology, School of BiomedicineThe University of AdelaideAdelaideAustralia
| | - George M. Opie
- Discipline of Physiology, School of BiomedicineThe University of AdelaideAdelaideAustralia
| | - Ulf Ziemann
- Department of Neurology & StrokeEberhard Karls University of TübingenTübingenGermany
- Hertie‐Institute for Clinical Brain ResearchEberhard Karls University of TübingenTübingenGermany
| | - John G. Semmler
- Discipline of Physiology, School of BiomedicineThe University of AdelaideAdelaideAustralia
| |
Collapse
|
17
|
Le Boterff Q, Rabah A, Carment L, Bendjemaa N, Térémetz M, Alouit A, Levy A, Tanguy G, Morin V, Amado I, Cuenca M, Turc G, Maier MA, Krebs MO, Lindberg PG. A tablet-based quantitative assessment of manual dexterity for detection of early psychosis. Front Psychiatry 2023; 14:1200864. [PMID: 37435404 PMCID: PMC10330763 DOI: 10.3389/fpsyt.2023.1200864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Background We performed a pilot study on whether tablet-based measures of manual dexterity can provide behavioral markers for detection of first-episode psychosis (FEP), and whether cortical excitability/inhibition was altered in FEP. Methods Behavioral and neurophysiological testing was undertaken in persons diagnosed with FEP (N = 20), schizophrenia (SCZ, N = 20), autism spectrum disorder (ASD, N = 20), and in healthy control subjects (N = 20). Five tablet tasks assessed different motor and cognitive functions: Finger Recognition for effector (finger) selection and mental rotation, Rhythm Tapping for temporal control, Sequence Tapping for control/memorization of motor sequences, Multi Finger Tapping for finger individuation, and Line Tracking for visuomotor control. Discrimination of FEP (from other groups) based on tablet-based measures was compared to discrimination through clinical neurological soft signs (NSS). Cortical excitability/inhibition, and cerebellar brain inhibition were assessed with transcranial magnetic stimulation. Results Compared to controls, FEP patients showed slower reaction times and higher errors in Finger Recognition, and more variability in Rhythm Tapping. Variability in Rhythm Tapping showed highest specificity for the identification of FEP patients compared to all other groups (FEP vs. ASD/SCZ/Controls; 75% sensitivity, 90% specificity, AUC = 0.83) compared to clinical NSS (95% sensitivity, 22% specificity, AUC = 0.49). Random Forest analysis confirmed FEP discrimination vs. other groups based on dexterity variables (100% sensitivity, 85% specificity, balanced accuracy = 92%). The FEP group had reduced short-latency intra-cortical inhibition (but similar excitability) compared to controls, SCZ, and ASD. Cerebellar inhibition showed a non-significant tendency to be weaker in FEP. Conclusion FEP patients show a distinctive pattern of dexterity impairments and weaker cortical inhibition. Easy-to-use tablet-based measures of manual dexterity capture neurological deficits in FEP and are promising markers for detection of FEP in clinical practice.
Collapse
Affiliation(s)
- Quentin Le Boterff
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Ayah Rabah
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Loïc Carment
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Narjes Bendjemaa
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Maxime Térémetz
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Anaëlle Alouit
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Agnes Levy
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | | | | | | | | | - Guillaume Turc
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Marc A. Maier
- CNRS, Integrative Neuroscience and Cognition Center, Université Paris Cité, Paris, France
| | - Marie-Odile Krebs
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Påvel G. Lindberg
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| |
Collapse
|
18
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
19
|
Turrini S, Bevacqua N, Cataneo A, Chiappini E, Fiori F, Battaglia S, Romei V, Avenanti A. Neurophysiological Markers of Premotor-Motor Network Plasticity Predict Motor Performance in Young and Older Adults. Biomedicines 2023; 11:biomedicines11051464. [PMID: 37239135 DOI: 10.3390/biomedicines11051464] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Aging is commonly associated with a decline in motor control and neural plasticity. Tuning cortico-cortical interactions between premotor and motor areas is essential for controlling fine manual movements. However, whether plasticity in premotor-motor circuits predicts hand motor abilities in young and elderly humans remains unclear. Here, we administered transcranial magnetic stimulation (TMS) over the ventral premotor cortex (PMv) and primary motor cortex (M1) using the cortico-cortical paired-associative stimulation (ccPAS) protocol to manipulate the strength of PMv-to-M1 connectivity in 14 young and 14 elderly healthy adults. We assessed changes in motor-evoked potentials (MEPs) during ccPAS as an index of PMv-M1 network plasticity. We tested whether the magnitude of MEP changes might predict interindividual differences in performance in two motor tasks that rely on premotor-motor circuits, i.e., the nine-hole pegboard test and a choice reaction task. Results show lower motor performance and decreased PMv-M1 network plasticity in elderly adults. Critically, the slope of MEP changes during ccPAS accurately predicted performance at the two tasks across age groups, with larger slopes (i.e., MEP increase) predicting better motor performance at baseline in both young and elderly participants. These findings suggest that physiological indices of PMv-M1 plasticity could provide a neurophysiological marker of fine motor control across age-groups.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Naomi Bevacqua
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185 Rome, Italy
| | - Antonio Cataneo
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Emilio Chiappini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Institut für Klinische und Gesundheitspsychologie, Universität Wien, 1010 Vienna, Austria
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- NeXT: Unità di Ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Dipartimento di Medicina, Università Campus Bio-Medico, 00128 Rome, Italy
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca 346000, Chile
| |
Collapse
|
20
|
Patelaki E, Foxe JJ, Mantel EP, Kassis G, Freedman EG. Paradoxical improvement of cognitive control in older adults under dual-task walking conditions is associated with more flexible reallocation of neural resources: A Mobile Brain-Body Imaging (MoBI) study. Neuroimage 2023; 273:120098. [PMID: 37037381 DOI: 10.1016/j.neuroimage.2023.120098] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
Combining walking with a demanding cognitive task is traditionally expected to elicit decrements in gait and/or cognitive task performance. However, it was recently shown that, in a cohort of young adults, most participants improved performance when walking was added to performance of a Go/NoGo response inhibition task. The present study aims to extend these previous findings to an older adult cohort, to investigate whether this improvement when dual-tasking is observed in healthy older adults. Mobile Brain/Body Imaging (MoBI) was used to record electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and behavioral responses in the Go/NoGo task, during sitting or walking on a treadmill, in 34 young adults and 37 older adults. Increased response accuracy during walking, independent of age, was found to correlate with slower responses to stimuli (r = 0.44) and with walking-related EEG amplitude modulations over frontocentral regions (r = 0.47) during the sensory gating (N1) and conflict monitoring (N2) stages of inhibition, and over left-lateralized prefrontal regions (r = 0.47) during the stage of inhibitory control implementation. These neural activity changes are related to the cognitive component of inhibition, and they were interpreted as signatures of behavioral improvement during walking. On the other hand, aging, independent of response accuracy during walking, was found to correlate with slower treadmill walking speeds (r = -0.68) and attenuation in walking-related EEG amplitude modulations over left-dominant frontal (r = -0.44) and parietooccipital regions (r = 0.48) during the N2 stage, and over centroparietal regions (r = 0.48) during the P3 stage. These neural activity changes are related to the motor component of inhibition, and they were interpreted as signatures of aging. Older adults whose response accuracy 'paradoxically' improved during walking manifested neural signatures of both behavioral improvement and aging, suggesting that their flexibility in reallocating neural resources while walking might be maintained for the cognitive but not for the motor inhibitory component. These distinct neural signatures of aging and behavior can potentially be used to identify 'super-agers', or individuals at risk for cognitive decline due to aging or neurodegenerative disease.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA; Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall Rochester, New York, 14627, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA.
| | - Emma P Mantel
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - George Kassis
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA.
| |
Collapse
|
21
|
Ballard HK, Jackson TB, Hicks TH, Cox SJ, Symm A, Maldonado T, Bernard JA. Hormone-sleep interactions predict cerebellar connectivity and behavior in aging females. Psychoneuroendocrinology 2023; 150:106034. [PMID: 36709633 PMCID: PMC10149037 DOI: 10.1016/j.psyneuen.2023.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Sex hormones fluctuate over the course of the female lifespan and are associated with brain health and cognition. Thus, hormonal changes throughout female adulthood, and with menopause in particular, may contribute to sex differences in brain function and behavior. Further, sex hormones have been correlated with sleep patterns, which also exhibit sex-specific impacts on the brain and behavior. As such, the interplay between hormones and sleep may contribute to late-life brain and behavioral outcomes in females. Here, in a sample of healthy adult females (n = 79, ages 35-86), we evaluated the effect of hormone-sleep interactions on cognitive and motor performance as well as cerebellar-frontal network connectivity. Salivary samples were used to measure 17β-estradiol, progesterone, and testosterone levels while overnight actigraphy was used to quantify sleep patterns. Cognitive behavior was quantified using the composite average of standardized scores on memory, processing speed, and attentional tasks, and motor behavior was indexed with sequence learning, balance, and dexterity tasks. We analyzed resting-state connectivity correlations for two specific cerebellar-frontal networks: a Crus I to dorsolateral prefrontal cortex network and a Lobule V to primary motor cortex network. In sum, results indicate that sex hormones and sleep patterns interact to predict cerebellar-frontal connectivity and behavior in aging females. Together, the current findings further highlight the potential consequences of endocrine aging in females and suggest that the link between sex hormones and sleep patterns may contribute, in part, to divergent outcomes between sexes in advanced age.
