1
|
Guibourdenche M, Haug J, Chevalier N, Spatz M, Barbezier N, Gay-Quéheillard J, Anton PM. Food Contaminants Effects on an In Vitro Model of Human Intestinal Epithelium. TOXICS 2021; 9:toxics9060135. [PMID: 34207749 PMCID: PMC8227186 DOI: 10.3390/toxics9060135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Pesticide residues represent an important category of food contaminants. Furthermore, during food processing, some advanced glycation end-products resulting from the Maillard reaction can be formed. They may have adverse health effects, in particular on the digestive tract function, alone and combined. We sought to validate an in vitro model of the human intestinal barrier to mimic the effects of these food contaminants on the epithelium. A co-culture of Caco-2/TC7 cells and HT29-MTX was stimulated for 6 h with chlorpyrifos (300 μM), acrylamide (5 mM), Nε-Carboxymethyllysine (300 μM) alone or in cocktail with a mix of pro-inflammatory cytokines. The effects of those contaminants on the integrity of the gut barrier and the inflammatory response were analyzed. Since the co-culture responded to inflammatory stimulation, we investigated whether this model could be used to evaluate the effects of food contaminants on the human intestinal epithelium. CPF alone affected tight junctions’ gene expression, without inducing any inflammation or alteration of intestinal permeability. CML and acrylamide decreased mucins gene expression in the intestinal mucosa, but did not affect paracellular intestinal permeability. CML exposure activated the gene expression of MAPK pathways. The co-culture response was stable over time. This cocktail of food contaminants may thus alter the gut barrier function.
Collapse
Affiliation(s)
- Marion Guibourdenche
- PériTox—Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, 80025 Amiens, France; (M.G.); (J.G.-Q.)
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
| | - Johanna Haug
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
| | - Noëllie Chevalier
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
| | - Madeleine Spatz
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
| | - Nicolas Barbezier
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
| | - Jérôme Gay-Quéheillard
- PériTox—Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, 80025 Amiens, France; (M.G.); (J.G.-Q.)
| | - Pauline M. Anton
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
- Correspondence: ; Tel.: +33-3-4406-3868
| |
Collapse
|
2
|
Gu M, Bai N, Xu B, Xu X, Jia Q, Zhang Z. Protective effect of glutamine and arginine against soybean meal-induced enteritis in the juvenile turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2017; 70:95-105. [PMID: 28882796 DOI: 10.1016/j.fsi.2017.08.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/13/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Soybean meal can induce enteritis in the distal intestine (DI) and decrease the immunity of several cultured fish species, including turbot Scophthalmus maximus. Glutamine and arginine supplementation have been used to improve immunity and intestinal morphology in fish. This study was conducted to investigate the effects of these two amino acids on the immunity and intestinal health of turbot suffering from soybean meal-induced enteritis. Turbots (initial weight 7.6 g) were fed one of three isonitrogenous and isolipidic diets for 8 weeks: SBM (control diet), with 40% soybean meal; GLN, SBM diet plus 1.5% glutamine; ARG, the SBM diet plus 1.5% arginine. Symptoms that are typical of soybean meal-induced enteritis, including swelling of the lamina propria and subepithelial mucosa and a strong infiltration of various inflammatory cells was observed in fish that fed the SBM diet. Glutamine and arginine supplementation significantly increased (1) the weight gain and feed efficiency ratio; (2) the height and vacuolization of villi and the integrity of microvilli in DI; (3) serum lysozyme activity, and the concentrations of C3, C4, and IgM. These two amino acids also significantly decreased the infiltration of leucocytes in the lamina propria and submucosa and the expression of inflammatory cytokines including il-8, tnf-α, and tgf-β. For the mucosal microbiota, arginine supplementation significantly increased microbiota community richness and diversity, and glutamine supplementation significantly increased the relative abundance of Lactobacillus and Bacillus. These results indicate that dietary glutamine and arginine improved the growth performance, feed utilization, and distal intestinal morphology, activated the innate and adaptive immune systems, changed the intestinal mucosal microbiota community, and relieved SBMIE possibly by suppression of the inflammation response.
