1
|
Zhang Y, Mei X, Li W, Pan Y, Cheng H, Chen S, Ye X, Chen J. Mechanisms of starchy foods glycemic index reduction under different means and their impacts on food sensory qualities: A review. Food Chem 2025; 467:142351. [PMID: 39647389 DOI: 10.1016/j.foodchem.2024.142351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Diabetes has become a significant global health issue, driving the adoption of low glycemic index (GI) diets and positioning low-GI foods as a key research focus. Although methods for lowering the GI of foods have been reviewed, a comprehensive analysis of the underlying mechanisms is lacking. Moreover, GI-lowering techniques, whether through exogenous additives or specific processing methods, can influence food sensory qualities and impact storage stability. However, systematic reviews on these effects are limited. This review summarizes mechanisms for reducing the GI of starchy foods, focusing on four key strategies: inhibiting digestive enzymes, altering substrate structure, blocking enzyme-substrate interactions, and stimulating insulin secretion. It also addresses the sensory impacts of these GI-reduction methods. Additionally, the review evaluates how certain nutrient additions affect food stability during storage, aiming to offer scientific guidance for the development of low-GI starchy foods.
Collapse
Affiliation(s)
- Yujie Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China
| | - Xingyu Mei
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China.
| | - Wenqing Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China
| | - Yuxing Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China.
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China.
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; School of Biological and Chemical Engineering, NingboTech University, Ningbo, China.
| |
Collapse
|
2
|
Pereira RA, Hey A, Jesus ABDE, Marin AT, Fiorini F, Corassa R, Goes AKS, Grolli M, Dangui AZ, Wouk J, Prasniewski A, Oldoni TLC, Parpinello GP, Tylewicz U, Carraro E, Malfatti CRM. Biochemical and histological effects of the subchronic treatment with a beer containing Baccharis dracunculifolia in an experimental model of diabetes. AN ACAD BRAS CIENC 2024; 96:e20231369. [PMID: 39699539 DOI: 10.1590/0001-3765202420231369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2024] [Accepted: 09/25/2024] [Indexed: 12/20/2024] Open
Abstract
This article reports the development of a beer made with Baccharis dracunculifolia and its application in an experimental model of diabetes. Initially, the production of the beverage was standardized in order to incorporate the plant extract properly. Next, the beer was analyzed by the UHPLC-MS to identify the substances present. Among others, caffeic acid (5.85 mg / L), m-coumaric acid (5.16 mg / L), pinocembrin (2.99 mg / L), chrysin (10.86 mg / L), myricetin (1.73 mg / L) and spathulenol (9.30 mg / L) were found. Animal tests indicate improvement in biochemical and histological parameters of STZ-induced Wistar rats that ingested the beer made with the plant. The antidiabetic potential of this beverage was observed in the different tests that evaluated insulin resistance and the decrease of the clinical manifestations of diabetes in animals. The use of the drink as an adjunct in clinical treatments for DM2 may be useful, especially in suppressing the oxidative damage caused by the disease.
Collapse
Affiliation(s)
- Ricardo A Pereira
- Federal Institute of Paraná, Department of Pharmacy, Av. Bento Munhoz da Rocha Neto, s/n, PRT-280, Bairro Universitário, 85690-740 Palmas, PR, Brazil
- Midwest State University of Paraná, Post Graduation Program of Pharmacy, Rua Simeão Camargo Varela de Sá, 3, Vila Carli, 85040-080 Guarapuava, PR, Brazil
- Federal Institute of Paraná, Post Graduation Program of Healthy and Sustainable Environments, Av. Bento Munhoz da Rocha Neto, s/n, PRT-280, Bairro Universitário, 85690-740 Palmas, PR, Brazil
| | - Albimara Hey
- Federal Institute of Paraná, Department of Pharmacy, Av. Bento Munhoz da Rocha Neto, s/n, PRT-280, Bairro Universitário, 85690-740 Palmas, PR, Brazil
- Midwest State University of Paraná, Post Graduation Program of Development Community, R. Salvatore Renna, 875, Santa Cruz, 85015-430 Guarapuava, Paraná, Brazil
| | - Aline B DE Jesus
- Federal Institute of Paraná, Department of Pharmacy, Av. Bento Munhoz da Rocha Neto, s/n, PRT-280, Bairro Universitário, 85690-740 Palmas, PR, Brazil
| | - Aline T Marin
- Federal Institute of Paraná, Department of Pharmacy, Av. Bento Munhoz da Rocha Neto, s/n, PRT-280, Bairro Universitário, 85690-740 Palmas, PR, Brazil
- Federal Institute of Paraná, Post Graduation Program of Healthy and Sustainable Environments, Av. Bento Munhoz da Rocha Neto, s/n, PRT-280, Bairro Universitário, 85690-740 Palmas, PR, Brazil
| | - Fernanda Fiorini
- Federal Institute of Paraná, Department of Pharmacy, Av. Bento Munhoz da Rocha Neto, s/n, PRT-280, Bairro Universitário, 85690-740 Palmas, PR, Brazil
| | - Renata Corassa
- Federal Institute of Paraná, Department of Pharmacy, Av. Bento Munhoz da Rocha Neto, s/n, PRT-280, Bairro Universitário, 85690-740 Palmas, PR, Brazil
| | - Ana Karolina S Goes
- Midwest State University of Paraná, Post Graduation Program of Pharmacy, Rua Simeão Camargo Varela de Sá, 3, Vila Carli, 85040-080 Guarapuava, PR, Brazil
| | - Mayara Grolli
- Midwest State University of Paraná, Post Graduation Program of Pharmacy, Rua Simeão Camargo Varela de Sá, 3, Vila Carli, 85040-080 Guarapuava, PR, Brazil
| | - Anayana Z Dangui
- Federal Institute of Paraná, Department of Pharmacy, Av. Bento Munhoz da Rocha Neto, s/n, PRT-280, Bairro Universitário, 85690-740 Palmas, PR, Brazil
| | - Jéssica Wouk
