1
|
Shahini E, Argentiero A, Andriano A, Losito F, Maida M, Facciorusso A, Cozzolongo R, Villa E. Hepatitis E Virus: What More Do We Need to Know? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:998. [PMID: 38929615 PMCID: PMC11205503 DOI: 10.3390/medicina60060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Hepatitis E virus (HEV) infection is typically a self-limiting, acute illness that spreads through the gastrointestinal tract but replicates in the liver. However, chronic infections are possible in immunocompromised individuals. The HEV virion has two shapes: exosome-like membrane-associated quasi-enveloped virions (eHEV) found in circulating blood or in the supernatant of infected cell cultures and non-enveloped virions ("naked") found in infected hosts' feces and bile to mediate inter-host transmission. Although HEV is mainly spread via enteric routes, it is unclear how it penetrates the gut wall to reach the portal bloodstream. Both virion types are infectious, but they infect cells in different ways. To develop personalized treatment/prevention strategies and reduce HEV impact on public health, it is necessary to decipher the entry mechanism for both virion types using robust cell culture and animal models. The contemporary knowledge of the cell entry mechanism for these two HEV virions as possible therapeutic target candidates is summarized in this narrative review.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | | | - Alessandro Andriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro Medical School, 70124 Bari, Italy;
| | - Francesco Losito
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, 93100 Caltanissetta, Italy;
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Erica Villa
- Gastroenterology Unit, CHIMOMO Department, University of Modena & Reggio Emilia, Via del Pozzo 71, 41121 Modena, Italy
| |
Collapse
|
2
|
Harlow J, Dallner M, Nasheri N. Optimization of the replication of hepatitis E virus genotype 3 in vitro. J Appl Microbiol 2024; 135:lxae137. [PMID: 38849307 DOI: 10.1093/jambio/lxae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
AIMS Hepatitis E virus (HEV) is responsible for ∼20 million human infections worldwide every year. The genotypes HEV-3 and HEV-4 are zoonotic and are responsible for most of the autochthonous HEV cases in high-income countries. There are several cell culture systems that allow for propagation of different HEV genotypes in vitro. One of these systems uses human lung carcinoma cells (A549), and was further optimized for propagation of HEV-3 47832c strain. In this study, we investigated the effect of different media supplements as well as microRNA-122 (miR-122) on improving the replication of HEV-3 47832c in A549 cells. METHODS AND RESULTS We observed that supplementation of maintenance media with 5% fetal bovine serum was sufficient for efficient replication of HEV-3, and verified the positive effect of media supplementation with Amphotericin B, MgCl2, and dimethyl sulfoxide on replication of HEV-3. We have also demonstrated that adding miR-122 mimics to the culture media does not have any significant effect on the replication of HEV-3 47832c. CONCLUSIONS Herein, we detected over a 6-fold increase in HEV-3 replication in A549/D3 cells by adding all three supplements: Amphotericin B, MgCl2, and dimethyl sulfoxide to the culture media, while demonstrating that miR-122 might not play a key role in replication of HEV-3 47832c.
Collapse
Affiliation(s)
- Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Matthew Dallner
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
3
|
Borlang J, Murphy D, Harlow J, Osiowy C, Nasheri N. The molecular epidemiology of hepatitis E virus genotype 3 in Canada. Epidemiol Infect 2024; 152:e55. [PMID: 38487841 PMCID: PMC11022259 DOI: 10.1017/s0950268824000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Autochthonous hepatitis E virus (HEV) infection is increasingly reported in industrialized countries and is mostly associated with zoonotic HEV genotype 3 (HEV-3). In this study, we examined the molecular epidemiology of 63 human clinical HEV-3 isolates in Canada between 2014 and 2022. Fifty-five samples were IgM positive, 45 samples were IgG positive and 44 were IgM and IgG positive. The majority of the isolates belong to the subtypes 3a, 3b, and 3j, with high sequence homology to Canadian swine and pork isolates. There were a few isolates that clustered with subtypes 3c, 3e, 3f, 3h, and 3g, and an isolate from chronic infection with a rabbit strain (3ra). Previous studies have demonstrated that the isolates from pork products and swine from Canada belong to subtypes 3a and 3b, therefore, domestic swine HEV is likely responsible for the majority of clinical HEV cases in Canada and further support the hypothesis that swine serve as the main reservoirs for HEV-3 infections. Understanding the associated risk of zoonotic HEV infection requires the establishment of sustainable surveillance strategies at the interface between humans, animals, and the environment within a One-Health framework.
Collapse
Affiliation(s)
- Jamie Borlang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Donald Murphy
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Carla Osiowy
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Indari O, Ghosh S, Bal AS, James A, Garg M, Mishra A, Karmodiya K, Jha HC. Awakening the sleeping giant: Epstein-Barr virus reactivation by biological agents. Pathog Dis 2024; 82:ftae002. [PMID: 38281067 PMCID: PMC10901609 DOI: 10.1093/femspd/ftae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.
Collapse
Affiliation(s)
- Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, United States
| | - Subhrojyoti Ghosh
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Adhiraj Singh Bal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Ajay James
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Mehek Garg
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Krishanpal Karmodiya
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411008, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| |
Collapse
|
5
|
Guo H, Liu D, Liu K, Hou Y, Li C, Li Q, Ding X, Verstegen MMA, Zhang J, Wang L, Ding Y, Tang R, Pan X, Zheng K, van der Laan LJW, Pan Q, Wang W. Drug repurposing screen identifies vidofludimus calcium and pyrazofurin as novel chemical entities for the development of hepatitis E interventions. Virol Sin 2024; 39:123-133. [PMID: 37984761 PMCID: PMC10877426 DOI: 10.1016/j.virs.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Hepatitis E virus (HEV) infection can cause severe complications and high mortality, particularly in pregnant women, organ transplant recipients, individuals with pre-existing liver disease and immunosuppressed patients. However, there are still unmet needs for treating chronic HEV infections. Herein, we screened a best-in-class drug repurposing library consisting of 262 drugs/compounds. Upon screening, we identified vidofludimus calcium and pyrazofurin as novel anti-HEV entities. Vidofludimus calcium is the next-generation dihydroorotate dehydrogenase (DHODH) inhibitor in the phase 3 pipeline to treat autoimmune diseases or SARS-CoV-2 infection. Pyrazofurin selectively targets uridine monophosphate synthetase (UMPS). Their anti-HEV effects were further investigated in a range of cell culture models and human liver organoids models with wild type HEV strains and ribavirin treatment failure-associated HEV strains. Encouragingly, both drugs exhibited a sizeable therapeutic window against HEV. For instance, the IC50 value of vidofludimus calcium is 4.6-7.6-fold lower than the current therapeutic doses in patients. Mechanistically, their anti-HEV mode of action depends on the blockage of pyrimidine synthesis. Notably, two drugs robustly inhibited ribavirin treatment failure-associated HEV mutants (Y1320H, G1634R). Their combination with IFN-α resulted in synergistic antiviral activity. In conclusion, we identified vidofludimus calcium and pyrazofurin as potent candidates for the treatment of HEV infections. Based on their antiviral potency, and also the favorable safety profile identified in clinical studies, our study supports the initiation of clinical studies to repurpose these drugs for treating chronic hepatitis E.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Dan Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Kuan Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, NL-3015 CN, the Netherlands; Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, 3015CE, NL-3015 CN, the Netherlands
| | - Yao Hou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chunyang Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaohui Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, 3015CE, NL-3015 CN, the Netherlands
| | - Jikai Zhang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lingli Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yibo Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, 3015CE, NL-3015 CN, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, NL-3015 CN, the Netherlands.
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
6
|
Park K, Kim J, Noh J, Kim K, Yang E, Kim SG, Cho HK, Byun KS, Kim JH, Lee YS, Shim JO, Shin M, Kim WK, Song JW. First detection and characterization of hepatitis E virus (Rocahepevirus ratti) from urban Norway rats (Rattus norvegicus) in the Republic of Korea. J Med Virol 2024; 96:e29401. [PMID: 38235603 DOI: 10.1002/jmv.29401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Hepatitis E virus (HEV), an emerging zoonotic pathogen, poses a significant public health concern worldwide. Recently, rat HEV (Rocahepevirus ratti genotype C1; HEV-C1) has been reported to cause zoonotic infections and hepatitis in humans. Human infections with HEV-C1 are considered to be underestimated worldwide due to limited knowledge of transmission routes, genome epidemiology, and the risk assessment of zoonosis associated with these viruses. A total of 186 wild Norway rats (Rattus norvegicus) were collected from the Republic of Korea (ROK) between 2011 and 2021. The prevalence of HEV-C1 RNA was 8 of 180 (4.4%) by reverse-transcription polymerase chain reaction. We first reported three nearly whole-genome sequences of HEV-C1 newly acquired from urban rats in the ROK. Phylogenetic analysis demonstrated that Korea-indigenous HEV-C1 formed an independent genetic group with those derived from R. norvegicus rats in other countries, indicating geographical and genetic diversity. Our findings provide critical insights into the molecular prevalence, genome epidemiology, and zoonotic potential of Rocahepevirus. This report raises awareness of the presence of Rocahepevirus-related hepatitis E among physicians in the ROK.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijin Kim
- Centre for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eunyoung Yang
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwan Soo Byun
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Ji Hoon Kim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Jung Ok Shim
- Department of Pediatrics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Minsoo Shin
- Department of Pediatrics, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Zhang X, Cremers N, Hendrickx S, Debing Y, Roskams T, Coelmont L, Neyts J, Kaptein SJF. Establishment of a robust rat hepatitis E virus fecal-oral infection model and validation for antiviral studies. Antiviral Res 2023; 216:105670. [PMID: 37451630 DOI: 10.1016/j.antiviral.2023.105670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The hepatitis E virus (HEV) is a major cause of hepatitis, with an estimated 3.3 million symptomatic cases annually. There is no HEV-specific treatment besides the off-label use of ribavirin and a vaccine is only available in China and Pakistan. To aid the development of therapeutic and preventive strategies, there is a need for convenient HEV infection models in small laboratory animals. To this end, we make use of the rat hepatitis E virus. Human infections with this virus have been reported in recent years, making it a relevant pathogen for the establishment of a small animal infection model. We here report that oral gavage of a feces suspension, containing a pre-defined viral RNA load, results in a reproducible synchronized infection in athymic nude rats. This route of administration mimics fecal-oral transmission in a standardized fashion. The suitability of the model to study the effect of antiviral drugs was assessed by using ribavirin, which significantly reduced viral loads in the feces, liver, and other tissues.
