1
|
Fazeli A, Honari H, Sadeghi D, Bakhtiari H. Synthesis of BLF1-containing trimethyl chitosan nanoparticles and evaluation of its immunogenicity and protection in syrian mice by oral and subcutaneous injections. Protein Expr Purif 2024; 219:106462. [PMID: 38556142 DOI: 10.1016/j.pep.2024.106462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
The bacterium Burkholderia pseudomallei is the cause of melioidosis infectious disease. In this bacterium, the BLF1 protein wide inhibits the synthesis of proteins in human cells. This disease is reported to cause a death rate of 40% in some parts of the world. Currently, no effective vaccine is available against this bacterial infection. In this study, therefore, a Nano vaccine was synthesized based on the trimethyl chitosan (TMC) polymer containing the BLF1 recombinant protein, and its immunogenicity and protection in Syrian mice were evaluated by oral and subcutaneous injections. The BLF1 recombinant protein expression was induced in Escherichia coli Bl21 (DE3) and purified by the affinity chromatography technique. Recombinant protein-containing nanoparticles (NPs) were then synthesized by the ionotropic gelation method. After oral and subcutaneous injections, antibody titration was assessed by the indirect ELISA assay. Finally, murine groups were challenged using the BLF1 toxin. The results indicated that the immune system showed more antibody titration in subcutaneous injection than in the oral form. However, the results were reversed in the challenge results, and the survival rate was more significant in the oral injection.
Collapse
Affiliation(s)
- Ayoub Fazeli
- Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Hosein Honari
- Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Davoud Sadeghi
- Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Hamid Bakhtiari
- Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| |
Collapse
|
2
|
Efficacy of Treatment with the Antibiotic Novobiocin against Infection with Bacillus anthracis or Burkholderia pseudomallei. Antibiotics (Basel) 2022; 11:antibiotics11121685. [PMID: 36551342 PMCID: PMC9774170 DOI: 10.3390/antibiotics11121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
The microbial pathogens Burkholderia pseudomallei and Bacillus anthracis are unrelated bacteria, yet both are the etiologic agents of naturally occurring diseases in animals and humans and are classified as Tier 1 potential biothreat agents. B. pseudomallei is the gram-negative bacterial agent of melioidosis, a major cause of sepsis and mortality globally in endemic tropical and subtropical regions. B. anthracis is the gram-positive spore-forming bacterium that causes anthrax. Infections acquired by inhalation of these pathogens are challenging to detect early while the prognosis is best; and they possess innate multiple antibiotic resistance or are amenable to engineered resistance. Previous studies showed that the early generation, rarely used aminocoumarin novobiocin was very effective in vitro against a range of highly disparate biothreat agents. The objective of the current research was to begin to characterize the therapeutic efficacy of novobiocin in mouse models of anthrax and melioidosis. The antibiotic was highly efficacious against infections by both pathogens, especially B. pseudomallei. Our results supported the concept that specific older generation antimicrobials can be effective countermeasures against infection by bacterial biothreat agents. Finally, novobiocin was shown to be a potential candidate for inclusion in a combined pre-exposure vaccination and post-exposure treatment strategy designed to target bacterial pathogens refractory to a single medical countermeasure.
Collapse
|
3
|
Inhibition of d-glycero-β-d-manno-heptose 1-phosphate adenylyltransferase from Burkholderia pseudomallei by epigallocatechin gallate and myricetin. Biochem J 2021; 478:235-245. [PMID: 33346350 DOI: 10.1042/bcj20200677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023]
Abstract
Flavonoids play beneficial roles in various human diseases. In this study, a flavonoid library was employed to probe inhibitors of d-glycero-β-d-manno-heptose-1-phosphate adenylyltransferase from Burkholderia pseudomallei (BpHldC) and two flavonoids, epigallocatechin gallate (EGCG) and myricetin, have been discovered. BpHldC is one of the essential enzymes in the ADP-l-glycero-β-d-manno-heptose biosynthesis pathway constructing lipopolysaccharide of B. pseudomallei. Enzyme kinetics study showed that two flavonoids work through different mechanisms to block the catalytic activity of BpHldC. Among them, a docking study of EGCG was performed and the binding mode could explain its competitive inhibitory mode for both ATP and βG1P. Analyses with EGCG homologs could reveal the important functional moieties, too. This study is the first example of uncovering the inhibitory activity of flavonoids against the ADP-l-glycero-β-d-manno-heptose biosynthesis pathway and especially targeting HldC. Since there are no therapeutic agents and vaccines available against melioidosis, EGCG and myricetin can be used as templates to develop antibiotics over B. pseudomallei.
Collapse
|
4
|
Immunogenicity and protective efficacy of Burkholderia pseudomallei BLF1-N and BLF1-C terminal domains against BLF1 toxin. Int Immunopharmacol 2019; 77:105917. [PMID: 31675617 DOI: 10.1016/j.intimp.2019.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/24/2019] [Accepted: 09/13/2019] [Indexed: 11/24/2022]
Abstract
Burkholderia lethal factor 1 (BLF1), a glutamine deamidase, is a key virulence factor that plays significant role in B. pseudomallei pathogenesis. To elucidate the BLF1 immunological responses, two truncated BLF1 structural units, BLF1-C (90-211 amino acids) with structural similarity to T. maritima Chemoreceptor glutamine deamidase (CheD) protein, and BLF1-N (1-89 amino acids) disparate to CheD were identified from the 23 kDa BLF1 protein. Both the components were devoid of toxicity in mice and elicited an antibody titer of 1:16,000 that reacted with the respective truncated proteins and BLF1. A549 cell lines supplemented with anti BLF1-N and BLF1-C antibodies exhibited 73.47% and 83.24% survival when treated with BLF1 toxin. Passive i.p. transfer with antibodies elicited by BLF1-C that contained LSGC active site resulted in 80% protection while anti BLF1-N (devoid of LSGC) antibodies provided 51.4% protection, establishing the role of BLF1-N terminal also in deamidase action. The truncated proteins also elicited cell mediated immune responses through proliferation of CD4+ T cells, IFN-γ and IL-4 cytokines but with bias towards Th2 subsets. BLF1-C and BLF1-N immunization resulted in 80% and 60% active protection when challenged with BLF1 toxin while the sham immunized mice exhibited severe histopathological changes like necrosis in liver, lung, spleen and kidney similar to that observed in melioidosis and were killed within 7 days post challenge. The higher level of active and passive protection by BLF1-C protein could be attributed to the comparatively higher level of immune responses and inclusion of LSGC residues.
Collapse
|
5
|
Cloutier M, Muru K, Ravicoularamin G, Gauthier C. Polysaccharides from Burkholderia species as targets for vaccine development, immunomodulation and chemical synthesis. Nat Prod Rep 2019; 35:1251-1293. [PMID: 30023998 DOI: 10.1039/c8np00046h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2018 Burkholderia species are a vast group of human pathogenic, phytopathogenic, and plant- or environment-associated bacteria. B. pseudomallei, B. mallei, and B. cepacia complex are the causative agents of melioidosis, glanders, and cystic fibrosis-related infections, respectively, which are fatal diseases in humans and animals. Due to their high resistance to antibiotics, high mortality rates, and increased infectivity via the respiratory tract, B. pseudomallei and B. mallei have been listed as potential bioterrorism agents by the Centers for Disease Control and Prevention. Burkholderia species are able to produce a large network of surface-exposed polysaccharides, i.e., lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, which are virulence factors, immunomodulators, major biofilm components, and protective antigens, and have crucial implications in the pathogenicity of Burkholderia-associated diseases. This review provides a comprehensive and up-to-date account regarding the structural elucidation and biological activities of surface polysaccharides produced by Burkholderia species. The chemical synthesis of oligosaccharides mimicking Burkholderia polysaccharides is described in detail. Emphasis is placed on the recent research efforts toward the development of glycoconjugate vaccines against melioidosis and glanders based on synthetic or native Burkholderia oligo/polysaccharides.
