1
|
Linton C, Schaumberg MA, Wright HH. Dietary inflammatory index is not associated with bone mineral density in functionally able community-dwelling older adults. Eur J Nutr 2024; 63:3195-3205. [PMID: 39317870 PMCID: PMC11519128 DOI: 10.1007/s00394-024-03500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Osteoporosis poses a significant health and quality-of-life burden on older adults, particularly with associated fractures after a fall. A notable increase in pro-inflammatory cytokines associated with aging contributes to a decline in bone mineral density (BMD). Certain food components have been shown to influence an individual's inflammatory state and may contribute to optimal bone health as a modifiable risk factor, particularly later in life. This study aims to explore the relationship between the dietary inflammatory index (DII) and dietary intake with BMD in community-dwelling older adults. METHODS Heathy community-dwelling older adults aged 65-85 years. DII scores were calculated using 24-h dietary recalls, and lumbar spine (L1-L4) and femoral neck (ward's triangle) BMD was assessed via dual-energy x-ray absorptiometry. RESULTS A total of 94 participants were recruited (72.9 ± 4.9 years, 76.6% female) with 61.7% identified having an anti-inflammatory diet (average DII = - 0.50 ± 1.6), 88.3% were physically active, 47.8% were osteopenic and 27.7% osteoporotic. There was no significant difference between DII scores, nutrient or food group intake in groups stratified by BMD T-Score except for lean meats and alternatives food group (p = 0.027). Multiple regression analysis found no associations between DII and lumbar spine (unadjusted model β = 0.020, p = 0.155) or femoral neck BMD (unadjusted model β = - 0.001, p = 0.866). CONCLUSION Most of this cohort of functionally able community-dwelling older adults followed an anti-inflammatory diet. DII and dietary intake were not associated with BMD. This research underlines the complex interplay between modifiable and non-modifiable risk factors on the BMD of older, physically active adults.
Collapse
Affiliation(s)
- Corey Linton
- School of Health, University of the Sunshine Coast, Sippy Downs, Australia.
- Sunshine Coast Health Institute, Birtinya, Sunshine Coast, Australia.
| | - Mia A Schaumberg
- School of Health, University of the Sunshine Coast, Sippy Downs, Australia
- Sunshine Coast Health Institute, Birtinya, Sunshine Coast, Australia
- Manna Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Hattie H Wright
- School of Health, University of the Sunshine Coast, Sippy Downs, Australia
- Sunshine Coast Health Institute, Birtinya, Sunshine Coast, Australia
| |
Collapse
|
2
|
Schlosser CS, Rozek W, Mellor RD, Manka SW, Morris CJ, Brocchini S, Williams GR. A lipid-based delivery platform for thermo-responsive delivery of teriparatide. Int J Pharm 2024; 667:124853. [PMID: 39437847 DOI: 10.1016/j.ijpharm.2024.124853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Teriparatide (and analogue peptides) are the only FDA approved anabolic treatments for osteoporosis. Current therapies are administered as a daily subcutaneous injection, which limits patient adherence and clinical efficacy. To achieve the desired anabolic effect, a controlled delivery system must ensure a pulsatile release profile over a prolonged period. Thermo-responsive formulations (e.g. liposomes) can undergo a temperature-related phase-transition which can allow active control of drug release. Herein, thermo-responsive liposomes were developed to permit control over teriparatide release rate through modulation of temperature. Entrapment of hydrophilic molecules, including peptides, within liposomes remains challenging due to the large volume of hydration. In this work, hydrophobic ion pairing was employed for the first time to enhance peptide entrapment within liposomes. The method resulted in a hydrophobic complex that achieved high teriparatide entrapment (>75 %) in sub-200 nm monodispersed liposomes. Hydrophobic ion pairing outperformed other entrapment approaches. Several liposomal formulations with transition temperatures between 38 and 50 °C were obtained by modulation of the phospholipid composition. In vitro assays demonstrated temperature-dependent release kinetics with faster rates of release observed at/above the transition temperature. The maintenance of biological activity of released teriparatide was demonstrated in a cell-based assay utilising the PTH1 receptor. Overall, this provides the first proof-of-concept of the suitability of thermo-responsive systems for pulsatile delivery of teriparatide and similar peptides.
Collapse
Affiliation(s)
- Corinna S Schlosser
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Wojciech Rozek
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ryan D Mellor
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London W1W 7FF, UK
| | - Christopher J Morris
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
3
|
Saetang J, Issuriya A, Suyapoh W, Sornying P, Nilsuwan K, Benjakul S. Bio-Calcium from Skipjack Tuna Frame Attenuates Bone Loss in Ovariectomy-Induced Osteoporosis Rats. Mar Drugs 2024; 22:472. [PMID: 39452880 PMCID: PMC11509285 DOI: 10.3390/md22100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Bio-calcium derived from fish frames may offer several advantages for osteoporosis prevention. This study aimed to evaluate the effects of bio-calcium derived from skipjack tuna frames on bone loss in ovariectomized rats. Tuna bio-calcium was prepared through enzymatic hydrolysis, defatting, bleaching, and grinding processes. The bioavailability of calcium was tested using the Caco-2 cell monolayer model, showing that 13% of tuna bio-calcium was absorbed, compared to 10% for calcium carbonate. Rats were divided into the five following groups: (1) OVX, (2) sham-operated, (3), OVX + estrogen-treated (4) OVX + calcium carbonate-treated, and (5) OVX + tuna bio-calcium-treated. All groups were raised for eight weeks. Tuna bio-calcium was able to increase BV/TV by 26% in the femur and 29% in the tibia, compared to 13% and 17% in the OVX group, respectively. Trabecular thickness in the femur upsurged to 360 µm in the tuna group, while a thickness of 290 µm was observed in the control. Additionally, osteoclast numbers were reduced to 5 N.Oc/mm in the femur and 6 N.Oc/mm in the tibia in the tuna group, compared to 35 and 45 N.Oc/mm in the control. Overall, tuna bio-calcium effectively prevented bone loss and can serve as a promising natural alternative for managing osteoporosis.
Collapse
Affiliation(s)
- Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (J.S.); (K.N.)
| | - Acharaporn Issuriya
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand;
| | - Watcharapol Suyapoh
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai 90110, Thailand; (W.S.); (P.S.)
| | - Peerapon Sornying
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai 90110, Thailand; (W.S.); (P.S.)
| | - Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (J.S.); (K.N.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (J.S.); (K.N.)
| |
Collapse
|
4
|
Marie Encarnacion A, Pootheri N, Yao H, Chen Z, Lee S, Kim E, Lee TH. Novel inhibitor N-cyclopropyl-4-((4-((4-(trifluoromethyl)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamide attenuates RANKL-mediated osteoclast differentiation in vitro. Bioorg Med Chem Lett 2024; 110:129884. [PMID: 38996939 DOI: 10.1016/j.bmcl.2024.129884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Both cyclopropyl amide and piperazine sulfonamide functional groups are known for their various biological properties used for drug development. Herein, we synthesized nine new derivatives with different substituent groups incorporating these moieties and screened them for their anti-osteoclast differentiation activity. After analyzing the structure-activity relationship (SAR), the inhibitory effect against osteoclastogenesis was determined to be dependent on the lipophilicity of the compound. Derivative 5b emerged as the most effective dose-dependent inhibitor after TRAP staining with an IC50 of 0.64 µM against RANKL-induced osteoclast cells. 5b was also able to suppress F-acting ring formation and bone resorption activity of osteoclasts in vitro. Finally, well-acknowledged gene and protein osteoclast-specific marker expression levels were decreased after 5b administration on primary murine osteoclast cells.
Collapse
Affiliation(s)
| | - Nithin Pootheri
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Hongyuan Yao
- Interdisciplinary Department of Biomedical Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Zhihao Chen
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, South Korea; Host-directed Antiviral Research Center, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Tae-Hoon Lee
- Interdisciplinary Department of Biomedical Engineering, Chonnam National University, Gwangju 61186, South Korea; Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
5
|
Safari AH, Sadat Mansouri S, Iranpour B, Hodjat M, Hakimiha N. An in vitro study on the effects of photobiomodulation by diode lasers (red, infrared, and red-infrared combination) on periodontal ligament mesenchymal stem cells treated with bisphosphonates. Photochem Photobiol 2024; 100:1399-1407. [PMID: 38217350 DOI: 10.1111/php.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/02/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
This study evaluated the effect of photobiomodulation therapy (PBMT) using 660 and 808 nm diode lasers (individual and in combination) on periodontal ligament mesenchymal stem cells (PDLSCs) in the presence of zoledronic acid (ZA). PDLSCs were cultured for 48 h in DMEM complete medium containing 5 μM ZA. PBMT was done three times with a 24-h interval in groups 1 (660 nm, 5 J/cm2), 2 (880 nm, 3 J/cm2), and 3 (660 + 808 nm) either in normal or ZA-treated culture medium. Control groups did not receive PBMT. Twenty-four hours post-irradiation, cell proliferation and expression of RANKL and OPG were assessed using MTT and real-time PCR tests, respectively. The results showed a significant decrease in cell viability in ZA-treated cells (p < 0.001). Additionally, ZA induced the expression of OPG (p = 0.03) while reducing RANKL (p < 0.001). Cell proliferation was significantly increased in 808 and 660 + 808 nm groups. Moreover, all PBMT groups could significantly increase and decrease the RANKL and OPG, respectively, in the presence of ZA (all p < 0.001). A combination of 660 + 808 nm showed the highest effects on both genes. In conclusion, it seems that PBMT can modulate the effects of ZA by inducing PDLSC proliferation and increasing RANKL-to-OPG gene expression ratio.
Collapse
Affiliation(s)
- Amir Hossein Safari
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Sadat Mansouri
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Babak Iranpour
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Devoy EJ, Jabari E, Kotsanos G, Choe RH, Fisher JP. An Exploration of the Role of Osteoclast Lineage Cells in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39041616 DOI: 10.1089/ten.teb.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bone defects because of age, trauma, and surgery, which are exacerbated by medication side effects and common diseases such as osteoporosis, diabetes, and rheumatoid arthritis, are a problem of epidemic scale. The present clinical standard for treating these defects includes autografts and allografts. Although both treatments can promote robust regenerative outcomes, they fail to strike a desirable balance of availability, side effect profile, consistent regenerative efficacy, and affordability. This difficulty has contributed to the rise of bone tissue engineering (BTE) as a potential avenue through which enhanced bone regeneration could be delivered. BTE is founded upon a paradigm of using biomaterials, bioactive factors, osteoblast lineage cells (ObLCs), and vascularization to cue deficient bone tissue into a state of regeneration. Despite promising preclinical results, BTE has had modest success in being translated into the clinical setting. One barrier has been the simplicity of its paradigm relative to the complexity of biological bone. Therefore, this paradigm must be critically examined and expanded to better account for this complexity. One potential avenue for this is a more detailed consideration of osteoclast lineage cells (OcLCs). Although these cells ostensibly oppose ObLCs and bone regeneration through their resorptive functions, a myriad of investigations have shed light on their potential to influence bone equilibrium in more complex ways through their interactions with both ObLCs and bone matrix. Most BTE research has not systematically evaluated their influence. Yet contrary to expectations associated with the paradigm, a selection of BTE investigations has demonstrated that this influence can enhance bone regeneration in certain contexts. In addition, much work has elucidated the role of many controllable scaffold parameters in both inhibiting and stimulating the activity of OcLCs in parallel to bone regeneration. Therefore, this review aims to detail and explore the implications of OcLCs in BTE and how they can be leveraged to improve upon the existing BTE paradigm.