Collapse
Affiliation(s)
- Hannah K Ballard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA.
| | - T Bryan Jackson
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Tracey H Hicks
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Sydney J Cox
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Abigail Symm
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Ted Maldonado
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA; Department of Psychology, Indiana State University, Terre Haute, IN, USA
| | - Jessica A Bernard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
22
|
Wang YR, Lefebvre G, Picard M, Lamoureux-Andrichuk A, Ferland MC, Therrien-Blanchet JM, Boré A, Tremblay J, Descoteaux M, Champoux F, Théoret H. Physiological, Anatomical and Metabolic Correlates of Aerobic Fitness in Human Primary Motor Cortex: A Multimodal Study. Neuroscience 2023; 517:70-83. [PMID: 36921757 DOI: 10.1016/j.neuroscience.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Physical activity (PA) has been shown to benefit various cognitive functions and promote neuroplasticity. Whereas the effects of PA on brain anatomy and function have been well documented in older individuals, data are scarce in young adults. Whether high levels of cardiorespiratory fitness (CRF) achieved through regular PA are associated with significant structural and functional changes in this age group remains largely unknown. In the present study, twenty young adults that engaged in at least 8 hours per week of aerobic exercise during the last 5 years were compared to twenty sedentary controls on measures of cortical excitability, white matter microstructure, cortical thickness and metabolite concentration. All measures were taken in the left primary motor cortex and CRF was assessed with VO2max. Transcranial magnetic stimulation (TMS) revealed higher corticospinal excitability in high- compared to low-fit individuals reflected by greater input/output curve amplitude and slope. No group differences were found for other TMS (short-interval intracortical inhibition and intracortical facilitation), diffusion MRI (fractional anisotropy and apparent fiber density), structural MRI (cortical thickness) and magnetic resonance spectroscopy (NAA, GABA, Glx) measures. Taken together, the present data suggest that brain changes associated with increased CRF are relatively limited, at least in primary motor cortex, in contrast to what has been observed in older adults.
Collapse
Affiliation(s)
- Yi Ran Wang
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Geneviève Lefebvre
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Maude Picard
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - Arnaud Boré
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Jonathan Tremblay
- École de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
23
|
Liu Y, Lim K, Sundman MH, Ugonna C, Ton That V, Cowen S, Chou YH. Association Between Responsiveness to Transcranial Magnetic Stimulation and Interhemispheric Functional Connectivity of Sensorimotor Cortex in Older Adults. Brain Connect 2023; 13:39-50. [PMID: 35620910 PMCID: PMC9942174 DOI: 10.1089/brain.2021.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Repetitive transcranial magnetic stimulation (rTMS) is a promising therapeutic technique, and is believed to accomplish its effect by influencing the stimulated and remotely connected areas. However, responsiveness to rTMS shows high interindividual variability, and this intersubject variability is particularly high in older adults. It remains unclear whether baseline resting-state functional connectivity (rsFC) contributes to this variability in older adults. The aims of this study are to (1) examine rTMS effects over the primary motor cortex (M1) in older adults, and (2) identify baseline network properties that may contribute to the interindividual variability. Methods: We tested response to intermittent theta burst stimulation (iTBS), an effective rTMS protocol, over M1 by using both electromyography and resting-state functional magnetic resonance imaging in older adults. Outcome measures included motor-evoked potential (MEP) elicited by single-pulse transcranial magnetic stimulation and rsFC before and after an iTBS session. Results: iTBS significantly increased MEP amplitudes and rsFC between the stimulation site, sensorimotor cortex, and supplementary motor area (SMA) in older adults. iTBS-induced changes in MEP amplitude were positively correlated with increases in interhemispheric rsFC after iTBS. Furthermore, older adults with lower baseline interhemispheric rsFC between sensorimotor cortex and SMA exhibited stronger MEP response after iTBS. Discussion: Findings of the study suggest that different levels of interhemispheric communication during resting state might contribute to the response heterogeneity to iTBS in older adults. Interhemispheric rsFC may have great potential serving as a useful marker for predicting iTBS responsiveness in older adults. ClinicalTrials.gov ID: 1707654427 Impact statement Factors contributing to interindividual variability of the responsive to repetitive transcranial magnetic stimulation (rTMS) in older adults remain poorly understood. In this study, we examined the effects of rTMS over the primary motor cortex in older adults, and found that response to rTMS is associated with prestimulation interhemispheric connectivity in the sensorimotor and premotor areas. Findings of the study have great potential to be translated into a connectivity-based strategy for identification of responders for rTMS in older adults.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
| | - Koeun Lim
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
| | - Mark H. Sundman
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
| | - Chidi Ugonna
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Viet Ton That
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
| | - Stephen Cowen
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
- Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Ying-hui Chou
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
- Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
24
|
Ghasemian-Shirvan E, Ungureanu R, Melo L, van Dun K, Kuo MF, Nitsche MA, Meesen RLJ. Optimizing the Effect of tDCS on Motor Sequence Learning in the Elderly. Brain Sci 2023; 13:brainsci13010137. [PMID: 36672118 PMCID: PMC9857096 DOI: 10.3390/brainsci13010137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
One of the most visible effects of aging, even in healthy, normal aging, is a decline in motor performance. The range of strategies applicable to counteract this deterioration has increased. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that can promote neuroplasticity, has recently gained attention. However, knowledge about optimized tDCS parameters in the elderly is limited. Therefore, in this study, we investigated the effect of different anodal tDCS intensities on motor sequence learning in the elderly. Over the course of four sessions, 25 healthy older adults (over 65 years old) completed the Serial Reaction Time Task (SRTT) while receiving 1, 2, or 3 mA of anodal or sham stimulation over the primary motor cortex (M1). Additionally, 24 h after stimulation, motor memory consolidation was assessed. The results confirmed that motor sequence learning in all tDCS conditions was maintained the following day. While increased anodal stimulation intensity over M1 showed longer lasting excitability enhancement in the elderly in a prior study, the combination of higher intensity stimulation with an implicit motor learning task showed no significant effect. Future research should focus on the reason behind this lack of effect and probe alternative stimulation protocols.
Collapse
Affiliation(s)
- Ensiyeh Ghasemian-Shirvan
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, 44780 Bochum, Germany
- Neuroplasticity and Movement Control Research Group, REVAL Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Ruxandra Ungureanu
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
- Institute of Cognitive Neuroscience, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Lorena Melo
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Kim van Dun
- Neuroplasticity and Movement Control Research Group, REVAL Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33617 Bielefeld, Germany
| | - Raf L. J. Meesen
- Neuroplasticity and Movement Control Research Group, REVAL Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Leuven, Belgium
- Correspondence:
| |
Collapse
|
25
|
Bakhshayesh Eghbali B, Ramezani S, Sedaghat Herfeh S, Emir Alavi C, Najafi K, Esmaeeli Lipaei P, Eslamparast Kordmahalleh S, Hosseinpour Sarmadi V, Amini N, Ramezani Kapourchali F. ¬Transcranial direct current stimulation improves sleep quality in patients with insomnia after traumatic brain injury. Brain Inj 2023; 37:63-73. [PMID: 36408966 DOI: 10.1080/02699052.2022.2145363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Insomnia is a serious problem after traumatic brain injury (TBI) and partially improves via sleeping pills. We investigated the efficacy of transcranial direct current stimulation (tDCS) with a focus on the role of age and gender. MATERIALS AND METHODS In a randomized double-blind clinical trial, 60 eligible TBI-induced insomnia patients were assigned to real and sham tDCS groups and were treated for three weeks. Sham but not real tDCS took sleeping pills for the first three weeks of the study and then used the placebo until the end of the study. The placebo was used by the real-tDCS group throughout the study. Sleep quality and insomnia severity were respectively evaluated by Pittsburg Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) at three time points. RESULTS Real tDCS group reported lower mean ISI and PSQI scores at 3 weeks post treatment onset and maintained this decline for six weeks post treatment onset (P < 0.001). In younger participants and those identified as men, the treatment-induced attenuation of the mean PSQI score was reported higher and more lasting in real than sham tDCS groups. CONCLUSION Gender and age-specific tDCS protocols may be warranted to optimize the therapeutic effect of tDCS.