Collapse
Affiliation(s)
- Maude Cloutier
- INRS-Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec H7V 1B7, Canada.
| | | | | | | |
Collapse
|
6
|
Khakhum N, Bharaj P, Myers JN, Tapia D, Walker DH, Endsley JJ, Torres AG. Evaluation of Burkholderia mallei ΔtonB Δhcp1 (CLH001) as a live attenuated vaccine in murine models of glanders and melioidosis. PLoS Negl Trop Dis 2019; 13:e0007578. [PMID: 31306423 PMCID: PMC6658008 DOI: 10.1371/journal.pntd.0007578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/25/2019] [Accepted: 06/25/2019] [Indexed: 01/01/2023] Open
Abstract
Background Glanders caused by Burkholderia mallei is a re-emerging zoonotic disease affecting solipeds and humans. Furthermore, B. mallei is genetically related to B. pseudomallei, which is the causative agent of melioidosis. Both facultative intracellular bacteria are classified as tier 1 select biothreat agents. Our previous study with a B. mallei ΔtonB Δhcp1 (CLH001) live-attenuated vaccine demonstrated that it is attenuated, safe and protective against B. mallei wild-type strains in the susceptible BALB/c mouse model. Methodology/Principal finding In our current work, we evaluated the protective efficacy of CLH001 against glanders and melioidosis in the more disease-resistant C57BL/6 mouse strain. The humoral as well as cellular immune responses were also examined. We found that CLH001-immunized mice showed 100% survival against intranasal and aerosol challenge with B. mallei ATCC 23344. Moreover, this vaccine also afforded significant cross-protection against B. pseudomallei K96243, with low level bacterial burden detected in organs. Immunization with a prime and boost regimen of CLH001 induced significantly greater levels of total and subclasses of IgG, and generated antigen-specific splenocyte production of IFN-γ and IL-17A. Interestingly, protection induced by CLH001 is primarily dependent on humoral immunity, while CD4+ and CD8+ T cells played a less critical protective role. Conclusions/Significance Our data indicate that CLH001 serves as an effective live attenuated vaccine to prevent glanders and melioidosis. The quantity and quality of antibody responses as well as improving cell-mediated immune responses following vaccination need to be further investigated prior to advancement to preclinical studies. Glanders (caused by Burkholderia. mallei) and melioidosis (caused by B. pseudomallei) are severe infectious diseases of concern worldwide because of the rising number of cases and mortality rate. The low infectious doses of these two pathogens along with their amenability for aerosolization are factors that could be exploited as potential biothreat agents. Once the diseases have developed in humans and animals, intrinsic resistance to broad classes of antibiotics becomes a challenge for treatment and increases the risk for relapse. The progress in vaccine development demonstrates that live attenuated vaccine strains are the most effective in protection and providing long-lasting immune responses against both diseases. Our data indicate that the B. mallei double mutant (ΔtonB Δhcp1) strain CLH001, is a feasible vaccine candidate to prevent glanders and melioidosis, especially for biodefense and public health purposes.
Collapse
Affiliation(s)
- Nittaya Khakhum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Preeti Bharaj
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Julia N. Myers
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Daniel Tapia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Janice J. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Morici L, Torres AG, Titball RW. Novel multi-component vaccine approaches for Burkholderia pseudomallei. Clin Exp Immunol 2019; 196:178-188. [PMID: 30963550 DOI: 10.1111/cei.13286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis. Historically believed to be a relatively rare human disease in tropical countries, a recent study estimated that, worldwide, there are approximately 165 000 human melioidosis cases per year, more than half of whom die. The bacterium is inherently resistant to many antibiotics and treatment of the disease is often protracted and ineffective. There is no licensed vaccine against melioidosis, but a vaccine is predicted to be of value if used in high-risk populations. There has been progress over the last decade in the pursuit of an effective vaccine against melioidosis. Animal models of disease including mouse and non-human primates have been developed, and these models show that antibody responses play a key role in protection against melioidosis. Surprisingly, although B. pseudomallei is an intracellular pathogen there is limited evidence that CD8+ T cells play a role in protection. It is evident that a multi-component vaccine, incorporating one or more protective antigens, will probably be essential for protection because of the pathogen's sophisticated virulence mechanisms as well as strain heterogeneity. Multi-component vaccines in development include glycoconjugates, multivalent subunit preparations, outer membrane vesicles and other nano/microparticle platforms and live-attenuated or inactivated bacteria. A consistent finding with vaccine candidates tested in mice is the ability to induce sterilizing immunity at low challenge doses and extended time to death at higher challenge doses. Further research to identify ways of eliciting more potent immune responses might provide a path for licensing an effective vaccine.
Collapse
Affiliation(s)
- L Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - A G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - R W Titball
- College of Life and Environmental Science, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
Yi J, Simpanya MF, Settles EW, Shannon AB, Hernandez K, Pristo L, Keener ME, Hornstra H, Busch JD, Soffler C, Brett PJ, Currie BJ, Bowen RA, Tuanyok A, Keim P. Caprine humoral response to Burkholderia pseudomallei antigens during acute melioidosis from aerosol exposure. PLoS Negl Trop Dis 2019; 13:e0006851. [PMID: 30811382 PMCID: PMC6411198 DOI: 10.1371/journal.pntd.0006851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/11/2019] [Accepted: 01/09/2019] [Indexed: 11/29/2022] Open
Abstract
Burkholderia pseudomallei causes melioidosis, a common source of pneumonia and sepsis in Southeast Asia and Northern Australia that results in high mortality rates. A caprine melioidosis model of aerosol infection that leads to a systemic infection has the potential to characterize the humoral immune response. This could help identify immunogenic proteins for new diagnostics and vaccine candidates. Outbred goats may more accurately mimic human infection, in contrast to the inbred mouse models used to date. B. pseudomallei infection was delivered as an intratracheal aerosol. Antigenic protein profiling was generated from the infecting strain MSHR511. Humoral immune responses were analyzed by ELISA and western blot, and the antigenic proteins were identified by mass spectrometry. Throughout the course of the infection the assay results demonstrated a much greater humoral response with IgG antibodies, in both breadth and quantity, compared to IgM antibodies. Pre-infection sera showed multiple immunogenic proteins already reactive for IgG (7-20) and IgM (0-12) in most of the goats despite no previous exposure to B. pseudomallei. After infection, the number of IgG reactive proteins showed a marked increase as the disease progressed. Early stage infection (day 7) showed immune reaction to chaperone proteins (GroEL, EF-Tu, and DnaK). These three proteins were detected in all serum samples after infection, with GroEL immunogenically dominant. Seven common reactive antigens were selected for further analysis using ELISA. The heat shock protein GroEL1 elicited the strongest goat antibody immune response compared to the other six antigens. Most of the six antigens showed the peak IgM reactivity at day 14, whereas the IgG reactivity increased further as the disease progressed. An overall MSHR511 proteomic comparison between the goat model and human sera showed that many immune reactive proteins are common between humans and goats with melioidosis.
Collapse
Affiliation(s)
- Jinhee Yi
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mukoma F. Simpanya
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Erik W. Settles
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Austin B. Shannon
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Karen Hernandez
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Lauren Pristo
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mitchell E. Keener
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Heidie Hornstra
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Joseph D. Busch
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Carl Soffler
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Bart J. Currie
- Menzies School of Health Research and Infectious Diseases Department, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Richard A. Bowen
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Apichai Tuanyok
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
9
|
Hogan RJ, Lafontaine ER. Antibodies Are Major Drivers of Protection against Lethal Aerosol Infection with Highly Pathogenic Burkholderia spp. mSphere 2019; 4:e00674-18. [PMID: 30602525 PMCID: PMC6315082 DOI: 10.1128/msphere.00674-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Burkholderia pseudomallei and Burkholderia mallei are the causative agents of melioidosis and glanders, respectively. There is no vaccine to protect against these highly pathogenic bacteria, and there is concern regarding their emergence as global public health (B. pseudomallei) and biosecurity (B. mallei) threats. In this issue of mSphere, an article by Khakhum and colleagues (N. Khakhum, P. Bharaj, J. N. Myers, D. Tapia, et al., mSphere 4:e00570-18, 2019, https://doi.org/10.1128/mSphere.00570-18) describes a novel vaccination platform with excellent potential for cross-protection against both Burkholderia species. The report also highlights the importance of antibodies in immunity against these facultative intracellular organisms.