Collapse
Affiliation(s)
- Xin Zhang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Niels Cremers
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Stijn Hendrickx
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | - Tania Roskams
- KU Leuven, Pathology, Translational Cell and Tissue Research, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| |
Collapse
|
8
|
El-Mokhtar MA, Kamel AM, El-Sabaa EMW, Mandour SA, Abdelmohsen AS, Moussa AM, Salama EH, Aboulfotuh S, Abdel-Wahid L, Abdel Aziz EM, Azoz NMA, Sayed IM, Elkhawaga AA. Evidence of a Link between Hepatitis E Virus Exposure and Glomerulonephritis Development. Viruses 2023; 15:1379. [PMID: 37376678 DOI: 10.3390/v15061379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Viruses can trigger glomerulonephritis (GN) development. Hepatitis viruses, especially Hepatitis C virus and Hepatitis B viruses, are examples of the viruses that trigger GN initiation or progression. However, the proof of a correlation between GN and Hepatitis E virus infection is not clear. Some studies confirmed the development of GN during acute or chronic HEV infections, mainly caused by genotype 3. While others reported that there is no relation between HEV exposure and GN development. A recent study showed that a reduced glomerular filtration rate was developed in 16% of acute HEV genotype 1 (HEV-1) infections that returned to normal during recovery. HEV-1 is endemic in Egypt with a high seroprevalence among villagers and pregnant women. There is no available data about a link between HEV and GN in Egypt. METHODS GN patients (n = 43) and matched healthy subjects (n = 36) enrolled in Assiut University hospitals were included in this study. Blood samples were screened for hepatotropic pathogens. Tests for HEV markers such as HEV RNA and anti-HEV antibodies (IgM and IgG) were performed. Laboratory parameters were compared in HEV-seropositive and HEV-seronegative GN patients. RESULTS Anti-HEV IgG was detected in 26 (60.5%) out of 43 GN patients. HEV seroprevalence was significantly higher in GN than in healthy controls, suggesting that HEV exposure is a risk factor for GN development. None of the GN patients nor the healthy subjects were positive for anti-HEV IgM or HEV RNA. There was no significant difference between seropositive and seronegative GN patients in terms of age, gender, albumin, kidney function profiles, or liver transaminases. However, anti-HEV IgG positive GN patients had higher bilirubin levels than anti-HEV IgG negative GN patients. HEV-seropositive GN patients had a significantly elevated AST level compared to HEV-seropositive healthy subjects. CONCLUSION exposure to HEV infection could be complicated by the development of GN.
Collapse
Affiliation(s)
- Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ayat M Kamel
- Microbiology and Immunology Department, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ehsan M W El-Sabaa
- Microbiology and Immunology Department, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Sahar A Mandour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Ahmed Shawkat Abdelmohsen
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Abdelmajeed M Moussa
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | - Eman H Salama
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Sahar Aboulfotuh
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Lobna Abdel-Wahid
- Gastroenterology and Hepatology Unit, Internal Medicine Department, Assiut University, Assiut 71515, Egypt
| | - Essam M Abdel Aziz
- Department of Internal Medicine, Nephrology Division, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nashwa Mostafa A Azoz
- Department of Internal Medicine, Nephrology Division, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Amal A Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
9
|
Elkhawaga AA, El-Mokhtar MA, Mahmoud AA, Ali WE, Mohamed DS, Kamel AM, Mesalam AA, Mousa NHS, Ashmawy AM, Abdel Aziz EM, Sayed IM, Ramadan HKA, Elkholy YS. First Report on Abnormal Renal Function in Acute Hepatitis E Genotype 1 Infection. Pathogens 2023; 12:pathogens12050687. [PMID: 37242358 DOI: 10.3390/pathogens12050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Impaired renal functions have been reported with Hepatitis E virus (HEV) infections, especially with genotypes 3 and 4. These complications were reported during the acute and chronic phases of infection. HEV genotype 1 causes acute infection, and the effect of HEV-1 infections on renal functions is not known. We examined the kidney function parameters in the serum of HEV-1 patients (AHE, n = 31) during the acute phase of infection. All of the included patients developed an acute self-limiting course of infection, without progression to fulminant hepatic failure. We compared the demographic, laboratory, and clinical data between AHE patients with normal kidney function parameters and those with abnormal renal parameters. Out of 31 AHE patients, 5 (16%) had abnormal kidney function tests (KFTs) during the acute phase of infection. Three patients had abnormal serum urea and creatinine, and two patients had either abnormal urea or creatinine. Four out of five patients had an estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73 m2. AHE patients with abnormal KFTs were older and had a lower level of albumin, but a slightly elevated alanine transaminase (ALT) compared to AHE patients with normal KFTs. There were no significant differences between the two groups in terms of age, sex, liver transaminase levels, and the viral load. Similarly, the clinical presentations were comparable in both groups. Interestingly, these KFTs in patients with abnormal renal parameters returned to normal levels at the recovery. The serum creatinine level was not correlated with patients' age or liver transaminase levels, but it was significantly negatively correlated with albumin level. In conclusion, this study is the first report that evaluated KFTs in patients during the acute phase of HEV-1 infections. Impaired KFTs in some AHE patients resolved at convalescence. KFTs and renal complications should be monitored during HEV-1 infections.
Collapse
Affiliation(s)
- Amal A Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Amal A Mahmoud
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Wael Esmat Ali
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University Assuit Branch, Assiut 71524, Egypt
| | - Doaa Safwat Mohamed
- Department of Microbiology & Immunology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Ayat M Kamel
- Microbiology and Immunology Department, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ahmed Atef Mesalam
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Nermien H S Mousa
- Botany & Microbiology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Ahmed M Ashmawy
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Essam M Abdel Aziz
- Department of Internal Medicine, Nephrology Division, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Haidi Karam-Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Yasmine Samy Elkholy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
10
|
Hui W, Wei L. Treatment of Hepatitis E. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:215-226. [PMID: 37223869 DOI: 10.1007/978-981-99-1304-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) infections are the most common cause of acute hepatitis, but they can also take a chronic course. There is no specific therapy for acute hepatitis, and current treatment is supportive. Choosing ribavirin as the first-line therapy for chronic HEV is advisable, especially immunosuppressed individuals. Moreover, ribavirin therapy in the acute phase of infection provides major benefits for those at high risk of acute liver failure (ALF)/acute-on-chronic liver failure (ACLF). Pegylated interferon α has been used successfully for treatment of hepatitis E but is associated with major side effects. Cholestasis is one of the most common, but devastating, manifestations in hepatitis E. Current therapy for HEV aims to treat symptoms. Therapy generally involves several measures, such as vitamins, albumin, and plasma for supporting treatment, symptomatic treatment for cutaneous pruritus, ursodeoxycholic acid, Obeticholic acid, S-adenosylmethionine, etc. for removing jaundice. HEV infection during pregnancy and patients with underlying liver disease may develop liver failure. For these patients, active monitoring, standard care, and supportive treatment are the foundations. Ribavirin has successfully been used to prevent liver transplantation (LT). Prevention and treatment of complications are important for treatment of liver failure. Liver support devices are intended to support liver function until such time as native liver function recovers, or until LT. LT is widely considered as irreplaceable and definitive treatment for liver failure, particularly for patients who do not improve with supportive measures to sustain life.
Collapse
Affiliation(s)
- Wei Hui
- Chronic Disease Management Center, Youan Hospital, Capital Medical University, Beijing, China
| | - Linlin Wei
- The Second Department of Liver Disease Center, Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
McLEOD M, Belford G, Harlow J, Nasheri N. Examining the Effect of Organic Acids on Inactivation of Hepatitis E Virus. J Food Prot 2022; 85:1690-1695. [PMID: 36048964 DOI: 10.4315/jfp-22-164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Infection with hepatitis E virus genotype 3 (HEV-3) is an emerging cause of illness in developed countries. In North America and Europe, HEV-3 has been increasingly detected in swine, and exposure to pigs and pork products is considered the primary source of infection. We have previously demonstrated the prevalence of the HEV-3 genome in commercial pork products in Canada. In this study, we investigated the application of citric acid and acetic acid to inactivate HEV-3 on food and on food contact surfaces. For this purpose, plastic, stainless steel, and pork pâté surfaces were inoculated with HEV-3 and were treated with acetic acid or citric acid at 1, 3, or 5%. The infectivity of posttreatment viral particles was determined by cell culture. A greater than 2-log reduction in viral infectivity was observed on plastic and stainless steel treated with the organic acids, but the treatment was less effective on HEV infectivity on pork pâté (average reductions of 0.47 log citric acid and 0.63 log acetic acid). Therefore, we conclude that citric acid and acetic acid have potential application to control HEV-3 on food contact surfaces but are not suitable for food. HIGHLIGHTS
Collapse
Affiliation(s)
- Madison McLEOD
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Genevieve Belford
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1A 0K9
| |
Collapse
|
12
|
Shaheen MNF. The concept of one health applied to the problem of zoonotic diseases. Rev Med Virol 2022; 32:e2326. [PMID: 35060214 DOI: 10.1002/rmv.2326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Zoonotic diseases are a burden on healthcare systems globally, particularly underdeveloped nations. Numerous vertebrate animals (e.g., birds, mammals and reptiles) serve as amplifier hosts or reservoirs for viral zoonoses. The spread of zoonotic disease is associated with environmental factors, climate change, animal health as well as other human activities including globalization, urbanization and travel. Diseases at the human-animal environment interface (e.g., zoonotic diseases, vector-borne diseases, food/water borne diseases) continue to pose risk to animals and humans with a great significant mortality and morbidity. It is estimated that of 1400 infectious diseases known to affect humans, 60% of them are of animal origin. In addition, 75% of the emerging infectious diseases have a zoonotic nature, worldwide. The one health concept plays an important role in the control and prevention of zoonoses by integrating animal, human, and environmental health through collaboration and communication among osteopaths, wildlife, physicians, veterinarians professionals, public health and environmental experts, nurses, dentists, physicists, biomedical engineers, plant pathologists, biochemists, and others. No one sector, organization, or person can address issues at the animal-human-ecosystem interface alone.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Center, Giza, Egypt
| |
Collapse
|
13
|
Wasuwanich P, Sirisreetreerux P, Ingviya T, Kraus ES, Brennan DC, Sue PK, Jackson AM, Oshima K, Philosophe B, Montgomery RA, Karnsakul W. Hepatitis E virus infection and rejection in kidney transplant recipients. Transpl Immunol 2021; 70:101517. [PMID: 34923120 DOI: 10.1016/j.trim.2021.101517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) infection has been associated with immune-mediated kidney diseases in developing countries. However, its relationship with kidney transplant outcomes has never been studied. We investigated the association between HEV infection and kidney graft rejection among kidney transplant recipients (KTRs). METHODS We conducted a matched cohort and longitudinal study utilizing banked sera following kidney transplantation during 1988-2012. Studies with evidence of post-transplantation HEV infection were identified by positive ELISA tests (anti-HEV IgM or anti-HEV IgG seroconversion) or positive HEV PCR and matched to KTR controls with negative HEV ELISA and PCR tests in a 1:5 ratio by age, sex, crossmatch status, immunosuppression era, and time of HEV testing. Outcome data collected included time to first kidney graft rejection, transaminases, and glomerular filtration rates. Log-ranked test was used to analyze survival. RESULTS Of 271 KTRs, 9 (3%) had evidence of post-transplantation HEV infection and were compared to 45 negative, matched controls. Median age at transplantation was 46 years. Kidney graft rejection was reported in 8 (89%) of cases and 21 (47%) of controls. Median time to first episode of kidney graft rejection was 17.4 months in cases and 30.8 months in controls (p = 0.029), with a higher hazard of developing kidney graft rejection in cases (HR = 3.23, 95% CI: 1.19-8.79). Lower mean glomerular filtration rates over time were observed in cases (35 mL/min/1.73m2) versus controls (42.4 mL/min/1.73m2) but did not reach significance (p = 0.24). CONCLUSION Subjects with evidence of post-transplantation HEV infection demonstrated earlier kidney graft rejection compared to controls.