Collapse
Affiliation(s)
- Babak Bakhshayesh Eghbali
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Ramezani
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sina Sedaghat Herfeh
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Cyrus Emir Alavi
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kiomars Najafi
- Kavosh Research Center for Behavioral-Cognitive Sciences and Addiction, Department of Noninvasive Brain Stimulation, Tolou Clinic Guilan University of Medical Sciences, Rasht, Iran
| | - Pedram Esmaeeli Lipaei
- Student Research Committee, Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Amini
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani Kapourchali
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
26
|
Turrini S, Bevacqua N, Cataneo A, Chiappini E, Fiori F, Candidi M, Avenanti A. Transcranial cortico-cortical paired associative stimulation (ccPAS) over ventral premotor-motor pathways enhances action performance and corticomotor excitability in young adults more than in elderly adults. Front Aging Neurosci 2023; 15:1119508. [PMID: 36875707 PMCID: PMC9978108 DOI: 10.3389/fnagi.2023.1119508] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) methods such as cortico-cortical paired associative stimulation (ccPAS) can increase the strength of functional connectivity between ventral premotor cortex (PMv) and primary motor cortex (M1) via spike timing-dependent plasticity (STDP), leading to enhanced motor functions in young adults. However, whether this STDP-inducing protocol is effective in the aging brain remains unclear. In two groups of young and elderly healthy adults, we evaluated manual dexterity with the 9-hole peg task before and after ccPAS of the left PMv-M1 circuit. We observed that ccPAS enhanced dexterity in young adults, and this effect was anticipated by a progressive increase in motor-evoked potentials (MEPs) during ccPAS administration. No similar effects were observed in elderly individuals or in a control task. Across age groups, we observed that the magnitude of MEP changes predicted larger behavioral improvements. These findings demonstrate that left PMv-to-M1 ccPAS induces functionally specific improvements in young adults' manual dexterity and an increase in corticomotor excitability, but altered plasticity prevents the effectiveness of ccPAS in the elderly.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy.,Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Naomi Bevacqua
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy.,Dipartimento di Psicologia, Sapienza Università di Roma, Rome, Italy
| | - Antonio Cataneo
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Emilio Chiappini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy.,Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy.,Dipartimento di Medicina, NeXT: Unità di Ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Rome, Italy
| | - Matteo Candidi
- Dipartimento di Psicologia, Sapienza Università di Roma, Rome, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum Università di Bologna, Cesena, Italy.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
27
|
Rehsi RS, Ramdeo KR, Foglia SD, Turco CV, Adams FC, Toepp SL, Nelson AJ. Investigating the intra-session reliability of short and long latency afferent inhibition. Clin Neurophysiol Pract 2022; 8:16-23. [PMID: 36632369 PMCID: PMC9826929 DOI: 10.1016/j.cnp.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To establish the intrasession relative and absolute reliability of Short (SAI) and Long-Latency Afferent Inhibition (LAI). These findings will allow us to guide future explorations of changes to these measures. Methods 31 healthy individuals (21.06 ± 2.85 years) had SAI and LAI obtained thrice at 30-minute intervals in one session. To identify the minimum number of trials required to reliably elicit SAI and LAI, relative reliability was assessed at running intervals of 5 trials. Results SAI had moderate-high, and LAI had high-excellent relative reliability. Both SAI and LAI had high amounts of measurement error. LAI had high relative reliability when only 5 frames of data were included, whereas SAI required ∼20-30 frames of data for the same. For both SAI and LAI, individual smallest detectable change was large but was reduced at the group level. Conclusions SAI and LAI can be used for both diagnostic purposes and to assess group level change but have limited utility in assessing within-individual changes. Significance These results can be used to inform future work regarding the utility of SAI and LAI, particularly in terms of their ability to identify particularly high or low values of afferent inhibition.
Collapse
Affiliation(s)
| | | | | | - Claudia V. Turco
- Faculty of Medicine and Dentistry, University of Alberta, Canada
| | | | | | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Canada,School of Biomedical Engineering, McMaster University, Canada,Corresponding author at: Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
28
|
Su B, Jia Y, Zhang L, Li D, Shen Q, Wang C, Chen Y, Gao F, Wei J, Huang G, Liu H, Wang L. Reliability of TMS measurements using conventional hand-hold method with different numbers of stimuli for tibialis anterior muscle in healthy adults. Front Neural Circuits 2022; 16:986669. [PMID: 36247728 PMCID: PMC9563236 DOI: 10.3389/fncir.2022.986669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: The objective of this study was to determine the reliability of corticomotor excitability measurements using the conventional hand-hold transcranial magnetic stimulation (TMS) method for the tibialis anterior (TA) muscle in healthy adults and the number of stimuli required for reliable assessment. Methods: Forty healthy adults participated in three repeated sessions of corticomotor excitability assessment in terms of resting motor threshold (rMT), slope of recruitment curve (RC), peak motor evoked potential amplitude (pMEP), and MEP latency using conventional TMS method. The first two sessions were conducted with a rest interval of 1 h, and the last session was conducted 7–10 days afterward. With the exception of rMT, the other three outcomes measure elicited with the block of first 3–10 stimuli were analyzed respectively. The within-day (session 1 vs. 2) and between-day (session 1 vs. 3) reliability for all four outcome measures were assessed using intraclass correlation coefficient (ICC), standard error of measurement, and minimum detectable difference at 95% confidence interval. Results: Good to excellent within-day and between-day reliability was found for TMS-induced outcome measures examined using 10 stimuli (ICC ≥ 0.823), except in pMEP, which showed between-day reliability at moderate level (ICC = 0.730). The number of three stimuli was adequate to achieve minimum acceptable within-day reliability for all TMS-induced parameters and between-day reliability for MEP latency. With regard to between-day reliability of RC slope and pMEP, at least seven and nine stimuli were recommended respectively. Conclusion: Our findings indicated the high reliability of corticomotor excitability measurement by TMS with adequate number of stimuli for the TA muscle in healthy adults. This result should be interpreted with caveats for the specific methodological choices, equipment setting, and the characteristics of the sample in the current study. Clinical Trial Registration:http://www.chictr.org.cn, identifier ChiCTR2100045141.
Collapse
Affiliation(s)
- Bin Su
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Yanbing Jia
- School of Rehabilitation Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Li Zhang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Duo Li
- Neuro-Rehabilitation Center, JORU Rehabilitation Hospital, Yixing, China
| | - Qianqian Shen
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Chun Wang
- Neuro-Rehabilitation Center, JORU Rehabilitation Hospital, Yixing, China
| | - Yating Chen
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Fanglan Gao
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Jing Wei
- Neuro-Rehabilitation Center, JORU Rehabilitation Hospital, Yixing, China
| | - Guilan Huang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Hao Liu
- School of Rehabilitation Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
- *Correspondence: Lin Wang Hao Liu
| | - Lin Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lin Wang Hao Liu
| |
Collapse
|
29
|
Siew-Pin Leuk J, Yow KE, Zi-Xin Tan C, Hendy AM, Kar-Wing Tan M, Hock-Beng Ng T, Teo WP. A meta-analytical review of transcranial direct current stimulation parameters on upper limb motor learning in healthy older adults and people with Parkinson's disease. Rev Neurosci 2022; 34:325-348. [PMID: 36138560 DOI: 10.1515/revneuro-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022]
Abstract
Current literature lacks consolidated evidence for the impact of stimulation parameters on the effects of transcranial direct current stimulation (tDCS) in enhancing upper limb motor learning. Hence, we aim to synthesise available methodologies and results to guide future research on the usage of tDCS on upper limb motor learning, specifically in older adults and Parkinson's disease (PD). Thirty-two studies (Healthy older adults, N = 526, M = 67.25, SD = 4.30 years; PD, N = 216, M = 66.62, SD = 6.25 years) were included in the meta-analysis. All included studies consisted of active and sham protocols. Random effect meta-analyses were conducted for (i) subjects (healthy older adults and PD); (ii) intensity (1.0, 1.5, 2 mA); (iii) electrode montage (unilateral anodal, bilateral anodal, unilateral cathodal); (iv) stimulation site (cerebellum, frontal, motor, premotor, SMA, somatosensory); (v) protocol (online, offline). Significant tDCS effect on motor learning was reported for both populations, intensity 1.0 and 2.0 mA, unilateral anodal and cathodal stimulation, stimulation site of the motor and premotor cortex, and both online and offline protocols. Regression showed no significant relationship between tDCS effects and density. The efficacy of tDCS is also not affected by the number of sessions. However, studies that reported only single session tDCS found significant negative association between duration with motor learning outcomes. Our findings suggest that different stimulation parameters enhanced upper limb motor learning in older adults and PD. Future research should combine tDCS with neuroimaging techniques to help with optimisation of the stimulation parameters, considering the type of task and population.
