1
|
Wang D, Xia L, Zhang Z, Guo J, Tian Y, Zhou H, Xiu M, Chen D, Zhang XY. Association of P50 with social function, but not with cognition in patients with first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024; 274:1375-1384. [PMID: 37966511 DOI: 10.1007/s00406-023-01711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/15/2023] [Indexed: 11/16/2023]
Abstract
Functional deficits including cognitive impairment and social dysfunction are the core symptoms of schizophrenia (SCZ), and sensory gating (SG) deficits may be involved in the pathological mechanism of functional deficits in SCZ. This study was to investigate the relationship between defective P50 inhibition and functional deficits in first-episode drug naïve (FEDN) SCZ patients. A total of 95 FEDN SCZ patients and 53 healthy controls (HC) were recruited. The Chinese version of UCSD Performance-Based Skills (UPSA), MATRICS Consensus Cognitive Battery (MCCB), and EEG system were used to assess the social function, cognitive performance, and P50 inhibition, respectively. The MCCB total score and eight domain scores were significantly lower in patients with FEDN SCZ than those in HC (all p < 0.05). The UPSA total score and financial skills scores were also significantly lower in SCZ patients than that in the HC (all p < 0.05). Compared with HC, patients with FEDF SCZ had a higher P50 ratio (all p < 0.05). There was no correlation between P50 components and MCCB scores in patients with FEDF SCZ. However, there was only a correlation between the P50 ratio and UPSA financial skills, communication skills, or total score in patients (all p < 0.05). Defective P50 inhibition in FEDN SCZ patients may be associated with social dysfunction but not cognitive impairment, suggesting that the social dysfunction and cognitive impairment of patients with FEDN SCZ may have different pathogenic mechanisms.
Collapse
Affiliation(s)
- Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Luyao Xia
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqi Zhang
- Department of Psychology, Barnard College of Columbia University, New York, NY, USA
| | - Junru Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, Guizhou Minzu University, Guiyang, China
| | - Yang Tian
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huixia Zhou
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Dachun Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Besso L, Larivière S, Roes M, Sanford N, Percival C, Damascelli M, Momeni A, Lavigne K, Menon M, Aleman A, Ćurčić-Blake B, Woodward TS. Hypoactivation of the language network during auditory imagery contributes to hallucinations in Schizophrenia. Psychiatry Res Neuroimaging 2024; 341:111824. [PMID: 38754348 DOI: 10.1016/j.pscychresns.2024.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Auditory verbal hallucinations (AVHs) involve perceptions, often voices, in the absence of external stimuli, and rank among the most common symptoms of schizophrenia. Metrical stress evaluation requires determination of the stronger syllable in words, and therefore requires auditory imagery, of interest for investigation of hallucinations in schizophrenia. The current functional magnetic resonance imaging study provides an updated whole-brain network analysis of a previously published study on metrical stress, which showed reduced directed connections between Broca's and Wernicke's regions of interest (ROIs) for hallucinations. Three functional brain networks were extracted, with the language network (LN) showing an earlier and shallower blood-oxygen-level dependent (BOLD) response for hallucinating patients, in the auditory imagery condition only (the reduced activation for hallucinations observed in the original ROI-based results were not specific to the imagery condition). This suggests that hypoactivation of the LN during internal auditory imagery may contribute to the propensity to hallucinate. This accords with cognitive accounts holding that an impaired balance between internal and external linguistic processes (underactivity in networks involved in internal auditory imagery and overactivity in networks involved in speech perception) contributes to our understanding of the biological underpinnings of hallucinations.
