1
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
2
|
Shawky HA, Abdel Hafez SMN, Hasan NAK, Elbassuoni E, Abdelbaky FAF, AboBakr AHS. Changes in Rat Adrenal Cortex and Pineal Gland in Inverted Light-Dark Cycle: A Biochemical, Histological, and Immunohistochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2037-2052. [PMID: 37738357 DOI: 10.1093/micmic/ozad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Poor sleep standards are common in everyday life; it is frequently linked to a rise in stress levels. The adrenal gland interacts physiologically with the pineal gland in the stress response. Pineal gland is a small endocrine organ that modulates sleep patterns. This work aimed to evaluate the inverted light-dark cycle rhythm on the histological changes within the adrenal cortex and pineal gland in adult male albino rats. Twenty adult male albino rats were equally divided into two groups: For the first control group, animals were kept on daylight-darkness for 12-12 h. The second group was kept under an inverted 12- to 12-h light-darkness cycle for 4 weeks. Adrenal sections were subjected to biochemical, histological, and immunohistochemical study. Inverted light-dark cycle group recorded a significant elevation of plasma corticosterone, tissue malondialdehyde, tumor necrosis factor-α, and interleukin-1β (IL-1β) associated with a significant reduction of catalase and superoxide dismutase. Adrenal cortex showed biochemical and histological changes. Pineal glands also showed loss of lobular architecture. A significant upregulation in activated inducible nitric oxide synthase (iNOS) and B-cell lymphoma-associated X (Bax) immunohistochemical expression was recorded in adrenal cortex associating with downregulation in B-cell lymphoma 2 (Bcl-2). It could be concluded that subchronic inverted light-dark cycle exerted direct effects on adrenal cortex and the pineal glands.
Collapse
Affiliation(s)
- Heba A Shawky
- Anatomy and Embryology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| | - Sara Mohamed Naguib Abdel Hafez
- Histology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| | - Nabil Abdel Kader Hasan
- Anatomy and Embryology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| | - Eman Elbassuoni
- Physiology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| | - Fatma Alzhraa Fouad Abdelbaky
- Anatomy and Embryology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| | - Abdel Hamid Sayed AboBakr
- Anatomy and Embryology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| |
Collapse
|
3
|
Dong C, Wu H, Zheng G, Peng J, Guo M, Tan Z. Transcriptome Analysis Reveals MAPK/AMPK as a Key Regulator of the Inflammatory Response in PST Detoxification in Mytilus galloprovincialis and Argopecten irradians. Toxins (Basel) 2022; 14:toxins14080516. [PMID: 36006178 PMCID: PMC9416634 DOI: 10.3390/toxins14080516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Paralytic shellfish toxins (PSTs) are an increasingly important source of pollution. Bivalves, as the main transmission medium, accumulate and metabolize PSTs while protecting themselves from damage. At present, the resistance mechanism of bivalves to PSTs is unclear. In this study, Mytilus galloprovincialis and Argopecten irradians were used as experimental shellfish species for in situ monitoring. We compared the inflammatory-related gene responses of the two shellfish during PSTs exposure by using transcriptomes. The results showed that the accumulation and metabolism rate of PSTs in M. galloprovincialis was five-fold higher than that in A. irradians. The inflammatory balance mechanism of M. galloprovincialis involved the co-regulation of the MAPK-based and AMPK-based anti-inflammatory pathways. A. irradians bore a higher risk of death because it did not have the balance system, and the regulation of apoptosis-related pathways such as the PI3K-AKT signaling pathway were upregulated. Taken together, the regulation of the inflammatory balance coincides with the ability of bivalves to cope with PSTs. Inflammation is an important factor that affects the metabolic pattern of PSTs in bivalves. This study provides new evidence to support the studies on the resistance mechanism of bivalves to PSTs.