Collapse
Affiliation(s)
- Jessie Siew-Pin Leuk
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Kai-En Yow
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Clenyce Zi-Xin Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Ashlee M Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences (SENS), Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Mika Kar-Wing Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Tommy Hock-Beng Ng
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Wei-Peng Teo
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| |
Collapse
|
30
|
Lee H, Park YM, Kang N. Unilateral hand force control impairments in older women. EXCLI JOURNAL 2022; 21:1231-1244. [PMID: 36381646 PMCID: PMC9650698 DOI: 10.17179/excli2022-5362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
Older women may experience deficits in sensorimotor control at their upper limb because of aging progress compromising the motor system. This study aimed to investigate whether younger and older women differ in sensorimotor capabilities assessed by unilateral force control performances at a lower targeted force level. Twenty-one older and 21 younger women performed isometric unilateral force control tasks at 10 % of maximum voluntary contraction for each hand, respectively. Purdue Pegboard Test (PPT) was used to measure unilateral hand dexterity. Five force control variables (i.e., maximal and submaximal force, force error, variability, and regularity) and PPT scores were analyzed in two-way mixed ANOVAs (Group × Hand Condition), respectively. The absolute force power was analyzed in three-way mixed ANOVA (Group × Hand Condition × Frequency Band). The findings revealed that older women produced less maximal and submaximal unilateral forces than in younger women. Greater variability, regularity, and force frequency oscillations below 4 Hz were observed in older women as compared with those in younger women. Force error in the dominant hand was greater in older women than those in younger women. Finally, older women showed lower PPT scores than younger women. These findings suggested that older women may have deficits in unilateral force control capabilities as well as motor dexterity.
Collapse
Affiliation(s)
- Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea,Neuromechanical Rehabilitation Research Laboratory, Division of Sport Science, Incheon National University, Incheon, South Korea
| | - Young-Min Park
- Division of Health and Kinesiology, Incheon National University, Incheon, South Korea,Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea,Neuromechanical Rehabilitation Research Laboratory, Division of Sport Science, Incheon National University, Incheon, South Korea,Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, South Korea,Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea,*To whom correspondence should be addressed: Nyeonju Kang, Neuromechanical Rehabilitation Research Laboratory, Division of Sport Science, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, South Korea; Phone: +82 32 835 8573, Fax: +82 32 835 0788, E-mail:
| |
Collapse
|
31
|
Davidson PSR, Karpov G, Giguère L, Castro AW, Tremblay F. Older adults' episodic memory is related to a neurophysiological marker of brain cholinergic activity. Exp Brain Res 2022; 240:2269-2276. [PMID: 35907032 DOI: 10.1007/s00221-022-06420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Episodic memory is vulnerable to aging and may be influenced by age-related decline in the neurotransmitter acetylcholine. We probed this relation using a novel, minimally invasive transcranial magnetic stimulation marker of brain acetylcholine: short-latency afferent inhibition (SAI). We used neuropsychological testing to construct a composite score of episodic memory in N = 19 community-dwelling older adults, and stratified older adults into Higher- (N = 9) versus Lower-memory (N = 10) groups before SAI. The Higher-memory group showed significantly stronger SAI than the Lower-memory group, indicating an association between higher brain acetylcholine levels and better episodic memory. The two memory groups were equivalent in the potential confounds of age, education, mood, subjective sleep quality, and executive function. These data converge with others to suggest that episodic memory is related to acetylcholine in older adults. This relation should be further investigated, especially with pharmacology and neuroimaging.
Collapse
Affiliation(s)
- Patrick S R Davidson
- School of Psychology, University of Ottawa, Ottawa, Canada.
- Bruyère Research Institute, University of Ottawa, Ottawa, Canada.
| | - Galit Karpov
- School of Psychology, University of Ottawa, Ottawa, Canada
| | | | - Alex W Castro
- School of Psychology, University of Ottawa, Ottawa, Canada
| | - François Tremblay
- School of Psychology, University of Ottawa, Ottawa, Canada
- Bruyère Research Institute, University of Ottawa, Ottawa, Canada
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
32
|
Bonnesen MT, Fuglsang SA, Siebner HR, Christiansen L. The recent history of afferent stimulation modulates corticospinal excitability. Neuroimage 2022; 258:119365. [PMID: 35690256 DOI: 10.1016/j.neuroimage.2022.119365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/01/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is widely used to probe corticospinal excitability and fast sensorimotor integration in the primary motor hand area (M1-HAND). A conditioning electrical stimulus, applied to the contralateral hand, can suppress the motor evoked potential (MEP) elicited by TMS of M1-HAND when the afferent stimulus arrives in M1-HAND at the time of TMS. The magnitude of this short-latency afferent inhibition (SAI) is expressed as the ratio between the conditioned and unconditioned MEP amplitude. OBJECTIVE/HYPOTHESIS We hypothesized that corticospinal excitability and SAI are influenced by the recent history of peripheral electrical stimulation. METHODS In twenty healthy participants, we recorded MEPs from the right first dorsal interosseus muscle. MEPs were evoked by single-pulse TMS of the left M1-HAND alone (unconditioned TMS) or by TMS preceded by electrical stimulation of the right index finger ("homotopic" conditioning) or little finger ("heterotopic" conditioning). The three conditions were either pseudo-randomly intermixed or delivered in blocks in which a single condition was repeated five or ten times. MEP amplitudes and SAI magnitudes were compared using linear mixed-effect models and one-way ANOVAs. RESULTS All stimulation protocols consistently produced SAI, which was stronger after homotopic stimulation. Randomly intermingling the three stimulation conditions reduced the relative magnitude of homotopic and heterotopic SAI as opposed to blocked stimulation. The apparent attenuation of SAI was caused by a suppression of the unconditioned but not the conditioned MEP amplitude during the randomly intermixed pattern. CONCLUSION(S) The recent history of afferent stimulation modulates corticospinal excitability. This "history effect" impacts on the relative magnitude of SAI depending on how conditioned and unconditioned responses are intermixed and needs to be taken into consideration when probing afferent inhibition and corticospinal excitability.
Collapse
Affiliation(s)
- Marie Trolle Bonnesen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Søren Asp Fuglsang
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.
| |
Collapse
|
33
|
Transcranial Magnetic Stimulation Indices of Cortical Excitability Enhance the Prediction of Response to Pharmacotherapy in Late-Life Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:265-275. [PMID: 34311121 PMCID: PMC8783923 DOI: 10.1016/j.bpsc.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Older adults with late-life depression (LLD) often experience incomplete or lack of response to first-line pharmacotherapy. The treatment of LLD could be improved using objective biological measures to predict response. Transcranial magnetic stimulation (TMS) can be used to measure cortical excitability, inhibition, and plasticity, which have been implicated in LLD pathophysiology and associated with brain stimulation treatment outcomes in younger adults with depression. TMS measures have not yet been investigated as predictors of treatment outcomes in LLD or pharmacotherapy outcomes in adults of any age with depression. METHODS We assessed whether pretreatment single-pulse and paired-pulse TMS measures, combined with clinical and demographic measures, predict venlafaxine treatment response in 76 outpatients with LLD. We compared the predictive performance of machine learning models including or excluding TMS predictors. RESULTS Two single-pulse TMS measures predicted venlafaxine response: cortical excitability (neuronal membrane excitability) and the variability of cortical excitability (dynamic fluctuations in excitability levels). In cross-validation, models using a combination of these TMS predictors, clinical markers of treatment resistance, and age classified patients with 73% ± 11% balanced accuracy (average correct classification rate of responders and nonresponders; permutation testing, p < .005); these models significantly outperformed (corrected t test, p = .025) models using clinical and demographic predictors alone (60% ± 10% balanced accuracy). CONCLUSIONS These preliminary findings suggest that single-pulse TMS measures of cortical excitability may be useful predictors of response to pharmacotherapy in LLD. Future studies are needed to confirm these findings and determine whether combining TMS predictors with other biomarkers further improves the accuracy of predicting LLD treatment outcome.