Collapse
Affiliation(s)
- Luca Besso
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Sara Larivière
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meighen Roes
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Sanford
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Chantal Percival
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matteo Damascelli
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ava Momeni
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Katie Lavigne
- Douglas Research Centre, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Todd S Woodward
- BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Davidson A, Souza P. Relationships Between Auditory Processing and Cognitive Abilities in Adults: A Systematic Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:296-345. [PMID: 38147487 DOI: 10.1044/2023_jslhr-22-00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
PURPOSE The contributions from the central auditory and cognitive systems play a major role in communication. Understanding the relationship between auditory and cognitive abilities has implications for auditory rehabilitation for clinical patients. The purpose of this systematic review is to address the question, "In adults, what is the relationship between central auditory processing abilities and cognitive abilities?" METHOD Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to identify, screen, and determine eligibility for articles that addressed the research question of interest. Medical librarians and subject matter experts assisted in search strategy, keyword review, and structuring the systematic review process. To be included, articles needed to have an auditory measure (either behavioral or electrophysiologic), a cognitive measure that assessed individual ability, and the measures needed to be compared to one another. RESULTS Following two rounds of identification and screening, 126 articles were included for full analysis. Central auditory processing (CAP) measures were grouped into categories (behavioral: speech in noise, altered speech, temporal processing, binaural processing; electrophysiologic: mismatch negativity, P50, N200, P200, and P300). The most common CAP measures were sentence recognition in speech-shaped noise and the P300. Cognitive abilities were grouped into constructs, and the most common construct was working memory. The findings were mixed, encompassing both significant and nonsignificant relationships; therefore, the results do not conclusively establish a direct link between CAP and cognitive abilities. Nonetheless, several consistent relationships emerged across different domains. Distorted or noisy speech was related to working memory or processing speed. Auditory temporal order tasks showed significant relationships with working memory, fluid intelligence, or multidomain cognitive measures. For electrophysiology, relationships were observed between some cortical evoked potentials and working memory or executive/inhibitory processes. Significant results were consistent with the hypothesis that assessments of CAP and cognitive processing would be positively correlated. CONCLUSIONS Results from this systematic review summarize relationships between CAP and cognitive processing, but also underscore the complexity of these constructs, the importance of study design, and the need to select an appropriate measure. The relationship between auditory and cognitive abilities is complex but can provide informative context when creating clinical management plans. This review supports a need to develop guidelines and training for audiologists who wish to consider individual central auditory and cognitive abilities in patient care. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24855174.
Collapse
|
4
|
Wang D, Xia L, Zhang Z, Camkurt MA, Issac A, Wu E, Xiu M, Chen D, Zhang XY. Sex difference in association between cognitive and P50 deficits in patients with chronic schizophrenia. Arch Womens Ment Health 2023; 26:793-801. [PMID: 37673838 DOI: 10.1007/s00737-023-01367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
A large number of studies have reported that sensory gating disorders represented by P50 inhibition may be involved in the pathophysiological process of schizophrenia. However, few studies have explored the relationship between sensory gating disorders and cognitive dysfunction in patients with schizophrenia. This study aimed to explore sex differences in the relationship between cognitive and P50 deficits in patients with chronic schizophrenia, which has not been reported. A total of 183 chronic schizophrenia patients (128 males and 55 females) and 166 healthy controls (76 males and 90 females) participated in this study. The MATRICS Consensus Cognitive Battery (MCCB) was measured for cognitive function and P50 components for the sensory gating in all participants. The Positive and Negative Syndrome Scales (PANSS) was used to assess the psychopathological symptoms in patients. Female patients performed significantly better than male patients in several cognitive domains of MCCB (all p < 0.01). There were no significant differences in P50 components between male and female patients (all p > 0.05). Further analysis showed that in female patients, latency of S2 was negatively correlated with reasoning and problem-solving domain of MCCB (p < 0.05), and P50 ratio was negatively correlated with social cognition domain of MCCB (p < 0.05). In male patients, there was no any correlation between P50 and cognitive domains of MCCB. Our results suggest that there is a sex difference in the association between P50 deficiency and cognitive impairment in Chinese Han patients with schizophrenia.
Collapse
Affiliation(s)
- Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, 100101, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Luyao Xia
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, 100101, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqi Zhang
- Department of Psychology, Barnard College, Columbia University, New York, NY, USA
| | - Mehmet A Camkurt
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aaron Issac
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Emily Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Dachun Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, 100101, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
P50 sensory gating, cognitive deficits and depressive symptoms in first-episode antipsychotics-naïve schizophrenia. J Affect Disord 2023; 324:153-161. [PMID: 36587903 DOI: 10.1016/j.jad.2022.12.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Sensory gating P50 (SG-P50) may be involved in the pathophysiological mechanisms of impaired cognition in schizophrenia (SCZ). Comorbid depressive symptoms are common in SCZ patients and are also found to be associated with their cognitive impairment. However, it is unclear whether SG-P50 is abnormal in first episode antipsychotics naïve (FEAN) SCZ patients with depressive symptoms. Our aimed to investigate the relationships between SG-P50, depressive symptoms and neurocognition in FEAN-SCZ patients. METHODS We recruited 103 FEAN-SCZ patients (depression: n = 63; non-depression: n = 40) and 55 healthy controls. SG-P50 was measured using the standard auditory dual-click (S1&S2) paradigm. Clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) and the Hamilton Depression Rating Scale-17 (HDRS-17). Cognitive performance was evaluated using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS Compared with non-depressive patients, depressive patients had a significantly larger S2 amplitude (p = 0.005) and a higher S2/S1 ratio at trend level (p = 0.075) after corrected. There were significant differences in the scores of CPT-IP and Mazes (NAB) between depressive and non-depressive FEAN-SCZ patients (both p values < 0.05). For all patients, the SG-P50 S2/S1 ratio was significantly correlated with HDRS-17 score (r = 0.23, p = 0.020) and MCCB-Symbol coding (r = -0.16, p = 0.043). For depressive FEAN-SCZ patients, S2 amplitude was an independent predictor of the MCCB-Mazes (NAB) (β = -0.31, t = -2.52, p = 0.015). CONCLUSIONS SG-P50 deficit may be an informational biomarker for depressive symptoms and neurocognitive impairments in FEAN-SCZ patients.