Collapse
Affiliation(s)
- Robert J Hogan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Eric R Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium and the aetiological agent of melioidosis, a life-threatening infection that is estimated to account for ∼89,000 deaths per year worldwide. Diabetes mellitus is a major risk factor for melioidosis, and the global diabetes pandemic could increase the number of fatalities caused by melioidosis. Melioidosis is endemic across tropical areas, especially in southeast Asia and northern Australia. Disease manifestations can range from acute septicaemia to chronic infection, as the facultative intracellular lifestyle and virulence factors of B. pseudomallei promote survival and persistence of the pathogen within a broad range of cells, and the bacteria can manipulate the host's immune responses and signalling pathways to escape surveillance. The majority of patients present with sepsis, but specific clinical presentations and their severity vary depending on the route of bacterial entry (skin penetration, inhalation or ingestion), host immune function and bacterial strain and load. Diagnosis is based on clinical and epidemiological features as well as bacterial culture. Treatment requires long-term intravenous and oral antibiotic courses. Delays in treatment due to difficulties in clinical recognition and laboratory diagnosis often lead to poor outcomes and mortality can exceed 40% in some regions. Research into B. pseudomallei is increasing, owing to the biothreat potential of this pathogen and increasing awareness of the disease and its burden; however, better diagnostic tests are needed to improve early confirmation of diagnosis, which would enable better therapeutic efficacy and survival.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Meibergdreef 9, Rm. G2-132, 1105 AZ Amsterdam, The Netherlands
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Harjeet S Virk
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University and Royal Darwin Hospital, Darwin, Australia
| | - Sharon J Peacock
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David A B Dance
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Tropical Hygiene and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
11
|
Aschenbroich SA. DNA vaccination resurfaces in the struggle against melioidosis. Virulence 2017; 8:1483-1485. [PMID: 28481716 DOI: 10.1080/21505594.2017.1327499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
|
13
|
Tamigney Kenfack M, Mazur M, Nualnoi T, Shaffer TL, Ngassimou A, Blériot Y, Marrot J, Marchetti R, Sintiprungrat K, Chantratita N, Silipo A, Molinaro A, AuCoin DP, Burtnick MN, Brett PJ, Gauthier C. Deciphering minimal antigenic epitopes associated with Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharide O-antigens. Nat Commun 2017; 8:115. [PMID: 28740137 PMCID: PMC5524647 DOI: 10.1038/s41467-017-00173-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/06/2017] [Indexed: 01/09/2023] Open
Abstract
Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the etiologic agents of melioidosis and glanders, respectively, cause severe disease in both humans and animals. Studies have highlighted the importance of Bp and Bm lipopolysaccharides (LPS) as vaccine candidates. Here we describe the synthesis of seven oligosaccharides as the minimal structures featuring all of the reported acetylation/methylation patterns associated with Bp and Bm LPS O-antigens (OAgs). Our approach is based on the conversion of an L-rhamnose into a 6-deoxy-L-talose residue at a late stage of the synthetic sequence. Using biochemical and biophysical methods, we demonstrate the binding of several Bp and Bm LPS-specific monoclonal antibodies with terminal OAg residues. Mice immunized with terminal disaccharide-CRM197 constructs produced high-titer antibody responses that crossreacted with Bm-like OAgs. Collectively, these studies serve as foundation for the development of novel therapeutics, diagnostics, and vaccine candidates to combat diseases caused by Bp and Bm.Melioidosis and glanders are multifaceted infections caused by gram-negative bacteria. Here, the authors synthesize a series of oligosaccharides that mimic the lipopolysaccharides present on the pathogens' surface and use them to develop novel glycoconjugates for vaccine development.
Collapse
Affiliation(s)
- Marielle Tamigney Kenfack
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
| | - Marcelina Mazur
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25, Wroclaw, 50-375, Poland
| | - Teerapat Nualnoi
- Department of Microbiology and Immunology, University of Nevada School of Medicine, 1664, N. Virginia Street, Reno, Nevada, 89557, USA
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, 15, Kanjanavanit Road, 90112, Songkhla, Thailand
| | - Teresa L Shaffer
- Department of Microbiology and Immunology, University of South Alabama, 610, Clinic Drive, Mobile, Alabama, 36688, USA
| | - Abba Ngassimou
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
| | - Yves Blériot
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, CNRS-UMR 8180, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, 45, Avenue des États-Unis, Versailles, 78035, France
| | - Roberta Marchetti
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Naples, I-80126, Italy
| | - Kitisak Sintiprungrat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Alba Silipo
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Naples, I-80126, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Naples, I-80126, Italy
| | - David P AuCoin
- Department of Microbiology and Immunology, University of Nevada School of Medicine, 1664, N. Virginia Street, Reno, Nevada, 89557, USA
| | - Mary N Burtnick
- Department of Microbiology and Immunology, University of South Alabama, 610, Clinic Drive, Mobile, Alabama, 36688, USA
| | - Paul J Brett
- Department of Microbiology and Immunology, University of South Alabama, 610, Clinic Drive, Mobile, Alabama, 36688, USA.
| | - Charles Gauthier
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France.
- INRS-Institut Armand-Frappier, Université du Québec, 531, Boulevard des Prairies, Laval (Québec), Canada, H7V 1B7.
| |
Collapse
|
14
|
Antibodies against In Vivo-Expressed Antigens Are Sufficient To Protect against Lethal Aerosol Infection with Burkholderia mallei and Burkholderia pseudomallei. Infect Immun 2017; 85:IAI.00102-17. [PMID: 28507073 DOI: 10.1128/iai.00102-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery.
Collapse
|
15
|
Eyedrop Inoculation Causes Sublethal Leptospirosis in Mice. Infect Immun 2017; 85:IAI.01050-16. [PMID: 28115508 DOI: 10.1128/iai.01050-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/18/2017] [Indexed: 01/17/2023] Open
Abstract
Leptospirosis is potentially a fatal zoonosis acquired by contact of skin and mucosal surfaces with soil and water contaminated with infected urine. We analyzed the outcome of infection of C3H/HeJ mice with Leptospira interrogans serovar Copenhageni using an enzootic mode of transmission, the conjunctival route. Infection led to weight loss and L. interrogans dissemination from blood to urine, and spirochetes were detected in blood and urine simultaneously. The infectious dose that led to consistent dissemination to kidney after conjunctival infection was ∼108 leptospires. Interestingly, a lower number of spirochetes appeared to colonize the kidney, given that we quantified ∼105 and ∼10 leptospires per μl of urine and per μg of kidney, respectively. Leptospira-specific IgM and IgG were detected at 15 days postinfection, and isotyping of the Ig subclass showed that the total IgG response switched from an IgG1 response to an IgG3 response after infection with L. interrogans Histological periodic acid-Schiff D staining of infected kidney showed interstitial nephritis, mononuclear cell infiltrates, and reduced size of glomeruli. Quantification of proinflammatory immunomediators in kidney showed that keratinocyte-derived chemokine, macrophage inflammatory protein 2, RANTES, tumor necrosis factor alpha, gamma interferon, and interleukin-10 were upregulated in infected mice. We show that the kinetics of disease progression after infection via the ocular conjunctiva is delayed compared with infection via the standard intraperitoneal route. Differences may be related to the number of L. interrogans spirochetes that succeed in overcoming the natural defenses of the ocular conjunctiva and transit through tissue.
Collapse
|
16
|
Lim MP, Firdaus-Raih M, Nathan S. Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection. Front Microbiol 2016; 7:1436. [PMID: 27672387 PMCID: PMC5019075 DOI: 10.3389/fmicb.2016.01436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/30/2016] [Indexed: 01/10/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is among a growing number of bacterial pathogens that are increasingly antibiotic resistant. Antimicrobial peptides (AMPs) have been investigated as an alternative approach to treat microbial infections, as generally, there is a lower likelihood that a pathogen will develop resistance to AMPs. In this study, 36 candidate Caenorhabditis elegans genes that encode secreted peptides of <150 amino acids and previously shown to be overexpressed during infection by B. pseudomallei were identified from the expression profile of infected nematodes. RNA interference (RNAi)-based knockdown of 12/34 peptide-encoding genes resulted in enhanced nematode susceptibility to B. pseudomallei without affecting worm fitness. A microdilution test demonstrated that two peptides, NLP-31 and Y43C5A.3, exhibited anti-B. pseudomallei activity in a dose dependent manner on different pathogens. Time kill analysis proposed that these peptides were bacteriostatic against B. pseudomallei at concentrations up to 8× MIC90. The SYTOX green assay demonstrated that NLP-31 and Y43C5A.3 did not disrupt the B. pseudomallei membrane. Instead, gel retardation assays revealed that both peptides were able to bind to DNA and interfere with bacterial viability. In parallel, microscopic examination showed induction of cellular filamentation, a hallmark of DNA synthesis inhibition, of NLP-31 and Y43C5A.3 treated cells. In addition, the peptides also regulated the expression of inflammatory cytokines in B. pseudomallei infected macrophage cells. Collectively, these findings demonstrate the potential of NLP-31 and Y43C5A.3 as anti-B. pseudomallei peptides based on their function as immune modulators.