Collapse
Affiliation(s)
- Eoin J Devoy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Erfan Jabari
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - George Kotsanos
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Robert H Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
7
|
Zhang Z, Sun Z, Jia R, Jiang D, Xu Z, Zhang Y, Wu YQ, Wang X. Protective effects of polydatin against bone and joint disorders: the in vitro and in vivo evidence so far. Nutr Res Rev 2024; 37:96-107. [PMID: 37088535 DOI: 10.1017/s0954422423000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Polydatin is an active polyphenol displaying multifaceted benefits. Recently, growing studies have noticed its potential therapeutic effects on bone and joint disorders (BJDs). Therefore, this article reviews recent in vivo and in vitro progress on the protective role of polydatin against BJDs. An insight into the underlying mechanisms is also presented. It was found that polydatin could promote osteogenesis in vitro, and symptom improvements have been disclosed with animal models of osteoporosis, osteosarcoma, osteoarthritis and rheumatic arthritis. These beneficial effects obtained in laboratory could be mainly attributed to the bone metabolism-regulating, anti-inflammatory, antioxidative, apoptosis-regulating and autophagy-regulating functions of polydatin. However, studies on human subjects with BJDs that can lead to early identification of the clinical efficacy and adverse effects of polydatin have not been reported yet. Accordingly, this review serves as a starting point for pursuing clinical trials. Additionally, future emphasis should also be devoted to the low bioavailability and prompt metabolism nature of polydatin. In summary, well-designed clinical trials of polydatin in patients with BJD are in demand, and its pharmacokinetic nature must be taken into account.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Department of Spine Surgery, Youyang Tujia and Miao Autonomous County People's Hospital, Chongqing, 409899, People's Republic of China
| | - Zhicheng Sun
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Runze Jia
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dingyu Jiang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Zhenchao Xu
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yilu Zhang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yun-Qi Wu
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Xiyang Wang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| |
Collapse
|
8
|
Saeed NM, Ramadan LA, El-Sabbagh WA, Said MA, Abdel-Rahman HM, Mekky RH. Exploring the anti-osteoporosis potential of Petroselinum crispum (Mill.) Fuss extract employing experimentally ovariectomized rat model and network pharmacology approach. Fitoterapia 2024; 175:105971. [PMID: 38663562 DOI: 10.1016/j.fitote.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/11/2024] [Accepted: 04/21/2024] [Indexed: 04/30/2024]
Abstract
One of the most prevalent secondary osteoporosis is ovariectomy-induced osteoporosis. Parsley (Petroselinum crispum) has potent estrogenic and antioxidant properties and was used traditionally in the treatment of amenorrhea and dysmenorrhea. The present study aimed to characterize parsley leaf extract (PLE) employing RP-HPLC-MS-MS/MS-based method and possible protective effect in ovariectomized (OVX)-induced osteoporosis in rats was assessed. Rats were randomly assigned into SHAM group, OVX group, PLE + OVX group (150 mg/kg/day, p.o), and estradiol benzoate (E2) + OVX group (30 μg/kg/day, s.c). After eight weeks following ovariectomy, biomarkers of bone strength, bone resorption, oxidative stress and histopathology were carried out. A network pharmacology approach investigated the key targets and potential mechanisms by of PLE metabolites against osteoporosis using databases: PubChem, BindingDB server, DisGeNET, ShinyGO, and KEGG Pathway. Moreover, FunRich 3.1.3, Cytoscape 3.10.0, and MOE 2019.0102 softwares were used for network pharmacology analysis and molecular docking studies. Flavones and hydroxycinnamic acid derivatives were predominant among 38 metabolites in PLE. It significantly restored bone strength and bone resorption biomarkers, osteocalcin (OST), oxidative stress biomarkers and histopathological alterations. The employed network pharmacology approach revealed that 14 primary target genes were associated with decreasing the severity of osteoporosis. Molecular docking revealed that cGMP-PKG signaling pathway has the highest fold enrichment and its downstream PDE5A. Luteolin, diosmetin, and isorhamnetin derivatives affected mostly osteoporosis targets. PLE exhibited protective action against ovariectomy-induced osteoporosis in rats and may be a promising therapy for premenopausal bone loss. cGMP-PKG signaling pathway could be a promising target for PLE in treating osteoporosis.
Collapse
Affiliation(s)
- Noha M Saeed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, 11829 Cairo, Egypt.
| | - Laila A Ramadan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, 11829 Cairo, Egypt
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), 11787 Cairo, Egypt
| | - Mohamed A Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Hanaa M Abdel-Rahman
- Department of Pharmacy Practice, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt; Department of Forensic Medicine and Toxicology, Faculty of Medicine, Ain Shams University, Cairo 11562, Egypt
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, 11829, Cairo, Egypt..
| |
Collapse
|
9
|
Battistini B, Greggi C, Visconti VV, Albanese M, Messina A, De Filippis P, Gasperini B, Falvino A, Piscitelli P, Palombi L, Tarantino U. Metals accumulation affects bone and muscle in osteoporotic patients: A pilot study. ENVIRONMENTAL RESEARCH 2024; 250:118514. [PMID: 38373545 DOI: 10.1016/j.envres.2024.118514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Osteoporosis is the most common bone disease, characterized by decreased bone mineral density (BMD) and often associated to decreased muscle mass and function. Metal exposure plays a role in the pathophysiology of osteoporosis and affects also muscle quality. The aim of this study was to assess the association between metal levels in bone and muscle samples and the degeneration of these tissues. A total of 58 subjects (30 male and 28 female) was enrolled and classified in osteoporotic (OP, n = 8), osteopenic (Ope, n = 30) and healthy (CTR, n = 20) subjects, according to BMD measures. Femoral head bone samples and vastus lateralis muscle samples were collected during hip arthroplasty surgeries. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis showed increased levels of Al, Cd and Pb in OP and Ope bone tissue compared to CTR subjects (p = 0.04, p = 0.005 and p = 0.01, respectively). Whereas, increased levels of Co, Cd and Pb were measured in OP and Ope muscle tissues, compared to CTRs (p < 0.001, p = 0.02 and p = 0.01, respectively). In addition, Al, Cd and Pb levels in bone and Cd and Co levels in muscle were negatively correlated with BMD. A negative association among Co, Cd, Cr and Hg levels and muscle fibers diameter was also observed in muscle tissues. This study assessed that metal exposure can affects bone and muscle tissue quality and may contribute to the onset and progression of musculoskeletal diseases such as osteoporosis. Therefore, it is important to implement metal exposure assessment and their impact on disease development, in order to manage and prevent metal accumulation effects on bone and muscle quality.
Collapse
Affiliation(s)
- Beatrice Battistini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Chiara Greggi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Marco Albanese
- Department of Statistics, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandra Messina
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Patrizia De Filippis
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Beatrice Gasperini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Angela Falvino
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Prisco Piscitelli
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Leonardo Palombi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy; University "Our Lady of Good Counsel", Tirana, Albania
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy; University "Our Lady of Good Counsel", Tirana, Albania; Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133, Rome, Italy
| |
Collapse
|
10
|
Ali M, Kim YS. A comprehensive review and advanced biomolecule-based therapies for osteoporosis. J Adv Res 2024:S2090-1232(24)00215-7. [PMID: 38810908 DOI: 10.1016/j.jare.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The prevalence of osteoporosis (OP) on a global scale is significantly elevated that causes life threatening issues. The potential of groundbreaking biomolecular therapeutics in the field of OP is highly encouraging. The administration of biomolecular agents has the potential to mitigate the process of bone demineralization while concurrently augmenting the regenerative capacity of bone tissue, thereby facilitating a personalized therapeutic approach. Biomolecules-based therapies showed promising results in term of bone mass protection and restoration in OP. AIM OF REVIEW We summarized the recent biomolecular therapies with notable progress in clinical, demonstrating the potential to transform illness management. These treatments frequently utilize different biomolecule based strategies. Biomolecular therapeutics has a targeted character, which results in heightened specificity and less off-target effects, ultimately leading to increased patient outcomes. These aspects have the capacity to greatly enhance the management of OP, thus resulting in a major enhancement in the quality of life encountered by individuals affected by this condition.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
11
|
Guaraná WL, Lima CAD, Barbosa AD, Crovella S, Sandrin-Garcia P. Farnesyl Diphosphate Synthase Gene Associated with Loss of Bone Mass Density and Alendronate Treatment Failure in Patients with Primary Osteoporosis. Int J Mol Sci 2024; 25:5623. [PMID: 38891810 PMCID: PMC11172034 DOI: 10.3390/ijms25115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Aminobisphosphonates (NBPs) are the first-choice medication for osteoporosis (OP); NBP treatment aims at increasing bone mineral density (BMD) by inhibiting the activity of farnesyl diphosphate synthase (FDPS) enzyme in osteoclasts. Despite its efficacy, inadequate response to the drug and side effects have been reported. The A allele of the rs2297480 (A > C) SNP, found in the regulatory region of the FDPS gene, is associated with reduced gene transcription. This study evaluates the FDPS variant rs2297480 (A > C) association with OP patients' response to alendronate sodium treatment. A total of 304 OP patients and 112 controls were enrolled; patients treated with alendronate sodium for two years were classified, according to BMD variations at specific regions (lumbar spine (L1-L4), femoral neck (FN) and total hip (TH), as responders (OP-R) (n = 20) and non-responders (OP-NR) (n = 40). We observed an association of CC genotype with treatment failure (p = 0.045), followed by a BMD decrease in the regions L1-L4 (CC = -2.21% ± 2.56; p = 0.026) and TH (CC = -2.06% ± 1.84; p = 0.015) after two years of alendronate sodium treatment. Relative expression of the FDPS gene was also evaluated in OP-R and OP-NR patients. Higher expression of the FDPS gene was also observed in OP-NR group (FC = 1.84 ± 0.77; p = 0.006) when compared to OP-R. In conclusion, the influence observed of FDPS expression and the rs2897480 variant on alendronate treatment highlights the importance of a genetic approach to improve the efficacy of treatment for primary osteoporosis.
Collapse
Affiliation(s)
- Werbson Lima Guaraná
- Keizo Asami Institute, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50670-901, Brazil;
| | - Camilla Albertina Dantas Lima
- Keizo Asami Institute, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50670-901, Brazil;
- Department of Oceanography, Technology and Geoscience Center, Federal University of Pernambuco, Recife Campus, Recife 50740-550, Brazil
| | - Alexandre Domingues Barbosa
- Rheumatology Division, Clinical Hospital of Federal University of Pernambuco, Recife Campus, Recife 50740-900, Brazil;
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha P.O. Box 2713, Qatar
| | - Paula Sandrin-Garcia
- Keizo Asami Institute, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50670-901, Brazil;
- Department of Genetics, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50730-120, Brazil
| |
Collapse
|
12
|
Jarusriwanna A, Malisorn S, Tananoo S, Areewong K, Rasamimongkol S, Laoruengthana A. Efficacy and Safety of Generic Alendronate for Osteoporosis Treatment. Orthop Res Rev 2024; 16:85-91. [PMID: 38410814 PMCID: PMC10895978 DOI: 10.2147/orr.s445202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Background While osteoporosis increases the risk of fragility fractures, bisphosphonate has been proven to increase bone strength and reduce the risk of vertebral and non-vertebral fractures. In addition to its efficacy, substituting the brand with generic medication is a strategy to optimize healthcare expenditures. This study aimed to evaluate the efficacy of generic alendronate treatment and assess potential adverse events in patients with osteoporosis. Materials and Methods A retrospective review was conducted on 120 patients who met the indications for osteoporosis treatment, received weekly generic alendronate (70 mg) for >1 year, and underwent evaluation through standard axial dual-energy X-ray absorptiometry (DXA). The outcomes of this study were the percent change in bone mineral density (BMD) at the lumbar spine, femoral neck, and total hip after one year of treatment. The major adverse events occurring during medication that led to the discontinuation of drug administration were documented. Results Most patients were female (96.7%) with an average age of 69.0 ± 9.3 years. The percent change in BMD increased at all sites after one year of generic alendronate treatment (lumbar spine: 5.6 ± 13.7, p-value <0.001; femoral neck: 2.3 ± 8.3, p-value = 0.023; total hip: 2.1 ± 6.2, p-value = 0.003), with over 85% of patients experiencing increased or stable BMD. Three patients discontinued the medication due to adverse effects: two had dyspepsia, and one had persistent myalgia. Conclusion Generic alendronate may be considered an effective antiresorptive agent for osteoporosis treatment with a low incidence of adverse effects.