Collapse
|
6
|
Lang X, Wang D, Zhou H, Wang L, Kosten TR, Zhang XY. P50 inhibition defects, psychopathology and gray matter volume in patients with first-episode drug-naive schizophrenia. Asian J Psychiatr 2023; 80:103421. [PMID: 36563611 DOI: 10.1016/j.ajp.2022.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sensory gating deficits and gray matter volume (GMV) abnormalities have been found to be associated with the pathogenesis and psychopathology of patients with schizophrenia (SCZ). However, no studies have investigated their interrelationship in first-episode treatment-naive (FETN) SCZ patients. METHODS We recruited 52 FETN SCZ patients and 57 healthy controls. The Positive and Negative Syndrome Scale (PANSS) was used to measure the psychopathology of the patients. We collected magnetic resonance imaging and P50 inhibition data from all participants. RESULTS Compared to healthy controls, patients had shorter S1 and S2 latencies but larger S2 amplitudes and P50 ratio (Bonferroni adjusted all p < 0.01). In patients, S2 latency was independently associated with PANSS total score, negative symptoms and general psychopathology (t = 2.26-2.58, both P < 0.05), whereas S1 (t = 2.44, P < 0.05) and S2 latencies (t = 2.13, P < 0.05) were associated with PANSS cognitive factor. Moreover, GMV in the left inferior temporal gyrus, left lingual gyrus and right superior occipital gyrus, and bilateral dorsolateral superior frontal gyrus were each associated with the P50 components (all p < 0.05). In addition, GMV associated with S2 latency was negatively correlated with PANSS general psychopathology (t = -2.46, p < 0.05) and total score (t = -2.34, p < 0.05). CONCLUSIONS Our findings indicate that FETN SCZ patients exhibit deficits in P50 inhibition and GMV of brain regions associated with these deficits may be associated with their psychopathological symptoms, suggesting that brain structures associated with P50 components may be important biomarkers of SCZ psychopathology. Future studies could use a prospective longitudinal design to investigate the potential causal relationship of brain structures associated with P50 components in the psychopathological symptoms of SCZ patients.
Collapse
Affiliation(s)
- XiaoE Lang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huixia Zhou
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Thomas R Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Linnhoff S, Haghikia A, Zaehle T. Cognitive fatigue-related sensory gating deficits in people with multiple sclerosis. Neurobiol Dis 2023; 176:105950. [PMID: 36493977 DOI: 10.1016/j.nbd.2022.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cognitive fatigue is highly prevalent in people with multiple sclerosis (pwMS) and significantly limits their quality of life. Fatigue can be subdivided into a subjective feeling of constant (trait) or current (state) exhaustion, as well as an objective performance decline, also known as fatigability. However, the current fatigue diagnosis in pwMS is purely subjective, leaving fatigability mostly unattended. Sensorimotor and sensory gating deficits have recently been described as possible objective markers for fatigability in healthy subjects. Thus, this study aimed to investigate the potential of prepulse inhibition (PPI) ratios and the P50 sensory gating suppression as surrogate markers for cognitive fatigue in pwMS. METHODS PPI and P50 sensory gating ratios were assessed before and after a 30-min fatigability-inducing AX- continuous performance task. Subjective trait fatigue was operationalized via self-report questionnaires, subjective state fatigue via visual analog scales (VAS), and fatigability via the change in both gating ratios. The data were analyzed using Linear Mixed Models and Pearson correlations. RESULTS We included 18 pwMS and 20 healthy controls (HC) in the final analyses. The task-induced fatigability was more pronounced in pwMS. While the initial PPI and P50 ratios were similar in both groups, P50 sensory gating was significantly disrupted after fatigability induction in pwMS. PPI, on the other hand, decreased in both groups. Moreover, initial P50 sensory gating ratios were negatively associated with subjective trait fatigue in pwMS, indicating that higher trait fatigue is associated with disrupted sensory gating. Finally, fatigability-related changes in P50 sensory gating were associated with the changes in VAS ratings, but only in HC. CONCLUSIONS This study demonstrated that P50 sensory gating is a promising objective fatigue and fatigability parameter. Importantly, P50 sensory gating correlated with subjective trait and state fatigue ratings. Our results extend the subjective fatigue diagnosis and broaden the understanding of pathophysiological neuronal mechanisms in MS-related fatigue. This is the first study to present fatigue-related disruption of sensory gating in pwMS.