Collapse
Affiliation(s)
- Mei-Perng Lim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan MalaysiaBangi, Malaysia; Malaysia Genome InstituteKajang, Malaysia
| |
Collapse
|
17
|
Aschenbroich SA, Lafontaine ER, Hogan RJ. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches. Expert Rev Vaccines 2016; 15:1163-81. [PMID: 27010618 DOI: 10.1586/14760584.2016.1170598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Burkholderia pseudomallei and Burkholderia mallei are pathogenic bacteria causing fatal infections in animals and humans. Both organisms are classified as Tier 1 Select Agents owing to their highly fatal nature, potential/prior use as bioweapons, severity of disease via respiratory exposure, intrinsic resistance to antibiotics, and lack of a current vaccine. Disease manifestations range from acute septicemia to chronic infection, wherein the facultative intracellular lifestyle of these organisms promotes persistence within a broad range of hosts. This ability to thrive intracellularly is thought to be related to exploitation of host immune response signaling pathways. There are currently considerable gaps in our understanding of the molecular strategies employed by these pathogens to modulate these pathways and evade intracellular killing. A better understanding of the specific molecular basis for dysregulation of host immune responses by these organisms will provide a stronger platform to identify novel vaccine targets and develop effective countermeasures.
Collapse
Affiliation(s)
- Sophie A Aschenbroich
- a Department of Pathology , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Eric R Lafontaine
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Robert J Hogan
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA.,c Department of Veterinary Biosciences and Diagnostic Imaging , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| |
Collapse
|
18
|
Swetha RG, Sandhya M, Ramaiah S, Anbarasu A. Identification of CD4+ T-cell epitope and investigation of HLA distribution for the immunogenic proteins of Burkholderia pseudomallei using in silico approaches - A key vaccine development strategy for melioidosis. J Theor Biol 2016; 400:11-8. [PMID: 27086038 DOI: 10.1016/j.jtbi.2016.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/18/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Melioidosis is a serious infectious diseases affecting multi-organ system in humans with high mortality rate. The disease is caused by the bacterium, Burkholderia pseudomallei and it is intrinsically resistant to many antibiotics. Thus, there is an urgent need for protective vaccine against B. pseudomallei; which may reduce morbidity and mortality in endemic areas. The identification of peptides that bind to major histocompatibility complex II class helps in understanding the nature of immune response and identifying T-cell epitopes for the design of new vaccines. Previous studies indicate that, ompA, bipB, fliC and groEL proteins of B. pseudomallei stimulate CD4+ T-cell immune response and act as protective immunogens. However, the data for CD4+ T-cell epitopes of these immunogenic proteins are very limited. Hence, in this present study we attempted to identify CD4+ T-cell epitopes in B. pseudomallei immunogenic proteins using in silico approaches. We did population coverage analysis for these identified epitopic core sequences to identify individuals in endemic areas expected to respond to a given set of these epitopes on the basis of HLA genotype frequencies. We observed that eight epitopic core sequences, two from each immunogenic protein, were associated with the maximum number of HLA-DR binding alleles. These eight peptides are found to be immunogenic in more than 90% of population in endemic areas considered. Thus, these eight peptides containing epitopic core sequences may act as probable vaccine candidates and they may be considered for the development of epitope-based vaccines for melioidosis.
Collapse
Affiliation(s)
- Rayapadi G Swetha
- Medical & Biological Computing Laboratory, School of BioSciences and Technology, VIT University, Vellore 632014, India
| | - Madangopal Sandhya
- Medical & Biological Computing Laboratory, School of BioSciences and Technology, VIT University, Vellore 632014, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of BioSciences and Technology, VIT University, Vellore 632014, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of BioSciences and Technology, VIT University, Vellore 632014, India.
| |
Collapse
|
19
|
Limmathurotsakul D, Funnell SGP, Torres AG, Morici LA, Brett PJ, Dunachie S, Atkins T, Altmann DM, Bancroft G, Peacock SJ. Consensus on the development of vaccines against naturally acquired melioidosis. Emerg Infect Dis 2015; 21. [PMID: 25992835 PMCID: PMC4451926 DOI: 10.3201/eid2106.141480] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several candidates for a vaccine against Burkholderia pseudomallei, the causal bacterium of melioidosis, have been developed, and a rational approach is now needed to select and advance candidates for testing in relevant nonhuman primate models and in human clinical trials. Development of such a vaccine was the topic of a meeting in the United Kingdom in March 2014 attended by international candidate vaccine developers, researchers, and government health officials. The focus of the meeting was advancement of vaccines for prevention of natural infection, rather than for protection from the organism’s known potential for use as a biological weapon. A direct comparison of candidate vaccines in well-characterized mouse models was proposed. Knowledge gaps requiring further research were identified. Recommendations were made to accelerate the development of an effective vaccine against melioidosis.
Collapse
|
20
|
Quilici G, Berardi A, Gaudesi D, Gourlay LJ, Bolognesi M, Musco G. Backbone and side-chain (1)H, (15)N, (13)C assignment and secondary structure of BPSL1445 from Burkholderia pseudomallei. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:347-350. [PMID: 25893672 DOI: 10.1007/s12104-015-9607-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
BPSL1445 is a lipoprotein produced by the Gram-negative bacterium Burkholderia pseudomallei (B. pseudomallei), the etiological agent of melioidosis. Immunodetection assays against sera patients using protein microarray suggest BPSL1445 involvement in melioidosis. Herein we report backbone, side chain NMR assignment and secondary structure for the recombinant protein.
Collapse
Affiliation(s)
- Giacomo Quilici
- Biomolecular NMR Unit, c/o S. Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
| | - Andrea Berardi
- Biomolecular NMR Unit, c/o S. Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
| | - Davide Gaudesi
- Biomolecular NMR Unit, c/o S. Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
| | - Louise J Gourlay
- Department of Biosciences, University of Milan, Via Celoria, 26, 20133, Milan, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Via Celoria, 26, 20133, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, c/o S. Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy.
| |
Collapse
|
21
|
Schully KL, Bell MG, Prouty AM, Gallovic MD, Gautam S, Peine KJ, Sharma S, Bachelder EM, Pesce JT, Elberson MA, Ainslie KM, Keane-Myers A. Evaluation of a biodegradable microparticulate polymer as a carrier for Burkholderia pseudomallei subunit vaccines in a mouse model of melioidosis. Int J Pharm 2015; 495:849-61. [PMID: 26428631 DOI: 10.1016/j.ijpharm.2015.09.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/15/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
Melioidosis, a potentially lethal disease of humans and animals, is caused by the soil-dwelling bacterium Burkholderia pseudomallei. Due to B. pseudomallei's classification as a Tier 1 Select Agent, there is substantial interest in the development of an effective vaccine. Yet, despite decades of research, no effective target, adjuvant or delivery vehicle capable of inducing protective immunity against B. pseudomallei infection has been identified. We propose a microparticulate delivery vehicle comprised of the novel polymer acetalated dextran (Ac-DEX). Ac-DEX is an acid-sensitive biodegradable carrier that can be fabricated into microparticles (MPs) that are relatively stable at pH 7.4, but rapidly degrade after phagocytosis by antigen presenting cells where the pH can drop to 5.0. As compared to other biomaterials, this acid sensitivity has been shown to enhance cross presentation of subunit antigens. To evaluate this platform as a delivery system for a melioidosis vaccine, BALB/c mice were vaccinated with Ac-DEX MPs separately encapsulating B. pseudomallei whole cell lysate and the toll-like receptor (TLR) 7/8 agonist resiquimod. This vaccine elicited a robust antibody response that included both Th1 and Th2 immunity. Following lethal intraperitoneal challenge with B. pseudomallei 1026b, vaccinated mice demonstrated a significant delay to time of death compared to untreated mice. The formulation, however, demonstrated incomplete protection indicating that lysate protein offers limited value as an antigen. Nevertheless, our Ac-DEX MPs may offer an effective delivery vehicle for a subunit B. psuedomallei vaccine.