Collapse
Affiliation(s)
- Paul Wasuwanich
- Division of Pediatric Gastroenterology, Nutrition, and Hepatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Thammasin Ingviya
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Family and Preventive Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Edward S Kraus
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel C Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul K Sue
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Annette M Jackson
- Departments of Surgery and Immunology, Duke University, Durham, NC, USA
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin Philosophe
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A Montgomery
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; NYU Langone Transplant Institute, New York University Langone Health, New York, NY, USA
| | - Wikrom Karnsakul
- Division of Pediatric Gastroenterology, Nutrition, and Hepatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Uterine Injury Caused by Genotype 4 Hepatitis E Virus Infection Based on a BALB/c Mice Model. Viruses 2021; 13:v13101950. [PMID: 34696377 PMCID: PMC8538062 DOI: 10.3390/v13101950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
To evaluate whether uterine injury caused by hepatitis E virus (HEV) infection is responsible for adverse pregnancy outcomes. HEV-infected female BALB/c mice were coupled with healthy male BALB/c mice at 0, 7, 14, 21, and 91 dpi to explore the uterine injury caused by HEV infection. Mice were euthanized after 10 days of copulation, and uteruses were collected for HEV RNA and antigen detection and histopathological analysis. Inflammatory responses; apoptosis; and estrogen receptor ɑ (ER-ɑ), endomethal antibody (ERAb), cytokeratin-7 (CK7), vimentin (VIM), and vascular endothelial growth factor (VEGF) expression levels were evaluated. After 10 days of copulation, miscarriage and nonpregnancy, as well as enlarged uteruses filled with inflammatory cytokines, were found in HEV-infected mice. HEV RNA and antigens were detected in the sera and uteruses of HEV-infected mice. Significant endometrial thickness (EMT) thinning, severe inflammatory responses, and aggravated apoptosis in the uteruses of HEV-infected mice that experienced miscarriage might contribute to adverse pregnancy outcomes. Furthermore, significantly suppressed ER-ɑ expression and increased ERAb, CK7, VIM, and VEGF expression levels were found in the uteruses of HEV-infected mice that had miscarried. However, uterine damage recovered after complete HEV clearance, and impaired fertility was improved. EMT injury, severe inflammatory responses, and aggravated apoptosis in the uterus caused by HEV infection are responsible for poor pregnancy outcomes.
Collapse
|
15
|
Pellerin M, Hirchaud E, Blanchard Y, Pavio N, Doceul V. Characterization of a Cell Culture System of Persistent Hepatitis E Virus Infection in the Human HepaRG Hepatic Cell Line. Viruses 2021; 13:406. [PMID: 33806591 PMCID: PMC8001476 DOI: 10.3390/v13030406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is considered as an emerging global health problem. In most cases, hepatitis E is a self-limiting disease and the virus is cleared spontaneously without the need of antiviral therapy. However, immunocompromised individuals can develop chronic infection and liver fibrosis that can progress rapidly to cirrhosis and liver failure. The lack of efficient and relevant cell culture system and animal models has limited our understanding of the biology of HEV and the development of effective drugs for chronic cases. In the present study, we developed a model of persistent HEV infection in human hepatocytes in which HEV replicates efficiently. This HEV cell culture system is based on differentiated HepaRG cells infected with an isolate of HEV-3 derived from a patient suffering from acute hepatitis E. Efficient replication was maintained for several weeks to several months as well as after seven successive passages on HepaRG naïve cells. Moreover, after six passages onto HepaRG, we found that the virus was still infectious after oral inoculation into pigs. We also showed that ribavirin had an inhibitory effect on HEV replication in HepaRG. In conclusion, this system represents a relevant and efficient in vitro model of HEV replication that could be useful to study HEV biology and identify effective antiviral drugs against chronic HEV infection.
Collapse
Affiliation(s)
- Marie Pellerin
- UMR 1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.P.); (N.P.)
| | - Edouard Hirchaud
- Agence Nationale de Sécurité Sanitaire, De L’environnement et du Travail (ANSES), Laboratory of Ploufragan-Plouzané-Niort, Viral Genetic and Biosafety (GVB) Unit, 22440 Ploufragan, France; (E.H.); (Y.B.)
| | - Yannick Blanchard
- Agence Nationale de Sécurité Sanitaire, De L’environnement et du Travail (ANSES), Laboratory of Ploufragan-Plouzané-Niort, Viral Genetic and Biosafety (GVB) Unit, 22440 Ploufragan, France; (E.H.); (Y.B.)
| | - Nicole Pavio
- UMR 1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.P.); (N.P.)
| | - Virginie Doceul
- UMR 1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.P.); (N.P.)
| |
Collapse
|
16
|
Mesquita JR, Santos-Ferreira N, Ferreira AS, Albuquerque C, Nóbrega C, Esteves F, Cruz R, Vala H, Nascimento MSJ. Increased risk of hepatitis E virus infection in workers occupationally exposed to sheep. Transbound Emerg Dis 2020; 67:1918-1921. [PMID: 32090484 DOI: 10.1111/tbed.13524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
Hepatitis E virus (HEV) is an enteric RNA virus from the family Hepeviridae with five genotypes (genotypes 1-4 and 7) known to infect humans. HEV infection is known to have a zoonotic swine origin in industrialized countries. The role of pigs and wild boars as major reservoirs for human infection is today well-established; however, the list of new animal reservoirs is ever-expanding as new HEV strains are continuously being found in a broad host range. The recent detection of HEV in sheep stools brings concerns on the possibility of HEV transmission from these animals to humans, particularly in those occupationally exposed. The present work investigated the potential occupational risk of HEV infection in shepherds and sheep milk cheesemakers-workers occupationally exposed to ovine (WOEOs; N = 96)-from a region of the Centre of Portugal ('Serra da Estrela') based on the differences of anti-HEV IgG seroprevalence rates between these professionals and the general population (N = 192). The presence of HEV-specific antibodies in sheep (N = 90) from the same region was also evaluated. The HEV seroprevalence in WOEOs (29.3%) was found to be significantly higher (p = .0198) when compared with population controls (16.1%) which suggests an increased risk for HEV infection in these workers. HEV-specific antibodies were also found in 16.6% of the studied sheep showing that HEV circulates in these animals. Further studies are needed to confirm the zoonotic potential of sheep HEV.
Collapse
Affiliation(s)
- João R Mesquita
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Epidemiology Research Unit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | | | - Ana S Ferreira
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carlos Albuquerque
- Escola Superior de Saúde, Instituto Politécnico de Viseu, UNICISA-E, CIEC, CI&DEI Viseu, Viseu, Portugal
- Centre for Studies in Education, Technologies and Health, Instituto Politécnico de Viseu, Viseu, Portugal
| | - Cármen Nóbrega
- Centre for Studies in Education, Technologies and Health, Instituto Politécnico de Viseu, Viseu, Portugal
- Escola Superior Agrária, Instituto Politécnico de Viseu, Viseu, Portugal
| | - Fernando Esteves
- Centre for Studies in Education, Technologies and Health, Instituto Politécnico de Viseu, Viseu, Portugal
- Escola Superior Agrária, Instituto Politécnico de Viseu, Viseu, Portugal
| | - Rita Cruz
- Centre for Studies in Education, Technologies and Health, Instituto Politécnico de Viseu, Viseu, Portugal
- Escola Superior Agrária, Instituto Politécnico de Viseu, Viseu, Portugal
| | - Helena Vala
- Centre for Studies in Education, Technologies and Health, Instituto Politécnico de Viseu, Viseu, Portugal
- Escola Superior Agrária, Instituto Politécnico de Viseu, Viseu, Portugal
| | - Maria S J Nascimento
- Epidemiology Research Unit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Crum-Cianflone NF. Therapy for Chronic Hepatitis E Virus Infection-Current Recommendations and Future Aspirations. Clin Infect Dis 2020; 71:1212-1214. [PMID: 31793631 DOI: 10.1093/cid/ciz955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 11/14/2022] Open
|
18
|
On the Host Side of the Hepatitis E Virus Life Cycle. Cells 2020; 9:cells9051294. [PMID: 32456000 PMCID: PMC7291229 DOI: 10.3390/cells9051294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) infection is one of the most common causes of acute hepatitis in the world. HEV is an enterically transmitted positive-strand RNA virus found as a non-enveloped particle in bile as well as stool and as a quasi-enveloped particle in blood. Current understanding of the molecular mechanisms and host factors involved in productive HEV infection is incomplete, but recently developed model systems have facilitated rapid progress in this area. Here, we provide an overview of the HEV life cycle with a focus on the host factors required for viral entry, RNA replication, assembly and release. Further developments of HEV model systems and novel technologies should yield a broader picture in the future.
Collapse
|
19
|
Oeser C, Vaughan A, Said B, Ijaz S, Tedder R, Haywood B, Warburton F, Charlett A, Elson R, Morgan D. Epidemiology of Hepatitis E in England and Wales: A 10-Year Retrospective Surveillance Study, 2008-2017. J Infect Dis 2020; 220:802-810. [PMID: 31107958 DOI: 10.1093/infdis/jiz207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023] Open
Abstract
Indigenous, foodborne transmission of hepatitis E virus genotype 3 (HEV G3) has become recognized as an emerging problem in industrialized countries. Although mostly asymptomatic, HEV G3 infection has a range of outcomes, including mild illness, severe acute hepatitis, and, of particular concern, chronic progressive hepatitis in immunocompromised patients. Public Health England has monitored cases of acute HEV infection in England and Wales since 2003. Between 2010 and 2017, enhanced surveillance using 2 linked laboratory databases and questionnaires on clinical features and risk factors was conducted. There was a year-on-year increase in the number of infections from 2008 (183) through 2016 (1243). Then, in 2017, the number of infections declined (to 912). As reported previously, HEV G3 group 2 (also known as "G3 abcdhij") is the predominant cause of acute infections, and older men are most at risk. Consumption of pork and pork products was significantly higher among patients than in the general population, but other previously reported associations, such as consumption of shellfish, were not observed. Ongoing surveillance is required to monitor future trends and changes in the epidemiology of the virus. The changing methods of animal husbandry and processing and distribution of animal products needs to be further investigated.