Collapse
Affiliation(s)
- Stefanie Linnhoff
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Leipziger Street 44, Magdeburg 39120, Germany
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Leipziger Street 44, Magdeburg 39120, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Leipziger Street 44, Magdeburg 39120, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany.
| |
Collapse
|
8
|
Perrottelli A, Giordano GM, Brando F, Giuliani L, Pezzella P, Mucci A, Galderisi S. Unveiling the Associations between EEG Indices and Cognitive Deficits in Schizophrenia-Spectrum Disorders: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12092193. [PMID: 36140594 PMCID: PMC9498272 DOI: 10.3390/diagnostics12092193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive dysfunctions represent a core feature of schizophrenia-spectrum disorders due to their presence throughout different illness stages and their impact on functioning. Abnormalities in electrophysiology (EEG) measures are highly related to these impairments, but the use of EEG indices in clinical practice is still limited. A systematic review of articles using Pubmed, Scopus and PsychINFO was undertaken in November 2021 to provide an overview of the relationships between EEG indices and cognitive impairment in schizophrenia-spectrum disorders. Out of 2433 screened records, 135 studies were included in a qualitative review. Although the results were heterogeneous, some significant correlations were identified. In particular, abnormalities in alpha, theta and gamma activity, as well as in MMN and P300, were associated with impairments in cognitive domains such as attention, working memory, visual and verbal learning and executive functioning during at-risk mental states, early and chronic stages of schizophrenia-spectrum disorders. The review suggests that machine learning approaches together with a careful selection of validated EEG and cognitive indices and characterization of clinical phenotypes might contribute to increase the use of EEG-based measures in clinical settings.
Collapse
|
9
|
Aleksandrov AA, Dmitrieva ES, Knyazeva VM, Simon YA, Polyakova NV, Stankevich LN, Aleksandrov AY. Sensory Gating in TAAR1 Knockout Mice. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Trace amines (TA) are a family of endogenous compounds structurally
similar to classical biogenic amines that may be involved in the
pathogenesis of a number of neuropsychiatric disorders. One of the
most studied and perspective member of the TA associated receptors (TAARs)
family is the TAAR1. The aim of the present study was to investigate
the sensory gating (SG) in freely moving TAAR1 knockout mice in
a chronic experiment. The study of SG was conducted in the paired-click
paradigm. The SG indices were calculated as an absolute value by subtracting
the second stimulus response amplitude from the first stimulus response
amplitude (S1–S2) and as a relative value calculated by dividing
the S2 amplitude by the response amplitude on S1 (S2/S1). As a result,
a significant decrease in the amplitude of the N40 component was
found in TAAR1 knockout mice compared to wild-type mice. In addition,
the absolute value of sensory gating calculated by the S1–S2 method
was also reduced, but the relative value of sensory gating denoted
as S1/S2 ratio remained unchanged. Thus, the data obtained indicate
the involvement of TAAR1 in the generation of auditory evoked potentials
and the potential involvement of the trace amine system in the dosing
and filtering of sensory information.