Collapse
Affiliation(s)
- Min Gu
- Marine College, Shandong University at Weihai, 180 Wenhua West Road, Weihai, 264209, PR China
| | - Nan Bai
- Marine College, Shandong University at Weihai, 180 Wenhua West Road, Weihai, 264209, PR China.
| | - Bingying Xu
- Marine College, Shandong University at Weihai, 180 Wenhua West Road, Weihai, 264209, PR China
| | - Xiaojie Xu
- Marine College, Shandong University at Weihai, 180 Wenhua West Road, Weihai, 264209, PR China
| | - Qian Jia
- Marine College, Shandong University at Weihai, 180 Wenhua West Road, Weihai, 264209, PR China
| | - Zhiyu Zhang
- Marine College, Shandong University at Weihai, 180 Wenhua West Road, Weihai, 264209, PR China
| |
Collapse
|
3
|
Marion-Letellier R, Savoye G, Ghosh S. IBD: In Food We Trust. J Crohns Colitis 2016; 10:1351-1361. [PMID: 27194533 DOI: 10.1093/ecco-jcc/jjw106] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Both science and patients associate diet with inflammatory bowel disease [IBD]. There is no doubt that links between IBD and diet are numerous, based on both epidemiological studies and experimental studies. However, scientific evidence to support dietary advice is currently lacking, and dietary counselling for IBD patients is often limited in clinical practice to the improvement of nutrient intake. This review aimed to focus on both patient's beliefs about and molecular mechanisms for crosstalk between nutrients and inflammation. METHODS A literature search using PubMed was performed to identify relevant studies on diet and/or nutrients and their role in IBD. Pubmed [from inception to January 20, 2016] was searched using the terms: 'Crohn', 'colitis',' intestinal epithelial cells', and a list of terms relating to diet or numerous specific nutrients. Terms associated with nutrients were individually tested in the context of IBD. Reference lists from studies selected were manually searched to identify further relevant reports. Manuscripts about diet in the context of IBD from basic science, epidemiological studies, or clinical trials were selected and reviewed. Only articles published in English were included. RESULTS Epidemiological studies highlight the key role of diet in IBD development, and many IBD patients report diet as a triggering factor in relapse of disease. In addition, we present research on the impact of nutrients on innate immunity. CONCLUSION Diet may offer an alternative approach to restoring deficient innate immunity in IBD, and this may be the scientific rationale for providing dietary counselling for IBD patients.
Collapse
Affiliation(s)
| | - Guillaume Savoye
- INSERM Unit UMR1073, Rouen University and Rouen University Hospital, Rouen cedex, France.,Department of Gastroenterology, Rouen University Hospital, Rouen cedex, France
| | - Subrata Ghosh
- Division of Gastroenterology, University of Calgary, Alberta, Canada
| |
Collapse
|
4
|
Schneider M, Efferth T, Abdel-Aziz H. Anti-inflammatory Effects of Herbal Preparations STW5 and STW5-II in Cytokine-Challenged Normal Human Colon Cells. Front Pharmacol 2016; 7:393. [PMID: 27833553 PMCID: PMC5080345 DOI: 10.3389/fphar.2016.00393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic relapsing intestinal disorders characterized by up-regulation of pro-inflammatory cytokines followed by invasion of immune cells to the intestinal lamina propria. Standard therapies consist of anti-inflammatory or immunosuppressive drugs. Since clinical efficiency is not satisfactory and the established drugs have massive side effects, new strategies to treat IBD are required. Herein, we investigate the protective effect of the fixed combination herbal preparations STW5 and STW5-II and the contribution of the corresponding single components in an in vitro inflammation model. The normal human colon epithelial cell line, NCM460, was treated with STW5, STW5-II or their single components for 4 h followed by experimental conditions comparable to induction of colitis. A pro-inflammatory cytokine cocktail consisting of TNF-α, IL-β, and IFN-γ was used to simulate inflammatory stimuli normally caused by immune cells. The effects on NCM460 cells were investigated by enzyme-linked immunoassay and Proteome Profiler®. Levels of IP-10, MCP-1, I-TAC, Groα, and IL-8 were elevated in chemokine-treated cells compared to untreated cells, but significantly reduced upon pretreatment with STW5 or STW5-II. However, the single compounds revealed only little effects on protein expression. Furthermore, we investigated the effect of both combination preparations on pro-inflammatory transcription factors of the STAT family using Western blot. In addition, we tested the effects on upstream MAPK p38. Both, STW5 and STW5-II did not show any effect on MAPK p38, but were effective in reducing phosphorylated levels of STAT1. In conclusion, both combination preparations act in an anti-inflammatory manner by influencing cytokine secretion via reduced activity of the JAK/STAT1 pathway. Relevant differences between STW5 and STW5-II were not found indicating similar efficacies.