Collapse
Affiliation(s)
- Clarissa Oeser
- Emerging Infections and Zoonoses, Public Health England, London.,National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Aisling Vaughan
- Emerging Infections and Zoonoses, Public Health England, London.,National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Bengü Said
- Emerging Infections and Zoonoses, Public Health England, London
| | - Samreen Ijaz
- Blood Borne Viruses Unit, Public Health England, London
| | | | - Becky Haywood
- Blood Borne Viruses Unit, Public Health England, London
| | - Fiona Warburton
- Statistics, Modelling, and Economics Department, Public Health England, London
| | - Andre Charlett
- Statistics, Modelling, and Economics Department, Public Health England, London
| | - Richard Elson
- Gastrointestinal Infections, National Infection Service, Public Health England, London
| | - Dilys Morgan
- Emerging Infections and Zoonoses, Public Health England, London
| |
Collapse
|
20
|
Viral Hepatitis and Iron Dysregulation: Molecular Pathways and the Role of Lactoferrin. Molecules 2020; 25:molecules25081997. [PMID: 32344579 PMCID: PMC7221917 DOI: 10.3390/molecules25081997] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
The liver is a frontline immune site specifically designed to check and detect potential pathogens from the bloodstream to maintain a general state of immune hyporesponsiveness. One of the main functions of the liver is the regulation of iron homeostasis. The liver detects changes in systemic iron requirements and can regulate its concentration. Pathological states lead to the dysregulation of iron homeostasis which, in turn, can promote infectious and inflammatory processes. In this context, hepatic viruses deviate hepatocytes' iron metabolism in order to better replicate. Indeed, some viruses are able to alter the expression of iron-related proteins or exploit host receptors to enter inside host cells. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein belonging to the innate immunity, is endowed with potent antiviral activity, mainly related to its ability to block viral entry into host cells by interacting with viral and/or cell surface receptors. Moreover, Lf can act as an iron scavenger by both direct iron-chelation or the modulation of the main iron-related proteins. In this review, the complex interplay between viral hepatitis, iron homeostasis, and inflammation as well as the role of Lf are outlined.
Collapse
|
21
|
Nitta S, Takahashi K, Kawai-Kitahata F, Tsuchiya J, Sato A, Miyoshi M, Murakawa M, Itsui Y, Nakagawa M, Azuma S, Kakinuma S, Watanabe M, Asahina Y. Time course alterations of virus sequences and immunoglobulin titers in a chronic hepatitis E patient. Hepatol Res 2020; 50:524-531. [PMID: 31883166 DOI: 10.1111/hepr.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
AIM Hepatitis E virus (HEV) can cause chronic infection in immunocompromised hosts. However, the dynamics of HEV during persistent infection is not well understood. To elucidate time course alterations in virus sequences and anti-HEV antibodies during persistent infection, we analyzed the HEV sequences and titers of anti-HEV antibodies from a chronic hepatitis E patient. METHODS Serum samples were obtained from a chronic hepatitis E patient under corticosteroid therapy for neurological disease. The titers of anti-HEV antibodies (immunoglobulin A, immunoglobulin M, and immunoglobulin G) in serum samples were detected by enzyme immunoassay. The full or near-full nucleotide sequences of HEV isolated from consecutive serum samples were identified and compared. Phylogenetic analysis was also performed. RESULTS Alterations of anti-HEV antibodies from a chronic hepatitis E patient were different from those previously reported in acute hepatitis E patients. The virus sequence was unchanged in the period without treatment, but nucleotide mutations were observed after ribavirin treatment was started. In addition, the sequence of this strain had extremely high identity to that isolated from swine liver in Japan. CONCLUSIONS Virus mutations in HEV emerged after ribavirin treatment was started. Sequence analysis may useful for deciding the treatment strategy for chronic hepatitis E patients who did not eliminate the virus with 3 months of RBV treatment and inferring the origin of the infection. This report provides insights into the chronicity of hepatitis E, and the impact of persistent infection and ribavirin treatment on the emergence of virus mutations.
Collapse
Affiliation(s)
- Sayuri Nitta
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuaki Takahashi
- Department of Medical Sciences, Tokyo-Shinagawa Hospital, Tokyo, Japan.,Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Sato
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Itsui
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishin Azuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sei Kakinuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Nasheri N, Doctor T, Chen A, Harlow J, Gill A. Evaluation of High-Pressure Processing in Inactivation of the Hepatitis E Virus. Front Microbiol 2020; 11:461. [PMID: 32265886 PMCID: PMC7105680 DOI: 10.3389/fmicb.2020.00461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis E virus (HEV) causes acute hepatitis with approximately 20 million cases per year globally. Based on genetic diversity, HEV is classified into different genotypes, with genotype 3 (HEV-3) being most prevalent in Europe and North America. The transmission of HEV-3 has been shown to be zoonotic and mainly associated with the consumption of raw or undercooked pork products. Herein, we investigated the efficacy of high-pressure processing (HPP) in inactivation of HEV-3 using a cell culture system. HPP has been indicated as a promising non-thermal pathogen inactivation strategy for treatment of certain high-risk food commodities, without any noticeable changes in their nature. For this purpose, we treated HEV-3 in media with different conditions of HPP: 400 MPa for 1 and 5 min, as well as 600 MPa for 1 and 5 min, at ambient temperature. All four HPP treatments of HEV in media were observed to result in a 2-log reduction in HEV load, as determined by the amounts of extracellular HEV RNA produced at 14-day post-infection, using the A549/D3 cell culture system. However, application of the same treatments to artificially contaminated pork pâté resulted in 0.5 log reduction in viral load. These results indicate that the efficacy of HPP treatment in the inactivation of HEV-3 is matrix-dependent, and independent of maximum pressure between 400 and 600 MPa and hold time between 1 and 5 min. Based on the obtained results, although the HPP treatment of pork pâté reduces the HEV-3 load, it might not be sufficient to fully mitigate the risk.
Collapse
Affiliation(s)
- Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
23
|
De Sabato L, Di Bartolo I, Lapa D, Capobianchi MR, Garbuglia AR. Molecular Characterization of HEV Genotype 3 in Italy at Human/Animal Interface. Front Microbiol 2020; 11:137. [PMID: 32117156 PMCID: PMC7014918 DOI: 10.3389/fmicb.2020.00137] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is an emerging public health issue in industrialized countries. In the last decade the number of autochthonous human infections has increased in Europe. Genotype 3 (HEV-3) is typically zoonotic, being foodborne the main route of transmission to humans, and is the most frequently detected in Europe in both humans and animals (mainly pigs and wild boars). In Italy, the first autochthonous human case was reported in 1999; since then, HEV-3 has been widely detected in both humans and animals. Despite the zoonotic characteristic of HEV-3 is well established, the correlation between animal and human strains has been poorly investigated in Italy. In the present study, we compared the subtype distribution of HEV-3 in humans and animals (swine and wild boar) in the period 2000-2018 from Italy. The dataset for this analysis included a total of 96 Italian ORF2 sequences (300 nt long), including both NCBI database-derived (n = 64) and recent sequences (2016-2018, n = 32) obtained in this study. The results show that subtype 3f is the most frequent in humans and pigs, followed by the HEV-3e, HEV-3c and other unassignable HEV-3 strains. Diversely, in wild boar a wider group of HEV-3 subtypes have been detected, including HEV-3a, which has also been detected for the first time in a human patient in Central Italy in 2017, and a wide group of unassignable HEV-3 strains. The phylogenetic analysis including, besides Italian strains, also sequences from other countries retrieved from the NCBI database, indicated that human Italian sequences, in particular those of HEV-3f and HEV-3e, form significant clusters mainly with sequences of animal origin from the same country. Nevertheless, for HEV-3c, rarely detected in Italian pigs, human sequences from Italy are more correlated to human sequences from other European countries. Furthermore, clusters of near-identical human strains identified in a short time interval in Lazio Region (Central Italy) can be recognized in the phylogenetic tree, suggesting that multiple infections originating from a common source have occurred, and confirming the importance of sequencing support to HEV surveillance.
Collapse
Affiliation(s)
- Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, “L. Spallanzani” National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, “L. Spallanzani” National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, “L. Spallanzani” National Institute for Infectious Diseases, IRCCS, Rome, Italy
| |
Collapse
|
24
|
Rawla P, Raj JP, Kannemkuzhiyil AJ, Aluru JS, Thandra KC, Gajendran M. A Systematic Review of the Extra-Hepatic Manifestations of Hepatitis E Virus Infection. Med Sci (Basel) 2020; 8:E9. [PMID: 32033102 PMCID: PMC7151617 DOI: 10.3390/medsci8010009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is a non-enveloped, positive-sense, single-stranded RNA icosahedral virus belongs to the genus Orthohepevirus within the Hepeviridae family. HEV infection can be asymptomatic, or it can cause icteric or fulminant hepatitis. Off late, there have been a number of publications reporting the extra-hepatic manifestations of HEV infection, and this systematic review is aimed at summarizing the available evidence in this regard. Two independent investigators searched PubMed, PubMed Central and Embase databases using the search string "(((hepatitis E) AND (Extrahepatic OR Extra-Hepatic))) OR ((Hepatitis E) AND (Neurology OR Cardiology OR Respiratory OR Lung OR Gastrointestinal OR musculoskeletal OR immunology OR pulmonary)) Filters: Abstract availability, English language, and Human studies". The extra-hepatic manifestations reported in each of the selected articles were classified and reported as neurological, cardiovascular, and hematological and miscellaneous manifestations. The total number of various manifestations reported in our study were n = 324. These include neurological manifestations (n = 178/324 (54.94%)), cardiovascular and hematological manifestations (n = 113/324 (34.88%)), gastro-intestinal/pancreaticobiliary manifestations (n = 24/324 (7.41%)) and other rarer manifestations involving systems such as renal (n = 4/324; 1.24%), endocrine (n = 1/324; 0.31%), dermatology (n = 1/324; 0.31%), respiratory (n = 1/324; 0.31%), muscular (n = 1/324; 0.31%) and immune system (n = 1/324; 0.31%). Thus, HEV can have extra-hepatic manifestations affecting any system of the human body. Further research is needed to elucidate the underlying pathophysiological manifestations of these extra-hepatic manifestations and to prove causal association with HEV.
Collapse
Affiliation(s)
- Prashanth Rawla
- Department of Medicine, Sovah Health, Martinsville, VA 24112, USA
| | - Jeffrey Pradeep Raj
- Department of Clinical Pharmacology, Seth G.S. Medical College & King Edward Memorial Hospital, Mumbai 400012, India;
| | - Alan Jose Kannemkuzhiyil
- St. Johns Medical College, St. John’s National Academy of Health Sciences, Bengaluru, Karnataka 560034, India;
| | - John Sukumar Aluru
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02212, USA;
| | - Krishna Chaitanya Thandra
- Department of Pulmonary and Critical Care Medicine, Sentara Virginia Beach General Hospital, Virginia Beach, VA 23454, USA;
| | - Mahesh Gajendran
- Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX 79905, USA;
| |
Collapse
|
25
|
Sooryanarain H, Heffron CL, Meng XJ. The U-Rich Untranslated Region of the Hepatitis E Virus Induces Differential Type I and Type III Interferon Responses in a Host Cell-Dependent Manner. mBio 2020; 11:e03103-19. [PMID: 31937650 PMCID: PMC6960293 DOI: 10.1128/mbio.03103-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 01/16/2023] Open
Abstract
Hepatitis E virus (HEV), a single-strand positive-sense RNA virus, is an understudied but important human pathogen. The virus can establish infection at a number of host tissues, including the small intestine and liver, causing acute and chronic hepatitis E as well as certain neurological disorders. The retinoic acid-inducible gene I (RIG-I) pathway is essential to induce the interferon (IFN) response during HEV infection. However, the pathogen-associated motif patterns (PAMPs) in the HEV genome that are recognized by RIG-I remain unknown. In this study, we first identified that HEV RNA PAMPs derived from the 3' untranslated region (UTR) of the HEV genome induced higher levels of IFN mRNA, interferon regulatory factor-3 (IRF3) phosphorylation, and nuclear translocation than the 5' UTR of HEV. We revealed that the U-rich region in the 3' UTR of the HEV genome acts as a potent RIG-I PAMP, while the presence of poly(A) tail in the 3' UTR further increases the potency. We further demonstrated that HEV UTR PAMPs induce differential type I and type III IFN responses in a cell type-dependent fashion. Predominant type III IFN response was observed in the liver tissues of pigs experimentally infected with HEV as well as in HEV RNA PAMP-induced human hepatocytes in vitro In contrast, HEV RNA PAMPs induced a predominant type I IFN response in swine enterocytes. Taken together, the results from this study indicated that the IFN response during HEV infection depends both on viral RNA motifs and host target cell types. The results have important implications in understanding the mechanism of HEV pathogenesis.IMPORTANCE Hepatitis E virus (HEV) is an important human pathogen causing both acute and chronic viral hepatitis E infection. Currently, the mechanisms of HEV replication and pathogenesis remain poorly understood. The innate immune response acts as the first line of defense during viral infection. The retinoic acid-inducible gene I (RIG-I)-mediated interferon (IFN) response has been implicated in establishing antiviral response during HEV infection, although the HEV RNA motifs that are recognized by RIG-I are unknown. This study identified that the U-rich region in the 3' untranslated region (UTR) of the HEV genome acts as a potent RIG-I agonist compared to the HEV 5' UTR. We further revealed that the HEV RNA pathogen-associated motif patterns (PAMPs) induced a differential IFN response in a cell type-dependent manner: a predominantly type III IFN response in hepatocytes, and a predominantly type I IFN response in enterocytes. These data demonstrate the complexity by which both host and viral factors influence the IFN response during HEV infection.