Collapse
Affiliation(s)
- Chenfan Dong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-532-8583-6348; Fax: +86-532-8582-5917
| |
Collapse
|
4
|
Oztop N, Beyaz S, Orcen C. Abdominal Obesity and Metabolic Parameters in Chronic Spontaneous Urticaria. HASEKI TIP BÜLTENI 2022. [DOI: 10.4274/haseki.galenos.2022.8399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
5
|
Öztop N, Demir S, Beyaz Ş, Ünal D, Çolakoğlu B, Büyüköztürk S, Gelincik A. Impact of mental health on disease activity in mastocytosis during COVID-19 pandemic. Allergol Int 2022; 71:109-116. [PMID: 34483018 PMCID: PMC8349680 DOI: 10.1016/j.alit.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mast cell-related symptoms might be influenced by mental health status in mastocytosis. In this study, we aimed to investigate the influence of mental health problems developed during the COVID-19 pandemic on the course of mastocytosis. METHODS Mental health status in 60 adult patients with mastocytosis was prospectively evaluated with the total Depression-Anxiety-Stress Scale (tDASS-21) and Fear of COVID-19 Scale (FCV-19S) in the lockdown period (LP) and the return to normal period (RTNP) during the pandemic. The disease course was assessed from emergency and outpatient medical reports, including Scoring Mastocytosis (SCORMA) index and serum baseline tryptase levels, by telephone interviews and clinical visits. RESULTS The mean FCV-19S and median tDASS-21 scores were significantly higher in LP than RTNP (p < 0.001) and there was a positive correlation between FCV-19S and tDASS-21 in LP (r = 0.820, p < 0.001) and in RTNP (r = 0.572 p= <0.001). Disease-related symptoms including skin lesions, flushing and anaphylaxis attacks increased in 22 patients in LP, and in this group, mean FCV-19S and median tDASS-21 were higher than those without symptom exacerbation (p < 0.001). During the study period, four (6.7%) patients who experienced COVID-19 recovered without any requirement for hospitalization and had not experienced symptom exacerbation. CONCLUSIONS Fear of COVID-19 can be a reason for mental health changes, including depression, anxiety and stress which may further increase mast cell-related symptoms. Therefore, psychological support is important to control the severity of mast cell-related symptoms in mastocytosis during a pandemic.
Collapse
Affiliation(s)
- Nida Öztop
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Demir
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Şengül Beyaz
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Derya Ünal
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Yedikule Education and Training Hospital, Istanbul, Turkey
| | - Bahauddin Çolakoğlu
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Suna Büyüköztürk
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Aslı Gelincik
- Division of Immunology and Allergic Diseases, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
6
|
Theoharides TC. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J Pers Med 2021; 11:860. [PMID: 34575637 PMCID: PMC8465360 DOI: 10.3390/jpm11090860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, "short-circuiting the electrical system" in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells-found in all tissues including the brain-by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop "pruning" nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood-brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
7
|
Inchingolo AD, Inchingolo AM, Bordea IR, Malcangi G, Xhajanka E, Scarano A, Lorusso F, Farronato M, Tartaglia GM, Isacco CG, Marinelli G, D’Oria MT, Hazballa D, Santacroce L, Ballini A, Contaldo M, Inchingolo F, Dipalma G. SARS-CoV-2 Disease Adjuvant Therapies and Supplements Breakthrough for the Infection Prevention. Microorganisms 2021; 9:525. [PMID: 33806624 PMCID: PMC7999785 DOI: 10.3390/microorganisms9030525] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a high-risk viral agent involved in the recent pandemic stated worldwide by the World Health Organization. The infection is correlated to a severe systemic and respiratory disease in many cases, which is clinically treated with a multi-drug pharmacological approach. The purpose of this investigation was to evaluate through a literature overview the effect of adjuvant therapies and supplements for the SARS-CoV-2 infection. The research has analyzed the advantage of the EK1C4, by also assessing the studies on the resveratrol, vitamin D, and melatonin as adjuvant supplements for long hauler patients' prognosis. The evaluated substances reported important benefits for the improvement of the immune system and as a potential inhibitor molecules against SARS-CoV-2, highlighting the use of sartans as therapy. The adjuvant supplements seem to create an advantage for the healing of the long hauler patients affected by chronic symptoms of constant chest and heart pain, intestinal disorders, headache, difficulty concentrating, memory loss, and tachycardia.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Edit Xhajanka
- Dental Prosthesis Department, Medical University of Tirana, UMT, Rruga e Dibrës, Tirana 1001, Albania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
- Human Stem Cells Research Center HSC of Ho Chi Minh, Ho Chi Minh 70000, Vietnam
- Embryology and Regenerative Medicine and Immunology, Pham Chau Trinh University of Medicine Hoi An, Hoi An 70000, Vietnam
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, Via delle Scienze, Università degli Studi di Udine, 206, 33100 Udine, Italy
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario, University of Bari, 70125 Bari, Italy;
- Department of Precision Medicine, University of Campania, 80138 Naples, Italy
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| |
Collapse
|
8
|