Collapse
Affiliation(s)
- Mathias Schneider
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz Germany
| | - Heba Abdel-Aziz
- Department of Pharmaceutical Biology, Johannes Gutenberg University, MainzGermany; Medical and Clinical Affairs Phytomedicines, Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, DarmstadtGermany
| |
Collapse
|
5
|
Proteasome inhibitors exacerbate interleukin-8 production induced by protease-activated receptor 2 in intestinal epithelial cells. Cytokine 2016; 86:41-46. [DOI: 10.1016/j.cyto.2016.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 11/18/2022]
|
6
|
Abstract
BACKGROUND Crohn's disease is a chronic relapsing condition of the alimentary tract with a high morbidity secondary to bowel inflammation. Glutamine plays a key role in maintaining the integrity of the intestinal mucosa and has been shown to reduce inflammation and disease activity in experimental models of Crohn's disease. OBJECTIVES To evaluate the efficacy and safety of glutamine supplementation for induction of remission in Crohn's disease. SEARCH METHODS We searched the following databases from inception to November 15, 2015: MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and the Cochrane IBD Group Specialised Register. Study references were also searched for additional trials. There were no language restrictions. SELECTION CRITERIA Randomised controlled trials (RCTs) that compared glutamine supplementation administered by any route to a placebo, active comparator or no intervention in people with active Crohn's disease were considered for inclusion. DATA COLLECTION AND ANALYSIS Two authors independently extracted data and assessed the methodological quality of the included studies. The Cochrane risk of bias tool was used to assess methodological quality. The primary outcome measure was clinical or endoscopic remission. Secondary outcomes included intestinal permeability, clinical response, quality of life, growth in children and adverse events. Risk ratios and 95% confidence intervals were calculated for dichotomous outcomes. The overall quality of the evidence supporting the primary outcome was evaluated using the GRADE criteria. MAIN RESULTS Two small RCTs (total 42 patients) met the inclusion criteria and were included in the review. One study (18 patients) compared four weeks of treatment with a glutamine-enriched polymeric diet (42% amino acid composition) to a standard polymeric diet (4% amino acid composition) with low glutamine content in paediatric patients (< 18 years of age) with active Crohn's disease. The other study (24 patients) compared glutamine-supplemented total parenteral nutrition to non-supplemented total parenteral nutrition in adult patients (> 18 years of age) with acute exacerbation of inflammatory bowel disease. The paediatric study was rated as low risk of bias. The study in adult patients was rated as unclear risk of bias for blinding and low risk of bias for all other items. It was not possible to pool data for meta-analysis because of significant differences in study populations, nature of interventions, and the way outcomes were assessed. Data from one study showed no statistically significant difference in clinical remission rates at four weeks. Forty-four per cent (4/9) of patients who received a glutamine-enriched polymeric diet achieved remission compared to 56% (5/9) of patients who received a standard low-glutamine polymeric diet (RR 0.80, 95% CI 0.31 to 2.04). A GRADE analysis indicated that the overall quality of evidence for this outcome was low due to serious imprecision (9 events). In both included studies, no statistically significant changes in intestinal permeability were found between patients who received glutamine supplementation and those who did not. Neither study reported on clinical response, quality of life or growth in children. Adverse event data were not well documented. There were no serious adverse events in the paediatric study. The study in adult patients reported three central catheter infections with positive blood cultures in the glutamine group compared to none in the control group (RR 7.00, 95% CI 0.40 to 122.44). AUTHORS' CONCLUSIONS Currently there is insufficient evidence to allow firm conclusions regarding the efficacy and safety of glutamine for induction of remission in Crohn's disease. Data from two small studies suggest that glutamine supplementation may not be beneficial in active Crohn's disease but these results need to be interpreted with caution as they are based on small numbers of patients. This review highlights the need for adequately powered randomised controlled trials to investigate the efficacy and safety of glutamine for induction of remission in Crohn's disease.
Collapse
Affiliation(s)
- Anthony K Akobeng
- Sidra Medical & Research CenterPO Box 26999DohaQatar
- University of ManchesterManchesterUK
| | - Mamoun Elawad
- Sidra Medical & Research CenterPO Box 26999DohaQatar
| | - Morris Gordon
- University of Central LancashireSchool of Medicine and DentistryPrestonUK
| | | |
Collapse
|
7
|
Kleiner G, Zanin V, Monasta L, Crovella S, Caruso L, Milani D, Marcuzzi A. Pediatric patients with inflammatory bowel disease exhibit increased serum levels of proinflammatory cytokines and chemokines, but decreased circulating levels of macrophage inhibitory protein-1β, interleukin-2 and interleukin-17. Exp Ther Med 2015; 9:2047-2052. [PMID: 26136934 DOI: 10.3892/etm.2015.2370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 01/23/2015] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory condition of the gastrointestinal tract. Although the causative events that lead to the onset of IBD are yet to be fully elucidated, deregulation of immune and inflammatory mechanisms are hypothesized to significantly contribute to this disorder. Since the onset of IBD is often during infancy, in the present study, the serum values of a large panel of cytokines and chemokines in pediatric patients (<18 years; n=26) were compared with age-matched controls (n=37). While elevations in the serum level of several proinflammatory and immune regulating cytokines were confirmed, such as interleukin (IL)-1β, IL-5, IL-7, interferon (IFN)-γ-inducible protein-10, IL-16, cutaneous T-cell-attracting chemokine, leukemia inhibitory factor, monokine induced by γ-IFN, IFN-α2 and IFN-γ, notably decreased levels of IL-2, IL-17 and macrophage inhibitory protein-1β were also observed. Therefore, while a number of proinflammatory cytokines exhibit increased levels in IBD patients, pediatric IBD patients may also exhibit certain aspects of a reduced immunological response.
