1
|
Gu Q, Du Q, Xia L, Lu X, Wan X, Shao Y, He J, Wu P. Mechanistic insights into EGCG's preventive effects on obesity-induced precocious puberty through multi-omics analyses. Food Funct 2024. [PMID: 39445911 DOI: 10.1039/d4fo03844d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Epigallocatechin gallate (EGCG) has demonstrated potential effects on obesity-induced precocious puberty, but the underlying mechanisms remain unclear. Female mice were randomly assigned into control (CON), EGCG-treated (EGCG), high-fat diet (HFD), and HFD with EGCG treatment (HFDEGCG) groups. Key measurements included body weight, vaginal opening time, and serum sex hormone levels. The gut microbiota was analyzed through 16S rRNA sequencing, fecal metabolites were assessed via metabolomics, and the hypothalamic transcriptome was examined using RNA sequencing. EGCG mitigated weight gain and delayed vaginal opening in mice with obesity-induced precocious puberty. Additionally, it reduced serum estradiol levels and decreased the number of mature ovarian follicles in the HFDEGCG group compared to the HFD group. EGCG treatment partially reversed HFD-induced dysbiosis by increasing the abundance of beneficial bacteria such as Akkermansia. Metabolomic analysis revealed significant alterations in tryptophan metabolism, while transcriptome analysis identified genes involved in metabolic pathways. Correlation analyses underscored the importance of the gut-brain axis in mediating EGCG's effects. Overall, EGCG prevents obesity-induced precocious puberty by modulating the gut microbiota, altering metabolic pathways, and regulating hypothalamic gene expression.
Collapse
Affiliation(s)
- Qiuyun Gu
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiujv Du
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Xia
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Lu
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaoqing Wan
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shao
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieyi He
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Wu
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Chanda W, Jiang H, Liu SJ. The Ambiguous Correlation of Blautia with Obesity: A Systematic Review. Microorganisms 2024; 12:1768. [PMID: 39338443 PMCID: PMC11433710 DOI: 10.3390/microorganisms12091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a complex and multifactorial disease with global epidemic proportions, posing significant health and economic challenges. Whilst diet and lifestyle are well-established contributors to the pathogenesis, the gut microbiota's role in obesity development is increasingly recognized. Blautia, as one of the major intestinal bacteria of the Firmicutes phylum, is reported with both potential probiotic properties and causal factors for obesity in different studies, making its role controversial. To summarize the current understanding of the Blautia-obesity correlation and to evaluate the evidence from animal and clinical studies, we used "Blautia" AND "obesity" as keywords searching through PubMed and SpringerLink databases for research articles. After removing duplicates and inadequate articles using the exclusion criteria, we observed different results between studies supporting and opposing the beneficial role of Blautia in obesity at the genus level. Additionally, several studies showed probiotic effectiveness at the species level for Blautia coccoides, B. wexlerae, B. hansenii, B. producta, and B. luti. Therefore, the current evidence does not demonstrate Blautia's direct involvement as a pathogenic microbe in obesity development or progression, which informs future research and therapeutic strategies targeting the gut Blautia in obesity management.
Collapse
Affiliation(s)
- Warren Chanda
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Pathology and Microbiology Department, School of Medicine and Health Sciences, Mulungushi University, Livingstone P.O. Box 60009, Zambia
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Pi X, Du Z, Teng W, Fu H, Hu L, Li J, Ding J, Yang X, Zhang Y. Characteristics of stachyose-induced effects on gut microbiota and microbial metabolites in vitro associated with obesity in children. Front Nutr 2024; 11:1411374. [PMID: 39171106 PMCID: PMC11337871 DOI: 10.3389/fnut.2024.1411374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Childhood obesity presents a serious health concern associated with gut microbiota alterations. Dietary interventions targeting the gut microbiota have emerged as promising strategies for managing obesity in children. This study aimed to elucidate the impact of stachyose (STS) supplementation on the gut microbiota composition and metabolic processes in obese children. Fecal samples were collected from 40 obese children (20 boys and 20 girls) aged between 6 and 15 and in vitro fermentation was conducted with or without the addition of STS, respectively, followed by 16S rRNA amplicon sequencing and analysis of short-chain fatty acids (SCFAs) and gases. Notably, our results revealed that STS supplementation led to significant alterations in gut microbiota composition, including an increase in the abundance of beneficial bacteria such as Bifidobacterium and Faecalibacterium, and a decrease in harmful bacteria including Escherichia-Shigella, Parabacteroides, Eggerthella, and Flavonifractor. Moreover, STS supplementation resulted in changes in SCFAs production, with significant increases in acetate levels and reductions in propionate and propionate, while simultaneously reducing the generation of gases such as H2S, H2, and NH3. The Area Under the Curve (AUC)-Random Forest algorithm and PICRUSt 2 were employed to identify valuable biomarkers and predict associations between the gut microbiota, metabolites, and metabolic pathways. The results not only contribute to the elucidation of STS's modulatory effects on gut microbiota but also underscore its potential in shaping metabolic activities within the gastrointestinal environment. Furthermore, our study underscores the significance of personalized nutrition interventions, particularly utilizing STS supplementation, in the management of childhood obesity through targeted modulation of gut microbial ecology and metabolic function.
Collapse
Affiliation(s)
- Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhi Du
- Department of Pharmacy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Weilin Teng
- Department of Infectious Disease Control and Prevention, HangZhou Center for Disease Control and Prevention, Hangzhou, China
| | - Hao Fu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lidan Hu
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiabin Li
- Department of Pharmacy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jieying Ding
- Department of Pharmacy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoxia Yang
- College of Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yinjun Zhang
- College of Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Ezz El Deen NM, Karem M, El Borhamy MI, Hanora AMS, Fahmy N, Zakeer S. Multivariate Analysis and Correlation Study Shows the Impact of Anthropometric and Demographic Variables on Gut Microbiota in Obese Egyptian Children. Curr Microbiol 2024; 81:259. [PMID: 38972943 DOI: 10.1007/s00284-024-03771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Deciphering the gut microbiome's link to obesity is crucial. Our study characterized the gut microbial community in Egyptian children and investigated the effect of covariates on the gut microbiome, body mass index (BMI), geographical location, gender, and age. We used 16S rRNA sequencing to characterize the gut microbial communities of 49 children. We then evaluated these communities for diversity, potential biomarkers, and functional capacity. Alpha diversity of the non-obese group was higher than that of the obese group (Chao1, P = 0.006 and observed species, P = 0.003). Beta diversity analysis revealed significant variations in the gut microbiome between the two geographical locations, Cairo and Ismailia (unweighted UniFrac, P = 0.03) and between obesity statuses, obese and non-obese (weighted UniFrac, P = 0.034; unweighted UniFrac, P = 0.015). We observed a significantly higher Firmicutes/Bacteroidetes ratio in obese males than in non-obese males (P = 0.004). Interestingly, this difference was not seen in females (P = 0.77). Multivariable association with linear models (MaAsLin2) identified 8 microbial features associated with obesity, 12 associated with non-obesity, and found 29 and 13 features specific to Cairo and Ismailia patients, respectively. It has also shown one microbial feature associated with patients under five years old. MaAsLin2, however, failed to recognize any association between gender and the gut microbiome. Moreover, it could find the most predominant features in groups 2-9 but not in group 1. Another method used in the analysis is the Linear discriminant analysis Effect Size (LEfSe) approach, which effectively identified 19 biomarkers linked to obesity, 9 linked non-obesity, 20 linked to patients residing in Cairo, 14 linked to patients in Ismailia, one linked to males, and 12 linked to females. LEfSe could not, however, detect any prevalent bacteria among children younger or older than five. Future studies should take advantage of such correlations, specifically BMI, to determine the interventions needed for obesity management.