- Midwest State University of Paraná, Post Graduation Program of Pharmacy, Rua Simeão Camargo Varela de Sá, 3, Vila Carli, 85040-080 Guarapuava, PR, Brazil
| | - Anaclara Prasniewski
- Federal Technological University of Paraná, Department of Chemistry, Via do Conhecimento, s/n, KM 01, Fraron, 85503-390 Pato Branco, PR, Brazil
| | - Tatiane Luiza C Oldoni
- Federal Technological University of Paraná, Department of Chemistry, Via do Conhecimento, s/n, KM 01, Fraron, 85503-390 Pato Branco, PR, Brazil
| | - Giuseppina Paola Parpinello
- University of Bologna, Department of Agricultural and Food Sciences, Villa Almerici, Piazza Goidanich 60, IVA 47521, Cesena, Forlì-Cesena, Italy
| | - Urszula Tylewicz
- University of Bologna, Department of Agricultural and Food Sciences, Villa Almerici, Piazza Goidanich 60, IVA 47521, Cesena, Forlì-Cesena, Italy
| | - Emerson Carraro
- Midwest State University of Paraná, Post Graduation Program of Pharmacy, Rua Simeão Camargo Varela de Sá, 3, Vila Carli, 85040-080 Guarapuava, PR, Brazil
- Midwest State University of Paraná, Post Graduation Program of Development Community, R. Salvatore Renna, 875, Santa Cruz, 85015-430 Guarapuava, Paraná, Brazil
| | - Carlos Ricardo M Malfatti
- Midwest State University of Paraná, Post Graduation Program of Pharmacy, Rua Simeão Camargo Varela de Sá, 3, Vila Carli, 85040-080 Guarapuava, PR, Brazil
| |
Collapse
|
3
|
Chen S, Peng D, Shan Y, Liu F, Du R, Bao Y, Yu H, Tu Y. Black Tea drinks with inulin and dextrin reduced postprandial plasma glucose fluctuations in patients with type 2 diabetes: an acute, randomized, placebo-controlled, single-blind crossover study. Nutr Diabetes 2024; 14:95. [PMID: 39616149 PMCID: PMC11608310 DOI: 10.1038/s41387-024-00351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/12/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND This study evaluated the effects of black tea drinks with inulin and dextrin (BTID) on postprandial plasma glucose (PG) in patients with type 2 diabetes mellitus (T2DM). METHODS An acute, randomized, double-blind, placebo-controlled, crossover clinical trial was carried out on T2DM patients. The subjects were randomly assigned to groups consuming placebo black tea powder or BTID (identically packaged) followed by a mixed meal tolerance test (MMTT). Afterwards, individuals who initially consumed BTID were given the placebo and those who initially consumed the placebo were given BTID. RESULTS A total of 35 patients were included in the study, and 32 completed the study. Compared to placebo, BTID significantly reduced the change in glycaemia at 30 min, 1, 2, and 3 h during the MMTT. In the analysis of PG fluctuations at 2 h during the MMTT, the proportion of patients with minor PG fluctuations (< 2.8 mmol/L) in the BTID group was 53.1%, significantly higher than the 28.1% in the placebo group. Binary logistic regression analysis revealed that the risk of significant PG fluctuations decreased by 65.5% after consuming BTID, with a corresponding odds ratio of 0.345 (P = 0.044, 95% CI 0.122-0.974). In addition, the areas under the curve for PG and insulin secretion after BTID administration were significantly smaller than that for placebo. CONCLUSIONS Compared to placebo, BTID significantly reduced the change in PG levels during the MMTT and decreased the risk of large PG fluctuations by 65.5%. These effects were associated to a significant reduction in postprandial insulin secretion and may help to improved insulin sensitivity and a lower β-cell burden.
Collapse
Affiliation(s)
- Si Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Danfeng Peng
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Yingyi Shan
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Fengjing Liu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
- Haikou orthopedic and diabetes hospital, Haikou, 570300, China
| | - Ronghui Du
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.
| | - Yinfang Tu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.
- Haikou orthopedic and diabetes hospital, Haikou, 570300, China.
| |
Collapse
|
4
|
Murakami A, Saito A, Namai F, Fujii T, Tochio T, Toida J, Shimosato T. Koji amazake produced by double saccharification contains more isomaltose and modifies the gut microbiota in mice. Front Nutr 2024; 11:1489912. [PMID: 39568726 PMCID: PMC11576277 DOI: 10.3389/fnut.2024.1489912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
Koji amazake, which is made from rice and rice koji (a product of Aspergillus oryzae), is a traditional Japanese beverage that has glucose as its main component. It also contains isomaltose, which has been reported to have various functionalities related to gut health. In the present study, we attempted to produce amazake with a higher concentration of isomaltose without using any additives by focusing on the saccharification step of rice koji production as a means of creating new value for amazake. Two types of rice koji that were obtained at different fermentation time points were used, and we changed the saccharification process from the usual one step of saccharification to two steps of saccharification using a different type of rice koji for each step. The amazake made by double saccharification (DSA) contained 20 times more isomaltose than the commercial amazake products. In an in vivo study, oral administration of the DSA modified the cecal microbiota in mice. Moreover, changes were seen in the abundances of several gut microorganisms, such as Anaerotignum lactatifermentans, Muribaculum intestinale, and Parabacteroides merdae. These findings indicate that our novel method may be useful for producing amazake with a high isomaltose content that may have health benefits in humans.