Collapse
Affiliation(s)
- Atthakorn Jarusriwanna
- Department of Orthopaedics, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Saran Malisorn
- Department of Orthopaedics, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Sirikarn Tananoo
- Department of Orthopaedics, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | | | - Supachok Rasamimongkol
- Department of Orthopaedics, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Artit Laoruengthana
- Department of Orthopaedics, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
13
|
Goller SS, Foreman SC, Rischewski JF, Weißinger J, Dietrich AS, Schinz D, Stahl R, Luitjens J, Siller S, Schmidt VF, Erber B, Ricke J, Liebig T, Kirschke JS, Dieckmeyer M, Gersing AS. Differentiation of benign and malignant vertebral fractures using a convolutional neural network to extract CT-based texture features. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:4314-4320. [PMID: 37401945 DOI: 10.1007/s00586-023-07838-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE To assess the diagnostic performance of three-dimensional (3D) CT-based texture features (TFs) using a convolutional neural network (CNN)-based framework to differentiate benign (osteoporotic) and malignant vertebral fractures (VFs). METHODS A total of 409 patients who underwent routine thoracolumbar spine CT at two institutions were included. VFs were categorized as benign or malignant using either biopsy or imaging follow-up of at least three months as standard of reference. Automated detection, labelling, and segmentation of the vertebrae were performed using a CNN-based framework ( https://anduin.bonescreen.de ). Eight TFs were extracted: Varianceglobal, Skewnessglobal, energy, entropy, short-run emphasis (SRE), long-run emphasis (LRE), run-length non-uniformity (RLN), and run percentage (RP). Multivariate regression models adjusted for age and sex were used to compare TFs between benign and malignant VFs. RESULTS Skewnessglobal showed a significant difference between the two groups when analyzing fractured vertebrae from T1 to L6 (benign fracture group: 0.70 [0.64-0.76]; malignant fracture group: 0.59 [0.56-0.63]; and p = 0.017), suggesting a higher skewness in benign VFs compared to malignant VFs. CONCLUSION Three-dimensional CT-based global TF skewness assessed using a CNN-based framework showed significant difference between benign and malignant thoracolumbar VFs and may therefore contribute to the clinical diagnostic work-up of patients with VFs.
Collapse
Affiliation(s)
- Sophia S Goller
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| | - Sarah C Foreman
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jon F Rischewski
- Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| | - Jürgen Weißinger
- Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| | - Anna-Sophia Dietrich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Stahl
- Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| | - Johanna Luitjens
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Sebastian Siller
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Vanessa F Schmidt
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Bernd Erber
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Thomas Liebig
- Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Alexandra S Gersing
- Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
14
|
Sulaiman N, Fadhul F, Chrcanovic BR. Bisphosphonates and Dental Implants: A Systematic Review and Meta-Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6078. [PMID: 37763356 PMCID: PMC10532755 DOI: 10.3390/ma16186078] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
The purpose of the present systematic review was to investigate the influence of bisphosphonates (BPs) on the dental implant failure rate and marginal bone loss (MBL). An electronic search was undertaken in three databases, plus a manual search of journals. Meta-analyses were performed, besides a meta-regression in order to verify how the log odds ratio (OR) was associated with follow-up time. The five- and ten-year estimated implant survivals were calculated. The review included 33 publications. Altogether, there were 1727 and 21,986 implants placed in patients taking and not taking BPs, respectively. A pairwise meta-analysis (26 studies) showed that implants in BP patients had a higher failure risk in comparison to non-BP patients (OR 1.653, p = 0.047). There was an estimated decrease of 0.004 in log OR for every additional month of follow-up, although it was not significant (p = 0.259). The global estimated implant survival in patients taking BPs after 5 and 10 years was 94.2% (95% CI, 94.0-94.4) and 90.1% (95% CI, 89.8-90.3), respectively. It was not possible to make any reliable analysis concerning MBL, as only two studies reported MBL results separated by groups. There is a 65.3% higher risk of implant failure in patients taking BPs in comparison to patients not taking this class of drugs.
Collapse
Affiliation(s)
- Nabaa Sulaiman
- Faculty of Odontology, Malmö University, 214 21 Malmö, Sweden; (N.S.); (F.F.)
| | - Fadi Fadhul
- Faculty of Odontology, Malmö University, 214 21 Malmö, Sweden; (N.S.); (F.F.)
| | - Bruno Ramos Chrcanovic
- Department of Prosthodontics, Faculty of Odontology, Malmö University, 214 21 Malmö, Sweden
| |
Collapse
|
15
|
Guo Z, Afza R, Moneeb Khan M, Khan SU, Khan MW, Ali Z, Batool S, Din FU. Investigation of the treatment potential of Raloxifene-loaded polymeric nanoparticles in osteoporosis: In-vitro and in-vivo analyses. Heliyon 2023; 9:e20107. [PMID: 37810010 PMCID: PMC10559869 DOI: 10.1016/j.heliyon.2023.e20107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Osteoporosis (OP), is a systemic bone disorder associated with low bone mass and bone tissue corrosion. Worsening of the disease condition leads to bone delicacy and fracture. Various drugs are available for the treatment of OP, however they have limitations including poor solubility, bioavailability and toxicity. Herein, Raloxifene-loaded polymeric nanoparticles (RLX-PNPs) were developed and investigated for the treatment of OP with possible solutions to the above mentioned problems. RLX-PNPs were prepared by modified ionic gelation method followed by determining their particle properties. FTIR, DSC and PXRD analysis of the RLX-PNPs were performed to check chemical interaction, thermal behavior and crystallinity, respectively. In-vitro release profile of RLX-PNPs was checked in lab setting, whereas its pharmacokinetics was investigated in Sprague-Dawley rats, in-vivo. Finally, the treatment potential of RLX-PNPs was analyzed in OP induced animal model. The optimized PNPs formulation indicated 134.5 nm particle size, +24.4 mV charge and 91.73% % EE. TEM analysis showed spherical and uniform sized particles with no interactions observed in FTIR analysis. In-vitro release of RLX from RLX-PNPs showed more sustained release behavior as compared to RLX-suspension. Moreover, pharmacokinetic investigations showed a significantly enhanced bioavailability of the RLX-PNPs as well as reduced serum levels of alkaline phosphatase and calcium in OP induced rats when compared with RLX-Suspension after oral administration. Findings of this study suggested that the developed RLX-PNPs have the potential to treat OP due to sustained release and improved bioavailability of the incorporated drug.
Collapse
Affiliation(s)
- Zhonghua Guo
- Department of Orthopaedics, Henan Province Hospital of TCM, Zhengzhou City, Henan Province, 450002, China
| | - Rabia Afza
- Department of Botany, Hazara University Mansehra KP, Pakistan
| | - Muhammad Moneeb Khan
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Saif Ullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsada, KPK, Pakistan
| | - Muhammad Waseem Khan
- Institute of Pharmaceutical Sciences Khyber Medical University, Peshawar, Pakistan
| | - Zakir Ali
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Sibgha Batool
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Fakhar ud Din
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| |
Collapse
|
16
|
Pereira LF, Fontes-Pereira AJ, de Albuquerque Pereira WC. Influence of Low-Intensity Pulsed Ultrasound Parameters on the Bone Mineral Density in Rat Model: A Systematic Review. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1687-1698. [PMID: 37121881 DOI: 10.1016/j.ultrasmedbio.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Bone recovery typically depends on the age of organisms or the prevalence of metabolic disorders such as osteoporosis, which is a metabolic condition characterized by decreased bone strength and bone mineral density (BMD). Therefore, low-intensity pulsed ultrasound (LIPUS), a non-invasive method for osteogenic stimulation, presents promising results. However, heterogeneity in animal study designs is a typical characteristic. Hence, we conducted a systematic review to evaluate the effectiveness of LIPUS in the recovery of experimental bone defects using rat models. We examined the areal and volumetric BMD to identify LIPUS doses to be applied and evaluated the accuracy reported by previous studies. METHODS The Virtual Health Library regional portal, PubMed, Embase, EBSCOhost, Scopus and CAPES were reviewed for animal studies that compared fracture treatments based on LIPUS with sham or no treatments using rat models and reported BMD as an outcome. The tool provided by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) and the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) checklist were used to assess the bias and quality of such studies. RESULTS Of the six studies reviewed, the most frequently used LIPUS dose had an ultrasonic frequency of 1.0 MHz, repetition rate of 0.1 kHz and pulse duration of 2000 μs. An intensity (ISATA) of 30 mW/cm2 was the most preferred for bone recovery. However, the BMD could not solely irrefutably evaluate the effectiveness of LIPUS in bone recovery as the results were discordant with each other. The discrepancies in experimental methodologies, low-quality classifications and high risk of bias in the selected studies, however, did not validate the undertaking of a meta-analysis. CONCLUSION On the basis of the BMD results, no sufficient evidence was found to recommend the use of LIPUS for bone recovery in rat models. Thus, this systematic review indicates that the accuracy of such reports must be improved to improve their scientific quality to facilitate a transition of LIPUS applications from pre-clinical research to clinic use.
Collapse
Affiliation(s)
- Luiz Fernando Pereira
- Biomedical Engineering Program/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Aldo José Fontes-Pereira
- Biomedical Engineering Program/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Centro Universitário Serra dos Órgãos-Unifeso, Teresópolis, Rio de Janeiro, Brazil
| | | |
Collapse
|
17
|
Kim M, Kim HS, Oh J, Zhou X, Ahn S, Koo Y, Kim HJ, Jang J. Ameliorative effects of Kyung-Ok-Ko and its mixture with Pueraria lobata Ohwi on postmenopausal osteoporosis by promoting phytoestrogenic activity in rats. Front Nutr 2023; 10:1171346. [PMID: 37435569 PMCID: PMC10332514 DOI: 10.3389/fnut.2023.1171346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Kyung-Ok-Ko (KOK) is a popular traditional medicine used as a natural alternative to hormone replacement therapy for treating postmenopausal symptoms in Asia. Pueraria lobata Ohwi (P. lobata) is rich in isoflavones and has been traditionally used in combination with other herbs to produce synergistic and pharmaceutical effects via a multi-target approach for disease treatment. We aimed to investigate the phytoestrogenic effects of KOK extract against postmenopausal symptoms in ovariectomized (OVX) rats and confirm its efficacy by mixing KOK and P. lobata extracts. Methods OVX rats were daily oral administrated with KOK and KOK + P. lobata mixture extracts (300-400 mg/kg) and their body weight and tail temperature were monitored for 12 weeks. The biochemical parameters, estradiol levels, and bone turnover markers were measured in the serum samples. Moreover, the estrogen receptor, ER-α and ER-β expression in the uterus and the uterus morphology were evaluated. AMPK, ATG1/ULK1, and mTOR protein expression in the liver were assessed. Results The 12-week treatment with KOK and KOK + P. lobata mixture extracts did not cause liver damage or hormonal changes in the OVX rats. The treatments reduced the high lipid accumulation-related body weight gain and the tail temperature increase that was induced by ovariectomy. Further, it exhibited protective effects against hyperlipidemia and osteoporosis. No significant difference was observed in uterine weight compared to the OVX-treated group, while endometrial thickness reduction inhibition was observed due to ovariectomy. Bone mineral density (BMD) and serum osteocalcin levels, which decreased in OVX rats, increased with both treatments. Western blotting analysis showed that ER-α and ER-β were not expressed in the treated rats, whereas these proteins were expressed in Sham-operated rats. No significant differences in the phosphorylation of AMPK were observed; however, the ATG1/ULK1 and mTOR protein phosphorylation levels were upregulated and downregulated in the treated rats compared to those of OVX rats, respectively. Conclusion This is the first in vivo study observing the efficacy and synergistic effects of the mixture of KOK and P. lobata. Our results suggest the potential of KOK and KOK + P. lobata mixture as an alternative therapy for alleviating menopausal symptoms.