Collapse
Affiliation(s)
- Nada Mohamed Ezz El Deen
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Mona Karem
- Department of Pediatrics, Endocrinology and Diabetes Division, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mervat Ismail El Borhamy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Amro Mohamed Said Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University, Ras Sudr, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Nora Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Florkowski M, Abiona E, Frank KM, Brichacek AL. Obesity-associated inflammation countered by a Mediterranean diet: the role of gut-derived metabolites. Front Nutr 2024; 11:1392666. [PMID: 38978699 PMCID: PMC11229823 DOI: 10.3389/fnut.2024.1392666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The prevalence of obesity has increased dramatically worldwide and has become a critical public health priority. Obesity is associated with many co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. Although the physiology of obesity is complex, a healthy diet and sufficient exercise are two elements known to be critical to combating this condition. Years of research on the Mediterranean diet, which is high in fresh fruits and vegetables, nuts, fish, and olive oil, have demonstrated a reduction in numerous non-communicable chronic diseases associated with this diet. There is strong evidence to support an anti-inflammatory effect of the diet, and inflammation is a key driver of obesity. Changes in diet alter the gut microbiota which are intricately intertwined with human physiology, as gut microbiota-derived metabolites play a key role in biological pathways throughout the body. This review will summarize recent published studies that examine the potential role of gut metabolites, including short-chain fatty acids, bile acids, trimethylamine-N-oxide, and lipopolysaccharide, in modulating inflammation after consumption of a Mediterranean-like diet. These metabolites modulate pathways of inflammation through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, toll-like receptor 4 signaling, and macrophage driven effects in adipocytes, among other mechanisms.
Collapse
Affiliation(s)
- Melanie Florkowski
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Esther Abiona
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Karen M Frank
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Allison L Brichacek
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
6
|
Desorcy-Scherer K, Zuniga-Chaves I, Reisner MA, Suen G, Hernandez LL. Investigating the influence of perinatal fluoxetine exposure on murine gut microbial communities during pregnancy and lactation. Sci Rep 2024; 14:13762. [PMID: 38877103 PMCID: PMC11178873 DOI: 10.1038/s41598-024-62224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024] Open
Abstract
Selective Serotonin Reuptake Inhibitor (SSRI) therapy is common among perinatal populations for the treatment of mood disorders. Medications can affect diversity and composition of the gut microbiome, which plays a key role in modulating health. While previous studies have examined the effects of antidepressant exposure on the maternal gut microbiome, whether SSRI exposure affects the offspring gut microbiome is unknown. We investigated the effects of maternal fluoxetine exposure on the gut microbiome of maternal and offspring mice during pregnancy and lactation (embryonic day 10-lactation day 21; E10-L21). Stool samples collected on E17, L11, L15, and L21 were examined using 16S rRNA sequencing. Our results suggest that maternal fluoxetine exposure may result in decreased alpha diversity of the offspring gut microbiome in early life. Furthermore, we observed several genera-specific differences in the gut microbiome based on treatment, specifically of Turicibacter, Parasutterella, and Romboutsia. These findings support our understanding of gut health, as dysbiotic development of the gut microbiome has been associated with local and systemic health problems including gastrointestinal morbidities and interrupted growth patterns in infants. Future research should pursue study in human populations and those at high risk for gut microbial dysbiosis and intestinal injury.
Collapse
Affiliation(s)
- Katelyn Desorcy-Scherer
- School of Nursing, University of Wisconsin-Madison, 701 Highland Avenue, Madison, WI, 54705, USA.
| | - Ibrahim Zuniga-Chaves
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Maggie A Reisner
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Hong Z, Zhou K, Wei Y, Ma B, Xie G, Zhang Z, Liang J. Associations of Plasma and Fecal Metabolites with Body Mass Index and Body Fat Distribution in Children. J Clin Endocrinol Metab 2024:dgae296. [PMID: 38703096 DOI: 10.1210/clinem/dgae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
CONTEXT Childhood obesity continues to be a critical public health concern with far-reaching implications for the well-being. OBJECTIVE This study aimed to investigate the association between metabolites in plasma and feces and indicators including body mass index (BMI), BMI for age Z score (BMIZ), and body fat distribution among children aged 6-9 years in China. METHODS This cross-sectional study enrolled 424 healthy children, including 186 girls and 238 boys. Dual-energy X-ray absorptiometry (DXA) was used to determine the body fat content and regional fat distribution. Plasma and fecal metabolites were analyzed using targeted metabolomic technologies. RESULTS A total of 200 plasma metabolites and 212 fecal metabolites were accurately quantified via ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). By using Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and random forest model, we discovered that 9 plasma metabolites and 11 fecal metabolites were associated with different weight statuses. After adjusting for potential covariates and false discovery rate (FDR) correction, multiple linear regression analyses revealed that plasma metabolites (fumaric acid, glycine, l-glutamine, methylmalonic acid, and succinic acid) and fecal metabolites (protocatechuic acid) were negatively associated (β: -1.373--0.016, pFDR: <0.001-0.031; β: -1.008--0.071, pFDR: 0.005-0.033), while plasma metabolites (isovaleric acid, isovalerylcarnitine, l-glutamic acid, and pyroglutamic acid) and fecal metabolites (3-aminoisobutanoic acid, butyric acid, N-acetylneuraminic acid, octanoylcarnitine, oleoylcarnitine, palmitoylcarnitine, stearoylcarnitine, taurochenodesoxycholic acid, and taurodeoxycholic acid) exhibited positive associations with BMI, BMIZ, and body fat distribution (β: 0.023-2.396, pFDR: <0.001; β: 0.014-1.736, pFDR: <0.001-0.049). CONCLUSION Plasma and fecal metabolites such as glutamine may serve as a potential therapeutic target for the development of obesity.
Collapse
Affiliation(s)
- Zhen Hong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510145, China
| | - Kejun Zhou
- Human Metabolomics Institute, Inc., Shenzhen, 518109, China
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Bingjie Ma
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Guoxiang Xie
- Human Metabolomics Institute, Inc., Shenzhen, 518109, China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510145, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| |
Collapse
|
8
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. An Update on the Role and Potential Molecules in Relation to Ruminococcus gnavus in Inflammatory Bowel Disease, Obesity and Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:1235-1248. [PMID: 38496006 PMCID: PMC10942254 DOI: 10.2147/dmso.s456173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Ruminococcus gnavus (R. gnavus) is a gram-positive anaerobe commonly resides in the human gut microbiota. The advent of metagenomics has linked R. gnavus with various diseases, including inflammatory bowel disease (IBD), obesity, and diabetes mellitus (DM), which has become a growing area of investigation. The initial focus of research primarily centered on assessing the abundance of R. gnavus and its potential association with disease presentation, taking into account variations in sample size, sequencing and analysis methods. However, recent investigations have shifted towards elucidating the underlying mechanistic pathways through which R. gnavus may contribute to disease manifestation. In this comprehensive review, we aim to provide an updated synthesis of the current literature on R. gnavus in the context of IBD, obesity, and DM. We critically analyze relevant studies and summarize the potential molecular mediators implicated in the association between R. gnavus and these diseases. Across numerous studies, various molecules such as methylation-controlled J (MCJ), glucopolysaccharides, ursodeoxycholic acid (UDCA), interleukin(IL)-10, IL-17, and capric acid have been proposed as potential contributors to the link between R. gnavus and IBD. Similarly, in the realm of obesity, molecules such as hydrogen peroxide, butyrate, and UDCA have been suggested as potential mediators, while glycine ursodeoxycholic acid (GUDCA) has been implicated in the connection between R. gnavus and DM. Furthermore, it is imperative to emphasize the necessity for additional studies to evaluate the potential efficacy of targeting pathways associated with R. gnavus as a viable strategy for managing these diseases. These findings have significantly expanded our understanding of the functional role of R. gnavus in the context of IBD, obesity, and DM. This review aims to offer updated insights into the role and potential mechanisms of R. gnavus, as well as potential strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
9
|
Wen J, Yao X, Geng S, Zhu L, Jiang H, Hu L. Urinary antibiotic levels and risk of overweight/obesity in preschool children: A biomonitoring-based study from eastern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115733. [PMID: 38016193 DOI: 10.1016/j.ecoenv.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
There is limited evidence linking antibiotic exposure, particularly from contaminated food or drinking water, to childhood obesity. The study aimed to investigate the association between urinary antibiotic levels and overweight/obesity in preschool children. In the case-control study, 121 overweight/obese preschoolers and 242 controls (aged 3-6 years) from eastern China were enrolled in 2022 based on age, sex, and study site matching. Overweight/obesity was determined using body mass index (BMI) and weight for height (WFH) criteria derived from national data. A total of 50 antibiotics from 8 categories were analyzed using ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). We identified major dietary patterns using principal component analysis (PCA) and examined the associations of antibiotic exposure with childhood overweight/obesity using multivariate logistic regression. Twenty-four individual antibiotics were detected in more than 10 % of the samples, and overall detection rates were up to 100 %. Overweight/obese children had a higher exposure to veterinary antibiotics (VAs) than normal weight children. PCA analysis showed that children who were overweight/obese had higher scores of "Aquatic products preferred dietary pattern" and "Cereals preferred dietary pattern" compared to children with normal weight. Multivariate logistic regression analyses indicated that exposure to elevated levels of deoxytetracycline (OR: 1.72; 95 %CI: 1.00-2.93) and quinolones (OR: 1.63; 95 %CI: 1.04-2.57) was significantly related to an increased risk of BMI-based overweight/obesity. Quinolones exposure was also significantly associated with WFH-based overweight/obesity, primarily in boys. After adjustment for all covariates, higher exposure to ofloxacin (of the quinolones) was significantly related to overweight/obesity in girls. Exposure to certain antibiotics, especially quinolones, may increase the risk of overweight/obesity in preschoolers. More prospective, well-designed studies are needed to clarify these findings.