Collapse
|
34
|
Maes C, Cuypers K, Peeters R, Sunaert S, Edden RAE, Gooijers J, Swinnen SP. Task-Related Modulation of Sensorimotor GABA+ Levels in Association with Brain Activity and Motor Performance: A Multimodal MRS-fMRI Study in Young and Older Adults. J Neurosci 2022; 42:1119-1130. [PMID: 34876470 PMCID: PMC8824510 DOI: 10.1523/jneurosci.1154-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest an important role of the principal inhibitory neurotransmitter GABA for motor performance in the context of aging. Nonetheless, as previous magnetic resonance spectroscopy (MRS) studies primarily reported resting-state GABA levels, much less is known about transient changes in GABA levels during motor task performance and how these relate to behavior and brain activity patterns. Therefore, we investigated GABA+ levels of left primary sensorimotor cortex (SM1) acquired before, during, and after execution of a unimanual/bimanual action selection task in 30 (human) young adults (YA; age 24.5 ± 4.1, 15 male) and 30 older adults (OA; age 67.8 ± 4.9, 14 male). In addition to task-related MRS data, task-related functional magnetic resonance imaging (fMRI) data were acquired. Behavioral results indicated lower motor performance in OA as opposed to YA, particularly in complex task conditions. MRS results demonstrated lower GABA+ levels in OA as compared with YA. Furthermore, a transient task-related decrease of GABA+ levels was observed, regardless of age. Notably, this task-induced modulation of GABA+ levels was linked to task-related brain activity patterns in SM1 such that a more profound task-induced instantaneous lowering of GABA+ was related to higher SM1 activity. Additionally, higher brain activity was related to better performance in the bimanual conditions, despite some age-related differences. Finally, the modulatory capacity of GABA+ was positively related to motor performance in OA but not YA. Together, these results underscore the importance of transient dynamical changes in neurochemical content for brain function and behavior, particularly in the context of aging.SIGNIFICANCE STATEMENT Emerging evidence designates an important role to regional GABA levels in motor control, especially in the context of aging. However, it remains unclear whether changes in GABA levels emerge when executing a motor task and how these changes relate to brain activity patterns and performance. Here, we identified a transient decrease of sensorimotor GABA+ levels during performance of an action selection task across young adults (YA) and older adults (OA). Interestingly, whereas a more profound GABA+ modulation related to higher brain activity across age groups, its association with motor performance differed across age groups. Within OA, our results highlighted a functional merit of a task-related release from inhibitory tone, i.e. lowering regional GABA+ levels was associated with task-relevant brain activity.
Collapse
Affiliation(s)
- Celine Maes
- Movement Control & Neuroplasticity Research Group, Department Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- REVAL Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek 3590, Belgium
| | - Ronald Peeters
- Translational MRI and Radiology, Department of Imaging and Pathology, KU Leuven and University Hospital Leuven, Leuven 3000, Belgium
| | - Stefan Sunaert
- Translational MRI and Radiology, Department of Imaging and Pathology, KU Leuven and University Hospital Leuven, Leuven 3000, Belgium
| | - Richard A E Edden
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21218
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21218
| | - Jolien Gooijers
- Movement Control & Neuroplasticity Research Group, Department Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
35
|
Motor cortex plasticity response to acute cardiorespiratory exercise and intermittent theta-burst stimulation is attenuated in premanifest and early Huntington’s disease. Sci Rep 2022; 12:1104. [PMID: 35058470 PMCID: PMC8776762 DOI: 10.1038/s41598-021-04378-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
AbstractHuntington’s disease (HD) mouse models suggest that cardiovascular exercise may enhance neuroplasticity and delay disease signs, however, the effects of exercise on neuroplasticity in people with HD are unknown. Using a repeated-measures experimental design, we compared the effects of a single bout of high-intensity exercise, moderate-intensity exercise, or rest, on motor cortex synaptic plasticity in 14 HD CAG-expanded participants (9 premanifest and 5 early manifest) and 20 CAG-healthy control participants, using transcranial magnetic stimulation. Measures of cortico-motor excitability, short-interval intracortical inhibition and intracortical facilitation were obtained before and after a 20-min bout of either high-intensity interval exercise, moderate-intensity continuous exercise, or rest, and again after intermittent theta burst stimulation (iTBS). HD participants showed less inhibition at baseline compared to controls. Whereas the control group showed increased excitability and facilitation following high-intensity exercise and iTBS, the HD group showed no differences in neuroplasticity responses following either exercise intensity or rest, with follow-up Bayesian analyses providing consistent evidence that these effects were absent in the HD group. These findings indicate that exercise-induced synaptic plasticity mechanisms in response to acute exercise may be attenuated in HD, and demonstrate the need for future research to further investigate exercise and plasticity mechanisms in people with HD.
Collapse
|
36
|
Hernandez CM, Hernandez AR, Hoffman JM, King PH, McMahon LL, Buford TW, Carter C, Bizon JL, Burke SN. A Neuroscience Primer for Integrating Geroscience With the Neurobiology of Aging. J Gerontol A Biol Sci Med Sci 2022; 77:e19-e33. [PMID: 34623396 PMCID: PMC8751809 DOI: 10.1093/gerona/glab301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroscience has a rich history of studies focusing on neurobiology of aging. However, much of the aging studies in neuroscience occur outside of the gerosciences. The goal of this primer is 2-fold: first, to briefly highlight some of the history of aging neurobiology and second, to introduce to geroscientists the broad spectrum of methodological approaches neuroscientists use to study the neurobiology of aging. This primer is accompanied by a corresponding geroscience primer, as well as a perspective on the current challenges and triumphs of the current divide across these 2 fields. This series of manuscripts is intended to foster enhanced collaborations between neuroscientists and geroscientists with the intent of strengthening the field of cognitive aging through inclusion of parameters from both areas of expertise.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abigail R Hernandez
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica M Hoffman
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Lori L McMahon
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas W Buford
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Christy Carter
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Bizon
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Sara N Burke
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
37
|
Neva JL, Greeley B, Chau B, Ferris JK, Jones CB, Denyer R, Hayward KS, Campbell KL, Boyd LA. Acute High-Intensity Interval Exercise Modulates Corticospinal Excitability in Older Adults. Med Sci Sports Exerc 2021; 54:673-682. [PMID: 34939609 DOI: 10.1249/mss.0000000000002839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Acute exercise can modulate the excitability of the non-exercised upper-limb representation in the primary motor cortex (M1). Measures of M1 excitability using transcranial magnetic stimulation (TMS) are modulated following various forms of acute exercise in young adults, including high intensity interval training (HIIT). However, the impact of HIIT on M1 excitability in older adults is currently unknown. Therefore, the purpose of the current study was to investigate the effects of lower-limb cycling HIIT on bilateral upper-limb M1 excitability in older adults. METHODS We assessed the impact of acute lower-limb HIIT or rest on bilateral corticospinal excitability, intracortical inhibition and facilitation, and interhemispheric inhibition of the non-exercised upper-limb muscle in healthy older adults (aged 66 ± 8). We used single and paired-pulse TMS to assess motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and the ipsilateral silent period (iSP). Two groups of healthy older adults completed either HIIT exercise or seated rest for 23 min, with TMS measures performed pre (T0), immediately post (T1) and 30 min post (T2) HIIT/rest. RESULTS MEPs were significantly increased after HIIT exercise at T2 compared to T0 in the dominant upper-limb. Contrary to our hypothesis we did not find any significant change in SICI, ICF or iSP following HIIT. CONCLUSIONS Our findings demonstrate that corticospinal excitability of the non-exercised upper-limb is increased following HIIT in healthy older adults. Our results indicate that acute HIIT exercise impacts corticospinal excitability in older adults, without affecting intracortical or interhemispheric circuitry. These findings have implications for the development of exercise strategies to potentiate neuroplasticity in healthy older and clinical populations.
