1
|
Gonçalinho GHF, Sampaio GR, Soares-Freitas RAM, Damasceno NRT. Red Blood Cells' Omega-6 and Omega-3 Polyunsaturated Fatty Acids Have a Distinct Influence on LDL Particle Size and its Structural Modifications. Arq Bras Cardiol 2023; 120:e20230078. [PMID: 37991120 PMCID: PMC10697675 DOI: 10.36660/abc.20230078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND While Omega-3 and omega-6 polyunsaturated fatty acids (n-3 and n-6 PUFAs) have established effects on cardiovascular disease (CVD) risk factors, little is known about their impacts on LDL quality markers. OBJECTIVE To assess the associations of n-3 and n-6 PUFA within red blood cells (RBC) with LDL particle size, small dense LDL-c (sdLDL-c), and electronegative LDL [LDL(-)] in adults with CVD risk factors. METHODS Cross-sectional study involving 335 men and women aged 30 to 74 with at least one cardiovascular risk factor. Analyses were conducted on biochemical parameters, such as glucose, insulin, HbA1c, C-reactive protein (CRP), lipid profile, lipoprotein subfractions, electronegative LDL particle [LDL(-)] and its autoantibody, and RBC n-3 and n-6 PUFAs. Independent t-test/Mann-Whitney test, one-way ANOVA/Kruskal-Wallis test, and multiple linear regressions were applied. All tests were two-sided, and a p-value of less than 0.05 was considered statistically significant. RESULTS The RBC n-6/n-3 ratio was associated with increased LDL(-) (β = 4.064; 95% CI = 1.381 - 6.748) and sdLDL-c (β = 1.905; 95% CI = 0.863 - 2.947) levels, and reduced LDL particle size (β = -1.032; 95% CI = -1.585 - -0.478). Separately, n-6 and n-3 PUFAs had opposing associations with those parameters, reinforcing the protective effects of n-3 and showing the potential negative effects of n-6 on LDL particle quality. CONCLUSION RBC n-6 PUFA was associated with increased cardiometabolic risk and atherogenicity of LDL particles, while n-3 PUFA was associated with better cardiometabolic parameters and LDL particle quality.
Collapse
Affiliation(s)
- Gustavo Henrique Ferreira Gonçalinho
- Departamento de NutriçãoFaculdade de Saúde PúblicaUniversidade de São PauloSão PauloSPBrasil Departamento de Nutrição – Faculdade de Saúde Pública – Universidade de São Paulo , São Paulo , SP – Brasil
| | - Geni Rodrigues Sampaio
- Departamento de NutriçãoFaculdade de Saúde PúblicaUniversidade de São PauloSão PauloSPBrasil Departamento de Nutrição – Faculdade de Saúde Pública – Universidade de São Paulo , São Paulo , SP – Brasil
| | - Rosana Aparecida Manólio Soares-Freitas
- Departamento de NutriçãoFaculdade de Saúde PúblicaUniversidade de São PauloSão PauloSPBrasil Departamento de Nutrição – Faculdade de Saúde Pública – Universidade de São Paulo , São Paulo , SP – Brasil
| | - Nágila Raquel Teixeira Damasceno
- Departamento de NutriçãoFaculdade de Saúde PúblicaUniversidade de São PauloSão PauloSPBrasil Departamento de Nutrição – Faculdade de Saúde Pública – Universidade de São Paulo , São Paulo , SP – Brasil
| |
Collapse
|
2
|
Shrestha N, Vidimce J, Holland OJ, Cuffe JSM, Beck BR, Perkins AV, McAinch AJ, Hryciw DH. Maternal and Postnatal High Linoleic Acid Diet Impacts Lipid Metabolism in Adult Rat Offspring in a Sex-Specific Manner. Int J Mol Sci 2021; 22:ijms22062946. [PMID: 33799409 PMCID: PMC7999727 DOI: 10.3390/ijms22062946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. We aimed to investigate the effect of maternal and postnatal high LA (HLA) diet on plasma FA composition, plasma and hepatic lipids and genes involved in lipid metabolism in the liver of adult offspring. Female rats were fed with low LA (LLA; 1.44% LA) or HLA (6.21% LA) diets for 10 weeks before pregnancy, and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), fed either LLA or HLA diets and sacrificed at PN180. Postnatal HLA diet decreased circulating total n-3 PUFA and alpha-linolenic acid (ALA), while increased total n-6 PUFA, LA and arachidonic acid (AA) in both male and female offspring. Maternal HLA diet increased circulating leptin in female offspring, but not in males. Maternal HLA diet decreased circulating adiponectin in males. Postnatal HLA diet significantly decreased aspartate transaminase (AST) in females and downregulated total cholesterol, HDL-cholesterol and triglycerides in the plasma of males. Maternal HLA diet downregulated the hepatic mRNA expression of Hmgcr in both male and female offspring and decreased the hepatic mRNA expression of Cpt1a and Acox1 in females. Both maternal and postnatal HLA diet decreased hepatic mRNA expression of Cyp27a1 in females. Postnatal diet significantly altered circulating fatty acid concentrations, with sex-specific differences in genes that control lipid metabolism in the adult offspring following exposure to high LA diet in utero.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (J.V.); (O.J.H.); (A.V.P.)