Collapse
Affiliation(s)
- Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210000, PR China
| | - Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210000, PR China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210000, PR China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210000, PR China
| | - Hua Jiang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210000, PR China.
| | - Lingmin Hu
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, PR China.
| |
Collapse
|
10
|
Mohr AE, Ahern MM, Sears DD, Bruening M, Whisner CM. Gut microbiome diversity, variability, and latent community types compared with shifts in body weight during the freshman year of college in dormitory-housed adolescents. Gut Microbes 2023; 15:2250482. [PMID: 37642346 PMCID: PMC10467528 DOI: 10.1080/19490976.2023.2250482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/26/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Significant human gut microbiome changes during adolescence suggest that microbial community evolution occurs throughout important developmental periods including the transition to college, a typical life phase of weight gain. In this observational longitudinal study of 139 college freshmen living in on-campus dormitories, we tracked changes in the gut microbiome via 16S amplicon sequencing and body weight across a single academic year. Participants were grouped by weight change categories of gain (WG), loss (WL), and maintenance (WM). Upon assessment of the community structure, unweighted and weighted UniFrac metrics revealed significant shifts with substantial variation explained by individual effects within weight change categories. Genera that positively contributed to these associations with weight change included Bacteroides, Blautia, and Bifidobacterium in WG participants and Prevotella and Faecalibacterium in WL and WM participants. Moreover, the Prevotella/Bacteroides ratio was significantly different by weight change category, with WL participants displaying an increased ratio. Importantly, these genera did not display co-dominance nor ease of transition between Prevotella- and Bacteroides-dominated states. We further assessed the overall taxonomic variation, noting the increased stability of the WL compared to the WG microbiome. Finally, we found 30 latent community structures within the microbiome with significant associations with waist circumference, sleep, and dietary factors, with alcohol consumption chief among them. Our findings highlight the high level of individual variation and the importance of initial gut microbiome community structure in college students during a period of major lifestyle changes. Further work is needed to confirm these findings and explore mechanistic relationships between gut microbes and weight change in free-living individuals.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mary M. Ahern
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Dorothy D. Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Meg Bruening
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Department of Nutritional Sciences, College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
11
|
Li R, He Z, Yan W, Yu H, Yi X, Sha Y, Zhang Q, Cai R, Pang W. Tricaprylin, a medium-chain triglyceride, aggravates high-fat diet-induced fat deposition but improves intestinal health. Food Funct 2023; 14:8797-8813. [PMID: 37675852 DOI: 10.1039/d3fo01749d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Medium-chain triglycerides (MCTs) are absorbed and metabolized more rapidly than long-chain triglycerides (LCTs) and therefore are considered to have obesity-prevention potential in foods. The effect of adding tricaprylin, an MCT, to food on fat deposition and intestinal health is uncharted. In this study, mice were randomly divided into four groups and fed a normal diet (ND), ND with tricaprylin, a high-fat diet (HFD), or HFD with tricaprylin. Supplementation of 2% tricaprylin in HFD significantly increased the body weight, fat mass, liver weight, adipocyte size in adipose tissue and liver, and upregulated genes related to fat deposition. Metabolomic analysis of serum and adipose tissue revealed that tricaprylin significantly increased the contents of metabolites related to lipid metabolism, triglyceride storage, and fat deposition related signaling pathways. In vitro experiments and molecular docking analysis suggest that octanoic acid, a primary decomposition product of tricaprylin, may promote adipogenic differentiation of preadipocytes by acting as a PPARγ ligand to activate the expression of lipogenesis-related genes. Although supplementation with 2% tricaprylin in HFD cannot reduce fat deposition, it has a beneficial effect on intestinal health. Tricaprylin improved intestinal morphology, digestive enzyme activity, short-chain fatty acid concentration, and intestinal barrier function-related protein expression, while reducing inflammatory factor levels and the abundance of harmful intestinal microorganisms.
Collapse
Affiliation(s)
- Rui Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Zhaozhao He
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Wenyong Yan
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi, 712100, China.
| | - He Yu
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Xudong Yi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Yiwen Sha
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Qiming Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Rui Cai
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Zhu L, Zhang J, Yang H, Li G, Li H, Deng Z, Zhang B. Propolis polyphenols: A review on the composition and anti-obesity mechanism of different types of propolis polyphenols. Front Nutr 2023; 10:1066789. [PMID: 37063322 PMCID: PMC10102383 DOI: 10.3389/fnut.2023.1066789] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Obesity, one of the most common nutritional diseases worldwide, can lead to dyslipidemia, high blood sugar, high blood pressure, and inflammation. Some drugs have been developed to ameliorate obesity. However, these drugs may cause serious side effects. Therefore, there is an urgent need for alternative “natural” remedies including propolis. Studies have found that propolis has excellent anti-obesity activity in in vitro and in vivo models during the past decades, of which polyphenols are the key component in regulating weight loss. This review focused on the different polyphenol compositions of propolis from different regions and plants, the evidence for the anti-obesity effects of different types of propolis and its derivatives, discussed the impact of propolis polyphenols on obesity related signal pathways, and proposed the molecular mechanism of how propolis polyphenols affect these signal pathways. For example, propolis and its derivatives regulate lipid metabolism related proteins, such as PPARα, PPARγ, SREBP-1&2, and HMG CoA etc., destroy the formation of CREB/CRTC2 transcription complex, activate Nrf2 pathway or inhibit protein kinase IKK ε/TBK1, thereby affecting fat production and lipid metabolism; The effects of propolis on adipokines (adiponectin, leptin and inflammatory factors) were discussed. Additionally, the mechanism of polyphenols in propolis promoting the browning of adipose tissues and the relationship between intestinal microorganisms was summarized. These information may be of value to better understand how specific propolis polyphenols interact with specific signaling pathways and help guide the development of new drugs to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jinwu Zhang
- Nanchang Concentric Purple Nest Biological Engineering Co., Ltd., Nanchang, China
| | - Hui Yang
- Nanchang Concentric Purple Nest Biological Engineering Co., Ltd., Nanchang, China
| | - Guangyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Nanchang Concentric Purple Nest Biological Engineering Co., Ltd., Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- *Correspondence: Bing Zhang,
| |
Collapse
|
13
|
Crost EH, Coletto E, Bell A, Juge N. Ruminococcus gnavus: friend or foe for human health. FEMS Microbiol Rev 2023; 47:fuad014. [PMID: 37015876 PMCID: PMC10112845 DOI: 10.1093/femsre/fuad014] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 04/06/2023] Open
Abstract
Ruminococcus gnavus was first identified in 1974 as a strict anaerobe in the gut of healthy individuals, and for several decades, its study has been limited to specific enzymes or bacteriocins. With the advent of metagenomics, R. gnavus has been associated both positively and negatively with an increasing number of intestinal and extraintestinal diseases from inflammatory bowel diseases to neurological disorders. This prompted renewed interest in understanding the adaptation mechanisms of R. gnavus to the gut, and the molecular mediators affecting its association with health and disease. From ca. 250 publications citing R. gnavus since 1990, 94% were published in the last 10 years. In this review, we describe the biological characterization of R. gnavus, its occurrence in the infant and adult gut microbiota and the factors influencing its colonization of the gastrointestinal tract; we also discuss the current state of our knowledge on its role in host health and disease. We highlight gaps in knowledge and discuss the hypothesis that differential health outcomes associated with R. gnavus in the gut are strain and niche specific.