Collapse
|
10
|
Kipiński L, Maciejowski A, Małyszczak K, Pilecki W. High-frequency changes in single-trial visual evoked potentials for unattended stimuli in chronic schizophrenia. J Neurosci Methods 2022; 377:109626. [DOI: 10.1016/j.jneumeth.2022.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
11
|
Wang B, Zartaloudi E, Linden JF, Bramon E. Neurophysiology in psychosis: The quest for disease biomarkers. Transl Psychiatry 2022; 12:100. [PMID: 35277479 PMCID: PMC8917164 DOI: 10.1038/s41398-022-01860-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/11/2023] Open
Abstract
Psychotic disorders affect 3% of the population at some stage in life, are a leading cause of disability, and impose a great economic burden on society. Major breakthroughs in the genetics of psychosis have not yet been matched by an understanding of its neurobiology. Biomarkers of perception and cognition obtained through non-invasive neurophysiological tools, especially EEG, offer a unique opportunity to gain mechanistic insights. Techniques for measuring neurophysiological markers are inexpensive and ubiquitous, thus having the potential as an accessible tool for patient stratification towards early treatments leading to better outcomes. In this paper, we review the literature on neurophysiological markers for psychosis and their relevant disease mechanisms, mainly covering event-related potentials including P50/N100 sensory gating, mismatch negativity, and the N100 and P300 waveforms. While several neurophysiological deficits are well established in patients with psychosis, more research is needed to study neurophysiological markers in their unaffected relatives and individuals at clinical high risk. We need to harness EEG to investigate markers of disease risk as key steps to elucidate the aetiology of psychosis and facilitate earlier detection and treatment.
Collapse
Affiliation(s)
- Baihan Wang
- Division of Psychiatry, University College London, London, UK.
| | - Eirini Zartaloudi
- Division of Psychiatry, University College London, London, UK.
- Institute of Clinical Trials and Methodology, University College London, London, UK.
| | - Jennifer F Linden
- Ear Institute, University College London, London, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
12
|
Sex differences in P50 inhibition defects with psychopathology and cognition in patients with first-episode schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110380. [PMID: 34111493 DOI: 10.1016/j.pnpbp.2021.110380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND A large number of studies have shown that the pathophysiology of schizophrenia may be involved in sensory gating that appears to be P50 inhibition. However, few studies have investigated the relationship between clinical symptoms, cognitive impairment and sensory gating disorders in patients with first-episode schizophrenia. The purpose of this study was to explore the sex differences in the relationship between clinical symptoms, cognitive impairment and P50 inhibition defects in patients with first-episode schizophrenia, which has not been reported. METHODS 130 patients with first-episode schizophrenia (53 males and 77 females) and 189 healthy controls (87 males and 102 females) participated in the study. Positive and Negative Syndrome Scale (PANSS) was used to evaluate the patients' psychopathological symptoms, and the 64-channel electroencephalogram (EEG) system was used to record the P50 inhibition. RESULTS Male patients had higher PANSS negative symptom, general psychopathology, cognitive factor and total scores than female patients (all p < 0.01). The S1 amplitude was smaller in male than female patients (all p < 0.05). Multiple regression analysis showed that in male patients, S1 latency was contributor to negative symptoms, while S1 latency, S2 latency, age, and smoking status were contributors to cognitive factor (all p < 0.05). In female patients, no P50 component was found to be an independent contributor to PANSS scores (all p > 0.05). CONCLUSIONS Our results indicate that there is a sex difference in the relationship between clinical symptoms, cognitive impairment and P50 inhibition defects in Chinese Han patients with first-episode schizophrenia.
Collapse
|
13
|
Smoking as a Common Modulator of Sensory Gating and Reward Learning in Individuals with Psychotic Disorders. Brain Sci 2021; 11:brainsci11121581. [PMID: 34942883 PMCID: PMC8699526 DOI: 10.3390/brainsci11121581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
Motivational and perceptual disturbances co-occur in psychosis and have been linked to aberrations in reward learning and sensory gating, respectively. Although traditionally studied independently, when viewed through a predictive coding framework, these processes can both be linked to dysfunction in striatal dopaminergic prediction error signaling. This study examined whether reward learning and sensory gating are correlated in individuals with psychotic disorders, and whether nicotine—a psychostimulant that amplifies phasic striatal dopamine firing—is a common modulator of these two processes. We recruited 183 patients with psychotic disorders (79 schizophrenia, 104 psychotic bipolar disorder) and 129 controls and assessed reward learning (behavioral probabilistic reward task), sensory gating (P50 event-related potential), and smoking history. Reward learning and sensory gating were correlated across the sample. Smoking influenced reward learning and sensory gating in both patient groups; however, the effects were in opposite directions. Specifically, smoking was associated with improved performance in individuals with schizophrenia but impaired performance in individuals with psychotic bipolar disorder. These findings suggest that reward learning and sensory gating are linked and modulated by smoking. However, disorder-specific associations with smoking suggest that nicotine may expose pathophysiological differences in the architecture and function of prediction error circuitry in these overlapping yet distinct psychotic disorders.