Collapse
Affiliation(s)
- Minseo Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Hyun-Sook Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Joohee Oh
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Xiangqin Zhou
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
| | - SongHee Ahn
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Youngtae Koo
- Natural Products Convergence R&D Division, Kwangdong Pharm Co., Ltd., Seoul, Republic of Korea
| | - Hyun-Jung Kim
- Natural Products Convergence R&D Division, Kwangdong Pharm Co., Ltd., Seoul, Republic of Korea
| | - Jiwon Jang
- Natural Products Convergence R&D Division, Kwangdong Pharm Co., Ltd., Seoul, Republic of Korea
| |
Collapse
|
18
|
Skalny AV, Aschner M, Silina EV, Stupin VA, Zaitsev ON, Sotnikova TI, Tazina SI, Zhang F, Guo X, Tinkov AA. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023; 13:1006. [PMID: 37371586 DOI: 10.3390/biom13061006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of the present study was to review recent epidemiological and clinical data on the association between selected minerals and trace elements and osteoporosis, as well as to discuss the molecular mechanisms underlying these associations. We have performed a search in the PubMed-Medline and Google Scholar databases using the MeSH terms "osteoporosis", "osteogenesis", "osteoblast", "osteoclast", and "osteocyte" in association with the names of particular trace elements and minerals through 21 March 2023. The data demonstrate that physiological and nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-regulation of BMP-2 and Wnt/β-catenin signaling, as well as other pathways. miRNA and epigenetic effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorptive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which promoted bone resorption and impaired bone formation. Concomitant with the results of the laboratory studies, several clinical trials and epidemiological studies demonstrated that supplementation with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ekaterina V Silina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Victor A Stupin
- Department of Hospital Surgery No. 1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg N Zaitsev
- Department of Physical Education, Yaroslavl State Technical University, 150023 Yaroslavl, Russia
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
19
|
Lukina Y, Safronova T, Smolentsev D, Toshev O. Calcium Phosphate Cements as Carriers of Functional Substances for the Treatment of Bone Tissue. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4017. [PMID: 37297151 PMCID: PMC10254876 DOI: 10.3390/ma16114017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Interest in calcium phosphate cements as materials for the restoration and treatment of bone tissue defects is still high. Despite commercialization and use in the clinic, the calcium phosphate cements have great potential for development. Existing approaches to the production of calcium phosphate cements as drugs are analyzed. A description of the pathogenesis of the main diseases of bone tissue (trauma, osteomyelitis, osteoporosis and tumor) and effective common treatment strategies are presented in the review. An analysis of the modern understanding of the complex action of the cement matrix and the additives and drugs distributed in it in relation to the successful treatment of bone defects is given. The mechanisms of biological action of functional substances determine the effectiveness of use in certain clinical cases. An important direction of using calcium phosphate cements as a carrier of functional substances is the volumetric incorporation of anti-inflammatory, antitumor, antiresorptive and osteogenic functional substances. The main functionalization requirement for carrier materials is prolonged elution. Various release factors related to the matrix, functional substances and elution conditions are considered in the work. It is shown that cements are a complex system. Changing one of the many initial parameters in a wide range changes the final characteristics of the matrix and, accordingly, the kinetics. The main approaches to the effective functionalization of calcium phosphate cements are considered in the review.
Collapse
Affiliation(s)
- Yulia Lukina
- National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Priorova 10, 127299 Moscow, Russia;
- Faculty of Digital Technologies and Chemical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Tatiana Safronova
- Department of Chemistry, Lomonosov Moscow State University, Building 3, Leninskie Gory 1, 119991 Moscow, Russia;
- Department of Materials Science, Lomonosov Moscow State University, Building 73, Leninskie Gory 1, 119991 Moscow, Russia;
| | - Dmitriiy Smolentsev
- National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Priorova 10, 127299 Moscow, Russia;
| | - Otabek Toshev
- Department of Materials Science, Lomonosov Moscow State University, Building 73, Leninskie Gory 1, 119991 Moscow, Russia;
| |
Collapse
|
20
|
Xu Y, Song D, Lin X, Peng H, Su Y, Liang J, Hai N, Zhao J, Liu Q. Corylifol A protects against ovariectomized-induced bone loss and attenuates RANKL-induced osteoclastogenesis via ROS reduction, ERK inhibition, and NFATc1 activation. Free Radic Biol Med 2023; 196:121-132. [PMID: 36649902 DOI: 10.1016/j.freeradbiomed.2023.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Osteoclast differentiation and function are critical targets for anti-osteoporosis treatment. Oxidative stress also plays an important regulatory role in the differentiation of osteoclasts. Corylifol A (CA) is a flavonoid extracted from the Psoralea fruit. It has anti-inflammatory and antioxidant properties despite its unknown effect on osteoporosis. This study found that CA prevented estrogen-deficiency-induced bone loss and suppressed osteoclastogenesis in ovariectomized (OVX) mice by inhibiting intracellular reactive oxygen species (ROS) levels. In vivo, CA effectively prevented trabecular bone loss and reduced osteoclasts' number on the bone surface in OVX mice, as demonstrated in micro-CT, osteometry, and immunohistochemical data. However, CA did not affect cortical bone. In vitro, CA inhibited RANKL-induced podosome belt formation, osteoclastogenesis, and bone resorption functions. CA suppressed RANKL-induced ROS by boosting antioxidant enzymes (Catalase and NQO1) and NFATc1 signaling pathway related protein expression, including integrin αvβ3, NFATc1 and CTSK. Moreover, CA inhibited osteoclast-specific genes, including Ctsk, Acp5, and Mmp9. CA also attenuated the MAPK/ERK pathway, but did not affect the NF-κB signaling pathway. In terms of osteogenesis, CA did not inhibit or promote osteogenic differentiation and mineralization in vitro. These results reveal that CA could be a new replacement therapy for treating estrogen-deficiency osteoporosis via suppressing osteoclastogenesis and intracellular ROS.
Collapse
Affiliation(s)
- Yinglong Xu
- Research Centre for Regenerative Medicine, Department of Trauma Orthopaedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Department of Trauma Orthopaedic and Hand Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Dezhi Song
- Research Centre for Regenerative Medicine, Department of Trauma Orthopaedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xixi Lin
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Peng
- Research Centre for Regenerative Medicine, Department of Trauma Orthopaedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China; Department of Orthopaedic, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yuangang Su
- Research Centre for Regenerative Medicine, Department of Trauma Orthopaedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiamin Liang
- Research Centre for Regenerative Medicine, Department of Trauma Orthopaedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Na Hai
- Research Centre for Regenerative Medicine, Department of Trauma Orthopaedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Department of Trauma Orthopaedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| | - Qian Liu
- Research Centre for Regenerative Medicine, Department of Trauma Orthopaedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
21
|
A Low Concentration of Citreoviridin Prevents Both Intracellular Calcium Deposition in Vascular Smooth Muscle Cell and Osteoclast Activation In Vitro. Molecules 2023; 28:molecules28041693. [PMID: 36838684 PMCID: PMC9967071 DOI: 10.3390/molecules28041693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Vascular calcification (VC) and osteoporosis are age-related diseases and significant risk factors for the mortality of elderly. VC and osteoporosis may share common risk factors such as renin-angiotensin system (RAS)-related hypertension. In fact, inhibitors of RAS pathway, such as angiotensin type 1 receptor blockers (ARBs), improved both vascular calcification and hip fracture in elderly. However, a sex-dependent discrepancy in the responsiveness to ARB treatment in hip fracture was observed, possibly due to the estrogen deficiency in older women, suggesting that blocking the angiotensin signaling pathway may not be effective to suppress bone resorption, especially if an individual has underlying osteoclast activating conditions such as estrogen deficiency. Therefore, it has its own significance to find alternative modality for inhibiting both vascular calcification and osteoporosis by directly targeting osteoclast activation to circumvent the shortcoming of ARBs in preventing bone resorption in estrogen deficient individuals. In the present study, a natural compound library was screened to find chemical agents that are effective in preventing both calcium deposition in vascular smooth muscle cells (vSMCs) and activation of osteoclast using experimental methods such as Alizarin red staining and Tartrate-resistant acid phosphatase staining. According to our data, citreoviridin (CIT) has both an anti-VC effect and anti-osteoclastic effect in vSMCs and in Raw 264.7 cells, respectively, suggesting its potential as an effective therapeutic agent for both VC and osteoporosis.
Collapse
|
22
|
Yang D, Tan Y, Xie X, Xiao W, Kang J. Zingerone attenuates Ti particle-induced inflammatory osteolysis by suppressing the NF-κB signaling pathway in osteoclasts. Int Immunopharmacol 2023; 115:109720. [PMID: 37724956 DOI: 10.1016/j.intimp.2023.109720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
Aseptic loosening caused by inflammatory osteolysis is one of the most frequent and serious long-term complications after total joint arthroplasty (TJA). Development of a new therapeutic drug is required due to the lack of effective therapy and serious adverse effects. This study aimed to explore the pharmacological properties of zingerone (ZO) in attenuating osteoclast-mediated periprosthetic osteolysis and how ZO modulates osteoclastogenesis. The nontoxic concentration of ZO was clarified by the CCK-8 method. Then, we explored the efficacy of ZO on suppressing osteoclast differentiation, F-actin ring formation, bone resorption, and NF-κB luciferase activity in vitro as well as osteoprotection in vivo. Polymerase chain reaction and western blotting were applied to detect the underlying mechanisms involved in osteoclastogenesis. ZO showed an obvious inhibitory effect on osteoclastogenesis and bone resorption in a dose-dependent manner by mainly suppressing the activation of NF-κB signaling pathways. Furthermore, ZO administration successfully attenuated titanium (Ti) particle-stimulated periprosthetic osteolysis and osteoporosis by regulating osteoclast formation. Our findings demonstrated the pharmacological properties of ZO in inhibiting osteoclast formation and function by downregulation of NF-κB signaling activation. As a result, these findings could be expected to provide a novel reagent for regulating inflammatory osteolysis caused by prosthetic loosening.
Collapse
Affiliation(s)
- Daishui Yang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yejun Tan
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN 55455, US
| | - Xi Xie
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Wenbiao Xiao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Jin Kang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
23
|
Panyard DJ, Yu B, Snyder MP. The metabolomics of human aging: Advances, challenges, and opportunities. SCIENCE ADVANCES 2022; 8:eadd6155. [PMID: 36260671 PMCID: PMC9581477 DOI: 10.1126/sciadv.add6155] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 05/02/2023]
Abstract
As the global population becomes older, understanding the impact of aging on health and disease becomes paramount. Recent advancements in multiomic technology have allowed for the high-throughput molecular characterization of aging at the population level. Metabolomics studies that analyze the small molecules in the body can provide biological information across a diversity of aging processes. Here, we review the growing body of population-scale metabolomics research on aging in humans, identifying the major trends in the field, implicated biological pathways, and how these pathways relate to health and aging. We conclude by assessing the main challenges in the research to date, opportunities for advancing the field, and the outlook for precision health applications.