Collapse
Affiliation(s)
- Emmanuelle H Crost
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| | - Erika Coletto
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| | - Andrew Bell
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
14
|
Chen N, Liu Y, Wei S, Zong X, Zhou G, Lu Z, Wang F, Wang Y, Jin M. Dynamic changes of inulin utilization associated with longitudinal development of gut microbiota. Int J Biol Macromol 2023; 229:952-963. [PMID: 36596372 DOI: 10.1016/j.ijbiomac.2022.12.318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Inulin is a typical kind of fermentable polysaccharide and has emerged as a promising dietary supplement due to its multiple health-promoting effects. This study aimed to unveil the dynamic change pattern of inulin utilizability as a fermentation substrate during gut microbiota development and illuminate its potential association with gut microbiota in Chinese Jinhua native pig models via longitudinal analyses. Herein, fresh feces were collected at one week pre- and post-weaning as well as 3rd month post-weaning, respectively. Targeted metabolomics and in vitro simulated fermentation revealed increasing concentrations of fecal short-chain fatty acids (SCFAs) and elevating utilizability of inulin as a fermentation substrate. Microbiomic analyses demonstrated the conspicuous longitudinal alteration in gut microbial composition and a significant rise in microbial community diversity during gut microbiota development. Furthermore, gut microbial functional analyses showed a remarkable increase in the relative abundances of carbohydrate metabolism pathways, including pentose phosphate pathway, galactose metabolism pathway, butanoate metabolism pathway as well as fructose and mannose metabolism pathway. Notably, relative abundances of bacterial genera Bifidobacterium, Roseburia, Faecalibacterium and Enterococcus displayed significantly positive correlations with the production of microbial fermentation-derived SCFAs. Collectively, these findings offer novel insights into understanding inulin utilizability variations from the perspective of gut microbiota development.
Collapse
Affiliation(s)
- Nana Chen
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yalin Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Siyu Wei
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Guilian Zhou
- Weifang Newhope Liuhe Feed Technology Co. Ltd, Weifang 261000, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
15
|
Liu Y, Chen L, Liu L, Zhao SS, You JQ, Zhao XJ, Liu HX, Xu GW, Wen DL. Interplay between dietary intake, gut microbiota, and metabolic profile in obese adolescents: Sex-dependent differential patterns. Clin Nutr 2022; 41:2706-2719. [PMID: 36351362 DOI: 10.1016/j.clnu.2022.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS The interplay among dietary intake, gut microbiota, gut metabolites and circulating metabolites in adolescents is barely known, not to mention sex-dependent pattern. We aimed to explore unique profiles of gut bacterial, gut metabolites and circulating metabolites from both genders of adolescents due to BMI and eating pattern. METHODS Clinical indices, fecal gut microbiota, fecal and plasma metabolites, and diet intake information were collected in case-control sample matched for normal and obesity in girls (normal = 12, obesity = 12) and boys (normal = 20, obesity = 20), respectively. 16S rRNA gene sequencing and untargeted metabolomics was performed to analysis the signature of gut microbiota and metabolites. Unique profiles of girls associated with BMI and eating pattern was revealed by Spearman's correlations analysis, co-occurrence network analysis, Kruskal-Wallis test, and Wilcoxon rank-sum test. RESULTS Gender difference was found between normal and obese adolescents in gut microbiota, fecal metabolites, and plasma metabolites. The Parabacteroides were only decreased in obese girls. And the characteristic of obese girls' and boys' cases in fecal and plasma was xanthine and glutamine, ornithine and LCA, respectively. Soy products intake was negatively associated with Parabacteroides. The predicted model has a higher accuracy based on the combined markers in obesity boys (AUC = 0.97) and girls (AUC = 0.97), respectively. CONCLUSIONS Reduced abundance of Phascolarctobacterium and Parabacteroides, as well as the increased fecal xanthine and ornithine, may provide a novel biomarker signature in obesity girls and boys. Soy products intake was positively and negatively associated with Romboutsia and Parabacteroides abundance, respectively. And the combined markers facilitate the accuracy of predicting obesity in girls and boys in advance.
Collapse
Affiliation(s)
- Yang Liu
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning Province, PR China
| | - Lei Chen
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning Province, PR China; Institute of Life Sciences, China Medical University, Shenyang 110122, Liaoning Province, PR China
| | - Lei Liu
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning Province, PR China
| | - Shan-Shan Zhao
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning Province, PR China; Institute of Life Sciences, China Medical University, Shenyang 110122, Liaoning Province, PR China
| | - Jun-Qiao You
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning Province, PR China
| | - Xin-Jie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian 116023, Liaoning Province, PR China.
| | - Hui-Xin Liu
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning Province, PR China; Institute of Life Sciences, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Guo-Wang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian 116023, Liaoning Province, PR China
| | - De-Liang Wen
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| |
Collapse
|
16
|
Plaza-Díaz J, Manzano M, Ruiz-Ojeda FJ, Giron MD, Salto R, López-Pedrosa JM, Santos-Fandila A, Garcia-Corcoles MT, Rueda R, Gil Á. Intake of slow-digesting carbohydrates is related to changes in the microbiome and its functional pathways in growing rats with obesity induced by diet. Front Nutr 2022; 9:992682. [PMID: 36532542 PMCID: PMC9748084 DOI: 10.3389/fnut.2022.992682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 08/17/2023] Open
Abstract
INTRODUCTION The main cause of insulin resistance in childhood is obesity, which contributes to future comorbidities as in adults. Although high-calorie diets and lack of exercise contribute to metabolic disease development, food quality rather than the quantity of macronutrients is more important than food density. The purpose of the present study was to examine the effects of changing the quality of carbohydrates from rapidly to slowly digestible carbohydrates on the composition of the gut microbiota and the profiles of the functional pathways in growing rats with obesity due to a high-fat diet (HFD). METHODS During the course of 4 weeks, rats growing on an HFD-containing carbohydrates with different digestive rates were fed either HFD-containing carbohydrates with a rapid digestion rate (OBE group) or HFD-containing carbohydrates with a slow digestion rate (OBE-ISR group). A non-obese group (NOB) was included as a reference, and rats were fed on a rodent standard diet (AIN93G). An analysis of gut microbiota was conducted using 16S rRNA-based metagenomics; a linear mixed-effects model (LMM) was used to determine changes in abundance between baseline and 4 weeks of treatment, and functional pathways were identified. Gut microbiota composition at bacterial diversity and relative abundance, at phylum and genus levels, and functional profiles were analyzed by integrating the Integrated Microbial Genomes (IMG) database. RESULTS The groups showed comparable gut microbiota at baseline. At the end of the treatment, animals from the ISR group exhibited differences at the phylum levels by decreasing the diversity of Fisher's index and Firmicutes (newly named as Bacillota), and increasing the Pielou's evenness and Bacteroidetes (newly named as Bacteroidota); at the genus level by increasing Alistipes, Bifidobacterium, Bacteroides, Butyricimonas, Lachnoclostridium, Flavonifractor, Ruminiclostridium 5, and Faecalibaculum and decreasing Muribaculum, Blautia, and Ruminiclostridium 9. Remarkably, relative abundances of genera Tyzzerella and Angelakisella were higher in the OBE group compared to NOB and OBE-ISR groups. In addition, some microbiota carbohydrate metabolism pathways such as glycolysis, glucuronic acid degradation, pentose phosphate pathway, methanogenesis, and fatty acid biosynthesis exhibited increased activity in the OBE-ISR group after the treatment. Higher levels of acetate and propionate were found in the feces of the ISR group compared with the NOB and OBE groups. CONCLUSION The results of this study demonstrate that replacing rapidly digestible carbohydrates with slowly digestible carbohydrates within an HFD improve the composition of the gut microbiota. Consequently, metabolic disturbances associated with obesity may be prevented.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Complejo Hospitalario Universitario de Granada, Granada, Spain
| | | | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Complejo Hospitalario Universitario de Granada, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Munich, Germany
| | - Maria D. Giron
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Complejo Hospitalario Universitario de Granada, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Granada, Spain
- CIBER Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Ilyés T, Silaghi CN, Crăciun AM. Diet-Related Changes of Short-Chain Fatty Acids in Blood and Feces in Obesity and Metabolic Syndrome. BIOLOGY 2022; 11:1556. [PMID: 36358258 PMCID: PMC9687917 DOI: 10.3390/biology11111556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 09/13/2023]
Abstract
Obesity-related illnesses are one of the leading causes of death worldwide. Metabolic syndrome has been associated with numerous health issues. Short-chain fatty acids (SCFAs) have been shown to have multiple effects throughout the body, both directly as well as through specific G protein-coupled receptors. The main SCFAs produced by the gut microbiota are acetate, propionate, and butyrate, which are absorbed in varying degrees from the large intestine, with some acting mainly locally and others systemically. Diet has the potential to influence the gut microbial composition, as well as the type and amount of SCFAs produced. High fiber-containing foods and supplements increase the production of SCFAs and SCFA-producing bacteria in the gut and have been shown to have bodyweight-lowering effects. Dietary supplements, which increase SCFA production, could open the way for novel approaches to weight loss interventions. The aim of this review is to analyze the variations of fecal and blood SCFAs in obesity and metabolic syndrome through a systematic search and analysis of existing literature.