Collapse
|
14
|
Şahin D, Hever F, Bossert M, Herwig K, Aschenbrenner S, Weisbrod M, Sharma A. Early and middle latency auditory event-related potentials do not explain differences in neuropsychological performance between schizophrenia spectrum patients and matched healthy controls. Psychiatry Res 2021; 304:114162. [PMID: 34380086 DOI: 10.1016/j.psychres.2021.114162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/19/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Abnormalities of early and middle latency auditory event-related potentials (ERPs) are widespread in schizophrenia and have been suggested to be associated with cognitive deficits in schizophrenia patients. In this cross-sectional study with schizophrenia patients (n=30) and psychiatrically healthy counterparts (n=31) (matched for age, sex, education), we investigated whether auditory information processing (measured via amplitudes and gating of the auditory ERPs P50, N100 and P200) correlates with neuropsychological performance across cognitive domains. The groups differed significantly in amplitudes and gating of N100 and P200 potentials as well as in neuropsychological performance, but not in P50 amplitude and gating. Neither amplitudes nor gating of auditory ERPs correlated with neuropsychological performance. Neuropsychological intergroup differences could not be explained by abnormalities in auditory information processing. Although pronounced impairments exist on the levels of both auditory information processing and cognitive performance in schizophrenia, these abnormalities are not directly associated with each other.
Collapse
Affiliation(s)
- Derya Şahin
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany.
| | - Felix Hever
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Magdalena Bossert
- Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Kerstin Herwig
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Steffen Aschenbrenner
- Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Matthias Weisbrod
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, SRH Hospital Karlsbad-Langensteinbach, Germany
| | - Anuradha Sharma
- Research Group Neurocognition, Department of General Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Xia L, Wang D, Wei G, Wang J, Zhou H, Xu H, Tian Y, Dai Q, Xiu M, Chen D, Wang L, Zhang X. P50 inhibition defects with psychopathology and cognitive impairment in patients with first-episode drug naïve schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110246. [PMID: 33453321 DOI: 10.1016/j.pnpbp.2021.110246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Many studies have announced that P50 inhibition defects represent sensory gating deficits in schizophrenia, but studies seldom have searched the correlation between P50 inhibition defects and the psychopathology or cognitive impairment of patients with first-episode, drug naïve (FEDN) of schizophrenia. In this study, we investigated the auditory sensory gating deficits in a large number of Han patients with FEDN schizophrenia and their correlation with clinical symptoms and cognitive impairment. METHODS A total of 130 patients with FEDN schizophrenia and 189 healthy controls were recruited in this study. Positive and Negative Syndrome Scale (PANSS) and its five-factor model were used to score the psychopathology of the patients, and P50 inhibition was recorded using the 64-channel electroencephalography (EEG) system. RESULTS Patients exhibited significantly longer S1 and S2 latency, lower S1 and S2 amplitudes and lower P50 difference than healthy controls (all p < 0.05). Significant correlations existed between S1 latency and PANSS negative symptoms or cognitive factor, P50 ratio and general psychopathology, P50 ratio and PANSS total score, P50 difference and general psychopathology, and P50 difference and PANSS total score (all p < 0.05). Multiple regression analysis revealed that S1 latency, sex, age, and education were contributors to negative symptom score (all p < 0.05). S1 latency, S2 latency, sex, age, and smoking status were contributors to cognitive factor (all p < 0.05). CONCLUSIONS Our results show that patients with FEDN schizophrenia have P50 inhibition defects, which may be related to their psychopathological symptoms and cognitive impairment.