Collapse
Affiliation(s)
- Aito Murakami
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Atsushi Saito
- Food Technology Department, Nagano Prefecture General Industrial Technology Center, Nagano, Japan
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Japan
- BIOSIS Lab. Co., Ltd., Aichi, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Japan
- BIOSIS Lab. Co., Ltd., Aichi, Japan
| | - Jinichi Toida
- Food Technology Department, Nagano Prefecture General Industrial Technology Center, Nagano, Japan
| | - Takeshi Shimosato
- Institute for Aqua Regeneration, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
5
|
Li Z, Zhang T, Liu Y, Huang Y, Liu J, Wang S, Sun P, Nie Y, Han Y, Li F, Xu H. A review in two classes of hypoglycemic compounds (prebiotics and flavonoids) intervening in type 2 diabetes mellitus: Unveiling their structural characteristics and gut microbiome as key mediator. FOOD BIOSCI 2024; 61:105010. [DOI: 10.1016/j.fbio.2024.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
6
|
Zeng Y, Ahmed HGMD, Li X, Yang L, Pu X, Yang X, Yang T, Yang J. Physiological Mechanisms by Which the Functional Ingredients in Beer Impact Human Health. Molecules 2024; 29:3110. [PMID: 38999065 PMCID: PMC11243521 DOI: 10.3390/molecules29133110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Nutritional therapy, for example through beer, is the best solution to human chronic diseases. In this article, we demonstrate the physiological mechanisms of the functional ingredients in beer with health-promoting effects, based on the PubMed, Google, CNKI, and ISI Web of Science databases, published from 1997 to 2024. Beer, a complex of barley malt and hops, is rich in functional ingredients. The health effects of beer against 26 chronic diseases are highly similar to those of barley due to the physiological mechanisms of polyphenols (phenolic acids, flavonoids), melatonin, minerals, bitter acids, vitamins, and peptides. Functional beer with low purine and high active ingredients made from pure barley malt, as well as an additional functional food, represents an important development direction, specifically, ginger beer, ginseng beer, and coix-lily beer, as consumed by our ancestors ca. 9000 years ago. Low-purine beer can be produced via enzymatic and biological degradation and adsorption of purines, as well as dandelion addition. Therefore, this review paper not only reveals the physiological mechanisms of beer in overcoming chronic human diseases, but also provides a scientific basis for the development of functional beer with health-promoting effects.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Xia Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Li'e Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Xiaoying Pu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Xiaomeng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Tao Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Jiazhen Yang
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China
| |
Collapse
|
7
|
Jayedi A, Aletaha A, Zeraattalab-Motlagh S, Shahinfar H, Mohammadpour S, Mirrafiei A, Jibril AT, Soltani A, Shab-Bidar S. Comparative efficacy and safety of probiotics, prebiotics, and synbiotics for type 2 diabetes management: A systematic review and network meta-analysis. Diabetes Metab Syndr 2024; 18:102923. [PMID: 38134725 DOI: 10.1016/j.dsx.2023.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
AIMS To compare the effects of probiotics, prebiotics, and synbiotics for type 2 diabetes (T2D) management. METHODS We searched PubMed, Scopus, CENTRAL, and grey literature sources to December 2022 for randomized trials of the impacts of probiotics, prebiotics, or synbiotics in patients with T2D. We performed network meta-analyses with a Bayesian framework to calculate mean difference [MD] and 95 % credible interval [CrI] and rated the certainty of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS 68 randomised trials were included. All results are presented in comparison to the placebo. Supplementation with probiotics (MD: -0.25 %, 95%CrI: -0.42, -0.08; GRADE = moderate) and synbiotics (MD: -0.31 %, 95%CrI: -0.61, -0.04; GRADE = very low) resulted in a trivial/unimportant decrease in glycated hemoglobin. Supplementation with probiotics (MD: -0.69 mmol/L, 95%CrI: -0.98, -0.40; GRADE = very low) and synbiotics (MD: -0.82 mmol/L, 95%CrI: -1.22, -0.43; GRADE = very low) resulted in a trivial/unimportant decrease in fasting plasma glucose. Supplementation with probiotics resulted in a small but important decrease in low-density lipoprotein cholesterol (MD: -0.19 mmol/L; 95%CrI: -0.34, -0.05; GRADE = very low). Supplementations had moderate effects on serum triglyceride (GRADE = low). CONCLUSIONS Existing evidence is uncertain and does not support supplementation with probiotics, prebiotics, and synbiotics for T2D management.
Collapse
Affiliation(s)
- Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Aletaha
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Shahinfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Mohammadpour
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mirrafiei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliyu Tijani Jibril
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Soltani
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Peres M, Costa HS, Silva MA, Albuquerque TG. The Health Effects of Low Glycemic Index and Low Glycemic Load Interventions on Prediabetes and Type 2 Diabetes Mellitus: A Literature Review of RCTs. Nutrients 2023; 15:5060. [PMID: 38140319 PMCID: PMC10746079 DOI: 10.3390/nu15245060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Diets with a low glycemic index (GI) and a low glycemic load (GL) can improve glycemic control, blood lipids, blood pressure and BMI in prediabetes and type 2 diabetes (T2DM), but evidence regarding other aspects of cardiometabolic health is limited. We searched the literature for RCTs published from 2013 to 2023 and reviewed the evidence on low-GI/GL diets and their effects on different aspects of health in prediabetes and T2DM, aiming to build a report on all relevant outcomes included in the studies. We included 14 RCTs with 1055 participants, who were mostly middle-aged individuals with T2DM. Interventions were mostly low GI and lasted 1-36 months. Low-GI/GL foods and diets showed benefits in terms of short-term glycemic control, weight and adiposity. Longer-term trials would be necessary to determine whether these benefits persist over time and/or lead to lower CVD risk and mortality. Effects on lipid profile were inconsistent. Some studies also reported positive effects of low-GI/GL interventions on blood pressure, inflammatory biomarkers, renal function and gut microbiota composition. Future trials should focus on some of these novel outcome measures, which may provide important insights into the metabolic effects of low-GI diets on individuals with diabetes.
Collapse
Affiliation(s)
- Maria Peres
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.P.); (M.A.S.); (T.G.A.)
| | - Helena S. Costa
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.P.); (M.A.S.); (T.G.A.)
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Oporto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Mafalda Alexandra Silva
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.P.); (M.A.S.); (T.G.A.)