Collapse
Affiliation(s)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | | |
Collapse
|
18
|
Pan LY, Zhou YY, Zhang X, Jiang HY. Gut microbiota is associated with weight gain in children treated with atypical antipsychotic: A pilot longitudinal study. Psychiatry Res 2022; 316:114784. [PMID: 36027678 DOI: 10.1016/j.psychres.2022.114784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
We studied longitudinal changes in the microbiome with weight gain during atypical antipsychotics (APs) treatment. 43 inpatients naive to AP paediatric medication were included in the longitudinal microbiota study. The baseline composition of the gut microbiome in the case group was characterised by an increase in Parabacteroides and Eubacterium_hallii_group. During the follow-up, the relative abundances of Romboutsia and Klebsiella increased significantly after 3 months of AP treatment; however, no significant changes in these two gut bacteria were observed in the control group. The baseline composition of the gut microbiome contributed to the risk of AP-associated weight gain.
Collapse
Affiliation(s)
- Li-Ya Pan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan-Yue Zhou
- Department of Medical Psychology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China; Department of Child Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
| | - Xue Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Infectious Diseases, The Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai-Yin Jiang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Bagheri S, Zolghadri S, Stanek A. Beneficial Effects of Anti-Inflammatory Diet in Modulating Gut Microbiota and Controlling Obesity. Nutrients 2022; 14:3985. [PMID: 36235638 PMCID: PMC9572805 DOI: 10.3390/nu14193985] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity has consistently been associated with an increased risk of metabolic abnormalities such as diabetes, hyperlipidemia, and cardiovascular diseases, as well as the development of several types of cancer. In recent decades, unfortunately, the rate of overweight/obesity has increased significantly among adults and children. A growing body of evidence shows that there is a relationship between metabolic disorders such as obesity and the composition of the gut microbiota. Additionally, inflammation is considered to be a driving force in the obesity-gut microbiota connection. Therefore, it seems that anti-inflammatory nutrients, foods, and/or diets can play an essential role in the management of obesity by affecting the intestinal flora and controlling inflammatory responses. In this review, we describe the links between the gut microbiota, obesity, and inflammation, and summarize the benefits of anti-inflammatory diets in preventing obesity.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
20
|
Childhood obesity and adverse cardiometabolic risk in large for gestational age infants and potential early preventive strategies: a narrative review. Pediatr Res 2022; 92:653-661. [PMID: 34916624 DOI: 10.1038/s41390-021-01904-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
Accumulating evidence indicates that obesity and cardiometabolic risks become established early in life due to developmental programming and infants born as large for gestational age (LGA) are particularly at risk. This review summarizes the recent literature connecting LGA infants and early childhood obesity and cardiometabolic risk and explores potential preventive interventions in early infancy. With the rising obesity rates in women of childbearing age, the LGA birth rate is about 10%. Recent literature continues to support the higher rates of obesity in LGA infants. However, there is a knowledge gap for their lifetime risk for adverse cardiometabolic outcomes. Potential factors that may modify the risk in early infancy include catch-down early postnatal growth, reduction in body fat growth trajectory, longer breastfeeding duration, and presence of a healthy gut microbiome. The early postnatal period may be a critical window of opportunity for active interventions to mitigate or prevent obesity and potential adverse metabolic consequences in later life. A variety of promising candidate biomarkers for the early identification of metabolic alterations in LGA infants is also discussed. IMPACT: LGA infants are the greatest risk category for future obesity, especially if they experience rapid postnatal growth during infancy. Potential risk modifying secondary prevention strategies in early infancy in LGA infants include catch-down early postnatal growth, reduction in body fat growth trajectory, longer breastfeeding duration, and presence of a healthy gut microbiome. LGA infants may be potential low-hanging fruit targets for early preventive interventions in the fight against childhood obesity.
Collapse
|
21
|
Gilley SP, Ruebel ML, Sims C, Zhong Y, Turner D, Lan RS, Pack LM, Piccolo BD, Chintapalli SV, Abraham A, Bode L, Andres A, Shankar K. Associations between maternal obesity and offspring gut microbiome in the first year of life. Pediatr Obes 2022; 17:e12921. [PMID: 35478493 PMCID: PMC9641193 DOI: 10.1111/ijpo.12921] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Maternal obesity is an important determinant of offspring obesity risk, which may be mediated via changes in the infant microbiome. OBJECTIVES We examined infant faecal microbiome, short-chain fatty acids (SCFA), and maternal human milk oligosaccharides (HMO) in mothers with overweight/obese body mass index (BMI) (OW) compared with normal weight (NW) (Clinicaltrials.gov NCT01131117). METHODS Infant stool samples at 1, 6, and 12 months were analysed by 16S rRNA sequencing. Maternal (BODPOD) and infant (quantitative nuclear magnetic resonance [QMR]) adiposity were measured. HMOs at 2 months postpartum and faecal SCFAs at 1 month were also assessed. Statistical analyses included multivariable and mixed linear models for assessment of microbiome diversity, composition, and associations of taxonomic abundance with metabolic and anthropometric variables. RESULTS At 1 month, offspring of women with obesity had lower abundance of SCFA-producing bacteria (including Ruminococcus and Turicibacter) and lower faecal butyric acid levels. Lachnospiraceae abundance was lower in OW group at 6 months, and infant fat mass was negatively associated with the levels of Sutterella. Gradient boosting machine models indicated that higher α-diversity and specific microbial taxa at 1 month predicted elevated adiposity at 12 months with overall accuracy of 76.5%. Associations between maternal HMO concentrations and infant bacterial taxa differed between NW and OW groups. CONCLUSIONS Elevated maternal BMI is associated with relative depletion of butyrate-producing microbes and faecal butyrate in the early infant faecal microbiome. Overall microbial richness may aid in prediction of elevated adiposity in later infancy.