Collapse
Affiliation(s)
- K L Schully
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M G Bell
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - A M Prouty
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M D Gallovic
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - S Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - K J Peine
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - S Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - E M Bachelder
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J T Pesce
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M A Elberson
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - K M Ainslie
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - A Keane-Myers
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| |
Collapse
|
22
|
Nithichanon A, Rinchai D, Gori A, Lassaux P, Peri C, Conchillio-Solé O, Ferrer-Navarro M, Gourlay LJ, Nardini M, Vila J, Daura X, Colombo G, Bolognesi M, Lertmemonkolchai G. Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin. PLoS Negl Trop Dis 2015. [PMID: 26222657 PMCID: PMC4519301 DOI: 10.1371/journal.pntd.0003917] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium responsible for melioidosis, a serious and often fatal infectious disease that is poorly controlled by existing treatments. Due to its inherent resistance to the major antibiotic classes and its facultative intracellular pathogenicity, an effective vaccine would be extremely desirable, along with appropriate prevention and therapeutic management. One of the main subunit vaccine candidates is flagellin of Burkholderia pseudomallei (FliCBp). Here, we present the high resolution crystal structure of FliCBp and report the synthesis and characterization of three peptides predicted to be both B and T cell FliCBp epitopes, by both structure-based in silico methods, and sequence-based epitope prediction tools. All three epitopes were shown to be immunoreactive against human IgG antibodies and to elicit cytokine production from human peripheral blood mononuclear cells. Furthermore, two of the peptides (F51-69 and F270-288) were found to be dominant immunoreactive epitopes, and their antibodies enhanced the bactericidal activities of purified human neutrophils. The epitopes derived from this study may represent potential melioidosis vaccine components. Melioidosis is an infectious disease caused by Burkolderia pseudomallei that poses a major public health problem in Southeast Asia and northern Australia. This bacterium is difficult to treat due to its intrinsic resistance to antibiotics, poor diagnosis, and the lack of a licensed vaccine. Vaccine safety is a prime concern, therefore recombinant protein subunit and/or peptide vaccine components, may represent safer alternatives. In this context, we targeted one of the main subunit vaccine candidates tested to date, flagellin from B. pseudomallei (FliCBp) that comprises the flagellar filament that mediates bacterial motility. Based on the knowledge that activation of both cell-mediated and antibody-mediated responses must be addressed in a melioidosis vaccine, we identified B and T cell immunoreactive peptides from FliCBp, using both sequence-based and structure-based computational prediction programs, for further in vitro immunological testing. Our data confirm the accuracy of sequence-based epitope prediction tools, and two structure-based methods applied to the FliCBp crystal structure (here-described), in predicting both T- and B-cell epitopes. Moreover, we identified two epitope peptides with significant joint T-cell and B-cell activities for further development as melioidosis vaccine components.
Collapse
Affiliation(s)
- Arnone Nithichanon
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Darawan Rinchai
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Patricia Lassaux
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Claudio Peri
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Oscar Conchillio-Solé
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mario Ferrer-Navarro
- Department of Clinical Microbiology, Hospital Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Louise J. Gourlay
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Marco Nardini
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Jordi Vila
- Department of Clinical Microbiology, Hospital Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Martino Bolognesi
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Ganjana Lertmemonkolchai
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
23
|
|
24
|
Gaudesi D, Peri C, Quilici G, Gori A, Ferrer-Navarro M, Conchillo-Solé O, Thomas R, Nithichanon A, Lertmemongkolchai G, Titball R, Daura X, Colombo G, Musco G. Structure-based design of a B cell antigen from B. pseudomallei. ACS Chem Biol 2015; 10:803-12. [PMID: 25495888 DOI: 10.1021/cb500831y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Burkholderia pseudomallei is the etiological agent of melioidosis, a severe endemic disease in South-East Asia, causing septicemia and organ failure with high mortality rates. Current treatments and diagnostic approaches are largely ineffective. The development of new diagnostic tools and vaccines toward effective therapeutic opportunities against B. pseudomallei is therefore an urgent priority. In the framework of a multidisciplinary project tackling melioidosis through reverse and structural vaccinology, BPSL1050 was identified as a candidate for immunodiagnostic and vaccine development based on its reactivity against the sera of melioidosis patients. We determined its NMR solution structure and dynamics, and by novel computational methods we predicted immunogenic epitopes that once synthesized were able to elicit the production of antibodies inducing the agglutination of the bacterium and recognizing both BPSL1050 and B. pseudomallei crude extracts. Overall, these results hold promise for novel chemical biology approaches in the discovery of new diagnostic and prophylactic tools against melioidosis.
Collapse
Affiliation(s)
- Davide Gaudesi
- Biomolecular
NMR Laboratory, Division of Genetics and Cell Biology, S. Raffaele Scientific Institute, Milan, Italy
| | - Claudio Peri
- Department
of Computational Biology, Institute for Molecular Recognition Chemistry, Italian National Research Council, Milan, Italy
| | - Giacomo Quilici
- Biomolecular
NMR Laboratory, Division of Genetics and Cell Biology, S. Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Gori
- Department
of Computational Biology, Institute for Molecular Recognition Chemistry, Italian National Research Council, Milan, Italy
| | - Mario Ferrer-Navarro
- Institute
of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institute
of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rachael Thomas
- College
of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Arnone Nithichanon
- Center
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ganjana Lertmemongkolchai
- Center
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Richard Titball
- College
of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Xavier Daura
- Institute
of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Giorgio Colombo
- Department
of Computational Biology, Institute for Molecular Recognition Chemistry, Italian National Research Council, Milan, Italy
| | - Giovanna Musco
- Biomolecular
NMR Laboratory, Division of Genetics and Cell Biology, S. Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
25
|
Gourlay LJ, Thomas RJ, Peri C, Conchillo-Solé O, Ferrer-Navarro M, Nithichanon A, Vila J, Daura X, Lertmemongkolchai G, Titball R, Colombo G, Bolognesi M. From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK. FEBS J 2015; 282:1319-33. [PMID: 25645451 DOI: 10.1111/febs.13223] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 11/28/2022]
Abstract
Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a potentially fatal infection that is endemic in Southeast Asia and Northern Australia that is poorly controlled by antibiotics. Research efforts to identify antigenic components for a melioidosis vaccine have led to the identification of several proteins, including subunits forming the flagella that mediate bacterial motility, host colonization, and virulence. This study focuses on the B. pseudomallei flagellar hook-associated protein (FlgK(Bp)), and provides the first insights into the 3D structure of FlgK proteins as targets for structure-based antigen engineering. The FlgK(Bp) crystal structure (presented here at 1.8-Å resolution) reveals a multidomain fold, comprising two small β-domains protruding from a large elongated α-helical bundle core. The evident structural similarity to flagellin, the flagellar filament subunit protein, suggests that, depending on the bacterial species, flagellar hook-associated proteins are likely to show a conserved, elongated α-helical bundle scaffold coupled to a variable number of smaller domains. Furthermore, we present immune serum recognition data confirming, in agreement with previous findings, that recovered melioidosis patients produce elevated levels of antibodies against FlgK(Bp), in comparison with seronegative and seropositive healthy subjects. Moreover, we show that FlgK(Bp) has cytotoxic effects on cultured murine macrophages, suggesting an important role in bacterial pathogenesis. Finally, computational epitope prediction methods applied to the FlgK(Bp) crystal structure, coupled with in vitro mapping, allowed us to predict three antigenic regions that locate to discrete protein domains. Taken together, our results point to FlgK(Bp) as a candidate for the design and production of epitope-containing subunits/domains as potential vaccine components.
Collapse
|
26
|
Tamigney Kenfack M, Blériot Y, Gauthier C. Intramolecular Aglycon Delivery Enables the Synthesis of 6-Deoxy-β-d-manno-heptosides as Fragments of Burkholderia pseudomallei and Burkholderia mallei Capsular Polysaccharide. J Org Chem 2014; 79:4615-34. [DOI: 10.1021/jo500640n] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marielle Tamigney Kenfack
- Université de Poitiers, Institut de Chimie IC2MP, UMR-CNRS 7285, Équipe Synthèse Organique, 4 rue Michel
Brunet, 86073 Poitiers, France
| | - Yves Blériot
- Université de Poitiers, Institut de Chimie IC2MP, UMR-CNRS 7285, Équipe Synthèse Organique, 4 rue Michel
Brunet, 86073 Poitiers, France
| | - Charles Gauthier
- Université de Poitiers, Institut de Chimie IC2MP, UMR-CNRS 7285, Équipe Synthèse Organique, 4 rue Michel
Brunet, 86073 Poitiers, France
| |
Collapse
|
27
|
Gonzalez-Juarrero M, Mima N, Trunck LA, Schweizer HP, Bowen RA, Dascher K, Mwangi W, Eckstein TM. Polar lipids of Burkholderia pseudomallei induce different host immune responses. PLoS One 2013; 8:e80368. [PMID: 24260378 PMCID: PMC3832426 DOI: 10.1371/journal.pone.0080368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022] Open
Abstract
Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.