Collapse
Affiliation(s)
- Luyao Xia
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gaoxia Wei
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huixia Zhou
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Tian
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qilong Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Dachun Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Shen CL, Chou TL, Lai WS, Hsieh MH, Liu CC, Liu CM, Hwu HG. P50, N100, and P200 Auditory Sensory Gating Deficits in Schizophrenia Patients. Front Psychiatry 2020; 11:868. [PMID: 33192632 PMCID: PMC7481459 DOI: 10.3389/fpsyt.2020.00868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sensory gating describes neurological processes of filtering out redundant or unnecessary stimuli during information processing, and sensory gating deficits may contribute to the symptoms of schizophrenia. Among the three components of auditory event-related potentials reflecting sensory gating, P50 implies pre-attentional filtering of sensory information and N100/P200 reflects attention triggering and allocation processes. Although diminished P50 gating has been extensively documented in patients with schizophrenia, previous studies on N100 were inconclusive, and P200 has been rarely examined. This study aimed to investigate whether patients with schizophrenia have P50, N100, and P200 gating deficits compared with control subjects. METHODS Control subjects and clinically stable schizophrenia patients were recruited. The mid-latency auditory evoked responses, comprising P50, N100, and P200, were measured using the auditory-paired click paradigm without manipulation of attention. Sensory gating parameters included S1 amplitude, S2 amplitude, amplitude difference (S1-S2), and gating ratio (S2/S1). We also evaluated schizophrenia patients with PANSS to be correlated with sensory gating indices. RESULTS One hundred four patients and 102 control subjects were examined. Compared to the control group, schizophrenia patients had significant sensory gating deficits in P50, N100, and P200, reflected by larger gating ratios and smaller amplitude differences. Further analysis revealed that the S2 amplitude of P50 was larger, while the S1 amplitude of N100/P200 was smaller, in schizophrenia patients than in the controls. We found no correlations between sensory gating indices and schizophrenia positive or negative symptom clusters. However, we found a negative correlation between the P200 S2 amplitude and Bell's emotional discomfort factor/Wallwork's depressed factor. CONCLUSION Till date, this study has the largest sample size to analyze P50, N100, and P200 collectively by adopting the passive auditory paired-click paradigm without distractors. With covariates controlled for possible confounds, such as age, education, smoking amount and retained pairs, we found that schizophrenia patients had significant sensory gating deficits in P50-N100-P200. The schizophrenia patients had demonstrated a unique pattern of sensory gating deficits, including repetition suppression deficits in P50 and stimulus registration deficits in N100/200. These results suggest that sensory gating is a pervasive cognitive abnormality in schizophrenia patients that is not limited to the pre-attentive phase of information processing. Since P200 exhibited a large effect size and did not require additional time during recruitment, future studies of P50-N100-P200 collectively are highly recommended.
Collapse
Affiliation(s)
- Chen-Lan Shen
- Department of General Psychiatry, Tsao-Tun Psychiatric Center, Nanto, Taiwan.,Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Tai-Li Chou
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Kim HK, Blumberger DM, Daskalakis ZJ. Neurophysiological Biomarkers in Schizophrenia-P50, Mismatch Negativity, and TMS-EMG and TMS-EEG. Front Psychiatry 2020; 11:795. [PMID: 32848953 PMCID: PMC7426515 DOI: 10.3389/fpsyt.2020.00795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Impaired early auditory processing is a well characterized finding in schizophrenia that is theorized to contribute to clinical symptoms, cognitive impairment, and social dysfunction in patients. Two neurophysiological measures of early auditory processing, P50 gating ("P50") and mismatch negativity (MMN), which measure sensory gating and detection of change in auditory stimuli, respectively, are consistently shown to be impaired in patients with schizophrenia. Transcranial magnetic stimulation (TMS) may also be a potential method by which sensory processing can be assessed, since TMS paradigms can be used to measure GABAB-mediated cortical inhibition that is linked with sensory gating. In this review, we examine the potential of P50, MMN and two TMS paradigms, cortical silent period (CSP) and long-interval intracortical inhibition (LICI), as endophenotypes as well as their ability to be used as predictive markers for interventions targeted at cognitive and psychosocial functioning. Studies consistently support a link between MMN, P50, and cognitive dysfunction, with robust evidence for a link between MMN and psychosocial functioning in schizophrenia as well. Importantly, studies have demonstrated that MMN can be used to predict performance in social and cognitive training tasks. A growing body of studies also supports the potential of MMN to be used as an endophenotype, and future studies are needed to determine if MMN can be used as an endophenotype specifically in schizophrenia. P50, however, has weaker evidence supporting its use as an endophenotype. While CSP and LICI are not as extensively investigated, growing evidence is supporting their potential to be used as an endophenotype in schizophrenia. Future studies that assess the ability of P50, MMN, and TMS neurophysiological measures to predict performance in cognitive and social training programs may identify markers that inform clinical decisions in the treatment of neurocognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Helena K Kim
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|