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Oporto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia Gonçalves Albuquerque
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.P.); (M.A.S.); (T.G.A.)
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Oporto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Hu C, Barazzoni R, Shi H. Nutritional care is the first-line therapy for many conditions. PRECISION NUTRITION 2023; 2:e00059. [DOI: 10.1097/pn9.0000000000000059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
Affiliation(s)
- Chunlei Hu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 28069, Italy
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| |
Collapse
|
10
|
Ehret J, Brandl B, Schweikert K, Rennekamp R, Ströbele-Benschop N, Skurk T, Hauner H. Benefits of Fiber-Enriched Foods on Satiety and Parameters of Human Well-Being in Adults with and without Cardiometabolic Risk. Nutrients 2023; 15:3871. [PMID: 37764655 PMCID: PMC10534722 DOI: 10.3390/nu15183871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Consumption of fiber-rich foods is linked to beneficial effects on chronic diseases and gut health, while implications towards improving satiety and parameters of well-being remain unclear. A randomized placebo-controlled intervention study was conducted to compare the effects of fiber-enriched foods to their non-enriched counterparts in adults over a 12-week period on selected clinical parameters-satiety, quality of life, body sensation, and life satisfaction-subjective health status, and importance of diet for well-being. Quality of life (QOL) differed significantly between intervention and control groups at baseline, throughout, and at the end of the study. No effects on satiety, satisfaction with life, or the importance of diet for well-being could be shown between groups. With higher fiber intake, body sensation ratings increased. A higher BMI was significantly associated with lower-body sensation, subjective health status and quality of life. Fiber-enriched foods do not seem to affect feeling of satiety or parameters of well-being. Larger samples and additional methods are necessary to fully explore the effect of increased fiber intake on patient-related outcomes in more detail.
Collapse
Affiliation(s)
- Janine Ehret
- Department of Applied Nutritional Psychology, Institute of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany
| | - Beate Brandl
- ZIEL-Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
- Else Kroener-Fresenius-Centre of Nutritional Medicine, Clinical Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Karsten Schweikert
- Core Facility Hohenheim, University of Hohenheim, 70599 Stuttgart, Germany
| | - Rachel Rennekamp
- ZIEL-Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
- Else Kroener-Fresenius-Centre of Nutritional Medicine, Clinical Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Nanette Ströbele-Benschop
- Department of Applied Nutritional Psychology, Institute of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany
| | - Thomas Skurk
- ZIEL-Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
- Else Kroener-Fresenius-Centre of Nutritional Medicine, Clinical Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Hans Hauner
- ZIEL-Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
- Else Kroener-Fresenius-Centre of Nutritional Medicine, Clinical Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, 80333 Munich, Germany
| |
Collapse
|
11
|
Interactions between structure and function of resistant glucans for alleviating type 2 diabetes mellitus (T2DM) and its complications in mice. Int J Biol Macromol 2023; 231:123405. [PMID: 36693608 DOI: 10.1016/j.ijbiomac.2023.123405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2022] [Revised: 11/22/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Resistant glucan, a functional dietary fiber, has been shown to alleviate type 2 diabetes mellitus (T2DM) and its complications in clinical studies. However, the interactions between the special structure of resistant glucan and the metabolism-related pathways in T2DM have not yet been systematically studied. This study identified the structural differences between resistant glucans prepared by new and old methods. Oral gavage with two resistant glucans in T2DM mice, led to significant improvements in glucose and lipid metabolism as measured by related indicators (including gut microbiota, fecal metabolites, and physiological and biochemical indexes). According to these results, in addition to van der Waals forces, micelle formation, and hydrogen bonding, the branching structures of resistant glucans produced more hydroxyl, carbonyl, and keto groups that linked cholesterols, cholesterol esters, and low-density lipoprotein intermediates. Moreover, after lipid clearing, the metabolic environment was more conducive to the proliferation of specific gut microbiota (including Phascolarctobacterium, Prevotella, Butyricicoccus, Weissella, and Anaerostipes) with decreasing abundance ratios of Firmicutes and Bacteroides. This facilitated the synthesis of high-density lipoprotein, conversion of cholesterol into coprostanol, and production of short-chain fatty acids and bile acids. Our findings provide a foundation for comprehensive investigation of the structure of resistant glucan in the promotion and prevention of T2DM.
Collapse
|
12
|
The Roles of a Native Starch and a Resistant Dextrin in Texture Improvement and Low Glycemic Index of Biscuits. Processes (Basel) 2022. [DOI: 10.3390/pr10112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
Low-GI biscuits are commonly produced using whole-grain flour, bran, or soluble dietary fibers, giving an undesirable texture. New low-GI biscuits containing dietary fibers and with improved palatability were formulated by substituting 60% of wheat flour (WF) with a native starch (ST) and 15% of WF with a resistant dextrin (RD), a source of dietary fibers. The botanical source of ST was common buckwheat (Fagopyrum esculentum Moench). Biscuits were also made with a single substitution by ST or by RD at the same level for comparison. The firmness of the biscuits was increased with the single substitution by RD due to its small average molecular size and high hygroscopicity, while it was decreased with the single substitution by ST. The double substitution by ST and RD not only produced the texture with the lowest firmness and brittleness, but also led to the lowest in vitro starch digestion rate and total starch digestibility. The human trial confirmed that the biscuits with the double substitution had a low GI of 47. The results indicated the additive or synergistic effects of ST and RD on the properties of the biscuits, demonstrating that low-GI biscuits can be produced with a substantial dietary fiber content without jeopardizing their palatability.