Collapse
Affiliation(s)
- Stephanie P Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Meghan L Ruebel
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Clark Sims
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ying Zhong
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Donald Turner
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Renny S Lan
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lindsay M Pack
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ann Abraham
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
22
|
Li J, Wang B, Liu S, Zhang Y, Chen C, Jin Y, Shen Z, Yuan T, Yu X. Antibiotic exposure and risk of overweight/obesity in school children: A multicenter, case-control study from China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113702. [PMID: 35636235 DOI: 10.1016/j.ecoenv.2022.113702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although the use of antibiotics during early life has been associated with increased risk of adipogenesis, effect of antibiotic exposure from various sources, including food or drinking water, on adiposity in children is largely unknown. OBJECTIVE To investigate associations between urinary biomarkers of multiple antibiotics and risk of adipogenesis in school children. METHODS This case-control study recruited 410 overweight/obese school children aged 6-9 years and 410 controls from Shandong and Guangdong Province, China, matched on sex, age and school. Diagnosis of overweight and obesity was based on body mass index-based criteria derived from national data. Urinary concentrations of 45 antibiotics from 8 categories (macrolides, β-lactams, tetracyclines, fluoroquinolones, sulfonamides, phenicols, lincosamides, and quinoxalines), including 6 human antibiotics (HAs), 6 antibiotics preferred as HAs (PHAs), 16 veterinary antibiotics (VAs), and 17 antibiotics preferred as VA (PVAs), were measured by ultra-performance liquid chromatography coupled to triple-quadrupole tandem mass spectrometry. Conditional logistic regression analyses were used to assess odds ratios (ORs) of childhood overweight/obesity in relation to urinary antibiotic concentrations. RESULTS A total of 32 antibiotics were found in urine samples with an overall detection frequency of 92.93 %. Children with overweight/obesity have higher veterinary antibiotic levels than those with normal weight. Compared with undetected levels of antibiotics, the multivariable-adjusted ORs (95 % confidence interval) of overweight/obesity for high levels of antibiotics divided according to median values were 1.63 (1.02, 2.62) for florfenicol, 1.62 (1.04, 2.54) for phenicols, and 1.41 (0.97, 2.04) for sum of VAs and PVAs. These associations predominantly existed in boys and remained significant in florfenicol after FDR multiple testing correction (FDR adjusted p < 0.05). CONCLUSION Exposure to certain antibiotic for veterinary use mainly from food or drinking water was associated with an increased risk of adipogenesis in children. Further studies are needed to confirm our findings and clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Juan Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bin Wang
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Shijian Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yue Zhang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chen Chen
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yihui Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhemin Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Ministry of Education Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
23
|
Yin H, Huang J, Hu M. Moderate-Intensity Exercise Improves Endothelial Function by Altering Gut Microbiome Composition in Rats Fed a High-Fat Diet. J NIPPON MED SCH 2022; 89:316-327. [PMID: 35768269 DOI: 10.1272/jnms.jnms.2022_89-307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obesity changes gut microbial ecology and is related to endothelial dysfunction. Although the correlation between gut microbial ecology and endothelial dysfunction has been studied in obese persons, the underlying mechanisms by which exercise enhances endothelial function in this group remain unclear. This study investigated whether exercise improves endothelial function and alters gut microbiome composition in rats fed a high-fat diet (HFD). METHODS Obesity was induced by an HFD for 11 weeks. Whole-body composition and endothelium-dependent relaxation of mesenteric arteries were measured. Blood biochemical tests were performed, and gut microbiomes were characterized by 16S rRNA gene sequencing on an Illumina HiSeq platform. RESULTS Exercise training for 8 weeks improved body composition in HFD-fed rats. Furthermore, compared with the untrained/HFD group, aerobic exercise significantly increased acetylcholine-induced, endothelium-dependent relaxation in mesenteric arteries (P < 0.05) and circulating vascular endothelial growth factor levels (P < 0.01) and decreased circulating C-reactive protein levels (P < 0.05). In addition, exercise and HFD resulted in alterations in the composition of the gut microbiome; exercise reduced the relative abundance of Clostridiales and Romboutsia. Moreover, 12 species of bacteria, including Romboutsia, were significantly associated with parameters of endothelial function in the overall sample. CONCLUSIONS These results suggest that aerobic exercise enhances endothelial function in HFD-fed rats by altering the composition of the gut microbiota. These findings provide new insights on the application of physical exercise for improving endothelial function in obese persons.
Collapse
Affiliation(s)
- Honggang Yin
- School of Kinesiology, Shanghai University of Sport.,Guangdong Provincial Key Laboratory of Sports and Health Promotion, Scientific Research Center, Guangzhou Sport University
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Sports and Health Promotion, Scientific Research Center, Guangzhou Sport University
| | - Min Hu
- School of Kinesiology, Shanghai University of Sport.,Department of Sports and Health, Guangzhou Sport University
| |
Collapse
|
24
|
Chen SS, Liao XM, Wei QZ, Zhou YY, Su MY, Hu Y, Song YY, Zhang ZQ, Liang JJ. Associations of the Gut Microbiota Composition and Fecal Short-Chain Fatty Acids with Leukocyte Telomere Length in Children Aged 6 to 9 Years in Guangzhou, China: A Cross-sectional Study. J Nutr 2022; 152:1549-1559. [PMID: 35278080 DOI: 10.1093/jn/nxac063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Telomere length (TL) serves as a marker of cellular senescence and appears to plateau between the age of 4 y and young adulthood, after which the gut microbiota are supposed to be established. However, scarce data are available regarding the correlation between gut microbiota composition and TL in the pediatric population. OBJECTIVES We aimed to investigate whether the gut microbiota and the concentrations of SCFAs in feces are associated with leukocyte TL in children. METHODS In total, 401 children aged 6-9 y from Guangzhou were enrolled in this cross-sectional study. qPCR was used to determine relative TL in peripheral blood leukocytes. The gut microbiota was characterized by 16S ribosomal RNA amplicon sequencing and the fecal concentrations of total SCFAs and SCFA subtypes were determined using HPLC. The multivariate methods with an unbiased variable selection (MUVR) algorithm and partial least square models were used to select predictable operational taxonomic units (OTUs). Further correlation analyses were performed based on multiple linear regression models with adjustment for covariates and false discovery rate. RESULTS With the use of MUVR, 35 relevant and minimal optimal OTUs were finally selected. Multiple linear regression analysis showed that the abundance of several OTUs, including OTU334 (belonging to the genus Family XIII AD3011 group), OTU726 (belonging to the species Lachnoclostridium phocaeense), OTU1441 (belonging to the genus Ruminococcus torques group), OTU2553 (belonging to the genus Lachnospiraceae UCG-010), and OTU3375 (belonging to the family Lachnospiraceae), was negatively associated with leukocyte TL (β: -0.187 to -0.142; false discovery rate (FDR)-corrected P value (PFDR) = 0.009-0.035]. However, neither SCFA subtype nor total SCFA content in feces exhibited significant associations with TL (β: -0.032 to 0.048; PFDR = 0.915-0.969). CONCLUSIONS The gut microbiota, but not fecal SCFA concentration, was significantly associated with TL in this pediatric population.
Collapse
Affiliation(s)
- Shan-Shan Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xue-Mei Liao
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qin-Zhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ying-Yu Zhou
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meng-Yang Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yan Hu
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan-Yan Song
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhe-Qing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing-Jing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Miao J, Guo L, Cui H, Wang L, Zhu B, Lei J, Li P, Jia J, Zhang Z. Er-Chen Decoction Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Rats through Remodeling Gut Microbiota and Regulating the Serum Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6221340. [PMID: 35399623 PMCID: PMC8991405 DOI: 10.1155/2022/6221340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Many studies have found that the dysfunction in gut microbiota and the metabolic dysfunction can promote nonalcoholic fatty liver disease (NAFLD) development. Er-Chen decoction (EC) can be used in the treatment of NAFLD. However, the mechanism of this hepatoprotection is still unknown. In this study, we constructed a rat model with NAFLD fed with high-fat chow and administered EC treatment. The therapeutic effects of EC on NAFLD were evaluated by measuring transaminases, blood lipid levels, and pathological changes in the liver. In addition, we measured the effects of EC on liver inflammatory response and oxidative stress. The changes in gut microbiota after EC treatment were studied using 16S rRNA sequencing. Serum untargeted metabolomics analysis was also used to study the metabolic regulatory mechanisms of EC on NAFLD. The results showed that EC decreased the serum transaminases and lipid levels and improved the pathological changes in NAFLD rats. Furthermore, EC enhanced the activities of SOD and GSH-Px and decreased MDA level in the liver. EC treatment also decreased the gene and protein levels of IL-6, IL-1β, and TNF-α in the liver and serum. The 16S rRNA sequencing and untargeted metabolomics indicated that EC treatment affected the gut microbiota and regulated serum metabolism. Correlation analysis showed that the effects of EC on taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways were associated with affecting in the abundance of Lactobacillus, Dubosiella, Lachnospiraceae, Desulfovibri, Romboutsia, Akkermansia, Intestinimonas, and Candidatus_saccharimonas in the gut. In conclusion, our study confirmed the protective effect of EC on NAFLD. EC could treat NAFLD by inhibiting oxidative stress, reducing inflammatory responses, and improving the dysbiosis of gut microbiota and the modulation of the taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways in serum.