| | - Josif Vidimce
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (J.V.); (O.J.H.); (A.V.P.)
| | - Olivia J. Holland
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (J.V.); (O.J.H.); (A.V.P.)
- Institute of Health and Biomedical Innovation, Queensland University of Technology, South Brisbane, QLD 4001, Australia
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Belinda R. Beck
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Anthony V. Perkins
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (J.V.); (O.J.H.); (A.V.P.)
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC 3021, Australia
| | - Deanne H. Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, QLD 4111, Australia
- Correspondence:
| |
Collapse
|
3
|
Lozano-Muñoz I, Muñoz S, Díaz NF, Medina A, Bazaes J, Riquelme C. Nutritional Enhancement of Farmed Salmon Meat via Non-GMO Nannochloropsis Gaditana: Eicosapentaenoic Acid (EPA, 20:5 n-3), Docosapentaenoic Acid (DPA, 22:5 n-3) and Vitamin D3 for Human Health. Molecules 2020; 25:E4615. [PMID: 33050537 PMCID: PMC7587176 DOI: 10.3390/molecules25204615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n-3 LC PUFAs) and vitamin D3 are essential components of human nutrition. A regular human diet is highly deficient in n-3 LC PUFAs. Fish like salmon are highly recommended in the human diet as they are a major source of high-value n-3 LC PUFAs and vitamin D3. The levels of these nutrients have been decreasing over the last few years in farmed salmon, whose production urgently needs sustainable sources of these nutrients. The microalga Nannochloropsis gaditana (NG) is known for its naturally high potential for the production of eicosapentaenoic (EPA, 20:5 n-3) fatty acid. A commercial diet for Atlantic salmon was supplemented with 1% and 10% of spray-dried NG grown under controlled conditions for a high EPA content. Salmon were harvested on day 49, following which, boneless and skinless salmon meat was recovered from fish and analyzed for the fatty acid profile, total fat, and vitamin D3. Vitamin D3, EPA, and docosapentaenoic fatty acid (DPA, 22:5 n-3) levels were significantly increased (p < 0.05) by supplementing the basal diet with 10% NG, thus, NG represents a novel, functional, natural ingredient and a sustainable source of n-3 LC-PUFAs that can raise the levels of healthy fats and vitamin D3 in farmed salmon meat.
Collapse
Affiliation(s)
- Ivonne Lozano-Muñoz
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820000, Chile; (S.M.); (N.F.D.)
| | - Susana Muñoz
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820000, Chile; (S.M.); (N.F.D.)
| | - Nelson F. Díaz
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820000, Chile; (S.M.); (N.F.D.)
| | - Alberto Medina
- Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Osorno 5290000, Chile;
| | - Jazmín Bazaes
- Centro de Bioinnovación, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile; (J.B.); (C.R.)
| | - Carlos Riquelme
- Centro de Bioinnovación, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile; (J.B.); (C.R.)