Collapse
Affiliation(s)
- Daniel J. Panyard
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Chen L, Hu B, Wang X, Chen Y, Zhou B. Functional role of cyanidin-3-O-glucoside in osteogenesis: A pilot study based on RNA-seq analysis. Front Nutr 2022; 9:995643. [PMID: 36245484 PMCID: PMC9562617 DOI: 10.3389/fnut.2022.995643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is the most widely distributed anthocyanin and it can reportedly reduce the risk of osteoporosis, but the molecular mechanism by which C3G promotes bone formation is poorly understood. In the current study, RNA sequencing (RNA-seq) was used to investigate the mechanism of action of C3G in osteogenesis. MC3T3-E1 mouse osteoblasts were divided into a C3G (100 μmol/L)-treated group and a vehicle-treated control group, and differentially expressed genes (DEGs) in groups were evaluated via RNA-seq analysis. The functions of the DEGs were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and the genes were validated by quantitative real-time PCR. The RNA-seq analysis identified 34 genes that were upregulated in C3G-treated cells compared to vehicle-treated cells, and 17 that were downregulated GO and KEGG pathway analyses indicated that these genes were highly enriched in functions related to lysosomes and glycolipid biosynthesis, among others. The differential expression of ATPase H+-transporting V0 subunit C (Atp6v0c), chemokine (C-X3-C motif) ligand 1 (Cx3cl1), and lymphocyte antigen 6 complex, locus A (Ly6a) genes was validated by quantitative real-time-PCR. Because these genes have been previously implicated in osteoporosis, they are potential target genes of C3G action in MC3T3-E1 cells. These results provide molecular level evidence for the therapeutic potential of C3G in the treatment of osteoporosis and other disorders of bone metabolism.
Collapse
Affiliation(s)
- Lin Chen
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Bosen Hu
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiaohong Wang
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Yong Chen
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Bo Zhou
- School of Public Health, Shenyang Medical College, Shenyang, China
- *Correspondence: Bo Zhou
| |
Collapse
|
25
|
miR-140-5p and miR-140-3p: Key Actors in Aging-Related Diseases? Int J Mol Sci 2022; 23:ijms231911439. [PMID: 36232738 PMCID: PMC9570089 DOI: 10.3390/ijms231911439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
microRNAs (miRNAs) are small single strand non-coding RNAs and powerful gene expression regulators. They mainly bind to the 3′UTR sequence of targeted mRNA, leading to their degradation or translation inhibition. miR-140 gene encodes the pre-miR-140 that generates the two mature miRNAs miR-140-5p and miR-140-3p. miR-140-5p/-3p have been associated with the development and progression of cancers, but also non-neoplastic diseases. In aging-related diseases, miR-140-5p and miR-140-3p expressions are modulated. The seric levels of these two miRNAs are used as circulating biomarkers and may represent predictive tools. They are also considered key actors in the pathophysiology of aging-related diseases. miR-140-5p/-3p repress targets regulating cell proliferation, apoptosis, senescence, and inflammation. This work focuses on the roles of miR-140-3p and miR-140-5p in aging-related diseases, details their regulation (i.e., by long non-coding RNA), and reviews the molecular targets of theses miRNAs involved in aging pathophysiology.
Collapse
|
26
|
Elsayyad NME, Gomaa I, Salem MA, Amer R, El-Laithy HM. Efficient lung-targeted delivery of risedronate sodium/vitamin D3 conjugated PAMAM-G5 dendrimers for managing osteoporosis: Pharmacodynamics, molecular pathways and metabolomics considerations. Life Sci 2022; 309:121001. [PMID: 36174709 DOI: 10.1016/j.lfs.2022.121001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022]
Abstract
AIMS This study aims at formulating combined delivery of Risedronate sodium (RIS) and Vitamin D3 (VITD3) for augmented therapeutic outcome against osteoporosis (OP) using deep lung targeted PAMAM-G5-NH2 dendrimers to minimize RIS gastrointestinal side effects and enhance both drugs bioavailability through absorption from the alveoli directly to the blood. METHODS RIS-PAMAM-G5-NH2, VITD3-PAMAM-G5-NH2, and RIS/VITD3-PAMAM-G5-NH2 were prepared and evaluated in vitro for particle size (PS), zeta potential (ZP), %loading efficiency (%LE), morphology and FTIR. The efficacy of the RIS/VITD3-PAMAM-G5-NH2 compared to oral RIS was evaluated in OP-induced rats by comparing serum calcium, phosphorus, and computed bone mineral density (BMD) pre- and post-treatment. Additionally, a comprehensive metabolomics and molecular pathways approach was applied to find serum potential biomarkers for diagnosis and to evaluate the efficacy of inhaled RIS/VITD3-PAMAM-G5-NH2. KEY FINDINGS RIS/VITD3-PAMAM-G5-NH2 was successfully prepared with a %LE of 92.4 ± 6.7 % (RIS) and 83.2 ± 4.4 % (VIT-D3) and a PS of 252.8 ± 34.1 adequate deep lung delivery. RIS/VITD3-PAMAM-G5-NH2 inhalation therapy was able to restore serum calcium, phosphorus, and BMD close to normal levels after 21 days of treatment in OP-induced rats. The WNT-signalling pathway and changes in the metabolite levels recovered to approximately normal levels upon treatment. Moreover, histone acetylation of the WNT-1 gene and miR-148a-3p interference proved to play a role in the regulation of the WNT-signalling pathway during OP progression and treatment. SIGNIFICANCE Pulmonary delivery of RIS/VITD3-PAMAM-G5-NH2 offers superior treatment for OP treatment compared to the oral route. Molecular and Metabolic pathways offer a key indicator of OP diagnosis and progression.
Collapse
Affiliation(s)
- Nihal Mohamed Elmahdy Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, 6th of October, Giza 12451, Egypt.
| | - Iman Gomaa
- Department of Biological Sciences, Faculty of Science, Galala University (GU), New Galala City 43511, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, 32511 Menoufia, Egypt
| | - Reham Amer
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, 6th of October, Giza 12451, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Youssef Abbas St. of Mostafa Elnahas, 6th District, Nasr City, Cairo 11751, Egypt
| | - Hanan M El-Laithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, 6th of October, Giza 12451, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo 11562, Egypt
| |
Collapse
|
27
|
Sim J, Kang G, Yang H, Jang M, Kim Y, Ahn H, Kim M, Jung H. Development of Clinical Weekly-Dose Teriparatide Acetate Encapsulated Dissolving Microneedle Patch for Efficient Treatment of Osteoporosis. Polymers (Basel) 2022; 14:polym14194027. [PMID: 36235975 PMCID: PMC9571303 DOI: 10.3390/polym14194027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Teriparatide acetate (TA), which directly promotes bone formation, is subcutaneously injected to treat osteoporosis. In this study, TA with a once-weekly administration regimen was loaded on dissolving microneedles (DMNs) to effectively deliver it to the systemic circulation via the transdermal route. TA activity reduction during the drying process of various TA polymer solutions formulated with hyaluronic acid and trehalose was monitored and homogeneities were assessed. TA-DMN patches fabricated using centrifugal lithography in a two-layered structure with dried pure hyaluronic acid on the base layer and dried TA polymer solution on the top layer were evaluated for their physical properties. Rhodamine-B-loaded TA-DMNs were found to form perforations when inserted into porcine skin using a shooting device. In addition, 87.6% of TA was delivered to the porcine skin after a 5-min TA-DMN patch application. The relative bioavailability of TA via subcutaneous injection was 66.9% in rats treated with TA-DMN patches. The maximal TA concentration in rat plasma was proportional to the number of patches used. Therefore, the TA-DMN patch fabricated in this study may aid in the effective delivery of TA in a patient-friendly manner and enhance medical efficacy in osteoporosis treatment.
Collapse
Affiliation(s)
- Jeeho Sim
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Geonwoo Kang
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea
| | - Huisuk Yang
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea
| | - Mingyu Jang
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea
| | - Youseong Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyeri Ahn
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Minkyung Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea
- Correspondence:
| |
Collapse
|
28
|
Wang D, Wang H. Cellular Senescence in Bone. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Senescence is an irreversible cell-cycle arrest process induced by environmental, genetic, and epigenetic factors. An accumulation of senescent cells in bone results in age-related disorders, and one of the common problems is osteoporosis. Deciphering the basic mechanisms contributing to the chronic ailments of aging may uncover new avenues for targeted treatment. This review focuses on the mechanisms and the most relevant research advancements in skeletal cellular senescence. To identify new options for the treatment or prevention of age-related chronic diseases, researchers have targeted hallmarks of aging, including telomere attrition, genomic instability, cellular senescence, and epigenetic alterations. First, this chapter provides an overview of the fundamentals of bone tissue, the causes of skeletal involution, and the role of cellular senescence in bone and bone diseases such as osteoporosis. Next, this review will discuss the utilization of pharmacological interventions in aging tissues and, more specifically, highlight the role of senescent cells to identify the most effective and safe strategies.
Collapse
|
29
|
Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022; 14:nu14173519. [PMID: 36079777 PMCID: PMC9459740 DOI: 10.3390/nu14173519] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds are natural phytochemicals that have recently reported numerous health benefits. Resveratrol, curcumin, and quercetin have recently received the most attention among these molecules due to their documented antioxidant effects. The review aims to investigate the effects of these molecules on bone metabolism and their role in several diseases such as osteopenia and osteoporosis, bone tumours, and periodontitis. The PubMed/Medline, Web of Science, Google Scholar, Scopus, Cochrane Library, and Embase electronic databases were searched for papers in line with the study topic. According to an English language restriction, the screening period was from January 2012 to 3 July 2022, with the following Boolean keywords: (“resveratrol” AND “bone”); (“curcumin” AND “bone”); (“quercetin” AND “bone”). A total of 36 papers were identified as relevant to the purpose of our investigation. The studies reported the positive effects of the investigated phenolic compounds on bone metabolism and their potential application as adjuvant treatments for osteoporosis, bone tumours, and periodontitis. Furthermore, their use on the titanium surfaces of orthopaedic prostheses could represent a possible application to improve the osteogenic processes and osseointegration. According to the study findings, resveratrol, curcumin, and quercetin are reported to have a wide variety of beneficial effects as supplement therapies. The investigated phenolic compounds seem to positively mediate bone metabolism and osteoclast-related pathologies.
Collapse
|
30
|
Ng CW, Chan BCL, Ko CH, Tam IYS, Sam SW, Lau CBS, Leung PC, Lau HYA. Human mast cells induce osteoclastogenesis through cell surface RANKL. Inflamm Res 2022; 71:1261-1270. [PMID: 35916930 DOI: 10.1007/s00011-022-01608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES We employed the co-culture of CD34+ stem cell-derived human mast cells (HMC) and human monocyte-derived osteoclast precursors to evaluate if mast cells contribute to the pathogenesis of osteoporosis through regulation of osteoclast proliferation and activation. METHODS Mature HMC and osteoclast precursors were cultured from monocytes isolated from human buffy coat. The osteoclast precursors were incubated with HMC or receptor activator of nuclear factor kappa-B ligand (RANKL) for a week prior to determination of osteoclast maturation through characterization by their morphology and tartrate resistant acid phosphatase (TRAP) expression. The bone absorption activity was determined by pit formation on osteo-assay plate. RESULTS Mature osteoclasts were identified following co-culture of osteoclast precursors with HMC for one week in the absence of RANKL and they were capable of bone resorption. These actions of HMC on osteoclasts were not affected by mast cell activators such anti-IgE or substance P but could be reversed by osteoprotegerin (OPG) in the co-culture system suggesting the involvement of RANKL. The expression of RANKL on the cell surface of HMC was confirmed by flow cytometry and the density was not affected by activation of HMC. CONCLUSION Our study provided direct evidence confirming the initiation of osteoclast proliferation and activation by mast cells through cell surface RANKL suggesting that mast cells may contribute to bone destruction in pathological conditions such as osteoporosis.