Collapse
|
13
|
Roldán-López D, Muñiz-Calvo S, Daroqui N, Knez M, Guillamón JM, Pérez-Torrado R. The potential role of yeasts in the mitigation of health issues related to beer consumption. Crit Rev Food Sci Nutr 2022; 64:3059-3074. [PMID: 36222026 DOI: 10.1080/10408398.2022.2129584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
Food consumption of healthier products has become an essential trend in the food sector. This is also the case in beer, a biochemical process of transformation performed by yeast cells. More and more studies proclaim the need to reduce ethanol content in alcoholic drinks, certainly the most important health issue of beer consumption. In this review we gather key health issues related to beer consumption and the last advances regarding the use of yeast to attenuate those health problems. Furthermore, we have included the latest findings about the general positive impact of yeast in health as a consequence of its ability to biotransform polyphenolic compounds present in the wort, producing healthy compounds as hydroxytyrosol or melatonin, and its ability to perform as a probiotic driver. Besides, a group of population with chronic diseases as diabetes or celiac disease could take advantage of low carbohydrate or gluten-free beers, respectively. The role of yeast in beer production has been traditionally associated to its fermentative power. But here we have found a change in this dogma in the last years toward yeasts being a main driver to enhance healthy aspects of beer. The key findings are discussed and possible future directions are proposed.
Collapse
Affiliation(s)
- David Roldán-López
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Sara Muñiz-Calvo
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Noemi Daroqui
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Masa Knez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Jose Manuel Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Roberto Pérez-Torrado
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| |
Collapse
|
14
|
|
15
|
Li Z, Liu Y, Huang Y, Tian Y, Liu J, Wang S, Sun P, Nie Y, Gan S, Xu H. Identification of the key structure, preparation conditions and properties of resistant dextrin for indigestibility based on simulated gastrointestinal conditions. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
Affiliation(s)
- Zerun Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute Jinan 250000 China
| | - Yang Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute Jinan 250000 China
| | - Yanhong Huang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute Jinan 250000 China
| | - Yanjun Tian
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute Jinan 250000 China
| | - Jianjun Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute Jinan 250000 China
| | - Shanshan Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute Jinan 250000 China
| | - Ping Sun
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute Jinan 250000 China
| | - Yupeng Nie
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute Jinan 250000 China
| | - Shaobo Gan
- Shandong Bailong Chuangyuan Biotechnology Co, Ltd Dezhou 253000 China
| | - Hui Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute Jinan 250000 China
| |
Collapse
|
16
|
Chen W, Zhang T, Ma Q, Zhu Y, Shen R. Structure Characterization and Potential Probiotic Effects of Sorghum and Oat Resistant Dextrins. Foods 2022; 11:foods11131877. [PMID: 35804691 PMCID: PMC9265775 DOI: 10.3390/foods11131877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Resistant dextrins (RDs) were prepared from sorghum and oat starches to determine their molecular structure, physicochemical properties, digestibility and prebiotics effect in vitro. The results showed that the particle size of sorghum resistant dextrin (SRD) and oat resistant dextrin (ORD) was significantly smaller than their respective starches. They formed a block structure, and lost the original A-type structure. In addition, SRD and ORD had good thermal stability, solubility (>90%) and enzymatic hydrolysis resistance (digestibility < 5%). The potential probiotic effects of ORD and SRD were studied by measurement of their promoting effects on the growth of Lactiplantibacillus plantarum, Lactobacillus acidophilus and Lactobacillus delbrueckii. For Lactiplantibacillus plantarum and Lactobacillus acidophilus, the promoting effect of ORD was the best (p < 0.05), and the counts increased by 8.89 and 8.74 log CFU/mL, respectively, compared with the control. For Lactobacillus delbrueckii, SRD was most effective, increasing the counts by 8.72 log CFU/mL compared with the control. These characteristics make SRD and ORD suitable for use as soluble dietary fiber and prebiotics in beverages and the excipients of low-glycemic-index products.
Collapse
Affiliation(s)
- Wenwen Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 166 Kexue Road, Zhengzhou 450002, China; (W.C.); (T.Z.); (Q.M.); (Y.Z.)
| | - Ting Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 166 Kexue Road, Zhengzhou 450002, China; (W.C.); (T.Z.); (Q.M.); (Y.Z.)
| | - Qi Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 166 Kexue Road, Zhengzhou 450002, China; (W.C.); (T.Z.); (Q.M.); (Y.Z.)
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 166 Kexue Road, Zhengzhou 450002, China; (W.C.); (T.Z.); (Q.M.); (Y.Z.)
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, No. 166 Kexue Road, Zhengzhou 450002, China
- Collaborative Innovation Center of Food Production and Safety, No. 166 Kexue Road, Zhengzhou 450002, China
| | - Ruiling Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 166 Kexue Road, Zhengzhou 450002, China; (W.C.); (T.Z.); (Q.M.); (Y.Z.)
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, No. 166 Kexue Road, Zhengzhou 450002, China
- Collaborative Innovation Center of Food Production and Safety, No. 166 Kexue Road, Zhengzhou 450002, China
- >Correspondence: ; Tel.: +86-135-2664-5815
| |
Collapse
|
17
|
Isomaltulose: From origin to application and its beneficial properties – A bibliometric approach. Food Res Int 2022; 155:111061. [DOI: 10.1016/j.foodres.2022.111061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/03/2023]
|
18
|
Zhang L, Li X, Liu X, Wang X, Li X, Cheng X, Yan S, Zhu Y, Li R, Wen L, Wang J. Purified diet versus whole food diet and the inconsistent results in studies using animal models. Food Funct 2022; 13:4286-4301. [PMID: 35297926 DOI: 10.1039/d1fo04311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
In animal models, purified diets (PDs) and whole food diets (WFDs) are used for different purposes. In similar studies, different dietary patterns may lead to inconsistent results. The aim of this study was to evaluate and compare the effects of WFDs and PDs on changes in the metabolism of mice. We found that different dietary patterns produced different results in lipid metabolism experiments. Compared with those of the PD-fed mice, the WFD-fed mice had higher body weights and serum glucose, serum lipid, and liver lipid levels (p < 0.01), as well as low glucose tolerance (p < 0.01) and insulin sensitivity (p < 0.05). The body weight and fasting blood glucose increased by 20% in the WFD-fed mice, and the white adipose tissue weight increased by ∼50%. The WFD-fed mice also had a comparatively higher abundance of Lactobacillus, Turicibacter, Bifidobacterium, Desulfovibrio, and Candidatus saccharimonas (p < 0.01), which were positively correlated with lipid accumulation. Dietary patterns should be chosen cautiously in studies that use rodents as models. Inappropriate selection of animal dietary patterns may lead to experimental systematic errors and paradoxical results.
