1
|
Lucchinetti E, Lou PH, Chakravarty A, Marcolla CS, Pauline ML, Wizzard PR, Field CJ, Wine E, Hersberger M, Wales PW, Turner JM, Krämer SD, Zaugg M. The novel lipid emulsion Vegaven is well tolerated and elicits distinct biological actions compared with a mixed-oil lipid emulsion containing fish oil:a parenteral nutrition trial in piglets. J Nutr 2024:S0022-3166(24)01124-6. [PMID: 39505265 DOI: 10.1016/j.tjnut.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Vegaven is a novel lipid emulsion for parenteral nutrition (PN) based on 18-carbon n-3 fatty acids, which elicits liver protection via interleukin-10 (IL10) in the murine model of PN. OBJECTIVE In a preclinical model of PN in neonatal piglets, Vegaven was tested for efficacy and safety and compared with a mixed-oil lipid emulsion containing fish-oil (SMOFlipid). METHODS 4-5-day-old male piglets were randomly allocated to isocaloric isonitrogenous PN for 14 days that varied only by the type of lipid emulsion (Vegaven, N=8; SMOFlipid, N=8). Hepatic IL10 tissue concentration served as primary outcome. Secondary outcomes were organ weights, bile flow, blood analyses, plasma insulin and glucagon concentrations, insulin signaling, proinflammatory cytokines, tissue lipopolysaccharide concentrations, and fatty acid composition of phospholipid fractions in plasma, liver, and brain. RESULTS Total weight gain on trial, organ weights, and bile flow were similar between the Vegaven and the SMOFlipid group. Vegaven elicited higher hepatic IL10 (Δ=148 pg/mg protein, p<0.001) and insulin receptor substrate-2 levels (Δ=0.08 O.D., p=0.012). Plasma insulin concentrations (Δ=1.46 mU/L, p=0.003) and fructosamine (glycated albumin, Δ=12.4 μmol/g protein, p=0.003) were increased in SMOFlipid as compared with Vegaven group, indicating insulin resistance. Higher hepatic injury markers were observed more frequently in the SMOFlipid group compared with the Vegaven group. Lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 were increased in pancreatic and brain tissues of SMOFlipid- vs Vegaven-treated piglets. Insulin signaling was reduced in the brains of SMOFlipid-treated piglets. Vegaven and SMOFlipid elicited distinct fatty acid profiles in the phospholipid fractions of the rapidly growing brains, but showed similar accretion of docosahexaenoic acid and arachidonic acid after two weeks of PN. CONCLUSIONS Vegaven was well tolerated in this piglet model of PN and demonstrated distinct biological actions compared with SMOFlipid, namely lower liver, pancreas, and brain inflammation, enhanced insulin signaling, and improved whole-body glucose control.
Collapse
Affiliation(s)
- Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| | - Phing-How Lou
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada; Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Akash Chakravarty
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | - Catherine J Field
- Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Canada
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Paul W Wales
- Department of Surgery, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Ohio, USA
| | - Justine M Turner
- Department of Pediatrics, University of Alberta, Edmonton; Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Canada
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada; Department of Pharmacology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
2
|
Dickerson RN, Bingham AL, Canada TW, Chan LN, Cober MP, Cogle SV, Tucker AM, Kumpf VJ. Significant Published Articles in 2023 for Pharmacy Nutrition Support Practice. Hosp Pharm 2024; 59:568-574. [PMID: 39318739 PMCID: PMC11418683 DOI: 10.1177/00185787241237131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Purpose: The purpose of this article is to assist the pharmacist engaged in nutrition support therapy in staying current with pertinent literature. Methods: Several board-certified nutrition support pharmacists aggregated a list of articles relevant to pharmacy nutrition support published in 2023. The list was compiled into a spreadsheet whereby the authors were asked to assess whether the article was considered important. A culled list of publications was then identified whereby at least 5 out of the 8 author participants considered the article to be important for pharmacists practicing in nutrition support. Guideline and consensus papers, important to practice but not ranked, were also included. Results: A total of 133 articles were identified; 9 from the primary literature were voted by the group to be of high importance. Fourteen guidelines, position, recommendation, or consensus papers were also identified. The top-ranked articles from the primary literature were summarized and a narrative regarding its implications to pharmacy nutrition support practice were provided. Conclusion: We recommend that pharmacists engaged in nutrition support therapy be familiar with these articles as it pertains to their practice.