Collapse
Affiliation(s)
- Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Connie L Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
26
|
Adlhoch C, Manďáková Z, Ethelberg S, Epštein J, Rimhanen-Finne R, Figoni J, Baylis SA, Faber M, Mellou K, Murphy N, O'Gorman J, Tosti ME, Ciccaglione AR, Hofhuis A, Zaaijer H, Lange H, de Sousa R, Avellón A, Sundqvist L, Said B, Ijaz S. Standardising surveillance of hepatitis E virus infection in the EU/EEA: A review of national practices and suggestions for the way forward. J Clin Virol 2019; 120:63-67. [PMID: 31590112 PMCID: PMC6899520 DOI: 10.1016/j.jcv.2019.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) infection is not notifiable at EU/EEA level, therefore surveillance relies on national policies only. Between 2005 and 2015, more than 20,000 cases were reported in EU/EEA countries. HEV testing is established in 26 countries and 19 countries sequence HEV viruses. OBJECTIVE AND STUDY DESIGN WHO's European Action plan for viral hepatitis recommends harmonised surveillance objectives and case definitions. ECDC's HEV expert group developed minimal and optimal criteria for national hepatitis E surveillance to support EU/EEA countries in enhancing their capacity and to harmonise methods. RESULTS The experts agreed that the primary objectives of national surveillance for HEV infections should focus on the basic epidemiology of the disease: to monitor the incidence of acute cases and chronic infections. The secondary objectives should be to describe viral phylotypes or subtypes and to identify potential clusters/outbreaks and possible routes of transmission. Seventeen of 20 countries with existing surveillance systems collect the minimal data set required to describe the epidemiology of acute cases. Eleven countries test for chronic infections. Twelve countries collect data to identify potential clusters/outbreaks and information on possible routes of transmission. DISCUSSION Overall, the majority of EU/EEA countries collect the suggested data and meet the outlined requirements to confirm an acute case.
Collapse
Affiliation(s)
- Cornelia Adlhoch
- European Centre for Disease Prevention and Control (ECDC), Gustav III:s boulevard 40, 169 73, Solna, Sweden.
| | | | | | | | | | | | | | | | | | - Niamh Murphy
- Health Service Executive, Health Protection Surveillance Centre, Dublin, Ireland.
| | - Joanne O'Gorman
- Health Service Executive, Health Protection Surveillance Centre, Dublin, Ireland.
| | | | | | - Agnetha Hofhuis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Hans Zaaijer
- Sanquin Blood Supply Foundation, Amsterdam, the Netherlands.
| | - Heidi Lange
- Norwegian Institute of Public Health, Oslo, Norway.
| | - Rita de Sousa
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal.
| | - Ana Avellón
- Viral Hepatitis Reference and Research Laboratory National Center of Microbiology Carlos III Health Institute, Madrid, Spain.
| | - Lena Sundqvist
- The Public Health Agency of Sweden (Folkhälsomyndigheten), Stockholm, Sweden.
| | - Bengü Said
- Public Health England, London, United Kingdom.
| | | |
Collapse
|
27
|
Sayed IM, Elkhawaga AA, El-Mokhtar MA. In vivo models for studying Hepatitis E virus infection; Updates and applications. Virus Res 2019; 274:197765. [PMID: 31563457 DOI: 10.1016/j.virusres.2019.197765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis globally. HEV belongs to the Hepeviridae family and at least five genotypes (gt) infect humans. Several animal species are reservoirs for different HEV strains, and they are the source of infection for humans. Some HEV strains are species specific, but other strains could cross species and infect many hosts. The study of HEV infection and pathogenesis was hampered due to the lack of an in vitro and in vivo robust model system. The cell culture system has been established for certain HEV strains, especially gt3 and 4, but gt1 strains replicate poorly in vitro. To date, animal models are the best tool for studying HEV infection. Non-human primates (NHPs) and pigs are the main animal models used for studying HEV infection, but ethical and financial concerns restrict the use of NHPs in research. Therefore, new small animal models have been developed which help more progress in HEV research. In this review, we give updates on the animal models used for studying HEV infection, focusing on the applicability of each model in studying different HEV infections, cross-species infection, virus-host interaction, evaluation of anti-HEV therapies and testing potential HEV vaccines.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA; Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Amal A Elkhawaga
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
28
|
Rivadulla E, Varela MF, Mesquita JR, Nascimento MSJ, Romalde JL. Detection of Hepatitis E Virus in Shellfish Harvesting Areas from Galicia (Northwestern Spain). Viruses 2019; 11:E618. [PMID: 31284466 PMCID: PMC6669863 DOI: 10.3390/v11070618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
The hepatitis E virus (HEV) affects almost 20 million individuals annually, causing approximately 3.3 million acute liver injuries, 56,600 deaths, and huge healthcare-associated economic losses. Shellfish produced close to urban and livestock areas can bioaccumulate this virus and transmit it to the human population. The aim of this study was to evaluate the presence of HEV in molluscan shellfish, in order to deepen the knowledge about HEV prevalence in Galicia (northwestern Spain), and to investigate this as a possible route of HEV transmission to humans. A total of 168 shellfish samples was obtained from two different Galician rías (Ría de Ares-Betanzos and Ría de Vigo). The samples were analyzed by reverse transcription-quantitative PCR (RT-qPCR). RT-nested PCR and sequencing were used for further genotyping and phylogenetic analysis of positive samples. HEV was detected in 41 (24.4%) samples, at quantification levels ranging from non-quantifiable (<102 copies of the RNA genome (RNAc)/g tissue) to 1.1 × 105 RNAc/g tissue. Phylogenetic analysis based on the open reading frame (ORF)2 region showed that all sequenced isolates belonged to genotype 3, and were closely related to strains of sub-genotype e, which is of swine origin. The obtained results demonstrate a significant prevalence of HEV in bivalve molluscs from Galician rías, reinforcing the hypothesis that shellfish may be a potential route for HEV transmission to humans.
Collapse
Affiliation(s)
- Enrique Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel F Varela
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - João R Mesquita
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
| | - Maria S J Nascimento
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
29
|
van Wezel EM, de Bruijne J, Damman K, Bijmolen M, van den Berg AP, Verschuuren EAM, Ruigrok GA, Riezebos-Brilman A, Knoester M. Sofosbuvir Add-on to Ribavirin Treatment for Chronic Hepatitis E Virus Infection in Solid Organ Transplant Recipients Does Not Result in Sustained Virological Response. Open Forum Infect Dis 2019; 6:5540719. [PMID: 31404927 PMCID: PMC6690733 DOI: 10.1093/ofid/ofz346] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022] Open
Abstract
Ribavirin is effective for treating immunocompromised patients with chronic hepatitis E virus infection. However, ribavirin treatment is not always successful. We describe 3 solid organ transplant recipients treated with sofosbuvir and ribavirin after failing ribavirin monotherapy. Complete elimination of hepatitis E virus could not be achieved.
Collapse
Affiliation(s)
- E M van Wezel
- Department of Clinical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, The Netherlands
| | - J de Bruijne
- Department of Gastroenterology, University of Utrecht, Utrecht University Medical Center, The Netherlands
| | - K Damman
- Department of Cardiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - M Bijmolen
- Department of Gastroenterology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - A P van den Berg
- Pulmonology and Tuberculosis, University of Groningen, University Medical Center Groningen, The Netherlands
| | - E A M Verschuuren
- Department of Gastroenterology, University of Utrecht, Utrecht University Medical Center, The Netherlands
| | - G A Ruigrok
- Department of Pulmonology, University of Utrecht, Utrecht University Medical Center, The Netherlands
| | - A Riezebos-Brilman
- Department of Clinical Microbiology, University of Utrecht, Utrecht University Medical Center, The Netherlands
| | - M Knoester
- Department of Cardiology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
30
|
He W, Wen Y, Xiong Y, Zhang M, Cheng M, Chen Q. The prevalence and genomic characteristics of hepatitis E virus in murine rodents and house shrews from several regions in China. BMC Vet Res 2018; 14:414. [PMID: 30577796 PMCID: PMC6303920 DOI: 10.1186/s12917-018-1746-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Background Urban rodents and house shrews are closely correlated in terms of location with humans and can transmit many pathogens to them. Hepatitis E has been confirmed to be a zoonotic disease. However, the zoonotic potential of rat HEV is still unclear. The aim of this study was to determine the prevalence and genomic characteristics of hepatitis E virus (HEV) in rodents and house shrews. Results We collected a total of 788 animals from four provinces in China. From the 614 collected murine rodents, 20.19% of the liver tissue samples and 45.76% of the fecal samples were positive for HEV. From the 174 house shrews (Suncus murinus), 5.17% fecal samples and 0.57% liver tissue samples were positive for HEV. All of the HEV sequences obtained in this study belonged to Orthohepevirus C1. However, we observed a lower percentage of identity in the ORF3 region upon comparing the amino acid sequences between Rattus norvegicus and Rattus losea. HEV derived from house shrews shared a high percentage of identity with rat HEV. Notably, the first near full-length of the HEV genome from Rattus losea is described in our study, and we also report the first near full-length rat HEV genomes in Rattus norvegicus from China. Conclusion HEV is prevalent among the three common species of murine rodents (Rattus. norvegicus, Rattus. tanezumi, and Rattus. losea) in China. HEV sequences detected from house shrews were similar to rat HEV sequences. The high identity of HEV from murine rodents and house shrews suggested that HEV can spread among different animal species. Electronic supplementary material The online version of this article (10.1186/s12917-018-1746-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenqiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yuqi Wen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yiquan Xiong
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Minyi Zhang
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Mingji Cheng
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
31
|
Boudin L, Patient M, Tsitsi Nding Tsogou P, Roméo E, Bladé JS, de Jauréguiberry JP. Successful treatment with ribavirine for chronic hepatitis E in chronic lymphocytic leukemia treated with Ibrutinib. Bull Cancer 2018; 106:84-85. [PMID: 30579570 DOI: 10.1016/j.bulcan.2018.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Laurys Boudin
- Hôpital d'instruction des armées Sainte-Anne, service de médecine interne-oncologie, boulevard Sainte-Anne, 83000 Toulon, France.