Collapse
Affiliation(s)
- Linyu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xin Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xianglin Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xiaowen Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xianyu Cheng
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Sisi Yan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China. .,Hunan Collaborative Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China. .,Hunan Collaborative Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China. .,Changsha Lvye Biotechnology Co., Ltd, Changsha 410100, China
| |
Collapse
|
19
|
Lamiquiz-Moneo I, Pérez-Calahorra S, Gracia-Rubio I, Cebollada A, Bea AM, Fumanal A, Ferrer-Mairal A, Prieto-Martín A, Sanz-Fernández ML, Cenarro A, Civeira F, Mateo-Gallego R. Effect of the Consumption of Alcohol-Free Beers with Different Carbohydrate Composition on Postprandial Metabolic Response. Nutrients 2022; 14:nu14051046. [PMID: 35268021 PMCID: PMC8912682 DOI: 10.3390/nu14051046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background: We investigated the postprandial effects of an alcohol-free beer with modified carbohydrate (CH) composition compared to regular alcohol-free beer. Methods: Two randomized crossover studies were conducted. In the first study, 10 healthy volunteers received 25 g of CH in four different periods, coming from regular alcohol-free beer (RB), alcohol-free beer enriched with isomaltulose and a resistant maltodextrin (IMB), alcohol-free beer enriched with resistant maltodextrin (MB), and a glucose-based beverage. In the second study, 20 healthy volunteers were provided with 50 g of CH from white bread (WB) plus water, or with 14.3 g of CH coming from RB, IMB, MB, and extra WB. Blood was sampled after ingestion every 15 min for 2 h. Glucose, insulin, incretin hormones, TG, and NEFAs were determined in all samples. Results: The increase in glucose, insulin, and incretin hormones after the consumption of IMB and MB was significantly lower than after RB. The consumption of WB with IMB and MB showed significantly less increase in glucose levels than WB with water or WB with RB. Conclusions: The consumption of an alcohol-free beer with modified CH composition led to a better postprandial response compared to a conventional alcohol-free beer.
Collapse
Affiliation(s)
- Itziar Lamiquiz-Moneo
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
- Departamento de Anatomía e Histologías Humanas, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-765-500 (ext. 142895)
| | - Sofia Pérez-Calahorra
- Departamento de Fisiatría y Enfermería, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, 22002 Huesca, Spain;
| | - Irene Gracia-Rubio
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
| | - Alberto Cebollada
- Unidad de Biocomputación, Instituto Aragonés de Ciencias de la Salud (IACS Aragón), 50009 Zaragoza, Spain;
| | - Ana M. Bea
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
| | - Antonio Fumanal
- Grupo Ágora—La Zaragozana S.A., 50007 Zaragoza, Spain; (A.F.); (A.P.-M.)
| | - Ana Ferrer-Mairal
- Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain;
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, 22002 Huesca, Spain
| | | | | | - Ana Cenarro
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Fernando Civeira
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
- Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Rocio Mateo-Gallego
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
- Departamento de Fisiatría y Enfermería, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, 22002 Huesca, Spain;
| |
Collapse
|
20
|
Ahmed A, Khan TA, Dan Ramdath D, Kendall CWC, Sievenpiper JL. Rare sugars and their health effects in humans: a systematic review and narrative synthesis of the evidence from human trials. Nutr Rev 2022; 80:255-270. [PMID: 34339507 PMCID: PMC8754252 DOI: 10.1093/nutrit/nuab012] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2020] [Revised: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Rare sugars are monosaccharides and disaccharides (found in small quantities in nature) that have slight differences in their chemical structure compared with traditional sugars. Little is known about their unique physiological and cardiometabolic effects in humans. OBJECTIVE The objective of this study was to conduct a systematic review and synthesis of controlled intervention studies of rare sugars in humans, using PRISMA guidelines. DATA SOURCES MEDLINE and EMBASE were searched through October 1, 2020. Studies included both post-prandial (acute) and longer-term (≥1 week duration) human feeding studies that examined the effect of rare sugars (including allulose, arabinose, tagatose, trehalose, and isomaltulose) on cardiometabolic and physiological risk factors. DATA EXTRACTION In all, 50 studies in humans focusing on the 5 selected rare sugars were found. A narrative synthesis of the selected literature was conducted, without formal quality assessment or quantitative synthesis. DATA SYNTHESIS The narrative summary included the food source of each rare sugar, its effect in humans, and the possible mechanism of effect. Overall, these rare sugars were found to offer both short- and long-term benefits for glycemic control and weight loss, with effects differing between healthy individuals, overweight/obese individuals, and those with type 2 diabetes. Most studies were of small size and there was a lack of large randomized controlled trials that could confirm the beneficial effects of these rare sugars. CONCLUSION Rare sugars could offer an opportunity for commercialization as an alternative sweetener, especially for those who are at high cardiometabolic risk. SYSTEMATIC REVIEW REGISTRATION OSF registration no. 10.17605/OSF.IO/FW43D.
Collapse
Affiliation(s)
- Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Tauseef A Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - D Dan Ramdath
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Canada
| | - Cyril W C Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine St. Michael's Hospital, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
21
|
Ho LH, Tan TC, Chong LC. Designer foods as an effective approach to enhance disease preventative properties of food through its health functionalities. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
|
22
|
An R, Zong A, Chen S, Xu R, Zhang R, Jiang W, Liu L, Du F, Zhang H, Xu T. Effects of Oligosaccharides on Markers of Glycemic: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Food Funct 2022; 13:8766-8782. [DOI: 10.1039/d1fo03204f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To Investigate the effect of oligosaccharide on marker of glycemic including fasting blood glucose (FBG), fasting blood insulin (FBI), glycated hemoglobin (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR),...