Collapse
Affiliation(s)
- Roland N. Dickerson
- University of Tennessee Health Science Center College of Pharmacy, Memphis, TN, USA
| | | | - Todd W. Canada
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - M. Petrea Cober
- Northeast Ohio Medical University College of Pharmacy, Rootstown, OH, USA
| | - Sarah V. Cogle
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anne M. Tucker
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
3
|
Driscoll D, Bistrian B. Cytokine Release Syndrome Associated With Immune-Modulating Chemotherapy: Potential Mitigating Role of Intravenous Omega-3 Fatty Acid Triglycerides. Cancer Rep (Hoboken) 2024; 7:e70025. [PMID: 39376028 PMCID: PMC11458880 DOI: 10.1002/cnr2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Patient susceptibility to cytokine release syndrome (CRS) resulting from immune-modulating chemotherapy has profound implications for clinical outcome. This is particularly true for patients receiving CAR T-cell therapy. First-line pharmacotherapy for CRS includes the administration of the IL-6 receptor-binding monoclonal antibody tocilizumab, or tocilizumab and corticosteroids. Other agents, such as siltuximab, anakinra, and dasatinab are also being explored for refractory cases of CRS. This review summarizes the potential role of omega-3 fatty acids, that is, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at ameliorating CRS in cancer patients receiving immune-modulating chemotherapy, and is compared with current treatment strategies to reduce the severity of the inflammatory response. RECENT FINDINGS Selective blockade of specific proinflammatory mediators (e.g., IL-6) is effective, but carries a significant risk of serious opportunistic infections. In contrast, omega-3 fatty acids affect multiple triggers underlying the inflammatory response (i.e., prostaglandins, leukotrienes, transcription factors, and specialized proresolving molecules), and its major limitation is avoidance of hypertriglyceridemia, which can be managed by reducing the rate of intravenous administration. This discussion proposes a novel approach by continuous infusion of omega-3 fatty acids to modulate the intensity of the severe systemic inflammatory response from CRS. The purpose of this review is to highlight the potential clinical benefits of a specialized omega-3 fatty acids dosage form to mitigate the severity of CRS as a hypothetical alternative to current treatment. CONCLUSION Optimizing the formulation, for example, enriched fish oil that meets drug concentration standards for EPA and DHA, a continuous infusion rate, reductions in long-chain saturated fatty acids concentrations, and addition of medium-chain triglycerides to improve EPA + DHA utilization and physical stability are key pharmaceutical factors. This may result in a safer and more effective option than targeted abrogation of cytokines and consequent risks of adverse drug reactions, but will require formal study in randomized control trials in humans.
Collapse
Affiliation(s)
- David F. Driscoll
- Stable Solutions LLCEastonMassachusettsUSA
- UMASS Chan Medical SchoolWorcesterMassachusettsUSA
| | | |
Collapse
|
4
|
Cogle SV, Hallum M, Mulherin DW. Applying the 2022 ASPEN adult nutrition support guidelines in a 2024 ICU. Nutr Clin Pract 2024; 39:1055-1068. [PMID: 39077972 DOI: 10.1002/ncp.11188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
An update to the American Society for Parenteral and Enteral Nutrition guidelines for nutrition provision in critically ill adults was published in 2022. In contrast to the previous set of guidelines published in 2016, the revised guidelines selected only studies meeting specific criteria for scientific rigor and only considered publications reflecting more modern intensive care unit (ICU) practices (studies between January 1, 2001, and July 15, 2020). No consensus recommendations were included. Although these methods limited the number of recommendations made and the applicability to current ICU practices, important implications for patient care were evaluated and acknowledged. The literature supporting guideline recommendations that impact parenteral nutrition management is summarized in this review, along with key studies published after the guidelines were revised. Considerations for practical application of this evidence, along with limitations and future guideline directions, are also described.