| |
Collapse
|
4
|
Fidalgo Rodríguez JL, Dynarowicz-Latka P, Miñones Conde J. How unsaturated fatty acids and plant stanols affect sterols plasma level and cellular membranes? Review on model studies involving the Langmuir monolayer technique. Chem Phys Lipids 2020; 232:104968. [PMID: 32896519 DOI: 10.1016/j.chemphyslip.2020.104968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022]
Abstract
The Langmuir monolayer technique has long been known for its usefulness to study the interaction between molecules and mimic cellular membranes to understand the mechanism of action of biologically relevant molecules. In this review we summarize the results that provided insight into the potential mechanism for lowering the plasma level of cholesterol by hypocholesterolemic substances (unsaturated fatty acids (UFAs) and phytocompounds) - in the aspect of prevention of atherosclerosis - and their effects on model biomembranes. The results on UFAs/cholesterol (oxysterols) interactions indicate that these systems are miscible and strongly interacting, contrary to immiscible systems containing saturated fatty acids. Lowering of cholesterol plasma level by UFAs was attributed to the strong affinity between UFAs and sterols, resulting in the formation of high stability complexes, in which sterols were bound and eliminated from the body. Studies on the effect of UFAs and plant sterols/stanols on simplified biomembranes (modeled as cholesterol/DPPC system) indicated that the studied hypocholesterolemic substances modify the biophysical properties of model membrane, affecting its fluidity and interactions between membrane components. Both UFAs and plant sterols/stanols were found to loosen interactions between DPPC and cholesterol and decrease membrane rigidity caused by the excess cholesterol in biomembrane, thus compensating strong condensing effect of cholesterol and restoring proper membrane fluidity, which is of utmost importance for normal cells functioning. The agreement between model - in vitro - studies and biological results prove the usefulness of the Langmuir monolayer technique, which helps in understanding the mode of action of biologically relevant substances.
Collapse
Affiliation(s)
- J L Fidalgo Rodríguez
- Department of Physical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain.
| | - P Dynarowicz-Latka
- Department of General Chemistry Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - J Miñones Conde
- Department of Physical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| |
Collapse
|
5
|
Abstract
Currently, the prevention and treatment of CVD have been a global focus since CVD is the number one cause of mortality and morbidity. In the pathogenesis of CVD, it was generally thought that impaired cholesterol homeostasis might be a risk factor. Cholesterol homeostasis is affected by exogenous factors (i.e. diet) and endogenous factors (i.e. certain receptors, enzymes and transcription factors). In this context, the number of studies investigating the potential mechanisms of dietary fatty acids on cholesterol homeostasis have increased in recent years. As well, the cluster of differentiation 36 (CD36) receptor is a multifunctional membrane receptor involved in fatty acid uptake, lipid metabolism, atherothrombosis and inflammation. CD36 is proposed to be a crucial molecule for cholesterol homeostasis in various mechanisms including absorption/reabsorption, synthesis, and transport of cholesterol and bile acids. Moreover, it has been reported that the amount of fatty acids and fatty acid pattern of the diet influence the CD36 level and CD36-mediated cholesterol metabolism principally in the liver, intestine and macrophages. In these processes, CD36-mediated cholesterol and lipoprotein homeostasis might be impaired by dietary SFA and trans-fatty acids, whereas ameliorated by MUFA in the diet. The effects of PUFA on CD36-mediated cholesterol homeostasis are controversial depending on the amount of n-3 PUFA and n-6 PUFA, and the n-3:n-6 PUFA ratio. Thus, since the CD36 receptor is suggested to be a novel nutrient-sensitive biomarker, the role of CD36 and dietary fatty acids in cholesterol metabolism might be considered in medical nutrition therapy in the near future. Therefore, the novel nutritional target of CD36 and interventions that focus on dietary fatty acids and potential mechanisms underlying cholesterol homeostasis are discussed in this review.