Collapse
|
23
|
Włodarczyk M, Śliżewska K. Efficiency of Resistant Starch and Dextrins as Prebiotics: A Review of the Existing Evidence and Clinical Trials. Nutrients 2021; 13:nu13113808. [PMID: 34836063 PMCID: PMC8621223 DOI: 10.3390/nu13113808] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
In well-developed countries, people have started to pay additional attention to preserving healthy dietary habits, as it has become common knowledge that neglecting them may easily lead to severe health impairments, namely obesity, malnutrition, several cardiovascular diseases, type-2 diabetes, cancers, hypertensions, and inflammations. Various types of functional foods were developed that are enriched with vitamins, probiotics, prebiotics, and dietary fibers in order to develop a healthy balanced diet and to improve the general health of consumers. Numerous kinds of fiber are easily found in nature, but they often have a noticeable undesired impact on the sensory features of foods or on the digestive system. This led to development of modified dietary fibers, which have little to no impact on taste of foods they are added to. At the same time, they possess all the benefits similar to those of prebiotics, such as regulating gastrointestinal microbiota composition, increasing satiety, and improving the metabolic parameters of a human. In the following review, the evidence supporting prebiotic properties of modified starches, particularly resistant starches and their derivatives, resistant dextrins, was assessed and deliberated, which allowed drawing an interesting conclusion on the subject.
Collapse
Affiliation(s)
- Michał Włodarczyk
- Correspondence: (M.W.); (K.Ś.); Tel.: +48-783149289 (M.W.); +48-501742326 (K.Ś.)
| | - Katarzyna Śliżewska
- Correspondence: (M.W.); (K.Ś.); Tel.: +48-783149289 (M.W.); +48-501742326 (K.Ś.)
| |
Collapse
|
24
|
Anderson P, Kokole D, Llopis EJ. Production, Consumption, and Potential Public Health Impact of Low- and No-Alcohol Products: Results of a Scoping Review. Nutrients 2021; 13:3153. [PMID: 34579030 PMCID: PMC8466998 DOI: 10.3390/nu13093153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Switching from higher strength to low- and no-alcohol products could result in consumers buying and drinking fewer grams of ethanol. We undertook a scoping review with systematic searches of English language publications between 1 January 2010 and 17 January 2021 using PubMed and Web of Science, covering production, consumption, and policy drivers related to low- and no-alcohol products. Seventy publications were included in our review. We found no publications comparing a life cycle assessment of health and environmental impacts between alcohol-free and regular-strength products. Three publications of low- and no-alcohol beers found only limited penetration of sales compared with higher strength beers. Two publications from only one jurisdiction (Great Britain) suggested that sales of no- and low-alcohol beers replaced rather than added to sales of higher strength beers. Eight publications indicated that taste, prior experiences, brand, health and wellbeing issues, price differentials, and overall decreases in the social stigma associated with drinking alcohol-free beverages were drivers of the purchase and consumption of low- and no-alcohol beers and wines. Three papers indicated confusion amongst consumers with respect to the labelling of low- and no-alcohol products. One paper indicated that the introduction of a minimum unit price in both Scotland and Wales favoured shifts in purchases from higher- to lower-strength beers. The evidence base for the potential beneficial health impact of low- and no-alcohol products is very limited and needs considerable expansion. At present, the evidence base could be considered inadequate to inform policy.
Collapse
Affiliation(s)
- Peter Anderson
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands; (D.K.); (E.J.L.)
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Daša Kokole
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands; (D.K.); (E.J.L.)
| | - Eva Jané Llopis
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands; (D.K.); (E.J.L.)
- ESADE Business School, University Ramon Llull, 08034 Barcelona, Spain
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5S 2S1, Canada
| |
Collapse
|
25
|
Puligundla P, Smogrovicova D, Mok C. Recent innovations in the production of selected specialty (non-traditional) beers. Folia Microbiol (Praha) 2021; 66:525-541. [PMID: 34097198 DOI: 10.1007/s12223-021-00881-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Customer demand for product diversity is the key driving force for innovations in the brewing industry. Specialty beers are regarded as a distinct group of beers different from two major types, lagers and ales, without established definitions or boundaries. Specialty beers, including low- to no-alcohol beer, low carbohydrate beer, gluten-free beer, sour beer, probiotic beer, and enriched beer, are exclusively brewed and developed keeping in mind their functionality, the health and wellbeing of the consumer, and emerging market trends. Compared with conventional beer-brewing, the production of specialty beers is technologically challenging and usually requires additional process steps, unique microorganisms, and special equipment, which in turn may incur additional costs. In addition, the maintenance of quality and stability of the products as well as consumer acceptability of the products are major challenges to successful commercialization. A harmonious integration of traditional brewing practices and modern technological approaches may hold potential for future developments. In the present review, latest developments in the fermentative production of selected specialty beers are discussed.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Daniela Smogrovicova
- Institute of Biotechnology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Chulkyoon Mok
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| |
Collapse
|
26
|
Mateo-Gallego R, Moreno-Indias I, Bea AM, Sánchez-Alcoholado L, Fumanal AJ, Quesada-Molina M, Prieto-Martín A, Gutiérrez-Repiso C, Civeira F, Tinahones FJ. An alcohol-free beer enriched with isomaltulose and a resistant dextrin modulates gut microbiome in subjects with type 2 diabetes mellitus and overweight or obesity: a pilot study. Food Funct 2021; 12:3635-3646. [PMID: 33900319 DOI: 10.1039/d0fo03160g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
We aimed to study the effect of consuming an alcohol-free beer with modified carbohydrates composition (almost completely eliminating maltose and adding isomaltulose (16.5 g day-1) and resistant maltodextrin (5.28 g day-1)) in gut microbiome, compared to regular alcohol-free beer in subjects with T2DM or prediabetes and overweight/obesity. This is a pilot, randomized, double-blinded, crossover study including a sub-sample of a global study with 14 subjects: (a) consuming 66 cl day-1 of regular alcohol-free beer for the first 10 weeks and 66 cl day-1 of modified alcohol-free beer for the next 10 weeks; (b) the same described intervention in opposite order. BMI homogeneously decreased after both interventions. Glucose and HOMA-IR significantly decreased just after the participants consumed modified alcohol-free beer. These findings were in the same line as those reported in the global study. Dominant bacteria at baseline were Bacteroidetes, Firmicutes, Proteobacteria and Tenericutes. Parabacteroides, from the Porphymonadaceae family, resulted as the feature with the greatest difference between beers (ANCOM analysis, W = 15). Feature-volatility analysis confirmed the importance of Parabacteroides within the model. Alcohol-free beers consumption resulted in an enhancement of pathways related to metabolism according to PICRUSt analysis, including terpenoid-quinone, lipopolysaccharides and N-glycan biosynthesis. Thus, an alcohol-free beer including the substitution of regular carbohydrates for low doses of isomaltulose and the addition of maltodextrin within meals significantly impacts gut microbiota in diabetic subjects with overweight or obesity. This could, at least partially, explain the improvement in insulin resistance previously found after taking modified alcohol-free alcohol.Clinical Trial Registration: Registered under ClinicalTrials.gov identifier no. NCT03337828.