Collapse
Affiliation(s)
- Sarah V Cogle
- Department of Pharmacy, Clinical Programs, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeleine Hallum
- Department of Nutrition Services, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Diana W Mulherin
- Department of Pharmacy, Clinical Programs, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Berlana D, Albertos R, Barquin R, Pau-Parra A, Díez-Poch M, López-Martínez R, Cea C, Cantenys-Molina S, Ferrer-Costa R. Impact of Omega-3 Fatty Acid Supplementation in Parenteral Nutrition on Inflammatory Markers and Clinical Outcomes in Critically Ill COVID-19 Patients: A Randomized Controlled Trial. Nutrients 2024; 16:3046. [PMID: 39339646 PMCID: PMC11434828 DOI: 10.3390/nu16183046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The heightened inflammatory response observed in COVID-19 patients suggests that omega-3 fatty acids (O3FA) may confer anti-inflammatory benefits. This randomized, double-blind, single-center clinical trial aimed to evaluate the effect of O3FA supplementation in parenteral nutrition (PN) on inflammatory markers in COVID-19 patients admitted to the intensive care unit (ICU). A total of 69 patients were randomized into three groups: one received standard lipid emulsion, and two received O3FA (Omegaven®) at doses of 0.1 g/kg/day and 0.2 g/kg/day, respectively, in addition to Smoflipid®. The primary outcomes measured were serum levels of C-reactive protein (CRP) and interleukin-6 (IL-6) on days 1, 5, and 10 of PN initiation. Secondary outcomes included additional inflammatory markers (TNF-α, IFN-γ, IL-1Ra, CXCL10), hepatic function, triglyceride levels, and clinical outcomes such as mortality and length of ICU and hospital stay. Results indicated a significant reduction in CRP, IL-6, and CXCL10 levels in the group receiving 0.1 g/kg/day O3FA compared to the control. Additionally, the higher O3FA dose was associated with a shorter ICU and hospital stay. These findings suggest that O3FA supplementation in PN may reduce inflammation and improve clinical outcomes in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- David Berlana
- Pharmacy Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Pharmacology, Toxicology and Therapeutic Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Raquel Albertos
- Intensive Care Unit, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Raquel Barquin
- Biochemistry Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Alba Pau-Parra
- Pharmacy Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Monica Díez-Poch
- Intensive Care Unit, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Rocío López-Martínez
- Immunology Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Cristina Cea
- Biochemistry Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Sergi Cantenys-Molina
- Immunology Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Roser Ferrer-Costa
- Intensive Care Unit, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Biochemical Chemistry, Drug Delivery & Therapy (BC-DDT) Research Group, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| |
Collapse
|
6
|
Stoppe C, Martindale RG, Klek S, Calder PC, Wischmeyer PE, Patel JJ. The role of lipid emulsions containing omega-3 fatty acids for medical and surgical critical care patients. Crit Care 2024; 28:271. [PMID: 39135117 PMCID: PMC11321210 DOI: 10.1186/s13054-024-05053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
In critical illness the regulation of inflammation and oxidative stress can improve patient outcomes, and thus omega-3 polyunsaturated fatty acids (PUFAs) have been used as part of parenteral nutrition (PN) owing to their potential anti-inflammatory effects. The international lipids in PN Summit, encompassed discussions and the production of consensus guidelines concerning PN intravenous lipid emulsion (ILE) use in critical care. The Lipid Summit participants agreed that the inclusion of fish oil in ILEs is associated with meaningful clinical benefits without signals of harm, based on a strong biological rationale and current clinical evidence. Decisions concerning ILE choice should be made based on current evidence, thus addressing clinical requirements for guidance, particularly as further definitive evidence seems unlikely to occur. In addition, a future of individualized ICU care is envisioned, yielding better clinical outcomes. This approach will require the greater use of intelligent study designs incorporating the use of biomarkers of omega-3 derivatives, inflammatory-resolving processes, and/or muscle protein breakdown.