Collapse
|
6
|
Lian Z, Perrard XYD, Peng X, Raya JL, Hernandez AA, Johnson CG, Lagor WR, Pownall HJ, Hoogeveen RC, Simon SI, Sacks FM, Ballantyne CM, Wu H. Replacing Saturated Fat With Unsaturated Fat in Western Diet Reduces Foamy Monocytes and Atherosclerosis in Male Ldlr-/- Mice. Arterioscler Thromb Vasc Biol 2020; 40:72-85. [PMID: 31619061 PMCID: PMC6991890 DOI: 10.1161/atvbaha.119.313078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE A Mediterranean diet supplemented with olive oil and nuts prevents cardiovascular disease in clinical studies, but the underlying mechanisms are incompletely understood. We investigated whether the preventive effect of the diet could be due to inhibition of atherosclerosis and foamy monocyte formation in Ldlr-/- mice fed with a diet in which milkfat in a Western diet (WD) was replaced with extra-virgin olive oil and nuts (EVOND). Approach and Results: Ldlr-/- mice were fed EVOND or a Western diet for 3 (or 6) months. Compared with the Western diet, EVOND decreased triglyceride and cholesterol levels but increased unsaturated fatty acid concentrations in plasma. EVOND also lowered intracellular lipid accumulation in circulating monocytes, indicating less formation of foamy monocytes, compared with the Western diet. In addition, compared with the Western diet, EVOND reduced monocyte expression of inflammatory cytokines, CD36, and CD11c, with decreased monocyte uptake of oxLDL (oxidized LDL [low-density lipoprotein]) ex vivo and reduced CD11c+ foamy monocyte firm arrest on vascular cell adhesion molecule-1 and E-selectin-coated slides in an ex vivo shear flow assay. Along with these changes, EVOND compared with the Western diet reduced the number of CD11c+ macrophages in atherosclerotic lesions and lowered atherosclerotic lesion area of the whole aorta and aortic sinus. CONCLUSIONS A diet enriched in extra-virgin olive oil and nuts, compared with a Western diet high in saturated fat, lowered plasma cholesterol and triglyceride levels, inhibited foamy monocyte formation, inflammation, and adhesion, and reduced atherosclerosis in Ldlr-/- mice.
Collapse
Affiliation(s)
- Zeqin Lian
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Xiao-Yuan Dai Perrard
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Xueying Peng
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.P)
| | - Joe L Raya
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Alfredo A Hernandez
- Department of Biomedical Engineering, University of California, Davis (A.A.H, S.I.S.)
| | - Collin G Johnson
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - William R Lagor
- Department of Molecular Physiology and Biophysics (W.R.L.), Baylor College of Medicine, Houston, TX
| | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX (H.J.P.)
| | - Ron C Hoogeveen
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis (A.A.H, S.I.S.)
| | - Frank M Sacks
- Department of Nutrition, Harvard School of Public Health, and Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA (F.M.S.)
| | - Christie M Ballantyne
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- Department of Pediatrics (C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- Center for Cardiometabolic Disease Prevention (C.M.B.), Baylor College of Medicine, Houston, TX
| | - Huaizhu Wu
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- Department of Pediatrics (C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
7
|
Zhu Q, Glazier BJ, Hinkel BC, Cao J, Liu L, Liang C, Shi H. Neuroendocrine Regulation of Energy Metabolism Involving Different Types of Adipose Tissues. Int J Mol Sci 2019; 20:E2707. [PMID: 31159462 PMCID: PMC6600468 DOI: 10.3390/ijms20112707] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Despite tremendous research efforts to identify regulatory factors that control energy metabolism, the prevalence of obesity has been continuously rising, with nearly 40% of US adults being obese. Interactions between secretory factors from adipose tissues and the nervous system innervating adipose tissues play key roles in maintaining energy metabolism and promoting survival in response to metabolic challenges. It is currently accepted that there are three types of adipose tissues, white (WAT), brown (BAT), and beige (BeAT), all of which play essential roles in maintaining energy homeostasis. WAT mainly stores energy under positive energy balance, while it releases fuels under negative energy balance. Thermogenic BAT and BeAT dissipate energy as heat under cold exposure to maintain body temperature. Adipose tissues require neural and endocrine communication with the brain. A number of WAT adipokines and BAT batokines interact with the neural circuits extending from the brain to cooperatively regulate whole-body lipid metabolism and energy homeostasis. We review neuroanatomical, histological, genetic, and pharmacological studies in neuroendocrine regulation of adipose function, including lipid storage and mobilization of WAT, non-shivering thermogenesis of BAT, and browning of BeAT. Recent whole-tissue imaging and transcriptome analysis of differential gene expression in WAT and BAT yield promising findings to better understand the interaction between secretory factors and neural circuits, which represents a novel opportunity to tackle obesity.