| | - Matthieu Patient
- Hôpital d'instruction des armées Sainte-Anne, service de médecine interne-oncologie, boulevard Sainte-Anne, 83000 Toulon, France; École du Val-de-Grâce, boulevard Port-Royal, 75005 Paris, France
| | - Precilla Tsitsi Nding Tsogou
- Hôpital d'instruction des armées Sainte-Anne, service de médecine interne-oncologie, boulevard Sainte-Anne, 83000 Toulon, France
| | - Emilie Roméo
- Hôpital d'instruction des armées Sainte-Anne, service de médecine interne-oncologie, boulevard Sainte-Anne, 83000 Toulon, France
| | - Jean-Sébastien Bladé
- Hôpital d'instruction des armées Sainte-Anne, service de médecine interne-oncologie, boulevard Sainte-Anne, 83000 Toulon, France
| | - Jean-Pierre de Jauréguiberry
- Hôpital d'instruction des armées Sainte-Anne, service de médecine interne-oncologie, boulevard Sainte-Anne, 83000 Toulon, France; École du Val-de-Grâce, boulevard Port-Royal, 75005 Paris, France
| |
Collapse
|
32
|
Bagdassarian E, Doceul V, Pellerin M, Demange A, Meyer L, Jouvenet N, Pavio N. The Amino-Terminal Region of Hepatitis E Virus ORF1 Containing a Methyltransferase (Met) and a Papain-Like Cysteine Protease (PCP) Domain Counteracts Type I Interferon Response. Viruses 2018; 10:v10120726. [PMID: 30567349 PMCID: PMC6315852 DOI: 10.3390/v10120726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 01/09/2023] Open
Abstract
Hepatitis E virus (HEV) is responsible for large waterborne epidemics of hepatitis in endemic countries and is an emerging zoonotic pathogen worldwide. In endemic regions, HEV-1 or HEV-2 genotypes are frequently associated with fulminant hepatitis in pregnant women, while with zoonotic HEV (HEV-3 and HEV-4), chronic cases of hepatitis and severe neurological disorders are reported. Hence, it is important to characterize the interactions between HEV and its host. Here, we investigated the ability of the nonstructural polyprotein encoded by the first open reading frame (ORF1) of HEV to modulate the host early antiviral response and, in particular, the type I interferon (IFN-I) system. We found that the amino-terminal region of HEV-3 ORF1 (MetYPCP), containing a putative methyltransferase (Met) and a papain-like cysteine protease (PCP) functional domain, inhibited IFN-stimulated response element (ISRE) promoter activation and the expression of several IFN-stimulated genes (ISGs) in response to IFN-I. We showed that the MetYPCP domain interfered with the Janus kinase (JAK)/signal transducer and activator of the transcription protein (STAT) signalling pathway by inhibiting STAT1 nuclear translocation and phosphorylation after IFN-I treatment. In contrast, MetYPCP had no effect on STAT2 phosphorylation and a limited impact on the activation of the JAK/STAT pathway after IFN-II stimulation. This inhibitory function seemed to be genotype-dependent, as MetYPCP from HEV-1 had no significant effect on the JAK/STAT pathway. Overall, this study provides evidence that the predicted MetYPCP domain of HEV ORF1 antagonises STAT1 activation to modulate the IFN response.
Collapse
Affiliation(s)
- Eugénie Bagdassarian
- Anses, UMR 1161 Virologie, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France.
- INRA, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
- École Nationale Vétérinaire d'Alfort, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
| | - Virginie Doceul
- Anses, UMR 1161 Virologie, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France.
- INRA, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
- École Nationale Vétérinaire d'Alfort, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
| | - Marie Pellerin
- Anses, UMR 1161 Virologie, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France.
- INRA, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
- École Nationale Vétérinaire d'Alfort, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
| | - Antonin Demange
- Anses, UMR 1161 Virologie, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France.
- INRA, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
- École Nationale Vétérinaire d'Alfort, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
| | - Léa Meyer
- Anses, UMR 1161 Virologie, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France.
- INRA, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
- École Nationale Vétérinaire d'Alfort, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
| | - Nolwenn Jouvenet
- CNRS-UMR3569, Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France.
| | - Nicole Pavio
- Anses, UMR 1161 Virologie, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France.
- INRA, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
- École Nationale Vétérinaire d'Alfort, UMR 1161 Virologie, 94700 Maisons-Alfort, France.
| |
Collapse
|
33
|
Abstract
Hepatitis E virus (HEV) is an important human pathogen that historically has been difficult to study. Limited levels of replication in vitro hindered our understanding of the viral life cycle. Sporadic and low-level virus shedding, lack of standardized detection methods, and subclinical infections made the development of animal models difficult. Better diagnostic techniques and understanding of the virus increased our ability to identify and characterize animal strains and animals that are amenable to model human-relevant infection. These advances are translating into the development of useful HEV animal models so that some of the greatest concerns associated with HEV infection, including host immunology, chronic infection, severe pregnancy mortality, and extrahepatic manifestations, can now be studied. Continued development of these animal models will be instrumental in understanding the many complex questions associated with HEV infection and for assessing therapeutics and prevention strategies to minimize HEV becoming a greater risk to the human population.
Collapse
Affiliation(s)
- Scott P Kenney
- Food Animal Health Research Program, College of Veterinary Medicine, Ohio State University, Wooster, Ohio 44691, USA;
| | - Xiang-Jin Meng
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA;
| |
Collapse
|
34
|
Nascimento MSJ, Pereira SS, Teixeira J, Abreu-Silva J, Oliveira RMS, Myrmel M, Stene-Johansen K, Øverbø J, Gonçalves G, Mesquita JR. A nationwide serosurvey of hepatitis E virus antibodies in the general population of Portugal. Eur J Public Health 2018; 28:720-724. [PMID: 29237007 DOI: 10.1093/eurpub/ckx213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Evidence has shown that Hepatitis E virus (HEV) genotype 3 is autochthonous in industrialized countries due to zoonotic transmission through direct contact or consumption of raw or undercooked meat from domestic swine or wild boar. As there is lack of data on seroprevalence of HEV in the general Portuguese population, a wide survey was conducted as part of the HEPeCONTROL project (60DT2), under EEA grants funding. METHODS Sera from a representative sample of the Portuguese population (n = 1656) at different geographic locations (30 territorial units), and age (0-99 years) were collected between July 2015 and February 2016. The sera were tested for the presence of anti-HEV IgG and IgM by EIA using one of the two most commonly used commercial immunoassays in Europe. RESULTS The overall HEV IgG seroprevalence was found to be 16.3% increasing with age (P < 0.05) from 0.6% in the 0-9 years group to 30.1% in people older than 70 years. The seroprevalence also varied geographically with generally higher seropositivities (25-30%) in the most rural areas of Portugal. However, the geographical differences were not statistically significant (P > 0.05). Out of 1656 samples, 8 were positive for anti-HEV IgM indicating current of recent HEV infection but no significant differences were found concerning age groups, regions and sex. CONCLUSIONS The present nation-wide survey provides insight in the epidemiology of HEV in Portugal and confirms that HEV is endemic in the Portuguese population.
Collapse
Affiliation(s)
- Maria S J Nascimento
- Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Sara S Pereira
- Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Joana Teixeira
- Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Joana Abreu-Silva
- Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Ricardo M S Oliveira
- Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Mette Myrmel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Joakim Øverbø
- Department of Vaccine Preventable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Guilherme Gonçalves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - João R Mesquita
- Agrarian Superior School (ESAV), Centre for Studies in Education, Technologies and Health (CI&DETS), Polytechnic Institute of Viseu, Viseu, Portugal
| |
Collapse
|
35
|
Prevalence, morbidity, and therapy of hepatitis E virus infection in pediatric renal allograft recipients. Pediatr Nephrol 2018; 33:1215-1225. [PMID: 29500631 DOI: 10.1007/s00467-018-3905-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) infection in immunocompromised patients such as solid organ transplant recipients may bear a high risk of becoming a chronic infection with progression to liver cirrhosis. So far, data on HEV infection in pediatric renal transplant recipients are limited. METHODS This single-center cohort study investigated period prevalence, morbidity, and treatment of HEV infection in 90 pediatric renal allograft recipients aged 9.9 ± 5.6 years at transplantation (58.9% males). HEV serology was determined by enzyme-linked immunosorbent assay and immunoblot, HEV replication by quantitative nucleic acid testing. RESULTS Twelve of 90 (13.3%) patients were HEV seropositive, and 4/90 (4.4%) recipients showed active HEV replication (103-108 copies/mL, corresponding to 0.5 × 103 and 0.5 × 108 WHO IU/mL) in serum and stool. In all patients with HEV replication, genotype 3 was identified by partial sequencing of HEV ORF1 and ORF2 and phylogenetic analysis. All patients with HEV replication developed chronic infection associated with moderately elevated liver enzymes. HEV replication was unresponsive to reduction of immunosuppression, whereas ribavirin monotherapy (mean dosage 9.7 ± 3.6 mg/kg per day over 85 ± 11 days) was associated with sustained viral clearance and normalization of liver enzymes in all patients. Ribavirin therapy was associated with reversible, hyporegenerative anemia. CONCLUSIONS Given an HEV seroprevalence of 13.3% in pediatric renal transplant recipients and an HEV viremia of 4.4%, HEV infection should be considered in patients with otherwise unexplained elevation of liver enzymes. HEV infection does not necessarily respond to reduction of immunosuppressive therapy, but can be effectively and safely treated with ribavirin.
Collapse
|
36
|
Cao D, Ni YY, Walker M, Huang YW, Meng XJ. Roles of the genomic sequence surrounding the stem-loop structure in the junction region including the 3' terminus of open reading frame 1 in hepatitis E virus replication. J Med Virol 2018; 90:1524-1531. [PMID: 29718575 DOI: 10.1002/jmv.25215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/18/2018] [Indexed: 01/15/2023]
Abstract
Hepatitis E virus (HEV), a member of the family Hepeviridae, causes both acute and chronic viral hepatitis. We have previously demonstrated that the stem-loop structure in the junction region (JR) of HEV genome plays a critical role in HEV replication. However, the function of the sequence bordering the JR, including the 3' terminus of open reading frame (ORF1), in HEV replication is unknown. In this study, a panel of HEV Renilla luciferase (Rluc) replicons containing various deletions at 5' or 3' termini of the JR was constructed to determine the effect of the deletions on HEV replication in Huh7 human liver cells. We showed that even a single nucleotide deletion at the 5' terminus of the JR abolished HEV replication, whereas deletions at the 3' terminus of the JR also decreased virus replication efficiency. Furthermore, we also constructed firefly luciferase and Rluc dual-reporter HEV replicons containing the 3' terminal ORF1 of various lengths and the JR inserted upstream of the Rluc reporter. A higher level of HEV replication was observed in cells transfected with replicons containing the 3' terminal ORF1 than that of the JR only replicon. We also showed that the ORF3 noncoding sequence along with the JR promoted a higher level of translation activity than that promoted by JR and the ORF2 noncoding sequence.