Collapse
Affiliation(s)
- Jason L Neva
- University of Montreal, School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, Montreal, QC, Canada Research Center of the Montreal Geriatrics Institute (CRIUGM), Montreal, QC, Canada University of British Columbia, Department of Physical Therapy, Faculty of Medicine, Vancouver, BC, Canada University of British Columbia, Rehabilitation Research Program, Vancouver, BC, Canada University of British Columbia, Graduate Program in Neuroscience, Vancouver, BC, Canada University of Melbourne, Department of Physiotherapy, Department of Medicine, & Florey Institute of Neuroscience and Mental Health, Melbourne, Australia The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Preserved central cholinergic functioning to transcranial magnetic stimulation in de novo patients with celiac disease. PLoS One 2021. [PMID: 34914787 DOI: 10.1371/journal.pone.0261373.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Celiac disease (CD) is now viewed as a systemic disease with multifaceted clinical manifestations. Among the extra-intestinal features, neurological and neuropsychiatric symptoms are still a diagnostic challenge, since they can precede or follow the diagnosis of CD. In particular, it is well known that some adults with CD may complain of cognitive symptoms, that improve when the gluten-free diet (GFD) is started, although they may re-appear after incidental gluten intake. Among the neurophysiological techniques, motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) can non-invasively probe in vivo the excitation state of cortical areas and cortico-spinal conductivity, being also able to unveil preclinical impairment in several neurological and psychiatric disorders, as well as in some systemic diseases affecting the central nervous system (CNS), such as CD. We previously demonstrated an intracortical disinhibition and hyperfacilitation of MEP responses to TMS in newly diagnosed patients. However, no data are available on the central cholinergic functioning indexed by specific TMS measures, such as the short-latency afferent inhibition (SAI), which might represent the neurophysiological correlate of cognitive changes in CD patients, also at the preclinical level. METHODS Cognitive and depressive symptoms were screened by means of the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively, in 15 consecutive de novo CD patients and 15 healthy controls. All patients were on normal diet at the time of the enrolment. Brain computed tomography (CT) was performed in all patients. SAI, recorded at two interstimulus intervals (2 and 8 ms), was assessed as the percentage amplitude ratio between the conditioned and the unconditioned MEP response. Resting motor threshold, MEP amplitude and latency, and central motor conduction time were also measured. RESULTS The two groups were comparable for age, sex, anthropometric features, and educational level. Brain CT ruled out intracranial calcifications and clear radiological abnormalities in all patients. Scores at MoCA and HDRS were significantly worse in patients than in controls. The comparison of TMS data between the two groups revealed no statistically significant difference for all measures, including SAI at both interstimulus intervals. CONCLUSIONS Central cholinergic functioning explored by the SAI of the motor cortex resulted to be not affected in these de novo CD patients compared to age-matched healthy controls. Although the statistically significant difference in MoCA, an overt cognitive impairment was not clinically evident in CD patients. Coherently, to date, no study based on TMS or other diagnostic techniques has shown any involvement of the central acetylcholine or the cholinergic fibers within the CNS in CD. This finding might add support to the vascular inflammation hypothesis underlying the so-called "gluten encephalopathy", which seems to be due to an aetiology different from that of the cholinergic dysfunction. Longitudinal studies correlating clinical, TMS, and neuroimaging data, both before and after GFD, are needed.
Collapse
|
39
|
The distribution and reliability of TMS-evoked short- and long-latency afferent interactions. PLoS One 2021; 16:e0260663. [PMID: 34905543 PMCID: PMC8670708 DOI: 10.1371/journal.pone.0260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/13/2021] [Indexed: 11/30/2022] Open
Abstract
Short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI) occur when the motor evoked potential (MEP) elicited by transcranial magnetic stimulation (TMS) is reduced by the delivery of a preceding peripheral nerve stimulus. The intra-individual variability in SAI and LAI is considerable, and the influence of sample demographics (e.g., age and biological sex) and testing context (e.g., time of day) is not clear. There are also no established normative values for these measures, and their reliability varies from study-to-study. To address these issues and facilitate the interpretation of SAI and LAI research, we pooled data from studies published by our lab between 2014 and 2020 and performed several retrospective analyses. Patterns in the depth of inhibition with respect to age, biological sex and time of testing were investigated, and the relative reliability of measurements from studies with repeated baseline SAI and LAI assessments was examined. Normative SAI and LAI values with respect to the mean and standard deviation were also calculated. Our data show no relationship between the depth of inhibition for SAI and LAI with either time of day or age. Further, there was no significant difference in SAI or LAI between males and females. Intra-class correlation coefficients (ICC) for repeated measurements of SAI and LAI ranged from moderate (ICC = 0.526) to strong (ICC = 0.881). The mean value of SAI was 0.71 ± 0.27 and the mean value of LAI was 0.61 ± 0.34. This retrospective study provides normative values, reliability estimates, and an exploration of demographic and testing influences on these measures as assessed in our lab. To further facilitate the interpretation of SAI and LAI data, similar studies should be performed by other labs that use these measures.
Collapse
|
40
|
Petitet P, Spitz G, Emir UE, Johansen-Berg H, O'Shea J. Age-related decline in cortical inhibitory tone strengthens motor memory. Neuroimage 2021; 245:118681. [PMID: 34728243 PMCID: PMC8752967 DOI: 10.1016/j.neuroimage.2021.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/02/2022] Open
Abstract
Ageing disrupts the finely tuned excitation/inhibition balance (E:I) across cortex via a natural decline in inhibitory tone (γ-amino butyric acid, GABA), causing functional decrements. However, in young adults, experimentally lowering GABA in sensorimotor cortex enhances a specific domain of sensorimotor function: adaptation memory. Here, we tested the hypothesis that as sensorimotor cortical GABA declines naturally with age, adaptation memory would increase, and the former would explain the latter. Results confirmed this prediction. To probe causality, we used brain stimulation to further lower sensorimotor cortical GABA during adaptation. Across individuals, how stimulation changed memory depended on sensorimotor cortical E:I. In those with low E:I, stimulation increased memory; in those with high E:I stimulation reduced memory. Thus, we identified a form of motor memory that is naturally strengthened by age, depends causally on sensorimotor cortex neurochemistry, and may be a potent target for motor skill preservation strategies in healthy ageing and neurorehabilitation.
Collapse
Affiliation(s)
- Pierre Petitet
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Centre de Recherche en Neurosciences de Lyon, Equipe Trajectoires, Inserm UMR-S 1028, CNRS UMR 5292, Université Lyon 1, Bron, France.
| | - Gershon Spitz
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxford, United Kingdom.
| |
Collapse
|
41
|
Zadey S, Buss SS, McDonald K, Press DZ, Pascual-Leone A, Fried PJ. Higher motor cortical excitability linked to greater cognitive dysfunction in Alzheimer's disease: results from two independent cohorts. Neurobiol Aging 2021; 108:24-33. [PMID: 34479168 PMCID: PMC8616846 DOI: 10.1016/j.neurobiolaging.2021.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
Prior studies have reported increased cortical excitability in people with Alzheimer's disease (AD), but findings have been inconsistent, and how excitability relates to dementia severity remains incompletely understood. The objective of this study was to investigate the association between a transcranial magnetic stimulation (TMS) measure of motor cortical excitability and measures of cognition in AD. A retrospective cross-sectional analysis tested the relationship between resting motor threshold (RMT) and the Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog) across two independent samples of AD participants (a discovery cohort, n=22 and a larger validation cohort, n=129) and a control cohort of cognitively normal adults (n=26). RMT was correlated with ADAS-Cog in the discovery-AD cohort (n=22, β=-.70, p<0.001) but not in the control cohort (n=26, β=-0.13, p=0.513). This relationship was confirmed in the validation-AD cohort (n=129, β=-.35, p<0.001). RMT can be a useful neurophysiological marker of progressive global cognitive dysfunction in AD. Future translational research should focus on the potential of RMT to predict and track individual pathophysiological trajectories of aging.
Collapse
Affiliation(s)
- Siddhesh Zadey
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Indian Institute of Science Education and Research, Pune, India; Duke Global Health Institute, Duke University, Durham, NC, USA; Association for Socially Applicable Research (ASAR), Pune, India
| | - Stephanie S Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Katherine McDonald
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA
| | - Daniel Z Press
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Badalona, Spain; Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew Senior Life, Harvard Medical School, Boston, Massachusetts, USA.