Collapse
Affiliation(s)
- Giulio Kleiner
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste 34137, Italy
| | - Valentina Zanin
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste 34137, Italy
| | - Lorenzo Monasta
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste 34137, Italy
| | - Sergio Crovella
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste 34137, Italy ; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Lorenzo Caruso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Annalisa Marcuzzi
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste 34137, Italy
| |
Collapse
|
8
|
Marion-Letellier R, Raman M, Savoye G, Déchelotte P, Ghosh S. Nutrient modulation of autophagy: implications for inflammatory bowel diseases. Inflamm Bowel Dis 2013; 19:205-12. [PMID: 22573543 DOI: 10.1002/ibd.23001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During nutrient deprivation, autophagy provides the constituents required to maintain the metabolism essential for survival. Recently, genome-wide association studies have identified genetic determinants for susceptibility to Crohn's disease (CD) such as ATG16L1 and IRGM that are involved in the autophagy pathway. Both disease-carrying NOD2 mutations and ATG16L1 mutations may result in impairment of autophagy. Impairment in autophagy results in impaired clearance of microbes. Ileal CD is associated with Paneth cell loss of function such as decreased production of α-defensins, which may arise from mutations in NOD2 or autophagy genes. Nutrients are able to modify several cellular pathways and in particular autophagy. We summarize the contribution of a variety of dietary components to activate autophagy. Understanding the crosstalk between nutrients and autophagy in the intestine may provide novel targets that have therapeutics potential in intestinal inflammation. Nutrient activation of autophagy may contribute to restoring the Paneth cell loss of function in ileal CD.
Collapse
|
9
|
Regulation of intestinal protein metabolism by amino acids. Amino Acids 2012; 45:443-50. [DOI: 10.1007/s00726-012-1325-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/15/2012] [Indexed: 12/24/2022]
|
10
|
Lechowski S, Feilhauer K, Staib L, Coëffier M, Bischoff SC, Lorentz A. Combined arginine and glutamine decrease release of de novo synthesized leukotrienes and expression of proinflammatory cytokines in activated human intestinal mast cells. Eur J Nutr 2012; 52:505-12. [DOI: 10.1007/s00394-012-0353-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/28/2012] [Indexed: 01/08/2023]
|
11
|
Alanyl-glutamine restores maternal deprivation-induced TLR4 levels in a rat neonatal model. Clin Nutr 2011; 30:672-7. [DOI: 10.1016/j.clnu.2011.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/29/2011] [Accepted: 04/14/2011] [Indexed: 12/27/2022]
|
12
|
Ziegler F, Seddiki L, Marion-Letellier R, Lavoinne A, Déchelotte P. Effects of l-glutamine supplementation alone or with antioxidants on hydrogen peroxide-induced injury in human intestinal epithelial cells. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.eclnm.2011.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Sacks GS. Effect of glutamine-supplemented parenteral nutrition on mortality in critically ill patients. Nutr Clin Pract 2011; 26:44-7. [PMID: 21266696 DOI: 10.1177/0884533610392923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glutamine is recognized as a critical amino acid involved in immunity, intestinal health, and nitrogen transport between organs. Prior to the pivotal study by Griffiths and colleagues in 1997, no clinical trials had demonstrated a positive effect from glutamine supplementation on improving long-term survival in critically ill intensive care unit patients receiving parenteral nutrition. Subsequent investigations have confirmed these findings, but further data are needed to determine the optimal dose and timing of glutamine as well as the form of glutamine (ie, free vs dipeptide) that produces the most significant improvement in outcome parameters.