Collapse
Affiliation(s)
- Qi Zhu
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Bradley J Glazier
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Benjamin C Hinkel
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Jingyi Cao
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Lin Liu
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Chun Liang
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Haifei Shi
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
8
|
Henkel J, Alfine E, Saín J, Jöhrens K, Weber D, Castro JP, König J, Stuhlmann C, Vahrenbrink M, Jonas W, Kleinridders A, Püschel GP. Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol. Nutrients 2018; 10:nu10091326. [PMID: 30231595 PMCID: PMC6164134 DOI: 10.3390/nu10091326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Janin Henkel
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany.
| | - Eugenia Alfine
- German Institute of Human Nutrition, Junior Research Group Central Regulation of Metabolism; D-14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.
| | - Juliana Saín
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany.
- Department of Biological Sciences, Food Science and Nutrition, Faculty of Biochemistry and Biological Sciences, National University of the Litoral (UNL), Santa Fe S3000, Argentina.
| | - Korinna Jöhrens
- Institute of Pathology, Carl Gustav Carus University Hospital Dresden; D-01307 Dresden, Germany.
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition; D-14558 Nuthetal, Germany.
| | - José P Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition; D-14558 Nuthetal, Germany.
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition; D-14558 Nuthetal, Germany.
| | - Christin Stuhlmann
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany.
| | - Madita Vahrenbrink
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany.
| | - Wenke Jonas
- German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.
- Department of Experimental Diabetology, German Institute of Human Nutrition; D-14558 Nuthetal, Germany.
| | - André Kleinridders
- German Institute of Human Nutrition, Junior Research Group Central Regulation of Metabolism; D-14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.
| | - Gerhard P Püschel
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany.
| |
Collapse
|
9
|
Correlation analysis of omega-3 fatty acids and mortality of sepsis and sepsis-induced ARDS in adults: data from previous randomized controlled trials. Nutr J 2018; 17:57. [PMID: 29859104 PMCID: PMC5984323 DOI: 10.1186/s12937-018-0356-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
Objective This study aimed to investigate the possible effect of omega-3 fatty acids on reducing the mortality of sepsis and sepsis-induced acute respiratory distress syndrome (ARDS) in adults. Methods Medline, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI) database, WangFang database, and Chinese BioMedical Literature Database from their inception to March 6, 2017, were searched using systematic review researching methods. Five factors were analyzed to investigate the correlation between omega-3 fatty acids (either parenteral or enteral supplementation) and mortality rate. Results Forty randomized controlled trials (RCTs) were initially included, but only 25 of them assessed mortality. Of these RCTs, nine used enteral nutrition (EN) and 16 used parenteral nutrition (PN). The total mortality rate in the omega-3 fatty acid group was lower than that in the control group. However, the odds ratio (OR) value was not significantly different in the EN or PN subgroup. Eighteen RCTs including 1790 patients with similar severity of sepsis and ARDS were also analyzed. The OR value was not significantly different in the EN or PN subgroup. Omega-3 fatty acids did not show positive effect on improving mortality of sepsis-induced ARDS (p = 0.39). But in EN subgroup, omega-3 fatty acids treatment seemed to have some benefits in reducing mortality rate (p = 0.04). In the RCTs including similar baseline patients, partial correlation analysis found that the concentration ratio of n-6 to n-3 fatty acids had positive correlation with reduction of mortality (RM) (γ = 0.60, P = 0.02), whereas the total number of each RCT had negative correlation with RM (γ = − 0.54, P = 0.05). Conclusions This review found that omega-3 fatty acid supplementation could reduce the mortality rate of sepsis and sepsis-induced ARDS. However, further investigation based on suitable concentrations and indications is needed to support the findings.