Collapse
Affiliation(s)
- Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Yan-Yan Ni
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Michelle Walker
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Yao-Wei Huang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
37
|
Hepatitis E in High-Income Countries: What Do We Know? And What Are the Knowledge Gaps? Viruses 2018; 10:v10060285. [PMID: 29799485 PMCID: PMC6024799 DOI: 10.3390/v10060285] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis E virus (HEV) is a positive-strand RNA virus transmitted by the fecal–oral route. HEV genotypes 1 and 2 infect only humans and cause mainly waterborne outbreaks. HEV genotypes 3 and 4 are widely represented in the animal kingdom, and are mainly transmitted as a zoonosis. For the past 20 years, HEV infection has been considered an imported disease in developed countries, but now there is evidence that HEV is an underrecognized pathogen in high-income countries, and that the incidence of confirmed cases has been steadily increasing over the last decade. In this review, we describe current knowledge about the molecular biology of HEV, its clinical features, its main routes of transmission, and possible therapeutic strategies in developed countries.
Collapse
|
38
|
Loyrion E, Trouve-Buisson T, Pouzol P, Larrat S, Decaens T, Payen JF. Hepatitis E Virus Infection after Platelet Transfusion in an Immunocompetent Trauma Patient. Emerg Infect Dis 2018; 23:146-147. [PMID: 27983485 PMCID: PMC5176217 DOI: 10.3201/eid2301.160923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatitis E virus (HEV) infection causes acute liver disease, but severe infections are rare in immunocompetent patients. We describe a case of HEV infection in a previously healthy male trauma patient in France who received massive transfusions. Genotyping confirmed HEV in a transfused platelet pool and the donor.
Collapse
|
39
|
Substitution of amino acid residue V1213 in the helicase domain of the genotype 3 hepatitis E virus reduces virus replication. Virol J 2018; 15:32. [PMID: 29422085 PMCID: PMC5806379 DOI: 10.1186/s12985-018-0943-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Background Genotype 3 hepatitis E virus (HEV) infection is generally associated with mild disease. However, recently eight genotype 3 HEV isolates were identified from patients with severe hepatitis. Importantly, three mutations (S605P, I978V and V1213A) in these genotype 3 isolates were found to be typical of genotype 4 HEV, which is sometime associated with more severe hepatitis. Therefore in this study we seek to determine if these unique mutations contribute to enhanced virus replication and thus potentially severe disease. Methods In the lack of an efficient cell culture system to study the effect of mutations on HEV replication, we developed a genotype 3 HEV replicon with Renilla luciferase (Rluc) as reporter and subsequently used it to construct numerous mutants, including swMu-1 (V1213A), swMu-2 (Q1246H), swMu-3 (V1213A and Q1246H), swMu-4 (S605P and I978V), and swMu-5 (V1213A, S605P and I978V). RNA transcripts from mutant replicons were transfected into Huh7 S10–3 liver cells to measure the effect of mutations on HEV replication efficiency. Results The results showed that the V1213A mutant had the highest reduction in HEV replication efficiency than other mutants. The V1213A and S605P + I978V mutations have a cumulative, if not synergistic, effect on HEV replication. The Q1246H mutant decreased HEV replication compared to the wild-type HEV Rluc replicon but replicated better than the V1213A mutant. The amino acid residue V1213 favors the replication of both genotypes 3 and 4 HEV strains, but not genotype 1 HEV. Conclusion The results suggested that the V1213A mutation reduced HEV replication, but is likely not associated with the reported severe hepatitis caused by genotype 3 HEV isolates containing this mutation.
Collapse
|
40
|
Romalde JL, Rivadulla E, Varela MF, Barja JL. An overview of 20 years of studies on the prevalence of human enteric viruses in shellfish from Galicia, Spain. J Appl Microbiol 2017; 124:943-957. [PMID: 29094428 DOI: 10.1111/jam.13614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Galicia (NW Spain) has 1490 km of coastline, and its particular topography, characterized by the presence of fiord-like inlets, called rías, with an important primary production, makes this region very favourable for shellfish growth and culture. In fact, Galicia is one of the most important mussel producers in the world. Due to its proximity to cities and villages and the anthropogenic activities in these estuaries, and despite the routine official controls on the bivalve harvesting areas, contamination with material of faecal origin is sometimes possible but, current regulation based on Escherichia coli as an indicator micro-organism has been revealed as useful for bacterial contaminants, this is not the case for enteric viruses. The aim of this review is to offer a picture on the situation of different harvesting areas in Galicia, from a virological standpoint. A recompilation of results obtained in the last 20 years is presented, including not only the data for the well-known agents norovirus (NoV) and hepatitis A virus (HAV) but also data on emerging viral hazards, including sapovirus (SaV), hepatitis E virus (HEV) and aichivirus (AiV). Epidemiological differences related to diverse characteristics of the harvesting areas, viral genotype distribution or epidemiological links between environmental and clinical strains will also be presented and discussed. The presentation of these historical data all together could be useful for future decisions by competent authorities for a better management of shellfish growing areas.
Collapse
Affiliation(s)
- J L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - E Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M F Varela
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - J L Barja
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Infection with the hepatitis E virus (HEV) is very common worldwide. The epidemiology, viral genotypes, and transmission routes differ between low-resource countries and economically developed countries. These differences have resulted in the design of diverse prevention and treatment strategies to combat HEV. RECENT FINDINGS The population seroprevalence of HEV immunoglobulin G varies between 5 and 50%. However, the diagnosis of acute hepatitis from HEV has not been common in the United States or Western Europe. Chronic progressive HEV infections have been reported among patients who are immunocompromised. Successful treatment of patients with chronic hepatitis from HEV infection with antiviral agents, such as ribavirin or interferon-α, has been reported. Extrahepatic manifestations of HEV infection are common. Large epidemics of hundreds or thousands of cases continue to be reported among populations in Asia and Africa. A subunit peptide HEV vaccine has been found to be highly efficacious in a large clinical trial. However, the vaccine has not been evaluated in populations of pregnant women or other risk groups and is only available in China. SUMMARY Although HEV infections are increasingly recognized as a global public health problem, there are few methods for prevention and treatment that are widely available.
Collapse
|
42
|
Using data linkage to improve surveillance methods for acute hepatitis E infections in England and Wales 2010–2016. Epidemiol Infect 2017; 145:2886-2889. [DOI: 10.1017/s0950268817002047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYIndigenous, foodborne transmission of hepatitis E has been increasing across industrialised countries. Public Health England has conducted enhanced surveillance in England and Wales since 2003.This report gives an account of acute infections from 2010 to 2016 and describes modification made to the methods of surveillance to account for changes in reporting behaviours and improve ascertainment.
Collapse
|
43
|
Spahr C, Knauf-Witzens T, Vahlenkamp T, Ulrich RG, Johne R. Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review. Zoonoses Public Health 2017; 65:11-29. [PMID: 28944602 DOI: 10.1111/zph.12405] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 01/15/2023]
Abstract
Hepatitis E is a human disease mainly characterized by acute liver illness, which is caused by infection with the hepatitis E virus (HEV). Large hepatitis E outbreaks have been described in developing countries; however, the disease is also increasingly recognized in industrialized countries. Mortality rates up to 25% have been described for pregnant women during outbreaks in developing countries. In addition, chronic disease courses could be observed in immunocompromised transplant patients. Whereas the HEV genotypes 1 and 2 are mainly confined to humans, genotypes 3 and 4 are also found in animals and can be zoonotically transmitted to humans. Domestic pig and wild boar represent the most important reservoirs for these genotypes. A distinct subtype of genotype 3 has been repeatedly detected in rabbits and a few human patients. Recently, HEV genotype 7 has been identified in dromedary camels and in an immunocompromised transplant patient. The reservoir animals get infected with HEV without showing any clinical symptoms. Besides these well-known animal reservoirs, HEV-specific antibodies and/or the genome of HEV or HEV-related viruses have also been detected in many other animal species, including primates, other mammals and birds. In particular, genotypes 3 and 4 infections are documented in many domestic, wildlife and zoo animal species. In most cases, the presence of HEV in these animals can be explained by spillover infections, but a risk of virus transmission through contact with humans cannot be excluded. This review gives a general overview on the transmission pathways of HEV to humans. It particularly focuses on reported serological and molecular evidence of infections in wild, domestic and zoo animals with HEV or HEV-related viruses. The role of these animals for transmission of HEV to humans and other animals is discussed.
Collapse
Affiliation(s)
- C Spahr
- Wilhelma Zoological-Botanical Gardens, Stuttgart, Germany.,Faculty of Veterinary Medicine, Institute of Virology, University of Leipzig, Leipzig, Germany
| | | | - T Vahlenkamp
- Faculty of Veterinary Medicine, Institute of Virology, University of Leipzig, Leipzig, Germany
| | - R G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.,German Center for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Insel Riems, Braunschweig, Germany
| | - R Johne
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
44
|
Zhou X, Huang F, Xu L, Lin Z, de Vrij FMS, Ayo-Martin AC, van der Kroeg M, Zhao M, Yin Y, Wang W, Cao W, Wang Y, Kushner SA, Marie Peron J, Alric L, de Man RA, Jacobs BC, van Eijk JJ, Aronica EMA, Sprengers D, Metselaar HJ, de Zeeuw CI, Dalton HR, Kamar N, Peppelenbosch MP, Pan Q. Hepatitis E Virus Infects Neurons and Brains. J Infect Dis 2017; 215:1197-1206. [PMID: 28199701 DOI: 10.1093/infdis/jix079] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/07/2017] [Indexed: 12/18/2022] Open
Abstract
Hepatitis E virus (HEV), as a hepatotropic virus, is supposed to exclusively infect the liver and only cause hepatitis. However, a broad range of extrahepatic manifestations (in particular, idiopathic neurological disorders) have been recently reported in association with its infection. In this study, we have demonstrated that various human neural cell lines (embryonic stem cell-derived neural lineage cells) induced pluripotent stem cell-derived human neurons and primary mouse neurons are highly susceptible to HEV infection. Treatment with interferon-α or ribavirin, the off-label antiviral drugs for chronic hepatitis E, exerted potent antiviral activities against HEV infection in neural cells. More importantly, in mice and monkey peripherally inoculated with HEV particles, viral RNA and protein were detected in brain tissues. Finally, patients with HEV-associated neurological disorders shed the virus into cerebrospinal fluid, indicating a direct infection of their nervous system. Thus, HEV is neurotropic in vitro, and in mice, monkeys, and possibly humans. These results challenge the dogma of HEV as a pure hepatotropic virus and suggest that HEV infection should be considered in the differential diagnosis of idiopathic neurological disorders.