Collapse
|
14
|
Motoki T, Naomoto Y, Hoshiba J, Shirakawa Y, Yamatsuji T, Matsuoka J, Takaoka M, Tomono Y, Fujiwara Y, Tsuchita H, Gunduz M, Nagatsuka H, Tanaka N, Fujiwara T. Glutamine depletion induces murine neonatal melena with increased apoptosis of the intestinal epithelium. World J Gastroenterol 2011; 17:717-26. [PMID: 21390141 PMCID: PMC3042649 DOI: 10.3748/wjg.v17.i6.717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 09/17/2010] [Accepted: 09/24/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the possible biological outcome and effect of glutamine depletion in neonatal mice and rodent intestinal epithelial cells.
METHODS: We developed three kinds of artificial milk with different amounts of glutamine; Complete amino acid milk (CAM), which is based on maternal mouse milk, glutamine-depleted milk (GDM), and glutamine-rich milk (GRM). GRM contains three-fold more glutamine than CAM. Eighty-seven newborn mice were divided into three groups and were fed with either of CAM, GDM, or GRM via a recently improved nipple-bottle system for seven days. After the feeding period, the mice were subjected to macroscopic and microscopic observations by immunohistochemistry for 5-bromo-2’-deoxyuridine (BrdU) and Ki-67 as markers of cell proliferation, and for cleaved-caspase-3 as a marker of apoptosis. Moreover, IEC6 rat intestinal epithelial cells were cultured in different concentrations of glutamine and were subject to a 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate cell proliferation assay, flow cytometry, and western blotting to examine the biological effect of glutamine on cell growth and apoptosis.
RESULTS: During the feeding period, we found colonic hemorrhage in six of 28 GDM-fed mice (21.4%), but not in the GRM-fed mice, with no differences in body weight gain between each group. Microscopic examination showed destruction of microvilli and the disappearance of glycocalyx of the intestinal wall in the colon epithelial tissues taken from GDM-fed mice. Intake of GDM reduced BrdU incorporation (the average percentage of BrdU-positive staining; GRM: 13.8%, CAM: 10.7%, GDM: 1.14%, GRM vs GDM: P < 0.001, CAM vs GDM: P < 0.001) and Ki-67 labeling index (the average percentage of Ki-67-positive staining; GRM: 24.5%, CAM: 22.4% GDM: 19.4%, GRM vs GDM: P = 0.001, CAM vs GDM: P = 0.049), suggesting that glutamine depletion inhibited cell proliferation of intestinal epithelial cells. Glutamine deprivation further caused the deformation of the nuclear membrane and the plasma membrane, accompanied by chromatin degeneration and an absence of fat droplets from the colonic epithelia, indicating that the cells underwent apoptosis. Moreover, immunohistochemical analysis revealed the appearance of cleaved caspase-3 in colonic epithelial cells of GDM-fed mice. Finally, when IEC6 rat intestinal epithelial cells were cultured without glutamine, cell proliferation was significantly suppressed after 24 h (relative cell growth; 4 mmol/L: 100.0% ± 36.1%, 0 mmol/L: 25.3% ± 25.0%, P < 0.05), with severe cellular damage. The cells underwent apoptosis, accompanied by increased cell population in sub-G0 phase (4 mmol/L: 1.68%, 0.4 mmol/L: 1.35%, 0 mmol/L: 5.21%), where dying cells are supposed to accumulate.
CONCLUSION: Glutamine is an important alimentary component for the maintenance of intestinal mucosa. Glutamine deprivation can cause instability of the intestinal epithelial alignment by increased apoptosis.
Collapse
|
15
|
Ban K, Kozar RA. Glutamine protects against apoptosis via downregulation of Sp3 in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1344-53. [PMID: 20884886 PMCID: PMC3006244 DOI: 10.1152/ajpgi.00334.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glutamine plays a key role in intestinal growth and maintenance of gut function, and as we have shown protects the postischemic gut (Kozar RA, Scultz SG, Bick RJ, Poindexter BJ, Desoigne R, Weisbrodt NW, Haber MM, Moore FA. Shock 21: 433-437, 2004). However, the precise mechanisms of the gut protective effects of glutamine have not been well elucidated. In the present study, RNA microarray was performed to obtain differentially expressed genes in intestinal epithelial IEC-6 cells following either 2 mM or 10 mM glutamine. The result demonstrated that specificity protein 3 (Sp3) mRNA expression was downregulated 3.1-fold. PCR and Western blot confirmed that Sp3 expression was decreased by glutamine in a time- and dose-dependent fashion. To investigate the role of Sp3, Sp3 gene siRNA silencing was performed and apoptosis was assessed. Silencing of Sp3 demonstrated a significant increase in Bcl-2 and decrease in Bax protein expression, as well as a decrease in caspase-3, -8, and -9 protein expression and activity. The protein expression of apoptosis-related proteins after hypoxia/reoxygenation was similar to that of normoxia and correlated with a decrease in DNA fragmentation. Importantly, the addition of glutamine to Sp3-silenced cells did not further lessen apoptosis, suggesting that Sp3 plays a major role in the inhibitory effect of glutamine on apoptosis. This novel finding may explain in part the gut-protective effects of glutamine.