Collapse
Affiliation(s)
- Chun Wai Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ben Chung Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research On Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Chun Hay Ko
- Institute of Chinese Medicine and State Key Laboratory of Research On Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Issan Yee San Tam
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Sze Wing Sam
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research On Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ping Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research On Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hang Yung Alaster Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
31
|
Okagu IU, Ezeorba TPC, Aguchem RN, Ohanenye IC, Aham EC, Okafor SN, Bollati C, Lammi C. A Review on the Molecular Mechanisms of Action of Natural Products in Preventing Bone Diseases. Int J Mol Sci 2022; 23:ijms23158468. [PMID: 35955603 PMCID: PMC9368769 DOI: 10.3390/ijms23158468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs’ adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/β-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3β), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Timothy P. C. Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Rita N. Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Emmanuel C. Aham
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-5031-9372
| |
Collapse
|
32
|
Kim MH, Choi LY, Chung JY, Kim EJ, Yang WM. Auraptene ameliorates osteoporosis by inhibiting RANKL/NFATc1 pathway-mediated bone resorption based on network pharmacology and experimental evaluation. Bone Joint Res 2022; 11:304-316. [PMID: 35579298 PMCID: PMC9130672 DOI: 10.1302/2046-3758.115.bjr-2021-0380.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIMS The association of auraptene (AUR), a 7-geranyloxycoumarin, on osteoporosis and its potential pathway was predicted by network pharmacology and confirmed in experimental osteoporotic mice. METHODS The network of AUR was constructed and a potential pathway predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms enrichment. Female ovariectomized (OVX) Institute of Cancer Research mice were intraperitoneally injected with 0.01, 0.1, and 1 mM AUR for four weeks. The bone mineral density (BMD) level was measured by dual-energy X-ray absorptiometry. The bone microstructure was determined by histomorphological changes in the femora. In addition, biochemical analysis of the serum and assessment of the messenger RNA (mRNA) levels of osteoclastic markers were performed. RESULTS In total, 65.93% of the genes of the AUR network matched with osteoporosis-related genes. Osteoclast differentiation was predicted to be a potential pathway of AUR in osteoporosis. Based on the network pharmacology, the BMD and bone mineral content levels were significantly (p < 0.05) increased in the whole body, femur, tibia, and lumbar spine by AUR. AUR normalized the bone microstructure and the serum alkaline phosphatase (ALP), bone-specific alkaline phosphatase (bALP), osteocalcin, and calcium in comparison with the OVX group. In addition, AUR treatment reduced TRAP-positive osteoclasts and receptor activator of nuclear factor kappa-B ligand (RANKL)+nuclear factor of activated T cells 1 (NFATc1)+ expression in the femoral body. Moreover, the expressions of initiators for osteoclastic resorption and bone matrix degradation were significantly (p < 0.05) regulated by AUR in the lumbar spine of the osteoporotic mice. CONCLUSION AUR ameliorated bone loss by downregulating the RANKL/NFATc1 pathway, resulting in improvement of osteoporosis. In conclusion, AUR might be an ameliorative cure that alleviates bone loss in osteoporosis via inhibition of osteoclastic activity. Cite this article: Bone Joint Res 2022;11(5):304-316.
Collapse
Affiliation(s)
- Mi H Kim
- Department of Convergence Korean Medical Science, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - La Y Choi
- Department of Convergence Korean Medical Science, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae Y Chung
- Department of Convergence Korean Medical Science, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun-Jung Kim
- Department of Acupuncture & Moxibustion, Dongguk University Bundang Oriental Hospital, Seongnam, South Korea
| | - Woong M Yang
- Department of Convergence Korean Medical Science, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
33
|
Yang X, Dong J, Hao Y, Qi Y, Liang J, Yan L, Wang W. Naringin Alleviates H 2O 2-Inhibited Osteogenic Differentiation of Human Adipose-Derived Stromal Cells via Wnt/ β-Catenin Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3126094. [PMID: 35529937 PMCID: PMC9076301 DOI: 10.1155/2022/3126094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Osteoporosis is an age-related systemic bone disease that places a heavy burden on patients and society. In this study, we aimed to investigate the effects of naringin (NAR) on the osteogenic differentiation of human adipose-derived stromal cells (ADSCs). The results demonstrated that NAR pretreatment effectively abated H2O2-induced cell death and ROS accumulation in ADSCs undergoing osteogenic differentiation (ADSCs-OD). In addition, we also observed that the impaired extracellular matrix mineralization and ALP activity in H2O2-stimulated ADSCs-OD were notably rescued by NAR pretreatment. Moreover, the effects of H2O2 exposure on Wnt/β-catenin signaling in ADSCs-OD were largely reversed by NAR pretreatment. Collectively, our findings indicated that NAR could protect ADSCs-OD against H2O2-inhibited osteogenic differentiation.
Collapse
Affiliation(s)
- Xufang Yang
- Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Jianjiang Dong
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yankun Hao
- Department of Medical Function, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yucheng Qi
- Basic Medical College, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Jun Liang
- Stem Cell Institute, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Lei Yan
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Wenting Wang
- Department of Physiology, Mudanjiang Medical University, Mudanjiang 157011, China
| |
Collapse
|
34
|
Abstract
Osteoporosis is a common disease that affects our elderly population. This disease usually gets undiagnosed for an extended period. Osteoporosis increases the risk of fracture in our elderly population and increases morbidity. The cost associated with osteoporosis does carry a substantial burden in our society. Here, we present a case of osteoporosis with a fracture diagnosed in clinical settings. We discuss different etiology, pathophysiology, and treatment options available to treat this medical condition.
Collapse
Affiliation(s)
- Lokesh Goyal
- Family Medicine, Christus Spohn, Corpus Christi, USA
| | - Kunal Ajmera
- Epidemiology and Public Health, Calvert Health Medical Center, Prince Frederick, USA
| |
Collapse
|
35
|
Natesan V, Kim SJ. Metabolic Bone Diseases and New Drug Developments. Biomol Ther (Seoul) 2022; 30:309-319. [PMID: 35342038 PMCID: PMC9252877 DOI: 10.4062/biomolther.2022.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/05/2022] Open
Abstract
Metabolic bone diseases are serious health issues worldwide, since several million individuals over the age of 50 are at risk of bone damage and should be worried about their bone health. One in every two women and one in every four men will break a bone during their lifetime due to a metabolic bone disease. Early detection, raising bone health awareness, and maintaining a balanced healthy diet may reduce the risk of skeletal fractures caused by metabolic bone diseases. This review compiles information on the most common metabolic bone diseases (osteoporosis, primary hyperparathyroidism, osteomalacia, and fluorosis disease) seen in the global population, including their symptoms, mechanisms, and causes, as well as discussing their prevention and the development of new drugs for treatment. A large amount of research literature suggests that balanced nutrition and balanced periodic supplementation of calcium, phosphate, and vitamin D can improve re-absorption and the regrowth of bones, and inhibit the formation of skeletal fractures, except in the case of hereditary bone diseases. Meanwhile, new and improved drug formulations, such as raloxifene, teriparatide, sclerostin, denosumab, and abaloparatide, have been successfully developed and administered as treatments for metabolic bone diseases, while others (romososumab and odanacatib) are in various stages of clinical trials.
Collapse
Affiliation(s)
- Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
36
|
Liu X, Chen M, Liu Q, Li G, Yang P, Zhang G. LncRNA PTCSC3 is upregulated in osteoporosis and negatively regulates osteoblast apoptosis. BMC Med Genomics 2022; 15:57. [PMID: 35296322 PMCID: PMC8925152 DOI: 10.1186/s12920-022-01182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND It is known that long non-coding RNA (lncRNA) PTCSC3 is involved in thyroid cancer and glioma, but its function in osteoporosis is unknown. The aim of our study was to investigate the role of lncRNA PTCSC3 in osteoporosis. METHODS A total of 80 patients with osteoporosis (4 clinical stages) and four corresponding groups of healthy controls were enrolled. Plasma PTCSC3 levels in the 80 osteoporosis patients and 80 healthy volunteers were measured using RT-qPCR. The diagnostic potential of plasma PTCSC3 for osteoporosis was evaluated by ROC curve analysis with healthy volunteers as the true negative cases and corresponding osteoporosis patients as the true positive cases. RESULTS PTCSC3 was upregulated in osteoporosis patients compared with healthy controls. PTCSC3 levels increased with osteoporosis stages increasing, but not with healthy controls aging. PTCSC3 overexpression separated each stage of osteoporosis from corresponding controls. PTCSC3 overexpression promoted while PTCSC3 silencing inhibited osteoblast apoptosis. However, PTCSC3 overexpression and silencing showed no significant effect on osteoclast apoptosis. LncRNA PTCSC3 was upregulated in osteoporosis and negatively regulated osteoblast apoptosis. CONCLUSION LncRNA PTCSC3 may serve as a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Xingchao Liu
- Orthopedics Department, Hebei Yanda Hospital, Yanjiao Development Zone, Sanhe City, Langfang City, 065201, Hebei Province, People's Republic of China
| | - Mingliang Chen
- Orthopedics Department, Hebei Yanda Hospital, Yanjiao Development Zone, Sanhe City, Langfang City, 065201, Hebei Province, People's Republic of China
| | - Qinghe Liu
- Orthopedics Department, Beijing Chao-Yang Hospital, Capital Medical University, No 8 Gongtinan Road, Beijing, 100020, People's Republic of China.
| | - Gang Li
- Orthopedics Department, Hebei Yanda Hospital, Yanjiao Development Zone, Sanhe City, Langfang City, 065201, Hebei Province, People's Republic of China
| | - Pei Yang
- Orthopedics Department, Hebei Yanda Hospital, Yanjiao Development Zone, Sanhe City, Langfang City, 065201, Hebei Province, People's Republic of China
| | - Guodong Zhang
- Orthopedics Department, Hebei Yanda Hospital, Yanjiao Development Zone, Sanhe City, Langfang City, 065201, Hebei Province, People's Republic of China
| |
Collapse
|
37
|
MicroRNA-1270 Inhibits Cell Proliferation, Migration, and Invasion via Targeting IRF8 in Osteoblast-like Cell Lines. Curr Issues Mol Biol 2022; 44:1182-1190. [PMID: 35723300 PMCID: PMC8947117 DOI: 10.3390/cimb44030077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is the most common bone disease affecting elderly individuals. The diagnosis of this pathology is most commonly made on the basis of bone fractures. Several microRNAs (miRNAs/miRs) have been identified as possible biomarkers for the diagnosis and treatment of OP. miRNAs can regulate gene expression, and determining their functions can provide potential pharmacological targets for treating OP. A previous study showed that miR-1270 was upregulated in monocytes derived from postmenopausal women with OP. Therefore, the present study aimed to uncover the role of miR-1270 in regulating bone metabolism. To reveal the mechanism underlying the regulatory effect of miR-1270 on interferon regulatory factor 8 (IRF8) expression, luciferase assay, reverse transcription-quantitative PCR, and Western blot analysis were performed. The results suggest that miR-1270 could regulate the mRNA and protein expression levels of IRF8 by directly binding to its 3′-untranslated region. The effects of miR-1270 overexpression and IRF8 silencing on cell proliferation, migration, and invasion were also evaluated. To the best of our knowledge, the current study was the first to support the crucial role of miR-1270 in bone metabolism via modulation of IRF8 expression. In addition, miR-1270 overexpression could attenuate human osteoblast-like cells’ proliferation and migration ability.