Collapse
Affiliation(s)
- Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Liying Guo
- Tianjin Second People's Hospital, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Li Wang
- Tianjin Second People's Hospital, Tianjin, China
| | - Bo Zhu
- Tianjin Second People's Hospital, Tianjin, China
| | - Jinyan Lei
- Tianjin Second People's Hospital, Tianjin, China
| | - Peng Li
- Tianjin Second People's Hospital, Tianjin, China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Tianjin, China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
26
|
Evaluating the effects of a standardized polyphenol mixture extracted from poplar-type propolis on healthy and diseased human gut microbiota. Biomed Pharmacother 2022; 148:112759. [PMID: 35248845 DOI: 10.1016/j.biopha.2022.112759] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION A large body of evidence suggests that propolis exerts antioxidant, anti-inflammatory, and antimicrobial activities, mostly ascribed to its polyphenol content. Growing evidence suggests that propolis could modulate gut microbiota exerting a positive impact on several pathological conditions. The aim of this study was to determine the in vitro impact of a poplar-type propolis extract with a standardized polyphenol content, on the composition and functionality of gut microbiota obtained from fecal material of five different donors (healthy adults, and healthy, obese, celiac, and food allergic children). METHODS The standardized polyphenol mixture was submitted to a simulated in vitro digestion-fermentation process, designed to mimic natural digestion in the human oral, gastric, and intestinal chambers. The antioxidant profile of propolis before and after the digestion-fermentation process was determined. 16 S rRNA amplicon next-generation sequencing (NGS) was used to test the effects on the gut microbiota of propolis extract. The profile of the short-chain fatty acids (SCFA) produced by the microbiota was also investigated through a chromatographic method coupled with UV detection. RESULTS In vitro digestion and fermentation induced a decrease in the antioxidant profile of propolis (i.e., decrease of total polyphenol content, antiradical and reducing activities). Propolis fermentation exhibited a modulatory effect on gut microbiota composition and functionality of healthy and diseased subjects increasing the concentration of SCFA. CONCLUSIONS Overall, these data suggest that propolis might contribute to gut health and could be a candidate for further studies in view of its use as a prebiotic ingredient.
Collapse
|
27
|
de Cuevillas B, Milagro FI, Tur JA, Gil-Campos M, de Miguel-Etayo P, Martínez JA, Navas-Carretero S. Fecal microbiota relationships with childhood obesity: A scoping comprehensive review. Obes Rev 2022; 23 Suppl 1:e13394. [PMID: 34913242 DOI: 10.1111/obr.13394] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Childhood obesity is a costly burden in most regions with relevant and adverse long-term health consequences in adult life. Several studies have associated excessive body weight with a specific profile of gut microbiota. Different factors related to fecal microorganism abundance seem to contribute to childhood obesity, such as gestational weight gain, perinatal diet, antibiotic administration to the mother and/or child, birth delivery, and feeding patterns, among others. This review reports and discusses diverse factors that affect the infant intestinal microbiota with putative or possible implications on the increase of the obesity childhood rates as well as microbiota shifts associated with excessive body weight in children.
Collapse
Affiliation(s)
- Begoña de Cuevillas
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,IdiSNA, Health Research Institute of Navarra, Pamplona, Spain
| | - Josep A Tur
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS & IDISBA, Palma de Mallorca, Spain
| | - Mercedes Gil-Campos
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Metabolism and Investigation Unit, Reina Sofia University Hospital, Maimónides Institute of Biomedicine Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Pilar de Miguel-Etayo
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Growth, Exercise, Nutrition and Development (GENUD) Research Group, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza. Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - J Alfredo Martínez
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,IdiSNA, Health Research Institute of Navarra, Pamplona, Spain.,Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food. CSIC-UAM, Madrid, Spain
| | - Santiago Navas-Carretero
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,IdiSNA, Health Research Institute of Navarra, Pamplona, Spain
| |
Collapse
|
28
|
ZHANG Y, MA C, DOU B, ZHANG Y, GUO Y, GAO S, ZHANG Z, LIU Y, ZHANG N. Metagenomics exploring the effect of recombinant rice based on lotus seed starch-broken rice flour on intestinal flora in rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.92622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yu ZHANG
- Harbin University of Commerce, China; East University of Heilongjiang, China
| | - Chunmin MA
- Harbin University of Commerce, China; Harbin University of Commerce, China
| | - Boxin DOU
- Harbin University of Commerce, China; Harbin University of Commerce, China
| | - Yunliang ZHANG
- Harbin University of Commerce, China; Harbin University of Commerce, China
| | - Yaqing GUO
- Harbin University of Commerce, China; Harbin University of Commerce, China
| | - Shuai GAO
- Harbin University of Commerce, China
| | - Zhi ZHANG
- Beidahuang Rice Industry Group, China
| | - Ying LIU
- Harbin University of Commerce, China; Harbin University of Commerce, China
| | - Na ZHANG
- Harbin University of Commerce, China; Harbin University of Commerce, China
| |
Collapse
|
29
|
Hu C, Niu X, Chen S, Wen J, Bao M, Mohyuddin SG, Yong Y, Liu X, Wu L, Yu Z, Ma X, Ju X. A Comprehensive Analysis of the Colonic Flora Diversity, Short Chain Fatty Acid Metabolism, Transcripts, and Biochemical Indexes in Heat-Stressed Pigs. Front Immunol 2021; 12:717723. [PMID: 34745096 PMCID: PMC8567839 DOI: 10.3389/fimmu.2021.717723] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023] Open
Abstract
Heat stressed pigs show typical characteristics of inflammatory bowel disease (IBD). However, little is known about the pathogenesis of heat stress (HS)-induced IBD in pigs. In this study, we determined the effects of HS on colon morphology, intestinal microbiota diversity, transcriptome genes (transcripts), and short chain fatty acids (SCFAs) metabolism in pigs. In addition, the correlation among these parameters was analyzed by weighted gene co-expression network analysis. Results showed that the liver and kidney functions related to blood biochemical indexes were partially changed in pigs under HS. Furthermore, the levels of diamine oxidase and D-lactic acid were significantly increased, whereas the levels of secretory immunoglobulin A were decreased. The integrity of colonic tissue was damaged under HS, as bleeding, lymphatic infiltration, and villi injury were observed. The concentrations of SCFAs in the colon, such as acetic acid and butyric acid, were decreased significantly. In addition, the composition of colon microbiota, such as decrease in Lactobacillus johnsonii, Lactobacillus reuteri and increase in Clostridium sensu stricto 1 of day 7 and 14 while under HS. These changes were associated with changes in the concentration of SCFAs and biochemical indexes above mentioned. Differentially expressed genes were enriched in the nucleotide-binding oligomerization domain-like receptor signaling pathway, Th17 cell differentiation, and IBD pathway, which were also associated with the changes in SCFAs. Thus, the structure, diversity of intestinal microorganisms, and changes in the levels of SCFAs in colon of heat stressed pigs changed significantly, contributing to the activation of immune response and inflammatory signal pathways and causing abnormal physiological and biochemical indexes and intestinal mucosal damage. These results highlight the interconnections between intestinal microbiota, SCFAs, and immune response and their role in the pathogenesis of stress induced IBD therapy.