Collapse
Affiliation(s)
- Kechen Ban
- Department of Surgery, University of Texas Medical School, Houston, 77030, USA.
| | | |
Collapse
|
16
|
Coëffier M, Marion-Letellier R, Déchelotte P. Potential for amino acids supplementation during inflammatory bowel diseases. Inflamm Bowel Dis 2010; 16:518-24. [PMID: 19572337 DOI: 10.1002/ibd.21017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathophysiology of inflammatory bowel diseases (IBDs) is multifactorial and involves interactions of gut luminal content with mucosal barrier and especially immune cells. Malnutrition is a frequent issue during IBD flares, especially in Crohn's disease (CD) patients, and nutritional support is frequently used to treat malnutrition but also in an attempt to modulate intestinal inflammation. The use of oral or enteral nutrition intervention in IBDs may be effective, alone or in combination with drugs, to achieve and maintain remission. However, standard diets are less effective than new-generation biotherapies and could be improved by supplementation with specific immunomodulatory amino acids. Experimental studies evaluating glutamine, the preferential substrate for enterocytes, are promising. Some clinical studies with oral glutamine in CD are until now disappointing, but new formulations and targeting could enhance glutamine efficacy at the site of mucosal lesions. The role of arginine, involved in nitric oxide and polyamines synthesis, still remains debated. However, the effects of these amino acids in IBD have been poorly documented in humans. Other candidates like glycine, cysteine, histidine, or taurine should also be evaluated in the future.
Collapse
Affiliation(s)
- Moïse Coëffier
- Appareil Digestif Environnement Nutrition (ADEN EA4311), Institute for Biomedical Research, European Institute for Peptide Research (IFRMP 23), Rouen University and Rouen University Hospital, Rouen, France.
| | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Marion-Letellier R, Butler M, Déchelotte P, Playford RJ, Ghosh S. Comparison of cytokine modulation by natural peroxisome proliferator-activated receptor gamma ligands with synthetic ligands in intestinal-like Caco-2 cells and human dendritic cells--potential for dietary modulation of peroxisome proliferator-activated receptor gamma in intestinal inflammation. Am J Clin Nutr 2008; 87:939-48. [PMID: 18400717 DOI: 10.1093/ajcn/87.4.939] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor gamma (PPARgamma) plays a role in the regulation of intestinal inflammation and is activated by both natural (polyunsaturated fatty acid; PUFAs) and synthetic (troglitazone) ligands. The fatty acid content of defined formula diets may play a role in mediating the antiinflammatory effect, but the mechanism is unclear. OBJECTIVE We evaluated to what extent the effect of PUFAs on intestinal inflammation is mediated via PPARgamma. DESIGN The human enterocyte-like cell line Caco-2 and human dendritic cells were stimulated by interleukin (IL) 1beta and lipoprotein polysaccharide, respectively, in the presence of PPARgamma agonists (troglitazone or PUFAs) or antagonist (GW9662). Five PUFAs were tested: alpha-linolenic acid (ALA), conjugated linoleic acid (CLA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and gamma-linolenic acid (GLA). Cytokine production was measured by enzyme-linked immunosorbent assay and PPARgamma, I-kappaB, and inducible nitric oxide synthase (iNOS) expression by Western blot. RESULTS In Caco-2 cells, IL-6 secretion was significantly decreased by troglitazone, DHA, EPA, and GLA. IL-8 production was significantly decreased by troglitazone, ALA, DHA, EPA, and GLA. PPARgamma expression was significantly increased by troglitazone, DHA, and EPA. iNOS expression was significantly decreased by troglitazone, DHA, and EPA. Troglitazone and PUFAs at 0.1 mumol/L tended to increase the expression of I-kappaB. Addition of GW9662 reversed the effect of troglitazone and PUFAs at 0.1 mumol/L on IL-8 production and decreased the expression of PPARgamma. EPA and DHA also modulated the dendritic cell response to lipoprotein polysaccharide. CONCLUSIONS The tested PUFAs exerted an antiinflammatory effect in vitro in both models. This effect of PUFAs in Caco-2 cells is similar to that of troglitazone on intestinal inflammation mediated by PPARgamma, and the potency of the antiinflammatory effect is linked to the number of double bonds.