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
43
|
Biological sex differences in afferent-mediated inhibition of motor responses evoked by TMS. Brain Res 2021; 1771:147657. [PMID: 34509460 DOI: 10.1016/j.brainres.2021.147657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Sensorimotor integration can be assessed by pairing electrical peripheral nerve stimulation with transcranial magnetic stimulation (TMS). The resulting afferent inhibition is observed when TMS precedes nerve stimulation by ∼ 20-25 ms, termed short-latency afferent inhibition (SAI), or by 200 ms, termed long-latency afferent inhibition (LAI). The purpose of this study was to determine whether biological sex influences the magnitude of SAI or LAI. SAI and LAI were assessed in fifteen males (21.5 ± 2.7 years) and fifteen females (20.2 ± 2.3 years). TMS was delivered to the primary motor cortex (M1) following stimulation of the contralateral median nerve at the wrist or digital nerve of the index finger, and motor-evoked potentials (MEPs) were obtained from the right first dorsal interosseous (FDI) muscle. SAI evoked by median and digital nerve stimulation, and LAI evoked by median nerve stimulation, were not different between males and females. LAI evoked by digital nerve stimulation was increased in females compared to males, but this difference between sexes was no longer present following the removal of datapoints where inhibition was not observed. This study is the first to investigate biological sex differences in afferent inhibition.
Collapse
|
44
|
Brisson V, Tremblay P. Improving speech perception in noise in young and older adults using transcranial magnetic stimulation. BRAIN AND LANGUAGE 2021; 222:105009. [PMID: 34425411 DOI: 10.1016/j.bandl.2021.105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Normal aging is associated with speech perception in noise (SPiN) difficulties. The objective of this study was to determine if SPiN performance can be enhanced by intermittent theta-burst stimulation (iTBS) in young and older adults. METHOD We developed a sub-lexical SPiN test to evaluate the contribution of age, hearing, and cognition to SPiN performance in young and older adults. iTBS was applied to the left posterior superior temporal sulcus (pSTS) and the left ventral premotor cortex (PMv) to examine its impact on SPiN performance. RESULTS Aging was associated with reduced SPiN accuracy. TMS-induced performance gain was greater after stimulation of the PMv compared to the pSTS. Participants with lower scores in the baseline condition improved the most. DISCUSSION SPiN difficulties can be reduced by enhancing activity within the left speech-processing network in adults. This study paves the way for the development of TMS-based interventions to reduce SPiN difficulties in adults.
Collapse
Affiliation(s)
- Valérie Brisson
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada
| | - Pascale Tremblay
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada.
| |
Collapse
|
45
|
Radetz A, Mladenova K, Ciolac D, Gonzalez-Escamilla G, Fleischer V, Ellwardt E, Krämer J, Bittner S, Meuth SG, Muthuraman M, Groppa S. Linking Microstructural Integrity and Motor Cortex Excitability in Multiple Sclerosis. Front Immunol 2021; 12:748357. [PMID: 34712236 PMCID: PMC8546169 DOI: 10.3389/fimmu.2021.748357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Motor skills are frequently impaired in multiple sclerosis (MS) patients following grey and white matter damage with cortical excitability abnormalities. We applied advanced diffusion imaging with 3T magnetic resonance tomography for neurite orientation dispersion and density imaging (NODDI), as well as diffusion tensor imaging (DTI) in 50 MS patients and 49 age-matched healthy controls to quantify microstructural integrity of the motor system. To assess excitability, we determined resting motor thresholds using non-invasive transcranial magnetic stimulation. As measures of cognitive-motor performance, we conducted neuropsychological assessments including the Nine-Hole Peg Test, Trail Making Test part A and B (TMT-A and TMT-B) and the Symbol Digit Modalities Test (SDMT). Patients were evaluated clinically including assessments with the Expanded Disability Status Scale. A hierarchical regression model revealed that lower neurite density index (NDI) in primary motor cortex, suggestive for axonal loss in the grey matter, predicted higher motor thresholds, i.e. reduced excitability in MS patients (p = .009, adjusted r² = 0.117). Furthermore, lower NDI was indicative of decreased cognitive-motor performance (p = .007, adjusted r² = .142 for TMT-A; p = .009, adjusted r² = .129 for TMT-B; p = .006, adjusted r² = .142 for SDMT). Motor WM tracts of patients were characterized by overlapping clusters of lowered NDI (p <.05, Cohen's d = 0.367) and DTI-based fractional anisotropy (FA) (p <.05, Cohen's d = 0.300), with NDI exclusively detecting a higher amount of abnormally appearing voxels. Further, orientation dispersion index of motor tracts was increased in patients compared to controls, suggesting a decreased fiber coherence (p <.05, Cohen's d = 0.232). This study establishes a link between microstructural characteristics and excitability of neural tissue, as well as cognitive-motor performance in multiple sclerosis. We further demonstrate that the NODDI parameters neurite density index and orientation dispersion index detect a larger amount of abnormally appearing voxels in patients compared to healthy controls, as opposed to the classical DTI parameter FA. Our work outlines the potential for microstructure imaging using advanced biophysical models to forecast excitability alterations in neuroinflammation.
Collapse
Affiliation(s)
- Angela Radetz
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kalina Mladenova
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dumitru Ciolac
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chişinău, Moldova
- Department of Neurology, Institute of Emergency Medicine, Chişinău, Moldova
| | - Gabriel Gonzalez-Escamilla
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vinzenz Fleischer
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Erik Ellwardt
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia Krämer
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stefan Bittner
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sven G. Meuth
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
- Department of Neurology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Muthuraman Muthuraman
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
46
|
Physical activity, motor performance and skill learning: a focus on primary motor cortex in healthy aging. Exp Brain Res 2021; 239:3431-3438. [PMID: 34499187 DOI: 10.1007/s00221-021-06218-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
Participation in physical activity benefits brain health and function. Cognitive function generally demonstrates a noticeable effect of physical activity, but much less is known about areas responsible for controlling movement, such as primary motor cortex (M1). While more physical activity may support M1 plasticity in older adults, the neural mechanisms underlying this beneficial effect remain poorly understood. Aging is inevitably accompanied by diminished motor performance, and the extent of plasticity may also be less in older adults compared with young. Motor complications with aging may, perhaps unsurprisingly, contribute to reduced physical activity in older adults. While the development of non-invasive brain stimulation techniques have identified that human M1 is a crucial site for learning motor skills and recovery of motor function after injury, a considerable lack of knowledge remains about how physical activity impacts M1 with healthy aging. Reducing impaired neural activity in older adults may have important implications after neurological insult, such as stroke, which is more common with advancing age. Therefore, a better understanding about the effects of physical activity on M1 processes and motor learning in older adults may promote healthy aging, but also allow us to facilitate recovery of motor function after neurological injury. This article will initially provide a brief overview of the neurophysiology of M1 in the context of learning motor skills, with a focus on healthy aging in humans. This information will then be proceeded by a more detailed assessment that focuses on whether physical activity benefits motor function and human M1 processes.
Collapse
|
47
|
Altered motor cortical plasticity in patients with hepatic encephalopathy: A paired associative stimulation study. Clin Neurophysiol 2021; 132:2332-2341. [PMID: 34454259 DOI: 10.1016/j.clinph.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatic encephalopathy (HE) is a potentially reversible brain dysfunction caused by liver failure. Altered synaptic plasticity is supposed to play a major role in the pathophysiology of HE. Here, we used paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), a transcranial magnetic stimulation (TMS) protocol, to test synaptic plasticity of the motor cortex in patients with manifest HE. METHODS 23 HE-patients and 23 healthy controls were enrolled in the study. Motor evoked potential (MEP) amplitudes were assessed as measure for cortical excitability. Time courses of MEP amplitude changes after the PAS25 intervention were compared between both groups. RESULTS MEP-amplitudes increased after PAS25 in the control group, indicating PAS25-induced synaptic plasticity in healthy controls, as expected. In contrast, MEP-amplitudes within the HE group did not change and were lower than in the control group, indicating no induction of plasticity. CONCLUSIONS Our study revealed reduced synaptic plasticity of the primary motor cortex in HE. SIGNIFICANCE Reduced synaptic plasticity in HE provides a link between pathological changes on the molecular level and early clinical symptoms of the disease. This decrease may be caused by disturbances in the glutamatergic neurotransmission due to the known hyperammonemia in HE patients.