Collapse
Affiliation(s)
- Mercedes Gonzalez-Juarrero
- Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United State of America
| | - Naoko Mima
- Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United State of America
| | - Lily A. Trunck
- Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United State of America
| | - Herbert P. Schweizer
- Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United State of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kyle Dascher
- Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United State of America
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Torsten M. Eckstein
- Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United State of America
- * E-mail:
| |
Collapse
|
28
|
Memišević V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Townsend K, Yu C, Yu X, DeShazer D, Reifman J, Wallqvist A. Novel Burkholderia mallei virulence factors linked to specific host-pathogen protein interactions. Mol Cell Proteomics 2013; 12:3036-51. [PMID: 23800426 PMCID: PMC3820922 DOI: 10.1074/mcp.m113.029041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/10/2013] [Indexed: 11/09/2022] Open
Abstract
Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement processes.
Collapse
Affiliation(s)
- Vesna Memišević
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Nela Zavaljevski
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | | | | | - Keehwan Kwon
- §J. Craig Venter Institute, Rockville, Maryland 20850
| | | | - Chenggang Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Xueping Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - David DeShazer
- ¶Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702
| | - Jaques Reifman
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Anders Wallqvist
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| |
Collapse
|
29
|
Exploiting the Burkholderia pseudomallei acute phase antigen BPSL2765 for structure-based epitope discovery/design in structural vaccinology. ACTA ACUST UNITED AC 2013; 20:1147-56. [PMID: 23993463 DOI: 10.1016/j.chembiol.2013.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/14/2013] [Accepted: 07/23/2013] [Indexed: 11/20/2022]
Abstract
We solved the crystal structure of Burkholderia pseudomallei acute phase antigen BPSL2765 in the context of a structural vaccinology study, in the area of melioidosis vaccine development. Based on the structure, we applied a recently developed method for epitope design that combines computational epitope predictions with in vitro mapping experiments and successfully identified a consensus sequence within the antigen that, when engineered as a synthetic peptide, was selectively immunorecognized to the same extent as the recombinant protein in sera from melioidosis-affected subjects. Antibodies raised against the consensus peptide were successfully tested in opsonization bacterial killing experiments and antibody-dependent agglutination tests of B. pseudomallei. Our strategy represents a step in the development of immunodiagnostics, in the production of specific antibodies and in the optimization of antigens for vaccine development, starting from structural and physicochemical principles.
Collapse
|
30
|
Heiss C, Burtnick MN, Roberts RA, Black I, Azadi P, Brett PJ. Revised structures for the predominant O-polysaccharides expressed by Burkholderia pseudomallei and Burkholderia mallei. Carbohydr Res 2013; 381:6-11. [PMID: 24056008 DOI: 10.1016/j.carres.2013.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/04/2013] [Accepted: 08/14/2013] [Indexed: 11/17/2022]
Abstract
O-Polysaccharides (OPS) were isolated from purified Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharides by mild-acid hydrolysis and gel-permeation chromatography. 1-D and 2-D (1)H and (13)C NMR spectroscopy experiments revealed that the OPS antigens were unbranched heteropolymers with the following structures: Collectively, our results demonstrate that the predominant OPS antigens expressed by B. pseudomallei and B. mallei isolates are structurally more complex than previously described and provide evidence that different capping residues are used by these closely related pathogens to terminate chain elongation. Additionally, they confirm that Burkholderia thailandensis and B. pseudomallei express OPS antigens that are essentially identical to one another.
Collapse
Affiliation(s)
- Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Choh LC, Ong GH, Vellasamy KM, Kalaiselvam K, Kang WT, Al-Maleki AR, Mariappan V, Vadivelu J. Burkholderia vaccines: are we moving forward? Front Cell Infect Microbiol 2013; 3:5. [PMID: 23386999 PMCID: PMC3564208 DOI: 10.3389/fcimb.2013.00005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/20/2013] [Indexed: 11/29/2022] Open
Abstract
The genus Burkholderia consists of diverse species which includes both "friends" and "foes." Some of the "friendly" Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
32
|
Schweizer HP. Mechanisms of antibiotic resistance in Burkholderia pseudomallei: implications for treatment of melioidosis. Future Microbiol 2012; 7:1389-99. [PMID: 23231488 PMCID: PMC3568953 DOI: 10.2217/fmb.12.116] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Burkholderia pseudomallei is the etiologic agent of melioidosis. This multifaceted disease is difficult to treat, resulting in high morbidity and mortality. Treatment of B. pseudomallei infections is lengthy and necessitates an intensive phase (parenteral ceftazidime, amoxicillin-clavulanic acid or meropenem) and an eradication phase (oral trimethoprim-sulfamethoxazole). The main resistance mechanisms affecting these antibiotics include enzymatic inactivation, target deletion and efflux from the cell, and are mediated by chromosomally encoded genes. Overproduction and mutations in the class A PenA β-lactamase cause ceftazidime and amoxicillin-clavulanic acid resistance. Deletion of the penicillin binding protein 3 results in ceftazidime resistance. BpeEF-OprC efflux pump expression causes trimethoprim and trimethoprim-sulfamethoxazole resistance. Although resistance is still relatively rare, therapeutic efficacies may be compromised by resistance emergence due to increased use of antibiotics in endemic regions. Novel agents and therapeutic strategies are being tested and, in some instances, show promise as anti-B. pseudomallei infectives.
Collapse
Affiliation(s)
- Herbert P Schweizer
- Colorado State University, Department of Microbiology, Immunology & Pathology, IDRC at Foothills Campus, 0922 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
33
|
Lassaux P, Peri C, Ferrer-Navarro M, Gourlay LJ, Gori A, Conchillo-Solé O, Rinchai D, Lertmemongkolchai G, Longhi R, Daura X, Colombo G, Bolognesi M. A structure-based strategy for epitope discovery in Burkholderia pseudomallei OppA antigen. Structure 2012; 21:167-175. [PMID: 23159127 DOI: 10.1016/j.str.2012.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/10/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
We present an approach integrating structural and computational biology with immunological tests to identify epitopes in the OppA antigen from the Gram-negative pathogen Burkholderia pseudomallei, the etiological agent of melioidosis. The crystal structure of OppA(Bp), reported here at 2.1 Å resolution, was the basis for a computational analysis that identified three potential epitopes. In parallel, antigen proteolysis and immunocapturing allowed us to identify three additional peptides. All six potential epitopes were synthesized as free peptides and tested for their immunoreactivity against sera from healthy seronegative, healthy seropositive, and recovered melioidosis patients. Three synthetic peptides allowed the different patient groups to be distinguished, underlining the potential of this approach. Extension of the computational analysis, including energy-based decomposition methods, allowed rationalizing results of the predictive analyses and the immunocapture epitope mapping. Our results illustrate a structure-based epitope discovery process, whose application may expand our perspectives in the diagnostic and vaccine design fields.
Collapse
Affiliation(s)
- Patricia Lassaux
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Claudio Peri
- Consiglio Nazionale delle Ricerche, Institute for Chemistry of Molecular Recognition, Department of Computational Biology, Milan 20131, Italy
| | - Mario Ferrer-Navarro
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Louise J Gourlay
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alessandro Gori
- Consiglio Nazionale delle Ricerche, Institute for Chemistry of Molecular Recognition, Department of Computational Biology, Milan 20131, Italy
| | - Oscar Conchillo-Solé
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Darawan Rinchai
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ganjana Lertmemongkolchai
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Renato Longhi
- Consiglio Nazionale delle Ricerche, Institute for Chemistry of Molecular Recognition, Department of Computational Biology, Milan 20131, Italy
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Catalan Institution for Research and Advanced Studies, Barcelona 08010, Spain
| | - Giorgio Colombo
- Consiglio Nazionale delle Ricerche, Institute for Chemistry of Molecular Recognition, Department of Computational Biology, Milan 20131, Italy.