Collapse
|
10
|
Karbasforush S, Nourazarian A, Darabi M, Rahbarghazi R, Khaki-Khatibi F, Biray Avci Ç, Salimi L, Goker Bagca B, Novin Bahador T, Rezabakhsh A, Khaksar M. Docosahexaenoic acid reversed atherosclerotic changes in human endothelial cells induced by palmitic acid in vitro. Cell Biochem Funct 2018; 36:203-211. [PMID: 29653462 DOI: 10.1002/cbf.3332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 12/25/2022]
Abstract
Abnormal activity of atherosclerotic endothelial cells paving luminal surface of blood vessels has been described in many diseases. It has been reported that natural polyunsaturated fatty acids such as docosahexaenoic acid exert therapeutic effects in atherosclerotic condition. Human umbilical vein endothelial cells were treated with 1mM palmitic acid for 48 hours and exposed to 40μM docosahexaenoic acid for the next 24 hours. Real-time polymerase chain reaction analysis was used to measure the expression of PTX3, iNOS, and eNOS. The level of nitric oxide was detected by Griess reagent. The transcription level of genes participating in coagulation and blood pressure was studied by polymerase chain reaction array. Docosahexaenoic acid improved the survival rate by reducing apoptosis rate (P < .05). Compared with that of the group given palmitic acid, attenuation of proinflammatory status was indicated by reduced interleukin-6 (P < .05) and prostaglandin E2 levels. All genes PTX3, iNOS, and eNOS were down-regulated after being exposed to docosahexaenoic acid. Nitric oxide contents were not changed in cells exposed to docosahexaenoic acid. Polymerase chain reaction array confirmed the reduction of LPA, PDGFβ, ITGA2, SERPINE1, and FGA after exposure to docosahexaenoic acid for 24 hours (P < .05). Docosahexaenoic acid had potential to blunt atherosclerotic changes in the modulation of genes controlling blood coagulation, pressure, and platelet function. SIGNIFICANCE OF THE STUDY The current experiment showed that docosahexaenoic acid could reverse atherosclerotic changes in human endothelial cells induced by palmitic acid. The increased levels of interleukin-6 and prostaglandin E2 in atherosclerotic cells were returned to near-to-normal status. Gene expression analysis showed a reduced activity of genes participating in atherosclerotic endothelial cells treated by docosahexaenoic acid. The expression of genes related to cell clotting activity was also similar to that of normal cells.
Collapse
Affiliation(s)
- Saeede Karbasforush
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Çıgır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bakiye Goker Bagca
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Tanaz Novin Bahador
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khaksar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Li H, Pan Y, Luo K, Luo T, Fan Y, Deng Z. Effects of Different Simple Triglycerides on Cell Fatty Acid Compositions, Proliferation-Related Protein, and Gene Expressions Induced by Oxidized-LDL in HUVSMCs. J Food Sci 2017; 82:529-535. [DOI: 10.1111/1750-3841.13621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/23/2016] [Accepted: 12/13/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Hongyan Li
- State Key Laboratory of Food Science and Technology; Univ. of Nanchang; Nanchang 330047 Jiangxi China
| | - Yao Pan
- State Key Laboratory of Food Science and Technology; Univ. of Nanchang; Nanchang 330047 Jiangxi China
| | - Kaiyun Luo
- State Key Laboratory of Food Science and Technology; Univ. of Nanchang; Nanchang 330047 Jiangxi China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology; Univ. of Nanchang; Nanchang 330047 Jiangxi China
| | - Yawei Fan
- State Key Laboratory of Food Science and Technology; Univ. of Nanchang; Nanchang 330047 Jiangxi China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology; Univ. of Nanchang; Nanchang 330047 Jiangxi China
- Inst. for Advanced Study; Univ. of Nanchang; Nanchang 330031 Jiangxi China
| |
Collapse
|
12
|
Zhang L, Wang D, Wen M, Du L, Xue C, Wang J, Xu J, Wang Y. Rapid modulation of lipid metabolism in C57BL/6J mice induced by eicosapentaenoic acid-enriched phospholipid from Cucumaria frondosa. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Oliveira LS, Souza LL, Souza AFP, Cordeiro A, Kluck GEG, Atella GC, Trevenzoli IH, Pazos-Moura CC. Perinatal maternal high-fat diet promotes alterations in hepatic lipid metabolism and resistance to the hypolipidemic effect of fish oil in adolescent rat offspring. Mol Nutr Food Res 2016; 60:2493-2504. [PMID: 27342757 DOI: 10.1002/mnfr.201600171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 12/18/2022]