Collapse
Affiliation(s)
- Xinying Zhou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, China
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | | | - Femke M S de Vrij
- Psychiatry, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Ane C Ayo-Martin
- Psychiatry, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Mark van der Kroeg
- Psychiatry, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Manzhi Zhao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yuebang Yin
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Wanlu Cao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yijin Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Steven A Kushner
- Psychiatry, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jean Marie Peron
- Service d'Hépato-Gastro-Entérologie, Hopital Purpan, and.,Université Paul Sabatier, Toulouse, France
| | - Laurent Alric
- Université Paul Sabatier, Toulouse, France.,MR 152 IRD-Toulouse 3 University, France Internal Medicine, Digestive Department, Purpan, France
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Bart C Jacobs
- Departments of Neurology, and.,Immunology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | | | - Eleonora M A Aronica
- Department of (Neuro)Pathology, Academisch Medisch Centrum, Amsterdam-Zuidoost, and
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Chris I de Zeeuw
- Departments of Neuroscience, and.,Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Science, Amsterdam
| | - Harry R Dalton
- Royal Cornwall Hospital, and.,European Centre for Environment & Human Health, University of Exeter, Truro, United Kingdom
| | - Nassim Kamar
- MR 152 IRD-Toulouse 3 University, France Internal Medicine, Digestive Department, Purpan, France.,Department of Nephrology and Organ Transplantation, CHU Rangueil, and.,INSERM U1043, IFR-BMT, CHU Purpan, Toulouse, France
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Soomro MH, Shi R, She R, Yang Y, Wang T, Wu Q, Li H, Hao W. Molecular and structural changes related to hepatitis E virus antigen and its expression in testis inducing apoptosis in Mongolian gerbil model. J Viral Hepat 2017; 24:696-707. [PMID: 28182318 DOI: 10.1111/jvh.12690] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Hepatitis E virus (HEV) infection has been associated with a wide range of extrahepatic manifestations, so this study was designed to examine the effect and role of HEV on structural and molecular changes in the testicular tissues of Mongolian gerbils experimentally infected with swine HEV. HEV RNA was first detected in testis at 14 days post-inoculation and reached a peak between 28 and 42 days later with viral load between 3.12 and 6.23 logs/g by PCR assays. Changes including vacuolation, sloughing of germ cells, formation of multinuclear giant cells, degeneration, necrosis of tubules and damaged blood-testis barrier were observed through transmission electron microscopy. HEV ORF2 antigen was detected in the sperm cell cytoplasm along with decrease in relative protein of zonula occludens-1 through immunohistochemistry. HEV ORF3 antigen and ZO-1 protein were detectable by Western blotting. Lower (P<.05) serum testosterone and higher (P<.05) blood urea nitrogen level was observed in inoculated Mongolian gerbils. Likewise, increased (P<.05) germ cell apoptosis rate was detected with significant increased expression of Fas-L and Fas in HEV-inoculated groups at each time points. Up-regulation (P<.05 or P<.01) in mRNA level of Fas-L, Fas, Bax, Bcl-2 and caspase-3 was observed in HEV RNA-positive testes. Our study demonstrated that after experimental inoculation, HEV can be detected in testis tissues and viral proteins produce structural and molecular changes that in turn disrupt the blood-testis barrier and induce germ cell apoptosis.
Collapse
Affiliation(s)
- M H Soomro
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China.,Department of Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - R Shi
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - R She
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Y Yang
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - T Wang
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Q Wu
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - H Li
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - W Hao
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| |
Collapse
|
46
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernandez Escamez PS, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Di Bartolo I, Johne R, Pavio N, Rutjes S, van der Poel W, Vasickova P, Hempen M, Messens W, Rizzi V, Latronico F, Girones R. Public health risks associated with hepatitis E virus (HEV) as a food-borne pathogen. EFSA J 2017; 15:e04886. [PMID: 32625551 PMCID: PMC7010180 DOI: 10.2903/j.efsa.2017.4886] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is an important infection in humans in EU/EEA countries, and over the last 10 years more than 21,000 acute clinical cases with 28 fatalities have been notified with an overall 10-fold increase in reported HEV cases; the majority (80%) of cases were reported from France, Germany and the UK. However, as infection in humans is not notifiable in all Member States, and surveillance differs between countries, the number of reported cases is not comparable and the true number of cases would probably be higher. Food-borne transmission of HEV appears to be a major route in Europe; pigs and wild boars are the main source of HEV. Outbreaks and sporadic cases have been identified in immune-competent persons as well as in recognised risk groups such as those with pre-existing liver damage, immunosuppressive illness or receiving immunosuppressive treatments. The opinion reviews current methods for the detection, identification, characterisation and tracing of HEV in food-producing animals and foods, reviews literature on HEV reservoirs and food-borne pathways, examines information on the epidemiology of HEV and its occurrence and persistence in foods, and investigates possible control measures along the food chain. Presently, the only efficient control option for HEV infection from consumption of meat, liver and products derived from animal reservoirs is sufficient heat treatment. The development of validated quantitative and qualitative detection methods, including infectivity assays and consensus molecular typing protocols, is required for the development of quantitative microbial risk assessments and efficient control measures. More research on the epidemiology and control of HEV in pig herds is required in order to minimise the proportion of pigs that remain viraemic or carry high levels of virus in intestinal contents at the time of slaughter. Consumption of raw pig, wild boar and deer meat products should be avoided.
Collapse
|
47
|
Mykytczuk O, Harlow J, Bidawid S, Corneau N, Nasheri N. Prevalence and Molecular Characterization of the Hepatitis E Virus in Retail Pork Products Marketed in Canada. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:208-218. [PMID: 28197972 PMCID: PMC5429394 DOI: 10.1007/s12560-017-9281-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/31/2017] [Indexed: 05/21/2023]
Abstract
Infection with the hepatitis E virus (HEV) is very common worldwide. HEV causes acute viral hepatitis with approximately 20 million cases per year. While HEV genotypes 1 and 2 cause large waterborne and foodborne outbreaks with a significant mortality in developing countries, genotypes 3 and 4 are more prevalent in developed countries with transmission being mostly zoonotic. In North America and Europe, HEV has been increasingly detected in swine, and exposure to pigs and pork products is considered to be the primary source of infection. Therefore we set out to investigate the prevalence of HEV in retail pork products available in Canada, by screening meal-size portions of pork pâtés, raw pork sausages, and raw pork livers. The presence of the HEV genomes was determined by RT-PCR and viral RNA was quantified by digital droplet PCR. Overall, HEV was detected in 47% of the sampled pork pâtés and 10.5% of the sampled raw pork livers, but not in the sampled pork sausages, and sequencing confirmed that all HEV strains belonged to genotype 3. Further phylogenetic analysis revealed that except for one isolate that clusters with subtype 3d, all isolates belong to subtype 3a. Amino acid variations between the isolates were also observed in the sequenced capsid region. In conclusion, the prevalence of HEV in pâtés and raw pork livers observed in this study is in agreement with the current HEV distribution in pork products reported in other developed countries.
Collapse
Affiliation(s)
- Oksana Mykytczuk
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Sabah Bidawid
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Nathalie Corneau
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
48
|
Pischke S, Hartl J, Pas SD, Lohse AW, Jacobs BC, Van der Eijk AA. Hepatitis E virus: Infection beyond the liver? J Hepatol 2017; 66:1082-1095. [PMID: 27913223 DOI: 10.1016/j.jhep.2016.11.016] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/13/2016] [Accepted: 11/20/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV) infections are not limited to the liver but may also affect other organs. Several diseases, including Guillain-Barré syndrome, neuralgic amyotrophy, glomerulonephritis, cryoglobulinemia, pancreatitis, lymphoma, thrombopenia, meningitis, thyroiditis and myocarditis have been observed in the context of hepatitis E. To date, the definite pathophysiological links between HEV and extrahepatic manifestations are not yet established. However, it is suggested that HEV infection might be causative based on serological studies, case series, in vitro data and animal models. In particular, neuronal and renal diseases as well as pancreatitis seem to be caused by HEV, while a causative relationship between HEV and other diseases is more doubtful. Either direct cytopathic tissue damage by extrahepatic replication, or immunological processes induced by an overwhelming host immune response, are possible origins of HEV-associated extrahepatic manifestations. Hepatologists should be aware of the possibility that acute or chronically HEV-infected patients could develop extrahepatic manifestations. Neurologists, nephrologists, rheumatologists and other groups of physicians should consider HEV infection as a potential differential diagnosis when observing one of the diseases described in this review. Ribavirin and steroids have been used in small groups of patients with extrahepatic manifestations of HEV, but the efficacy of these drugs still needs to be verified by large, multicenter studies. This article comprehensively reviews the published literature regarding HEV and extrahepatic manifestations. We discuss the probability of specific extrahepatic diseases being caused by previous or ongoing HEV infection, and summarize the published knowledge about antiviral treatment in extrahepatic disorders.
Collapse
Affiliation(s)
- Sven Pischke
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Hartl
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Suzan D Pas
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Netherlands
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Bart C Jacobs
- Department of Neurology and Immunology, Erasmus MC University Medical Center Rotterdam, Netherlands
| | | |
Collapse
|
49
|
Seroprevalence and Risk Factors of Hepatitis E in Eastern Iran. IRANIAN RED CRESCENT MEDICAL JOURNAL 2017. [DOI: 10.5812/ircmj.41644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Saint-Jacques P, Tissot-Dupont H, Colson P. Autochthonous infection with hepatitis E virus related to subtype 3a, France: a case report. Ann Hepatol 2017; 15:438-41. [PMID: 27049499 DOI: 10.5604/16652681.1198823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis E virus (HEV) recently emerged in Europe as a cause of autochthonous acute hepatitis and a porcine zoonosis. European autochthonous cases almost exclusively involved viruses of genotype 3, subtype 3a being only recently reported in France, from farm pigs. We report an autochthonous human infection with a HEV related to subtype 3a in Southeastern France. A 55-year-old human immunodeficiency virus-infected man presented liver cytolysis in June 2014. HEV RNA was detected in serum and three months later, anti-HEV IgM and IgG were positive whereas HEV RNA was no more detectable in serum. No biological or clinical complication did occur. HEV phylogeny based on two capsid gene fragments showed clustering of sequences obtained from the case-patient with HEV-3a, mean nucleotide identity being 91.7 and 91.3% with their 10 best GenBank matches that were obtained in Japan, South Korea, USA, Canada, Germany and Hungria from humans, pigs and a mongoose. Identity between HEV sequence obtained here and HEV-3a sequences obtained at our laboratory from farm pigs sampled in 2012 in Southeastern France was only 90.2-91.4%. Apart from these pig sequences, best hits from France were of subtypes 3i, 3f, or undefined. The patient consumed barely cooked wild-boar meat; no other risk factor for HEV infection was documented. In Europe, HEV-3a has been described in humans in England and Portugal, in wild boars in Germany, and in pigs in Germany, the Netherlands, and, recently, France. These findings suggest to gain a better knowledge of HEV-3a circulation in France.
Collapse
Affiliation(s)
- Pauline Saint-Jacques
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Hervé Tissot-Dupont
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France; Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Conception, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Service de Maladies Infectieuses, Marseille, France
| | - Philippe Colson
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France; Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Conception, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Service de Maladies Infectieuses, Marseille, France
| |
Collapse
|