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Milan 20133, Italy; Consiglio Nazionale delle Ricerche, Institute of Biophysics, University of Milan, Milan 20133, Italy.
| |
Collapse
|
34
|
Burtnick MN, Heiss C, Roberts RA, Schweizer HP, Azadi P, Brett PJ. Development of capsular polysaccharide-based glycoconjugates for immunization against melioidosis and glanders. Front Cell Infect Microbiol 2012; 2:108. [PMID: 22912938 PMCID: PMC3419357 DOI: 10.3389/fcimb.2012.00108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/28/2012] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei and Burkholderia mallei, the etiologic agents of melioidosis and glanders, respectively, cause severe disease in humans and animals and are considered potential agents of biological warfare and terrorism. Diagnosis and treatment of infections caused by these pathogens can be challenging and, in the absence of chemotherapeutic intervention, acute disease is frequently fatal. At present, there are no human or veterinary vaccines available for immunization against these emerging/re-emerging infectious diseases. One of the long term objectives of our research, therefore, is to identify and characterize protective antigens expressed by B. pseudomallei and B. mallei and use them to develop efficacious vaccine candidates. Previous studies have demonstrated that the 6-deoxy-heptan capsular polysaccharide (CPS) expressed by these bacterial pathogens is both a virulence determinant and a protective antigen. Consequently, this carbohydrate moiety has become an important component of the various subunit vaccines that we are currently developing in our laboratory. In the present study, we describe a reliable method for isolating CPS antigens from O-polysaccharide (OPS) deficient strains of B. pseudomallei; including a derivative of the select agent excluded strain Bp82. Utilizing these purified CPS samples, we also describe a simple procedure for covalently linking these T-cell independent antigens to carrier proteins. In addition, we demonstrate that high titer IgG responses can be raised against the CPS component of such constructs. Collectively, these approaches provide a tangible starting point for the development of novel CPS-based glycoconjugates for immunization against melioidosis and glanders.
Collapse
Affiliation(s)
- Mary N Burtnick
- Department of Microbiology and Immunology, University of South Alabama Mobile, AL, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Burkholderia pseudomallei is a Gram-negative soil bacterium and the causative agent of melioidosis, a disease of humans and animals. It is also listed as a category B bioterrorism threat agent by the U.S. Centers for Disease Control and Prevention, and there is currently no melioidosis vaccine available. Small modified nucleotides such as the hyperphosphorylated guanosine molecules ppGpp and pppGpp play an important role as signaling molecules in prokaryotes. They mediate a global stress response under starvation conditions and have been implicated in the regulation of virulence and survival factors in many bacterial species. In this study, we created a relA spoT double mutant in B. pseudomallei strain K96243, which lacks (p)ppGpp-synthesizing enzymes, and investigated its phenotype in vitro and in vivo. The B. pseudomallei ΔrelA ΔspoT mutant displayed a defect in stationary-phase survival and intracellular replication in murine macrophages. Moreover, the mutant was attenuated in the Galleria mellonella insect model and in both acute and chronic mouse models of melioidosis. Vaccination of mice with the ΔrelA ΔspoT mutant resulted in partial protection against infection with wild-type B. pseudomallei. In summary, (p)ppGpp signaling appears to represent an essential component of the regulatory network governing virulence gene expression and stress adaptation in B. pseudomallei, and the ΔrelA ΔspoT mutant may be a promising live-attenuated vaccine candidate.
Collapse
|
36
|
AuCoin DP, Reed DE, Marlenee NL, Bowen RA, Thorkildson P, Judy BM, Torres AG, Kozel TR. Polysaccharide specific monoclonal antibodies provide passive protection against intranasal challenge with Burkholderia pseudomallei. PLoS One 2012; 7:e35386. [PMID: 22530013 PMCID: PMC3328442 DOI: 10.1371/journal.pone.0035386] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/16/2012] [Indexed: 01/22/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacillus that is the causative agent of melioidosis. The bacterium is inherently resistant to many antibiotics and mortality rates remain high in endemic areas. The lipopolysaccharide (LPS) and capsular polysaccharide (CPS) are two surface-associated antigens that contribute to pathogenesis. We previously developed two monoclonal antibodies (mAbs) specific to the CPS and LPS; the CPS mAb was shown to identify antigen in serum and urine from melioidosis patients. The goal of this study was to determine if passive immunization with CPS and LPS mAbs alone and in combination would protect mice from a lethal challenge with B. pseudomallei. Intranasal (i.n.) challenge experiments were performed with B. pseudomallei strains 1026b and K96423. Both mAbs provided significant protection when administered alone. A combination of mAbs was protective when low doses were administered. In addition, combination therapy provided a significant reduction in spleen colony forming units (cfu) compared to results when either the CPS or LPS mAbs were administered alone.
Collapse
Affiliation(s)
- David P AuCoin
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abd Aziz AG, Ruzheinikov SN, Sedelnikova SE, Mohamed R, Nathan S, Baker PJ, Rice DW. Cloning, purification, crystallization and preliminary X-ray analysis of the Burkholderia pseudomallei L1 ribosomal protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:347-50. [PMID: 22442241 PMCID: PMC3310549 DOI: 10.1107/s1744309112004800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/03/2012] [Indexed: 11/10/2022]
Abstract
The gene encoding the L1 ribosomal protein from Burkholderia pseudomallei strain D286 has been cloned into the pETBLUE-1 vector system, overexpressed in Escherichia coli and purified. Crystals of the native protein were grown by the hanging-drop vapour-diffusion technique using PEG 3350 as a precipitant and diffracted to beyond 1.65 Å resolution. The crystals belonged to space group P2(1)2(1)2, with unit-cell parameters a = 53.6, b = 127.1, c = 31.8 Å and with a single molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Abd Ghani Abd Aziz
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England
| | - Sergey N. Ruzheinikov
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England
| | - Svetlana E. Sedelnikova
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England
| | - Rahmah Mohamed
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia
- Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia
- Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia
| | - Patrick J. Baker
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England
| | - David W. Rice
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England
| |
Collapse
|
38
|
Peacock SJ, Limmathurotsakul D, Lubell Y, Koh GCKW, White LJ, Day NPJ, Titball RW. Melioidosis vaccines: a systematic review and appraisal of the potential to exploit biodefense vaccines for public health purposes. PLoS Negl Trop Dis 2012; 6:e1488. [PMID: 22303489 PMCID: PMC3269417 DOI: 10.1371/journal.pntd.0001488] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
Abstract
Background Burkholderia pseudomallei is a Category B select agent and the cause of melioidosis. Research funding for vaccine development has largely considered protection within the biothreat context, but the resulting vaccines could be applicable to populations who are at risk of naturally acquired melioidosis. Here, we discuss target populations for vaccination, consider the cost-benefit of different vaccination strategies and review potential vaccine candidates. Methods and Findings Melioidosis is highly endemic in Thailand and northern Australia, where a biodefense vaccine might be adopted for public health purposes. A cost-effectiveness analysis model was developed, which showed that a vaccine could be a cost-effective intervention in Thailand, particularly if used in high-risk populations such as diabetics. Cost-effectiveness was observed in a model in which only partial immunity was assumed. The review systematically summarized all melioidosis vaccine candidates and studies in animal models that had evaluated their protectiveness. Possible candidates included live attenuated, whole cell killed, sub-unit, plasmid DNA and dendritic cell vaccines. Live attenuated vaccines were not considered favorably because of possible reversion to virulence and hypothetical risk of latent infection, while the other candidates need further development and evaluation. Melioidosis is acquired by skin inoculation, inhalation and ingestion, but routes of animal inoculation in most published studies to date do not reflect all of this. We found a lack of studies using diabetic models, which will be central to any evaluation of a melioidosis vaccine for natural infection since diabetes is the most important risk factor. Conclusion Vaccines could represent one strand of a public health initiative to reduce the global incidence of melioidosis. The designation of Burkholderia pseudomallei as a category B select agent has resulted in considerable research funding to develop a protective vaccine. This bacterium also causes a naturally occurring disease (melioidosis), an important cause of death in many countries including Thailand and Australia. In this study, we explored whether a vaccine could be used to provide protection from melioidosis. An economic evaluation based on its use in Thailand indicated that a vaccine could be a cost-effective intervention if used in high-risk populations such as diabetics and those with chronic kidney or lung disease. A literature search of vaccine studies in animal models identified the current candidates, but noted that models failed to take account of the common routes of infection in natural melioidosis and major risk factors for infection, primarily diabetes. This review highlights important areas for future research if biodefence-driven vaccines are to play a role in reducing the global incidence of melioidosis.