Collapse
|
38
|
Zhang Z, Zhou J, Liu C, Zhang J, Shibata Y, Kong N, Corbo C, Harris MB, Tao W. Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Cladis DP, Swallow EA, Allen MR, Hill Gallant KM, Weaver CM. Blueberry Polyphenols do not Improve Bone Mineral Density or Mechanical Properties in Ovariectomized Rats. Calcif Tissue Int 2022; 110:260-265. [PMID: 34427703 PMCID: PMC8792179 DOI: 10.1007/s00223-021-00905-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Osteoporosis-related bone fragility fractures are a major public health concern. Given the potential for adverse side effects of pharmacological treatment, many have sought alternative treatments, including dietary changes. Based on recent evidence that polyphenol-rich foods, like blueberries, increase calcium absorption and bone mineral density (BMD), we hypothesized that blueberry polyphenols would improve bone biomechanical properties. To test this, 5-month-old ovariectomized Sprague-Dawley rats (n = 10/gp) were orally gavaged for 90 days with either a purified extract of blueberry polyphenols (0-1000 mg total polyphenols/kg bw/day) or lyophilized blueberries (50 mg total polyphenols/kg bw/day). Upon completion of the dosing regimen, right femur, right tibia, and L1-L4 vertebrae were harvested and assessed for bone mineral density (BMD), with femurs being further analyzed for biomechanical properties via three-point bending. There were no differences in BMD at any of the sites analyzed. For bone mechanical properties, the only statistically significant difference was the high dose group having greater ultimate stress than the medium dose, although in the absence of differences in other measures of bone mechanical properties, we concluded that this result, while statistically significant, had little biological significance. Our results indicate that blueberry polyphenols had little impact on BMD or bone mechanical properties in an animal model of estrogen deficiency-induced bone loss.
Collapse
Affiliation(s)
- Dennis P Cladis
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, W Lafayette, IN, 47907, USA
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St. Paul, MN, 55108, USA
| | - Elizabeth A Swallow
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - Kathleen M Hill Gallant
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St. Paul, MN, 55108, USA
| | - Connie M Weaver
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, W Lafayette, IN, 47907, USA.
| |
Collapse
|
40
|
Tonk CH, Shoushrah SH, Babczyk P, El Khaldi-Hansen B, Schulze M, Herten M, Tobiasch E. Therapeutic Treatments for Osteoporosis-Which Combination of Pills Is the Best among the Bad? Int J Mol Sci 2022; 23:1393. [PMID: 35163315 PMCID: PMC8836178 DOI: 10.3390/ijms23031393] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a chronical, systemic skeletal disorder characterized by an increase in bone resorption, which leads to reduced bone density. The reduction in bone mineral density and therefore low bone mass results in an increased risk of fractures. Osteoporosis is caused by an imbalance in the normally strictly regulated bone homeostasis. This imbalance is caused by overactive bone-resorbing osteoclasts, while bone-synthesizing osteoblasts do not compensate for this. In this review, the mechanism is presented, underlined by in vitro and animal models to investigate this imbalance as well as the current status of clinical trials. Furthermore, new therapeutic strategies for osteoporosis are presented, such as anabolic treatments and catabolic treatments and treatments using biomaterials and biomolecules. Another focus is on new combination therapies with multiple drugs which are currently considered more beneficial for the treatment of osteoporosis than monotherapies. Taken together, this review starts with an overview and ends with the newest approaches for osteoporosis therapies and a future perspective not presented so far.
Collapse
Affiliation(s)
- Christian Horst Tonk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Sarah Hani Shoushrah
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Basma El Khaldi-Hansen
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Monika Herten
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| |
Collapse
|
41
|
Whole Genome Sequencing Unravels New Genetic Determinants of Early-Onset Familial Osteoporosis and Low BMD in Malta. Genes (Basel) 2022; 13:genes13020204. [PMID: 35205249 PMCID: PMC8871631 DOI: 10.3390/genes13020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Osteoporosis is a skeletal disease with a strong genetic background. The study aimed to identify the genetic determinants of early-onset familial osteoporosis and low bone mineral density (BMD) in a two-generation Maltese family. Methods: Fifteen relatives aged between 28–74 years were recruited. Whole genome sequencing was conducted on 12 relatives and shortlisted variants were genotyped in the Malta Osteoporotic Fracture Study (MOFS) for replication. Results: Sequential variant filtering following a dominant inheritance pattern identified rare missense variants within SELP, TGF-β2 and ADAMTS20, all of which were predicted to be likely pathogenic and participate in osteoimmunology. TGF-β2 c.1136C>T was identified in five individuals from the MOFS in heterozygosity, four of whom had osteopenia/osteoporosis at the lumbar spine and hip, and/or had sustained a low-trauma fracture. Heterozygosity for the ADAMTS20 c.4090A>T was accompanied by lower total hip BMD (p = 0.018) and lower total serum calcium levels in MOFS (p < 0.01), recapitulating the findings from the family. Women carrying at least one copy of the alternative allele (TC/CC) for SELP c.2177T>C exhibited a tendency for lower lumbar spine BMD and/or wrist fracture history relative to women with TT genotype. Conclusions: Our findings suggest that the identified variants, alone or in combination, could be causal factors of familial osteoporosis and low BMD, requiring replication in larger collections.
Collapse
|
42
|
Al-Noaman A. Influence of oral bisphosphonate on dental implant: A review. MEDICAL JOURNAL OF BABYLON 2022. [DOI: 10.4103/mjbl.mjbl_96_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Differential miRNA Expression in Osteoporotic Elderly Patients with Hip Fractures Compared to Young Patients. Indian J Orthop 2021; 56:399-411. [PMID: 35251503 PMCID: PMC8854460 DOI: 10.1007/s43465-021-00561-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/30/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND The expression pattern of micro-RNAs (miRNA) has been implicated in the pathomechanism of various bone disorders, and has a role in differentiation of osteoblasts and osteoclasts. The purpose of the study was to investigate the differential miRNA profiles of osteoporotic hip fractures compared to young patients with hip fractures. METHODS Blood samples from ten osteoporosis patients and ten young, healthy patients, presenting with acute hip fractures were collected and subjected to an initial miRNA profiling to detect those miRNAs with significant variations between the two groups based on polymerase chain reactions performed in duplicate. A real-time quantitative polymerase chain reaction-based analysis was then performed for validation of specific miRNAs that were significantly different between the two groups. RESULTS A total of 182 miRNAs were analyzed. Thirty-nine of them showed significant differences between the two groups in the initial miRNA profiling. The validation results suggested that five miRNAs related to bone metabolism had significantly different expression among the osteoporotic hip fracture group compared to the young, healthy group: miR-23b-3p and miR-140-3p were up-regulated; miR-21-5p, miR-122-5p and miR-125b-5p were down-regulated. CONCLUSIONS Differential expression of selected miRNAs in patients with osteoporotic hip fracture suggests a possible role of miRNAs as potential biomarkers in prevention or timely prediction of osteoporotic fractures in the elderly. Further research is required to elucidate the mechanism of their involvement in osteoporosis. LEVEL OF EVIDENCE Not applicable.
Collapse
|
44
|
Armbrecht G, Nguyen Minh H, Massmann J, Raum K. Pore-Size Distribution and Frequency-Dependent Attenuation in Human Cortical Tibia Bone Discriminate Fragility Fractures in Postmenopausal Women With Low Bone Mineral Density. JBMR Plus 2021; 5:e10536. [PMID: 34761144 PMCID: PMC8567489 DOI: 10.1002/jbm4.10536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is a disorder of bone remodeling leading to reduced bone mass, structural deterioration, and increased bone fragility. The established diagnosis is based on the measurement of areal bone mineral density by dual‐energy X‐ray absorptiometry (DXA), which poorly captures individual bone loss and structural decay. Enlarged cortical pores in the tibia have been proposed to indicate structural deterioration and reduced bone strength in the hip. Here, we report for the first time the in vivo assessment of the cortical pore‐size distribution together with frequency‐dependent attenuation at the anteromedial tibia midshaft by means of a novel ultrasonic cortical backscatter (CortBS) technology. We hypothesized that the CortBS parameters are associated with the occurrence of fragility fractures in postmenopausal women (n = 55). The discrimination performance was compared with those of DXA and high‐resolution peripheral computed tomography (HR‐pQCT). The results suggest a superior discrimination performance of CortBS (area under the receiver operating characteristic curve [AUC]: 0.69 ≤ AUC ≤ 0.75) compared with DXA (0.54 ≤ AUC ≤ 0.55) and a similar performance compared with HR‐pQCT (0.66 ≤ AUC ≤ 0.73). CortBS is the first quantitative bone imaging modality that can quantify microstructural tissue deteriorations in cortical bone, which occur during normal aging and the development of osteoporosis. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Gabriele Armbrecht
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, Center for Muscle and Bone Research Berlin Germany
| | - Huong Nguyen Minh
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Regenerative Therapies Berlin Germany
| | - Jonas Massmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Regenerative Therapies Berlin Germany
| | - Kay Raum
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Regenerative Therapies Berlin Germany
| |
Collapse
|
45
|
Almidfa NSS, Athanasiou AE, Makrygiannakis MA, Kaklamanos EG. Does the rate of orthodontic tooth movement change during the estrus cycle? A systematic review based on animal studies. BMC Oral Health 2021; 21:526. [PMID: 34649543 PMCID: PMC8515643 DOI: 10.1186/s12903-021-01875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND As the fluctuation of sex hormone levels in menstruating women results in periodical effects in bone metabolism, understanding the implications for tooth movement could be of benefit to the orthodontist. This type of research presents practical and ethical problems in humans, but animal models could provide useful information. Our objective was to systematically investigate the available evidence on the question whether the rate of orthodontic tooth movement varies between the different stages of the estrus cycle in animals. METHODS Unrestricted searches in 7 databases and manual searching of the reference lists in relevant studies were performed up to February 2021 (Medline [PubMed], CENTRAL [Cochrane Library; includes records from Embase, CINAHL, ClinicalTrials.gov, WHO's ICTRP, KoreaMed, Cochrane Review Groups' Specialized Registers, and records identified by handsearching], Cochrane Database of Systematic Reviews [Cochrane Library], Scopus, Web of Knowledge [including Web of Science Core Collection, KCI Korean Journal Database, Russian Science Citation Index, SciELO Citation Index and Zoological Record], Arab World Research Source [EBSCO] and ProQuest Dissertation and Theses [ProQuest]). Our search focused on prospective controlled animal studies, whose samples included female subjects of any species that were quantitatively comparing the amount of tooth movement in the different stages of the estrus cycle. Following study retrieval and selection, relevant data was extracted, and the risk of bias was assessed using the SYRCLE's Risk of Bias Tool. RESULTS From the finally assessed records, 3 studies met the inclusion criteria. Two of the studies experimented on Wistar rats, whereas the other on cats. Tooth movement was induced by expansion or coil springs. The rate of orthodontic tooth movement was increased during the stages of the estrus cycle when oestrogen and/or progesterone levels were lower. The risk of bias in the retrieved studies was assessed to be unclear. CONCLUSION Hormonal changes during the estrus cycle may affect the rate of orthodontic tooth movement. Although these animal experiment results should be approached cautiously regarding their translational potential, it could be useful to consider the possible impact of these physiological changes in the clinical setting until more information becomes available. Registration: PROSPERO (CRD42021158069).