Theoharides TC, Cholevas C, Polyzoidis K, Politis A. Long-COVID syndrome-associated brain fog and chemofog: Luteolin to the rescue. Biofactors 2021; 47:232-241. [PMID: 33847020 PMCID: PMC8250989 DOI: 10.1002/biof.1726] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 leads to severe respiratory problems, but also to long-COVID syndrome associated primarily with cognitive dysfunction and fatigue. Long-COVID syndrome symptoms, especially brain fog, are similar to those experienced by patients undertaking or following chemotherapy for cancer (chemofog or chemobrain), as well in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or mast cell activation syndrome (MCAS). The pathogenesis of brain fog in these illnesses is presently unknown but may involve neuroinflammation via mast cells stimulated by pathogenic and stress stimuli to release mediators that activate microglia and lead to inflammation in the hypothalamus. These processes could be mitigated by phytosomal formulation (in olive pomace oil) of the natural flavonoid luteolin.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of ImmunologyTufts University School of MedicineBostonMassachusettsUSA
- School of Graduate Biomedical SciencesTufts University School of MedicineBostonMassachusettsUSA
- Department of Internal MedicineTufts University School of Medicine and Tufts Medical CenterBostonMassachusettsUSA
- Department of PsychiatryTufts University School of Medicine and Tufts Medical CenterBostonMassachusettsUSA
- BrainGateThessalonikiGreece
| | | | | | - Antonios Politis
- First Department of PsychiatryEginition Hospital, National and Kapodistrian UniversityAthensGreece
| |
Collapse
|
9
|
Theoharides TC. Luteolin supplements: All that glitters is not gold. Biofactors 2021; 47:242-244. [PMID: 33159817 DOI: 10.1002/biof.1689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
|
10
|
Bordea IR, Xhajanka E, Candrea S, Bran S, Onișor F, Inchingolo AD, Malcangi G, Pham VH, Inchingolo AM, Scarano A, Lorusso F, Isacco CG, Aityan SK, Ballini A, Dipalma G, Inchingolo F. Coronavirus (SARS-CoV-2) Pandemic: Future Challenges for Dental Practitioners. Microorganisms 2020; 8:E1704. [PMID: 33142764 PMCID: PMC7694165 DOI: 10.3390/microorganisms8111704] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
In the context of the SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) pandemic, the medical system has been subjected to many changes. Face-to-face treatments have been suspended for a period of time. After the lockdown, dentists have to be aware of the modalities to protect themselves and their patients in order not to get infected. Dental practitioners are potentially exposed to a high degree of contamination with SARS-CoV-2 while performing dental procedures that produce aerosols. It should also be noted that the airways, namely the oral cavity and nostrils, are the access pathways for SARS-CoV-2. In order to protect themselves and their patients, they have to use full personal protective equipment. Relevant data regarding this pandemic are under evaluation and are still under test. In this article, we made a synthesis about the way in which SARS-CoV-2 spreads, how to diagnose a novel corona virus infection, what the possible treatments are, and which protective personal equipment we can use to stop its spreading.
Collapse
Affiliation(s)
- Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Edit Xhajanka
- President of Dental School, Medical University of Tirana, Rruga e Dibrës, 1001 Tirana, Albania;
| | - Sebastian Candrea
- Department of Pedodontics, County Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| | - Simion Bran
- Department of Maxilofacial Surgery and Implantology, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.B.); (F.O.)
| | - Florin Onișor
- Department of Maxilofacial Surgery and Implantology, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.B.); (F.O.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (G.D.); (F.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (G.D.); (F.I.)
| | - Van H Pham
- Nam Khoa Laboratories and Pham Chau Trinh University of Medicine, Hoi An 70000, Vietnam;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (G.D.); (F.I.)
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Ciro Gargiulo Isacco
- Director of Research at Human Stem Cells Research Center HSC, Ho Chi Minh 70000, Vietnam;
- Associate Professor of Embryology and Regenerative Medicine and Immunology at Pham Chau Trinh University of Medicine, Hoi An 70000, Vietnam
- Visiting Professor of Regenerative Medicine and Metabolic Disorders at Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy
| | - Sergey K Aityan
- Director of Multidisciplinary Research Center, Lincoln University, Oakland, CA 94102, USA;
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario “Ernesto Quagliariello” University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Department of Precision Medicine, University of Campania“Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (G.D.); (F.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine (D.I.M.), University of Medicine Aldo Moro, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (G.D.); (F.I.)
| |
Collapse
|
11
|
Theoharides TC. The impact of psychological stress on mast cells. Ann Allergy Asthma Immunol 2020; 125:388-392. [PMID: 32687989 DOI: 10.1016/j.anai.2020.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Atopic diseases worsen with psychological stress, but how stress contributes to their pathogenesis is still not clear. We review the evidence supporting the premise that stress contributes to allergic and inflammatory processes through stimulation of mast cells (MCs) by neuroimmune stimuli. DATA SOURCES PubMed was searched between 1950 and 2019 using the following terms: allergies, atopic diseases, corticotropin-releasing hormone, inflammation, hypothalamic-pituitary-adrenal axis, mast cells, mastocytosis, neuropeptides, psychological stress, neurotensin, and substance P. STUDY SELECTIONS Only articles published in English were selected based on their relevance to stress and MCs, especially those that discussed potential mechanisms of action. RESULTS Psychological stress worsens many diseases, especially asthma, atopic dermatitis, and mastocytosis. This effect is mediated through MCs stimulated by neuropeptides, especially corticotropin-releasing hormone, neurotensin, and substance P, a process augmented by interleukin-33. CONCLUSION Understanding how stress stimulates MCs to release proinflammatory mediators is important in advancing treatments for diseases that worsen with stress.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, Massachusetts; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|