Collapse
Affiliation(s)
- Rocío Mateo-Gallego
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu L, Bilal M, Luo H, Zhao Y, Duan X. Studies on Biological Production of Isomaltulose Using Sucrose Isomerase: Current Status and Future Perspectives. Catal Letters 2020. [DOI: 10.1007/s10562-020-03439-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|
28
|
Crha T, Pazourek J. Rapid HPLC Method for Determination of Isomaltulose in the Presence of Glucose, Sucrose, and Maltodextrins in Dietary Supplements. Foods 2020; 9:foods9091164. [PMID: 32846904 PMCID: PMC7555359 DOI: 10.3390/foods9091164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
This paper presents a rapid HPLC method for the separation of isomaltulose (also known as Palatinose) from other common edible carbohydrates such as sucrose, glucose, and maltodextrins, which are commonly present in food and dietary supplements. This method was applied to determine isomaltulose in selected food supplements for special diets and athletic performance. Due to the selectivity of the separation system, this method can also be used for rapid profiling analysis of mono-, di-, and oligosaccharides in food.
Collapse
|
29
|
Hu Q, Lu Y, Hu F, He S, Xu X, Niu Y, Zhang H, Li X, Su Q. Resistant dextrin reduces obesity and attenuates adipose tissue inflammation in high-fat diet-fed mice. Int J Med Sci 2020; 17:2611-2621. [PMID: 33162789 PMCID: PMC7645326 DOI: 10.7150/ijms.45723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/06/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Resistant dextrin (RD), a short chain glucose polymer, has been shown to improve type 2 diabetes mellitus (T2DM) in clinical studies. However, the improvement of adipose tissue inflammation and specific mechanisms of RD supplementation in obesity have not been fully investigated. Therefore, we examined whether RD attenuates obesity and adipose tissue inflammation in high-fat diet (HFD)-fed mice. Male C57BL/6 mice were fed a chow diet, a HFD or a HFD with RD supplementation for 12 weeks. Body weight (BW), fasting blood glucose (FBG), epididymal fat accumulation, serum total triglyceride (TG), free fatty acid (FFA) and inflammatory cytokine levels (TNF-α, IL-1β, IL-6, IL-10) were measured. Inflammation markers and macrophage infiltration in epididymal adipose tissue were observed. After 12 weeks of intervention, the body weight gain of mice in RD supplementation group was less than that in HFD group. FBG, epididymal fat accumulation, serum TG and FFA levels were reduced in RD supplementation group compared with HFD group. Moreover, serum and mRNA levels of IL-6 were significantly reduced in the RD supplementation group. In addition, RD supplementation reduced macrophage infiltration, regulated polarization of macrophage and inhibited NF-κB signaling in epididymal adipose tissue. In conclusion, RD reduces obesity and attenuates adipose tissue inflammation in HFD-fed mice, and the inhibition of NF-κB signaling may be a presumed mechanism for its effects.
Collapse
Affiliation(s)
- Qiuyue Hu
- Department of Endocrinology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yao Lu
- Department of Endocrinology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Fan Hu
- Department of Endocrinology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Sunyue He
- Department of Endocrinology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xiaoyuan Xu
- Department of Endocrinology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yixin Niu
- Department of Endocrinology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xiaoyong Li
- Department of Endocrinology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|
30
|
Sucrose isomers as alternative sweeteners: properties, production, and applications. Appl Microbiol Biotechnol 2019; 103:8677-8687. [PMID: 31587089 DOI: 10.1007/s00253-019-10132-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 01/02/2023]
Abstract
In the daily diet, sweeteners play an indispensable role. Among them, sucrose, a widely occurring disaccharide in nature, is a commonly used sweetener. However, the intake of sucrose can cause a rapid increase in blood glucose, which leads to a number of health problems. Therefore, there is an urgent need for possible alternatives to sucrose. Currently, four naturally occurring sucrose isomers, trehalulose, turanose, leucrose, and isomaltulose are considered to be possible alternatives to sucrose due to their suitable sweetness, potential physiological benefits, and feasible production processes. This review covers the properties of these alternative sweeteners, including their structure, sweetness, hydrolysis rate, toxicology, and cariogenicity, and exhibits their potential applications in chronic diseases management, anti-inflammatory supplement, prebiotic dietary supplement, and stabilizing agent. The biosynthesis of these sucrose isomers using carbohydrate-active enzymes and their industrial production processes are also systematically summarized.
Collapse
|