Abstract
SCOPE Maternal high-fat diet (HFD) promotes obesity and metabolic disturbances in offspring at weaning and adult life. We investigated metabolic consequences of maternal HFD in adolescent rat offspring and the potential benefic effects of fish oil (FO) (n-3 polyunsaturated fatty acid source). METHODS AND RESULTS Female rats received isocaloric, standard diet (STD: 9% fat) or HFD (28.6%) before mating, and throughout pregnancy and lactation. After weaning, male offspring received standard diet and, from 25th to 45th day, received oral administration of soybean oil (SO) or FO. HFD offspring showed higher body weight and adiposity, which was not attenuated by FO. In STD offspring, FO reduced serum triglyceride and cholesterol, as expected, but not in HFD offspring. Liver of HFD offspring groups showed increased free cholesterol and FO-treated HFD group showed lower expression of Abcg8, suggesting decreased cholesterol biliary excretion. HFD offspring presented higher hepatic expression of lipogenic markers, Srebf1 mRNA and acetyl CoA carboxylase (ACC). Serum n-3 PUFA were decreased in FO-treated HFD compared to FO-treated STD offspring, which may explain the reduced hypolipidemic FO effect. CONCLUSION Maternal HFD impaired the ability of FO to reduce adiposity and serum lipids in adolescent offspring, suggesting a potential predisposition to future development of metabolic disorders.
Collapse
Affiliation(s)
- Lorraine S Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Luana L Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Aline F P Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Aline Cordeiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - George E G Kluck
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Isis H Trevenzoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Carmen C Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Titov VN, Rozhkova TA, Aripovsky AV. [Consecutive formation of the functions of high-, low-density and very-low-density lipoproteins during phylogenesis. Unique algorithm of the effects of lipid-lowering drugs]. TERAPEVT ARKH 2015; 87:123-131. [PMID: 26591564 DOI: 10.17116/terarkh2015879123-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During phylogenesis, all fatty acids (FA) were initially transported to cells by apoA-I high-density lipoproteins (HDL) in polar lipids. Later, active cellular uptake of saturated, monoenoic and unsaturated FA occurred via triglycerides (TG) in low-density lipoproteins (LDL). Active uptake of polyenoic FA (PUFA) required the following: a) PUFA re-esterified from polar phospholipids into nonpolar cholesteryl polyesters (poly-CLE), b) a novel protein, cholesteryl ester transfer protein (CETP), initiated poly-CLE transformation from HDL to LDL. CETP formed blood HDL-CETP-LDL complexes in which poly-CLE spontaneously came from polar lipids of TG in HDL to nonpolar TG in LDL. Then ligand LDLs formed and the cells actively absorbed PUFA via apoB-100 endocytosis. Some animal species (rats, mice, dogs) developed a spontaneous CETP-minus mutation followed by population death from atherosclerosis. However, there was another active CETP-independent uptake formed during phylogenesis; the cells internalized poly-CLE in HDL. Since apoA-I had no domain-ligand, another apoE/A-I ligand formed; the cells began synthesizing apoE/A-1 receptors. In cells of rabbits and primates absorbed cells PUFA consecutively: HDL-->LDL-->apoB-100 endocytosis; those of rats and dogs did HDL directly: HDL-->anoE/A-I endocytosis. In the rabbits, CETP was high, apoE in HDL was low, and the animals were sensitive to exogenous hypercholesterolemia. In the rats, CETP was low and ApoE in HDL-was high, and the animals were resistant to hypercholesterolemia. Reduced bioavailability of PUFA during their consecutive cellular uptake and develdpment of intercellular PUFA deficiency are fundamental to the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- V N Titov
- Russian Cardiology Research-and-Production Center, Ministry of Health of Russia, Moscow, Russia
| | - T A Rozhkova
- Russian Cardiology Research-and-Production Center, Ministry of Health of Russia, Moscow, Russia
| | - A V Aripovsky
- Russian Cardiology Research-and-Production Center, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|