Collapse
Affiliation(s)
- Sharon J. Peacock
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medicine, Cambridge University, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Yoel Lubell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gavin C. K. W. Koh
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medicine, Cambridge University, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Lisa J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Clinical Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Richard W. Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
39
|
Nieves W, Asakrah S, Qazi O, Brown KA, Kurtz J, Aucoin DP, McLachlan JB, Roy CJ, Morici LA. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine 2011; 29:8381-9. [PMID: 21871517 DOI: 10.1016/j.vaccine.2011.08.058] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/03/2011] [Accepted: 08/07/2011] [Indexed: 12/19/2022]
Abstract
Burkholderia pseudomallei, and other members of the Burkholderia, are among the most antibiotic-resistant bacterial species encountered in human infection. Mortality rates associated with severe B. pseudomallei infection approach 50% despite therapeutic treatment. A protective vaccine against B. pseudomallei would dramatically reduce morbidity and mortality in endemic areas and provide a safeguard for the U.S. and other countries against biological attack with this organism. In this study, we investigated the immunogenicity and protective efficacy of B. pseudomallei-derived outer membrane vesicles (OMVs). Vesicles are produced by Gram-negative and Gram-positive bacteria and contain many of the bacterial products recognized by the host immune system during infection. We demonstrate that subcutaneous (SC) immunization with OMVs provides significant protection against an otherwise lethal B. pseudomallei aerosol challenge in BALB/c mice. Mice immunized with B. pseudomallei OMVs displayed OMV-specific serum antibody and T-cell memory responses. Furthermore, OMV-mediated immunity appears species-specific as cross-reactive antibody and T cells were not generated in mice immunized with Escherichia coli-derived OMVs. These results provide the first compelling evidence that OMVs represent a non-living vaccine formulation that is able to produce protective humoral and cellular immunity against an aerosolized intracellular bacterium. This vaccine platform constitutes a safe and inexpensive immunization strategy against B. pseudomallei that can be exploited for other intracellular respiratory pathogens, including other Burkholderia and bacteria capable of establishing persistent infection.
Collapse
Affiliation(s)
- Wildaliz Nieves
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bagnoli F, Baudner B, Mishra RPN, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:545-66. [PMID: 21682594 DOI: 10.1089/omi.2010.0127] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vaccine research and development are experiencing a renaissance of interest from the global scientific community. There are four major reasons for this: (1) the lack of efficacious treatment for many devastating infections; (2) the emergence of multidrug resistant bacteria; (3) the need for improving the safety of the more traditional licensed vaccines; and finally, (4) the great promise for innovative vaccine design and research with convergence of omics sciences, such as genomics, proteomics, immunomics, and vaccinology. Our first project based on omics was initiated in 2000 and was termed reverse vaccinology. At that time, antigen identification was mainly based on bioinformatic analysis of a singular genome. Since then, omics-guided approaches have been applied to its full potential in several proof-of-concept studies in the industry, with the first reverse vaccinology-derived vaccine now in late stage clinical trials and several vaccines developed by omics in preclinical studies. In the meantime, vaccine discovery and development has been further improved with the support of proteomics, functional genomics, comparative genomics, structural biology, and most recently vaccinomics. We illustrate in this review how omics biotechnologies and integrative biology are expected to accelerate the identification of vaccine candidates against difficult pathogens for which traditional vaccine development has thus far been failing, and how research will provide safer vaccines and improved formulations for immunocompromised patients in the near future. Finally, we present a discussion to situate omics-guided rational vaccine design in the broader context of global public health and how it can benefit citizens in both developed and developing countries.
Collapse
|
41
|
De Groot AS, Ardito M, Moise L, Gustafson EA, Spero D, Tejada G, Martin W. Immunogenic Consensus Sequence T helper Epitopes for a Pan- Burkholderia Biodefense Vaccine. Immunome Res 2011; 7. [PMID: 25346775 PMCID: PMC4206550 DOI: 10.4172/1745-7580.1000043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Biodefense vaccines against Category B bioterror agents Burkholderia pseudomallei (BPM) and Burkholderia mallei (BM) are needed, as they are both easily accessible to terrorists and have strong weaponization potential. Burkholderia cepaciae (BC), a related pathogen, causes chronic lung infections in cystic fibrosis patients. Since BPM, BM and BC are all intracellular bacteria, they are excellent targets for T cell-based vaccines. However, the sheer volume of available genomic data requires the aid of immunoinformatics for vaccine design. Using EpiMatrix, ClustiMer and EpiAssembler, a set of immunoinformatic vaccine design tools, we screened the 31 available Burkholderia genomes and performed initial tests of our selections that are candidates for an epitope-based multi-pathogen vaccine against Burkholderia species. Results Immunoinformatics analysis of 31 Burkholderia genomes yielded 350,004 9-mer candidate vaccine peptides of which 133,469 had perfect conservation across the 10 BM genomes, 175,722 had perfect conservation across the 11 BPM genomes and 40,813 had perfect conservation across the 10 BC genomes. Further screening with EpiMatrix yielded 54,010 high-scoring Class II epitopes; these were assembled into 2,880 longer highly conserved ‘immunogenic consensus sequence’ T helper epitopes. 100% of the peptides bound to at least one HLA class II allele in vitro, 92.7% bound to at least two alleles, 82.9% to three, and 75.6% of the binding results were consistent with the immunoinformatics analysis. Conclusions Our results show it is possible to rapidly identify promiscuous T helper epitopes conserved across multiple Burkholderia species and test their binding to HLA ligands in vitro. The next step in our process will be to test the epitopes ex vivo using peripheral leukocytes from BC, BPM infected humans and for immunogenicity in human HLA transgenic mice. We expect that this approach will lead to development of a licensable, pan-Burkholderia biodefense vaccine.
Collapse
Affiliation(s)
- Anne S De Groot
- EpiVax 146 Clifford St, Providence, RI 02903, USA ; Institute for Immunology and Informatics, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA
| | | | - Leonard Moise
- EpiVax 146 Clifford St, Providence, RI 02903, USA ; Institute for Immunology and Informatics, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA
| | - Eric A Gustafson
- Institute for Immunology and Informatics, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA
| | - Denice Spero
- Institute for Immunology and Informatics, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA
| | - Gloria Tejada
- Institute for Immunology and Informatics, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA
| | | |
Collapse
|
42
|
Burkholderia thailandensis oacA mutants facilitate the expression of Burkholderia mallei-like O polysaccharides. Infect Immun 2010; 79:961-9. [PMID: 21115721 DOI: 10.1128/iai.01023-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that the O polysaccharides (OPS) expressed by Burkholderia mallei are similar to those produced by Burkholderia thailandensis except that they lack the 4-O-acetyl modifications on their 6-deoxy-α-l-talopyranosyl residues. In the present study, we describe the identification and characterization of an open reading frame, designated oacA, expressed by B. thailandensis that accounts for this phenomenon. Utilizing the B. thailandensis and B. mallei lipopolysaccharide (LPS)-specific monoclonal antibodies Pp-PS-W and 3D11, Western immunoblot analyses demonstrated that the LPS antigens expressed by the oacA mutant, B. thailandensis ZT0715, were antigenically similar to those produced by B. mallei ATCC 23344. In addition, immunoblot analyses demonstrated that when B. mallei ATCC 23344 was complemented in trans with oacA, it synthesized B. thailandensis-like LPS antigens. To elucidate the structure of the OPS moieties expressed by ZT0715, purified samples were analyzed via nuclear magnetic resonance spectroscopy. As predicted, these studies demonstrated that the loss of OacA activity influenced the O acetylation phenotype of the OPS moieties. Unexpectedly, however, the results indicated that the O methylation status of the OPS antigens was also affected by the loss of OacA activity. Nonetheless, it was revealed that the LPS moieties expressed by the oacA mutant reacted strongly with the B. mallei LPS-specific protective monoclonal antibody 9C1-2. Based on these findings, it appears that OacA is required for the 4-O acetylation and 2-O methylation of B. thailandensis OPS antigens and that ZT0715 may provide a safe and cost-effective source of B. mallei-like OPS to facilitate the synthesis of glanders subunit vaccine candidates.
Collapse
|