Collapse
Affiliation(s)
- Christian Stoppe
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Wuerzburg, Germany.
- Department of Cardiac Anesthesiology and Intensive Care Medicine, German Heart Center Charité Berlin, Berlin, Germany.
| | - Robert G Martindale
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Stanislaw Klek
- Surgical Oncology Clinic, The Maria Sklodowska-Curie National Cancer Institute, Krakow, Poland
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Paul E Wischmeyer
- Division of Anesthesiology and Critical Care Medicine, Duke University Hospital, Durham, NC, USA
| | - Jayshil J Patel
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
7
|
Lopez-Delgado JC, Patel JJ, Stoppe C, McClave SA. Considerations for medical nutrition therapy management of the critically ill patient with hematological malignancies: A narrative review. Nutr Clin Pract 2024; 39:800-814. [PMID: 38666811 DOI: 10.1002/ncp.11152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 07/04/2024] Open
Abstract
Patients with hematological malignancies (HMs) are more frequently admitted now than in the past to the intensive care unit (ICU) due to more aggressive approaches in primary therapy of HMs and the need for critical care support. Pathophysiological alterations derived from HMs and the different hematological therapies, such as chemotherapy, negatively affect gastrointestinal (GI) function, metabolism, and nutrition status. Further, malnutrition strongly influences outcomes and tolerance of the different hematological therapies. In consequence, these critically ill patients frequently present with malnutrition and pathophysiological alterations that create challenges for the delivery of medical nutrition therapy (MNT) in the ICU. Frequent screening, gauging tolerance, and monitoring nutrition status are mandatory to provide individualized MNT and achieve nutrition objectives. The present review discusses how HM impact GI function and nutrition status, the importance of MNT in patients with HM, and specific considerations for guidance in providing adequate MNT to these patients when admitted to the ICU.
Collapse
Affiliation(s)
| | - Jayshil J Patel
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christian Stoppe
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital, Würzburg, Würzburg, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Stephen A McClave
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Yi K, An L, Qi Y, Yang T, Duan Y, Zhao X, Zhang P, Huang X, Su X, Tang Z, Sun D. Docosahexaenoic acid (DHA) promotes recovery from postoperative ileus and the repair of the injured intestinal barrier through mast cell-nerve crosstalk. Int Immunopharmacol 2024; 136:112316. [PMID: 38823183 DOI: 10.1016/j.intimp.2024.112316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/31/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
The objective of this study was to investigate the neuroimmune mechanisms implicated in the enhancement of gastrointestinal function through the administration of oral DHA. Mast cell-deficient mice (KitW-sh) and C57BL/6 mice were used to establish postoperative ileus (POI) models. To further validate our findings, we conducted noncontact coculture experiments involving dorsal root ganglion (DRG) cells, bone marrow-derived mast cells (BMMCs) and T84 cells. Furthermore, the results obtained from investigations conducted on animals and cells were subsequently validated through clinical trials. The administration of oral DHA had ameliorative effects on intestinal barrier injury and postoperative ileus. In a mechanistic manner, the anti-inflammatory effect of DHA was achieved through the activation of transient receptor potential ankyrin 1 (TRPA1) on DRG cells, resulting in the stabilization of mast cells and increasing interleukin 10 (IL-10) secretion in mast cells. Furthermore, the activation of the pro-repair WNT1-inducible signaling protein 1 (WISP-1) signaling pathways by mast cell-derived IL-10 resulted in an enhancement of the intestinal barrier integrity. The current study demonstrated that the neuroimmune interaction between mast cells and nerves played a crucial role in the process of oral DHA improving the intestinal barrier integrity of POI, which further triggered the activation of CREB/WISP-1 signaling in intestinal mucosal cells.