Collapse
Affiliation(s)
- Rachel Marion-Letellier
- Gastroenterology Section, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, London, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Hubert-Buron A, Leblond J, Jacquot A, Ducrotté P, Déchelotte P, Coëffier M. Glutamine pretreatment reduces IL-8 production in human intestinal epithelial cells by limiting IkappaBalpha ubiquitination. J Nutr 2006; 136:1461-5. [PMID: 16702304 DOI: 10.1093/jn/136.6.1461] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glutamine, the most abundant amino acid in the human body, plays several important roles in the intestine. Recent studies showed that glutamine regulates protein metabolism and intestinal inflammation among other mechanisms by reducing proinflammatory cytokine release. Because regulation of the inflammatory response was shown to be linked to proteolysis regulation, we hypothesized that glutamine pretreatment could act on IL-8 production in human intestinal epithelial cells through the regulation of inhibitor kappaB (IkappaB) ubiquitination. The HCT-8 cells were pretreated for 24 h with 0.6, 2, or 10 mmol/L glutamine. IL-8 concentration and IkappaB (free and ubiquitinated) expressions were assessed by ELISA and immunoblotting, respectively. A pretreatment with 10 mmol/L glutamine decreased IL-8 production under both basal and proinflammatory conditions (both P < 0.05). In the presence of a proteasome inhibitor (MG132), the ubiquitin-IkappaBalpha complex expression was not significantly modified by glutamine under basal conditions but decreased significantly under proinflammatory conditions (P < 0.05). After the addition of 10 mmol/L of glutamine, the free IkappaBalpha expression increased under basal and stimulated conditions (both P < 0.05). A glutamine pretreatment of 10 mmol/L did not affect ubiquitin expression or proteasome activity. This study indicates that glutamine pretreatment may reduce the intestinal inflammatory response by limiting the proteolysis of IkappaBalpha.
Collapse
Affiliation(s)
- Aurélie Hubert-Buron
- Appareil Digestif Environnement et Nutrition (ADEN EA-3234), Institut Fédératif de Recherches Multidisciplinaires sur les Peptides, Medical Faculty, Rouen, France
| | | | | | | | | | | |
Collapse
|
21
|
Thébault S, Deniel N, Marion R, Charlionet R, Tron F, Cosquer D, Leprince J, Vaudry H, Ducrotté P, Déchelotte P. Proteomic analysis of glutamine-treated human intestinal epithelial HCT-8 cells under basal and inflammatory conditions. Proteomics 2006; 6:3926-37. [PMID: 16739128 DOI: 10.1002/pmic.200500714] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glutamine (Gln) promotes intestinal growth and maintains gut structure and function, especially in situations of injury and during inflammation. Several mechanisms could contribute to Gln protective effects on gut. Proteomics enable us to characterize differentially expressed proteins in tissues in response to modifications of the biological or nutritional environment. Gln effects on the human intestinal epithelial HCT-8 cell line proteome were assessed under basal and proinflammatory conditions. The 2-DE gels were obtained and compared. Proteins were identified by MS and using databases. About 1200 spots were detected in both 2- and 10-mM Gln concentrations. Under basal conditions, 24 proteins were differentially expressed in response to Gln. Half of these proteins were implicated in protein biosynthesis or proteolysis and 20% in membrane trafficking. Under proinflammatory conditions, 27 proteins were up- or down-regulated by Gln 10 mM. From these proteins, 40% were involved in protein biosynthesis or proteolysis, 16% in membrane trafficking, 8% in cell cycle and apoptosis mechanisms and 8% in nucleic acid metabolism. This study provides the first holistic picture of proteome modulation by Gln in a human enterocytic cell line under basal and proinflammatory conditions, and supports further evaluation of nutritional modulation of intestinal proteome in humans.