Collapse
Affiliation(s)
- Noura Saeed Sultan Almidfa
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Building 34, Dubai Healthcare City, Dubai, United Arab Emirates
- Dubai Health Authority, Dubai, United Arab Emirates
| | | | - Miltiadis A Makrygiannakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios G Kaklamanos
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Building 34, Dubai Healthcare City, Dubai, United Arab Emirates.
- Department of Dentistry, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
46
|
Kaklamanos EG, Makrygiannakis MA, Athanasiou AE. Does exogenous female sex hormone administration affect the rate of tooth movement and root resorption? A systematic review of animal studies. PLoS One 2021; 16:e0257778. [PMID: 34582488 PMCID: PMC8478186 DOI: 10.1371/journal.pone.0257778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND The long-term use of contraceptive methods that contain estrogens, progestogens or combinations of the above among women aged 15 to 49 years is extensive. Both estrogens and progestogens affect bone metabolism. OBJECTIVE To systematically investigate and appraise the quality of the available evidence from animal studies regarding the impact of exogenous administration of female sex hormones on the rate of orthodontic tooth movement and root resorption. SEARCH METHODS Search without restriction in seven databases (including grey literature) and hand searching were performed until May 2021. SELECTION CRITERIA We looked for controlled animal studies investigating the effect from exogenous administration of formulations containing female sex hormones on the rate of orthodontic tooth movement and root resorption. DATA COLLECTION AND ANALYSIS After study retrieval and selection, relevant data was extracted, and the risk of bias was assessed using the SYRCLE's Risk of Bias Tool. The quality of available evidence was assessed with the Grades of Recommendation, Assessment, Development, and Evaluation. RESULTS Three studies were identified, all being at unclear risk of bias. Overall, administration of progesterone and the combinations of estradiol with norgestrel and desogestrel were shown to significantly decrease the rate of orthodontic tooth movement when given for longer periods (>3 weeks). Inconsistent information was detected for shorter periods of consumption. Estradiol, with desogestrel use, resulted in less root resorption. The quality of the available evidence was considered to be low. CONCLUSIONS Exogenous administration of female sex hormones may decelerate in the long term the rate of tooth movement and decrease orthodontically induced root resorption in animals. Until more information becomes available, an orthodontist should be able to identify a patient consuming such substances and understand the potential clinical implications and adverse effects that may arise. REGISTRATION PROSPERO: CRD42017078208; https://clinicaltrials.gov/.
Collapse
Affiliation(s)
- Eleftherios G. Kaklamanos
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Miltiadis A. Makrygiannakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
47
|
A Distinctive Human Metabolomics Alteration Associated with Osteopenic and Osteoporotic Patients. Metabolites 2021; 11:metabo11090628. [PMID: 34564444 PMCID: PMC8466514 DOI: 10.3390/metabo11090628] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023] Open
Abstract
Osteoporosis is a common progressive metabolic bone disease resulting in decreased bone mineral density (BMD) and a subsequent increase in fracture risk. The known bone markers are not sensitive and specific enough to reflect the balance in the bone metabolism. Finding a metabolomics-based biomarker specific for bone desorption or lack of bone formation is crucial for predicting bone health earlier. This study aimed to investigate patients' metabolomic profiles with low BMD (LBMD), including those with osteopenia (ON) and osteoporosis (OP), compared to healthy controls. An untargeted mass spectrometry (MS)-based metabolomics approach was used to analyze serum samples. Results showed a clear separation between patients with LBMD and control (Q2 = 0.986, R2 = 0.994), reflecting a significant difference in the dynamic of metabolic processes between the study groups. A total of 116 putatively identified metabolites were significantly associated with LBMD. Ninety-four metabolites were dysregulated, with 52 up- and 42 downregulated in patients with LBMD compared to controls. Histidine metabolism, aminoacyl-tRNA biosynthesis, glyoxylate, dicarboxylate metabolism, and biosynthesis of unsaturated fatty acids were the most common metabolic pathways dysregulated in LBMD. Furthermore, 35 metabolites were significantly dysregulated between ON and OP groups, with 11 up- and 24 downregulated in ON compared to OP. Among the upregulated metabolites were 3-carboxy-4-methyl-5-propyl-2-2furanopropionic acid (CMPF) and carnitine derivatives (i.e., 3-hydroxy-11-octadecenoylcarnitine, and l-acetylcarnitine), whereas phosphatidylcholine (PC), sphingomyelin (SM), and palmitic acid (PA) were among the downregulated metabolites in ON compared to OP. This study would add a layer to understanding the possible metabolic alterations associated with ON and OP. Additionally, this identified metabolic panel would help develop a prediction model for bone health and OP progression.
Collapse
|
48
|
Serum Metabolite Profile Associated with Sex-Dependent Visceral Adiposity Index and Low Bone Mineral Density in a Mexican Population. Metabolites 2021; 11:metabo11090604. [PMID: 34564420 PMCID: PMC8472083 DOI: 10.3390/metabo11090604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Recent evidence shows that obesity correlates negatively with bone mass. However, traditional anthropometric measures such as body mass index could not discriminate visceral adipose tissue from subcutaneous adipose tissue. The visceral adiposity index (VAI) is a reliable sex-specified indicator of visceral adipose distribution and function. Thus, we aimed to identify metabolomic profiles associated with VAI and low bone mineral density (BMD). A total of 602 individuals from the Health Workers Cohort Study were included. Forty serum metabolites were measured using the targeted metabolomics approach, and multivariate regression models were used to test associations of metabolomic profiles with anthropometric, clinical, and biochemical parameters. The analysis showed a serum amino acid signature composed of glycine, leucine, arginine, valine, and acylcarnitines associated with high VAI and low BMD. In addition, we found a sex-dependent VAI in pathways related to primary bile acid biosynthesis, branched-chain amino acids, and the biosynthesis of pantothenate and coenzyme A (CoA). In conclusion, a metabolic profile differs by VAI and BMD status, and these changes are gender-dependent.
Collapse
|
49
|
Karimifard M, Aminorroaya A, Amini M, Kachuie A, Feizi A, Yamini SA, Alijanvand MH. The effect of alendronate on lipid profile of postmenopausal women with osteopenia and prediabetes: A randomized triple-blind clinical trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:52. [PMID: 34729060 PMCID: PMC8506247 DOI: 10.4103/jrms.jrms_579_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/05/2020] [Accepted: 03/01/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Prediabetes is a high-risk state for developing diabetes at an annual rate of 5%-10%. Early intervention can prevent further complications, including metabolic syndrome. Bisphosphonates are commonly used for osteoporotic postmenopausal women. The purpose of this study was to assess the effects of bisphosphonates on lipid profile including triglyceride (TG), total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) of prediabetic postmenopausal women with osteopenia. MATERIALS AND METHODS In this triple-blind randomized controlled trial, sixty prediabetic, postmenopausal women with sufficient Vitamin D and osteopenia, aged 45-60 years, were randomly enrolled in two groups of intervention (receiving 70-mg alendronate for 12 weeks [duration for maximum metabolic effect of bisphosphonates], n = 30) and control (receiving placebo, n = 30) according to a randomized block procedure of size 2 and 1:1 allocation ratio. The primary outcome of the study, the lipid profile, was evaluated before and after the interventions. The effect of the intervention was assessed using analysis of covariance. RESULTS The lipid profiles showed no significant differences to the mean values at the baseline in both the groups (all P > 0.05). At the end of the study, the differences between the groups were not significant for 25(OH) D3 (mean difference: -11.09, 95% confidence interval: -32.43-10.25), T (4.19, -30.58-38.97), cholesterol (8.13, -13.07-29.33), LDL-cholesterol (5.07, -10.18-20.31), and HDL-cholesterol (-0.86, -6.04-4.31) when the baseline values and confounders were adjusted (all P > 0.05). CONCLUSION No statistically significant difference was detected in the serum lipid profile of prediabetic postmenopausal women with osteopenia as a result of alendronate intervention. More studies with larger sample sizes and longer intervention periods are recommended.
Collapse
Affiliation(s)
- Maryam Karimifard
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ashraf Aminorroaya
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Massoud Amini
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kachuie
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, Endocrine and Metabolism Research Center, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Aminorroaya Yamini
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, England, UK
| | - Moluk Hadi Alijanvand
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
50
|
Jasso-Ramírez NG, Elizondo-Omaña RE, Garza-Rico IA, Aguilar-Morales K, Quiroga-Garza A, Elizondo-Riojas G, Treviño-González JL, Guzman-Lopez S. Anatomical and positional variants of the brachiocephalic trunk in a Mexican population. BMC Med Imaging 2021; 21:126. [PMID: 34388973 PMCID: PMC8364066 DOI: 10.1186/s12880-021-00645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/07/2021] [Indexed: 12/03/2022] Open
Abstract
Background Brachiocephalic trunk (BCT) variants may have a clinical impact during surgical procedures, some of which could be fatal. The objective of this study was to classify height positions of the BCT and report their prevalence in a Mexican population.
Methods Patients: A retrospective, descriptive, observational, and cross-sectional was performed using computed tomography angiography (CTA) of adult (> 18 years of age) patients, without gender distinction, of Mexican origin. Measuring techniques were standardized using the suprasternal notch to analyze linear and maximum heights, linear and curved lengths, and the vertebral origin and bifurcation levels of the BCT. Results A total of 270 CTA were obtained (66.7% men and 33.3% women). A high position of BCT was present in 64.81% (n 175/270). The mean linear medial height was 0.58 ± 1.91 cm, the maximum height of the free edge was 3.85 ± 2.04 cm, side length of the midline at the maximum height of the free edge was 1.46 ± 2.59, linear length 3.72 ± 0.70, and a curve length 3.99 ± 0.79. The BCT origin was most predominant at the T3 (57.9%) and T4 (27.0%) vertebral levels, with the bifurcation at T2 (57.9%) and T1 (36.2%). Conclusions There is a high prevalence of high position BCT in our population. Patients should be assessed before any procedures in the area, due to the potential risk of complications.
Collapse
Affiliation(s)
- Nadia Gabriela Jasso-Ramírez
- Human Anatomy Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico.,Otorhinolaryngology Department, Universidad Autonoma de Nuevo Leon, University Hospital "Dr. José Eleuterio González", Monterrey, Nuevo Leon, Mexico
| | - Rodrigo E Elizondo-Omaña
- Human Anatomy Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Ingrid Abigail Garza-Rico
- Radiology and Imaging Department, Universidad Autonoma de Nuevo Leon, University Hospital "Dr. José Eleuterio González", Monterrey, Nuevo Leon, Mexico
| | - Kouatzin Aguilar-Morales
- Human Anatomy Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Alejandro Quiroga-Garza
- Human Anatomy Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico.,Instituto Mexicano del Seguro Social, Delegación de Nuevo Leon, Cirugia General, Monterrey, Nuevo Leon, Mexico
| | - Guillermo Elizondo-Riojas
- Radiology and Imaging Department, Universidad Autonoma de Nuevo Leon, University Hospital "Dr. José Eleuterio González", Monterrey, Nuevo Leon, Mexico
| | - José Luis Treviño-González
- Otorhinolaryngology Department, Universidad Autonoma de Nuevo Leon, University Hospital "Dr. José Eleuterio González", Monterrey, Nuevo Leon, Mexico
| | - Santos Guzman-Lopez
- Human Anatomy Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|