Collapse
Affiliation(s)
- Canying Hu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Xueting Niu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shengwei Chen
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jiaying Wen
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Minglong Bao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Sahar Ghulam Mohyuddin
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Lianyun Wu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xinbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xianghong Ju
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
30
|
Yuan W, Lu W, Wang H, Wu W, Zhou Q, Chen Y, Lee YK, Zhao J, Zhang H, Chen W. A multiphase dietetic protocol incorporating an improved ketogenic diet enhances weight loss and alters the gut microbiome of obese people. Int J Food Sci Nutr 2021; 73:238-250. [PMID: 34353205 DOI: 10.1080/09637486.2021.1960957] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The prevalence of obesity and its associated diseases is increasing. In the current study, 15 obese subjects took part in a 12-week multiphase dietetic protocol incorporating an improved ketogenic diet (MDP-i-KD) (KYLLKS 201806). We investigated the effects of the MDP-i-KD on the anthropometric parameters and the gut microbiota of obese subjects. Our results showed that the MDP-i-KD led to significant reductions in body mass index in obese subjects. The MDP-i-KD significantly decreased the relative abundance of the Lachnospiraceae_ND3007_group, the Eubacterium_hallii_group, and Pseudomonas and Blautia. In addition, gut microbiota co-occurrence networks in obese subjects were restructured to a more healthy condition after weight loss. These results show that the MDP-i-KD enhanced weight loss, which may be associated with dietary-induced changes in the gut microbiome. Our results emphasise the importance of determining the interaction between the host and microbial cells to comprehensively understand the mechanism by which diet affects host physiology and the microbiota.
Collapse
Affiliation(s)
- Weiwei Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenjun Wu
- Endocrinology Department, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qunyan Zhou
- Department of Nutriology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yutao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
31
|
Li DP, Cui M, Tan F, Liu XY, Yao P. High Red Meat Intake Exacerbates Dextran Sulfate-Induced Colitis by Altering Gut Microbiota in Mice. Front Nutr 2021; 8:646819. [PMID: 34355008 PMCID: PMC8329097 DOI: 10.3389/fnut.2021.646819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a serious hazard to public health, but the precise etiology of the disease is unclear. High intake of red meat diet is closely related to the occurrence of IBD. In this study, we investigated whether the high intake of red meat can increase the sensitivity of colitis and the underlying mechanism. Mice were fed with different levels of red meat for 8 weeks and then the colonic contents were analyzed by 16S rRNA sequencing. Then 3% dextran sulfate sodium was used to induce colitis in mice. We observed the severity of colitis and inflammatory cytokines. We found that high-dose red meat caused intestinal microbiota disorder, reduced the relative abundance of Lachnospiraceae_NK4A136_group, Faecalibaculum, Blautia and Dubosiella, and increased the relative abundance of Bacteroides and Alistipes. This in turn leads to an increase in colitis and inflammatory cytokine secretion. Moreover, we found that high red meat intake impaired the colon barrier integrity and decreased the expression of ZO-1, claudin, and occludin. We also found high red meat intake induced the production of more inflammatory cytokines such as IL-1β, TNF-α, IL-17, and IL-6 and inflammatory inducible enzymes such as COX-2 and iNOS in dextran sulfate sodium-induced colitis. These results suggest that we should optimize the diet and reduce the intake of red meat to prevent the occurrence of IBD.
Collapse
Affiliation(s)
- Dan-Ping Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Min Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Fang Tan
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Xiao-Yan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ping Yao
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
32
|
The Effect of Functional Fiber on Microbiota Composition in Different Intestinal Segments of Obese Mice. Int J Mol Sci 2021; 22:ijms22126525. [PMID: 34207032 PMCID: PMC8234870 DOI: 10.3390/ijms22126525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
The gastrointestinal tract is a heterogeneous ecosystem with distinct, stratified environments, which leads to different microbial composition in different intestinal segments. The regional heterogeneity of intestinal microbiota complicates the relationship between diet and microbiota. Few studies have focused on the effects of different diets on microbiota in different intestinal segments. This study aimed to investigate the effects of functional fiber on the microbial composition in multiple intestinal segments from a high-fat diet compared with a normal chow diet. We found that the response of microbiota from different intestinal segments to diet was related to the intestinal physiologic function and the physicochemical properties of dietary nutrients. A high-fat diet drove changes in the microbial composition in the hindgut, possibly by affecting the digestive environment of the foregut, and increased the regional heterogeneity of the whole intestinal microbiota. The supplementation of functional fiber promoted the microbial transfer and colonization from the anterior to the posterior intestinal segments, and increased the regional similarity of intestinal microbiota accordingly, particularly within the hindgut. The gut fermentation of the functional fiber, which mainly occurred in the hindgut, resulted in a significant change in the microbial composition and metabolism in the cecum and colon, with richer carbohydrate metabolism-related bacteria, including Mucispirillum, Prevotella, Anaerostipes, Oscillospira, Ruminococcus, Bacteroides, Coprococcus, Ruminococcus (Lachnospiraceae), and Allobaculum, and higher production of acetate and butyrate. We concluded that multiple regulatory mechanisms of diets which affect microbiota composition exist, including microbial metabolism, microbial migration, and the regulation of the intestinal environment.
Collapse
|
33
|
The associations of gut microbiota and fecal short-chain fatty acids with bone mass were largely mediated by weight status: a cross-sectional study. Eur J Nutr 2021; 60:4505-4517. [PMID: 34129072 DOI: 10.1007/s00394-021-02597-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/21/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE We aimed to investigate whether the gut microbiota and fecal short-chain fatty acids (SCFAs) are associated with bone mass in healthy children aged 6-9 years. METHODS In this study, 236 healthy children including 145 boys and 91 girls were enrolled. 16S rRNA gene sequencing was used to characterize the composition of their gut microbiota. Total and 10 subtypes of SCFAs in the fecal samples were determined by high-performance liquid chromatography. Dual X-ray absorptiometry was used to measure the bone mineral density (BMD) and bone mineral content (BMC) for total body (TB) and total body less head (TBLH). Z score of TBLH BMD was calculated based on the recommended reference. RESULTS Four gut microbiota principal components (PCs) were identified by the compositional principal component analysis at the genus level. After adjustment of covariates and controlling for the false discovery rate, multiple linear regression analysis showed that PC3 score (positive loadings on genera Lachnoclostridium and Blautia) was significantly negatively associated with TBLH BMD/BMC/Z score, TB BMC and pelvic BMD (β: - 0.207 to - 0.108, p: 0.002-0.048), whereas fecal total and several subtypes of SCFAs were correlated positively with TBLH BMD/Z score and pelvic BMD (β: 0.118-0.174, p: 0.038-0.048). However, these associations disappeared after additional adjustment for body weight. Mediation analysis suggested that body weight significantly mediated 60.4% and 78.0% of the estimated association of PC3 score and SCFAs with TBLH BMD Z score, respectively. CONCLUSIONS The associations of gut microbiota composition and fecal SCFA concentrations with bone mass in children were largely mediated by body weight.
Collapse
|
34
|
Gatea F, Sârbu I, Vamanu E. In Vitro Modulatory Effect of Stevioside, as a Partial Sugar Replacer in Sweeteners, on Human Child Microbiota. Microorganisms 2021; 9:590. [PMID: 33805627 PMCID: PMC8000329 DOI: 10.3390/microorganisms9030590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
The effect of stevioside on human health is still insufficiently highlighted by recent research. The total or partial replacement of sugar with sweeteners influences the general state of health, especially the human microbiota's response as a determining factor in the onset of type 2 diabetes. The present study aimed to present the long-term (one-year) in vitro effect that regular stevioside consumption had on children's pattern microbiota. A metabolomic response was established by determining the synthesis of organic acids and a correlation with antioxidant status. An increase in the number of bacterial strains and the variation of amount of butyrate and propionate to the detriment of lactic acid was observed. The effect was evidenced by the progressive pH increasing, the reduction of acetic acid, and the proliferation of Escherichia coli strains during the simulations. Synthesis of the main short-chain fatty acids (SCFAs) was interpreted as a response (adaptation) of the microbiota to the stevioside, without a corresponding increase in antioxidant status. This study demonstrated the modulatory role of stevioside on the human microbiota and on the fermentation processes that determine the essential SCFA synthesis in maintaining homeostasis. The protection of the microbiota against oxidative stress was also an essential aspect of reducing microbial diversity.
Collapse
Affiliation(s)
- Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania;
| | - Ionela Sârbu
- Department of Genetics, University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania;
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 1 District, 011464 Bucharest, Romania
| |
Collapse
|