Collapse
Affiliation(s)
- Sandrine Thébault
- Groupe ADEN EA3234, Université de Rouen, IFR 23, 22 Boulevard Gambetta, 76183 Rouen, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Damen GM, Hol J, de Ruiter L, Bouquet J, Sinaasappel M, van der Woude J, Laman JD, Hop WCJ, Büller HA, Escher JC, Nieuwenhuis EES. Chemokine production by buccal epithelium as a distinctive feature of pediatric Crohn disease. J Pediatr Gastroenterol Nutr 2006; 42:142-9. [PMID: 16456405 DOI: 10.1097/01.mpg.0000189336.70021.8a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Inflammatory bowel diseases (IBD) represent an aberrant immune response by the mucosal immune system to luminal bacteria. Because the oral mucosa harbors the first epithelial cells that interact with microorganisms, we assessed the immunologic activity of buccal epithelium in children with IBD and adults with Crohn disease. METHODS Buccal epithelial cells were obtained from 17 children and 14 adults with Crohn disease, 18 children with ulcerative colitis, and 40 controls. Cells were cultured with and without microbial stimulation. Chemokine levels were determined in culture supernatants by cytometric bead array and enzyme-linked immunoabsorbent assay. CXCL-8 production was studied by immunohistochemical analysis of these cells. CXCL-8 production by lipopolysaccharide stimulated monocyte-derived dendritic cells from these patients was determined. RESULTS Compared with controls, pediatric ulcerative colitis patients, and adult Crohn disease patients, only in children with Crohn disease did buccal epithelial cells exhibit enhanced production of CXCL-8, CXCL-9, and CXCL-10. In vitro stimulation with lipopolysaccharide or zymosan resulted in a further increase of chemokine levels only in cells from pediatric Crohn disease patients. CXCL-8 production by stimulated monocyte-derived dendritic cells from children with Crohn disease was equal to that of children with ulcerative colitis. CONCLUSIONS Buccal epithelium of children with Crohn disease is immunologically active, even in the absence of oral lesions. The enhanced chemokine production is associated with pediatric Crohn disease and appears restricted to cells derived from the epithelial barrier. Assessment of chemokine production by buccal epithelial cells may become a new, rapid, noninvasive test for screening and classification of IBD in children.
Collapse
Affiliation(s)
- Gerard M Damen
- Department of Pediatric Gastroenterology and Laboratory of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center, Dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leblond J, Hubert-Buron A, Bole-Feysot C, Ducrotté P, Déchelotte P, Coëffier M. Regulation of proteolysis by cytokines in the human intestinal epithelial cell line HCT-8: role of IFNgamma. Biochimie 2006; 88:759-65. [PMID: 16488064 DOI: 10.1016/j.biochi.2006.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 01/06/2006] [Indexed: 11/26/2022]
Abstract
Protein metabolism contributes in the regulation of gut barrier function, which may be altered during inflammatory states. There are three major proteolytic pathways in mammalian cells: lysosomal, Ca(2+)-activated and ubiquitin-proteasome. The regulation of proteolytic activities during inflammation remains unknown in intestine. Intestinal epithelial cells, HCT-8, were stimulated by IL-1beta, IFNgamma and TNFalpha each alone or in combination (Cytomix). Proteolytic activities were assessed using fluorogenic substrates and specific inhibitors, protein expressions by Western blot. Lysosomal and Ca(2+)-activated pathways were not significantly altered by any treatment. In contrast, the activity of ubiquitin-proteasome system was stimulated by IFNgamma and Cytomix (155, 160 versus 100, P<0.05, respectively) but remained unaffected by IL-1beta and TNFalpha. Free ubiquitin expression, but not ubiquitinated proteins, was enhanced by IFNgamma and Cytomix. The expression of proteasome 20S alpha1 subunit, a constitutive proteasome 20S subunit, was not altered, beta5 subunit expression was weakly decreased by Cytomix and inducible beta5i subunit expression was markedly increased in response to IFNgamma and to Cytomix (202, 206 versus 100, P<0.05, respectively). In conclusion, lysosomal, Ca(2+)-activated and constitutive proteasome activities were not affected by IL-1beta, IFNgamma and TNFalpha alone or in combination, in HCT-8 cells. These results suggest that IFNgamma, but not IL-1beta and TNFalpha, increases immunoproteasome, which might contribute to enhanced antigen presentation during inflammatory bowel diseases.
Collapse
Affiliation(s)
- Jonathan Leblond
- Appareil Digestif Environnement Nutrition (ADEN-EA3234) and Institut Fédératif de Recherches Multidisciplinaires sur les Peptides (IFRMP), 22, boulevard Gambetta, 76183 Rouen cedex 1, France
| | | | | | | | | | | |
Collapse
|
24
|
Coëffier M, Déchelotte P. The role of glutamine in intensive care unit patients: mechanisms of action and clinical outcome. Nutr Rev 2005; 63:65-9. [PMID: 15762090 DOI: 10.1111/j.1753-4887.2005.tb00123.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Patients in the intensive care unit are at high risk of glutamine depletion and subsequent complications. Several controlled studies and a meta-analysis have concluded that glutamine supplementation has beneficial effects on the clinical outcome of critically ill and surgical patients. These results may be explained by glutamine's influences on the inflammatory response, oxidative stress, cell protection, and the gut barrier. In addition, glutamine may also improve glucose metabolism by reducing insulin resistance.
Collapse
Affiliation(s)
- Moïse Coëffier
- Appareil Digestif Environnement Nutrition, IFR 23, Faculté de Médecine-Pharmacie, Rouen, France
| | | |
Collapse
|