Collapse
|
48
|
Gasparini S, Ferlazzo E, Gigli G, Pauletto G, Nilo A, Lettieri C, Bilo L, Labate A, Fortunato F, Varrasi C, Cantello R, D'Aniello A, Gennaro GD, d'Orsi G, Sabetta A, Claudio MTD, Avolio C, Dono F, Evangelista G, Cavalli SM, Cianci V, Ascoli M, Mastroianni G, Lobianco C, Neri S, Mercuri S, Mammì A, Gambardella A, Beghi E, Torino C, Tripepi G, Aguglia U. Predictive factors of Status Epilepticus and its recurrence in patients with adult-onset seizures: A multicenter, long follow-up cohort study. Seizure 2021; 91:397-401. [PMID: 34298459 DOI: 10.1016/j.seizure.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Status epilepticus (SE) is associated with high morbidity and mortality. This multicenter retrospective cohort study aims to identify the factors associated with the occurrence of SE and the predictors of its recurrence in patients with adult-onset seizures. METHODS We retrospectively analyzed data of 1115 patients with seizure onset>18 years, observed from 1983 to 2020 in 7 Italian Centers (median follow-up 2.1 years). Data were collected from the databases of the Centers. Patients with SE were consecutively recruited, and patients without SE history were randomly selected in a 2:1 ratio. To assess determinants of SE, different clinical-demographic variables were evaluated and included in univariate and multivariate logistic regression model. RESULTS Three hundred forty-seven patients had a SE history, whereas the remaining 768 patients had either isolated seizures or epilepsy without SE history. The occurrence of SE was independently associated with increasing age at onset of disease (OR 1.02, 95% CI 1.01--1.03, p<0.001), female sex (OR 1.39, 95% CI 1.05--1.83, p=0.02) and known etiology (OR 3.58, 95% CI 2.61--4.93, p<0.001). SE recurred in 21% of patients with adult-onset SE and recurrence was associated with increasing number of anti-seizure medications taken at last follow-up (OR 1.88, 95% CI 1.31--2.71, p<0.001). CONCLUSIONS In patients with adult-onset seizures, SE occurrence is associated with known etiologies, advanced age and female sex. Patients with recurrent SE are likely to have a refractory epilepsy, deserving careful treatment to prevent potentially fatal events.
Collapse
Affiliation(s)
- Sara Gasparini
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan Hospital, Bianchi-Melacrino Morelli, Reggio Calabria, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan Hospital, Bianchi-Melacrino Morelli, Reggio Calabria, Italy
| | - Gianluigi Gigli
- Department of Medicine (DAME), University of Udine Medical School, Udine, Italy and Clinical Neurology, Department of Neurosciences, S. Maria della Misericordia University Hospital, Udine, Italy; Clinical Neurology, Department of Neurosciences, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Annacarmen Nilo
- Clinical Neurology, Department of Neurosciences, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Christian Lettieri
- Neurology Unit, Department of Neurosciences, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Leonilda Bilo
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University "Federico II", Napoli, Italy
| | - Angelo Labate
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| | - Francesco Fortunato
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| | - Claudia Varrasi
- Neurology Unit, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Roberto Cantello
- Neurology Unit, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alfredo D'Aniello
- Centre for epilepsy study and treatment, IRCCS "Neuromed", Pozzilli (IS), Italy
| | | | - Giuseppe d'Orsi
- Epilepsy Centre-S.C. Neurologia Universitaria, Policlinico Riuniti, Foggia, Italy
| | - Annarita Sabetta
- Epilepsy Centre-S.C. Neurologia Universitaria, Policlinico Riuniti, Foggia, Italy
| | - Maria T Di Claudio
- Epilepsy Centre-S.C. Neurologia Universitaria, Policlinico Riuniti, Foggia, Italy
| | - Carlo Avolio
- Epilepsy Centre-S.C. Neurologia Universitaria, Policlinico Riuniti, Foggia, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, "D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Sciences, "D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Salvatore M Cavalli
- Regional Epilepsy Centre, Great Metropolitan Hospital, Bianchi-Melacrino Morelli, Reggio Calabria, Italy
| | - Vittoria Cianci
- Regional Epilepsy Centre, Great Metropolitan Hospital, Bianchi-Melacrino Morelli, Reggio Calabria, Italy
| | - Michele Ascoli
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan Hospital, Bianchi-Melacrino Morelli, Reggio Calabria, Italy
| | - Giovanni Mastroianni
- Regional Epilepsy Centre, Great Metropolitan Hospital, Bianchi-Melacrino Morelli, Reggio Calabria, Italy
| | - Concetta Lobianco
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan Hospital, Bianchi-Melacrino Morelli, Reggio Calabria, Italy
| | - Sabrina Neri
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan Hospital, Bianchi-Melacrino Morelli, Reggio Calabria, Italy
| | - Sergio Mercuri
- Regional Epilepsy Centre, Great Metropolitan Hospital, Bianchi-Melacrino Morelli, Reggio Calabria, Italy
| | - Anna Mammì
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| | - Ettore Beghi
- Laboratory of Neurological Disorders IRCCS "Mario Negri", Milan, Italy
| | - Claudia Torino
- Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, National Council of Research, Institute of Clinical Physiology, Reggio Calabria, Italy
| | - Giovanni Tripepi
- Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, National Council of Research, Institute of Clinical Physiology, Reggio Calabria, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan Hospital, Bianchi-Melacrino Morelli, Reggio Calabria, Italy.
| | | |
Collapse
|
49
|
Age-related changes in motor cortex plasticity assessed with non-invasive brain stimulation: an update and new perspectives. Exp Brain Res 2021; 239:2661-2678. [PMID: 34269850 DOI: 10.1007/s00221-021-06163-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
It is commonly accepted that the brains capacity to change, known as plasticity, declines into old age. Recent studies have used a variety of non-invasive brain stimulation (NIBS) techniques to examine this age-related decline in plasticity in the primary motor cortex (M1), but the effects seem inconsistent and difficult to unravel. The purpose of this review is to provide an update on studies that have used different NIBS techniques to assess M1 plasticity with advancing age and offer some new perspective on NIBS strategies to boost plasticity in the ageing brain. We find that early studies show clear differences in M1 plasticity between young and older adults, but many recent studies with motor training show no decline in use-dependent M1 plasticity with age. For NIBS-induced plasticity in M1, some protocols show more convincing differences with advancing age than others. Therefore, our view from the NIBS literature is that it should not be automatically assumed that M1 plasticity declines with age. Instead, the effects of age are likely to depend on how M1 plasticity is measured, and the characteristics of the elderly population tested. We also suggest that NIBS performed concurrently with motor training is likely to be most effective at producing improvements in M1 plasticity and motor skill learning in older adults. Proposed NIBS techniques for future studies include combining multiple NIBS protocols in a co-stimulation approach, or NIBS strategies to modulate intracortical inhibitory mechanisms, in an effort to more effectively boost M1 plasticity and improve motor skill learning in older adults.
Collapse
|
50
|
Guder S, Frey BM, Backhaus W, Braass H, Timmermann JE, Gerloff C, Schulz R. The Influence of Cortico-Cerebellar Structural Connectivity on Cortical Excitability in Chronic Stroke. Cereb Cortex 2021; 30:1330-1344. [PMID: 31647536 DOI: 10.1093/cercor/bhz169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022] Open
Abstract
Brain imaging has recently evidenced that the structural state of distinct reciprocal cortico-cerebellar fiber tracts, the dentato-thalamo-cortical tract (DTCT), and the cortico-ponto-cerebellar tract (CPCeT), significantly influences residual motor output in chronic stroke patients, independent from the level of damage to the corticospinal tract (CST). Whether such structural information might also directly relate to measures of cortical excitability is an open question. Eighteen chronic stroke patients with supratentorial ischemic lesions and 17 healthy controls underwent transcranial magnetic stimulation to assess recruitment curves of motor evoked potentials of both hemispheres. Diffusion-weighted imaging and probabilistic tractography were applied to reconstruct reciprocal cortico-cerebellar motor tracts between the primary motor cortex and the cerebellum. Tract-related microstructure was estimated by means of fractional anisotropy, and linear regression modeling was used to relate it to cortical excitability. The main finding was a significant association between cortical excitability and the structural integrity of the DTCT, the main cerebellar outflow tract, independent from the level of damage to the CST. A comparable relationship was neither detectable for the CPCeT nor for the healthy controls. This finding contributes to a mechanistic understanding of the putative supportive role of the cerebellum for residual motor output by facilitating cortical excitability after stroke.
Collapse
Affiliation(s)
- Stephanie Guder
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Winifried Backhaus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hanna Braass
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jan E Timmermann
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|