Collapse
Affiliation(s)
- Keqian Yi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Liya An
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Yuxing Qi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Ting Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Yongqing Duan
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Xiaohu Zhao
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Pengcheng Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Xingzong Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Xianming Su
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Zhiyi Tang
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China.
| | - Dali Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China.
| |
Collapse
|
9
|
De Pourcq JT, Riera A, Gras L, Garin N, Busquets MA, Cardenete J, Cardona D, Riera P. Physicochemical Compatibility of Ceftolozane-Tazobactam with Parenteral Nutrition. Pharmaceuticals (Basel) 2024; 17:896. [PMID: 39065746 PMCID: PMC11279994 DOI: 10.3390/ph17070896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Ceftolozane-tazobactam (CT) is used for the treatment of complicated infections and for multidrug-resistant strains of Pseudomonas aeruginosa and extended-spectrum beta-lactamase-producing enterobacteria. In certain cases, simultaneous administration of CT and parenteral nutrition (PN) may be required, but compatibility of Y-site co-administration is unknown. The aim of this study was to analyse the physicochemical compatibility of CT Y-site administered with PN. We evaluated a protocolized PN approach for critical patients in our center. We studied both bolus infusion (2 g ceftolozane/1 g tazobactam in 1 h) and continuous infusion (CI) (6 g ceftolozane/3 g tazobactam) strategies. Samples were visually observed against light, microscopically inspected, and pH was analysed using a pH meter. The mean lipid droplet diameter (MDD) was determined via dynamic light scattering. CT concentration was quantified using HPLC-HRMS. No alterations were observed through visual or microscopic inspection. Changes in pH were ≤0.2, and changes in osmolarity were less than 5%. MDD remained below 500 nm (284.5 ± 2.1 for bolus CT and 286.8 ± 7.5 for CI CT). CT concentrations at t = 0 h and t = 24 h remained within prespecified parameters in both infusion strategies. CT is physiochemically compatible with PN during simulated Y-site administration at the tested concentration and infusion rates.
Collapse
Affiliation(s)
- Jan Thomas De Pourcq
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Adria Riera
- Department of Pharmacy, Hospital de Sant Pau i Santa Tecla, 43003 Tarragona, Spain
| | - Laura Gras
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Noe Garin
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
- School of Health Science Blanquerna, Universitat Ramon Llull, 08025 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28007 Madrid, Spain
| | - Maria Antònia Busquets
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain;
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Joana Cardenete
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Daniel Cardona
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| | - Pau Riera
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Serhan CN, Bäck M, Chiurchiù V, Hersberger M, Mittendorfer B, Calder PC, Waitzberg DL, Stoppe C, Klek S, Martindale RG. Expert consensus report on lipid mediators: Role in resolution of inflammation and muscle preservation. FASEB J 2024; 38:e23699. [PMID: 38805158 DOI: 10.1096/fj.202400619r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
This meeting report presents a consensus on the biological aspects of lipid emulsions in parenteral nutrition, emphasizing the unanimous support for the integration of lipid emulsions, particularly those containing fish oil, owing to their many potential benefits beyond caloric provision. Lipid emulsions have evolved from simple energy sources to complex formulations designed to improve safety profiles and offer therapeutic benefits. The consensus highlights the critical role of omega-3 polyunsaturated fatty acids (PUFAs), notably eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), found in fish oil and other marine oils, for their anti-inflammatory properties, muscle mass preservation, and as precursors to the specialized pro-resolving mediators (SPMs). SPMs play a significant role in immune modulation, tissue repair, and the active resolution of inflammation without impairing host defense mechanisms. The panel's agreement underscores the importance of incorporating fish oil within clinical practices to facilitate recovery in conditions like surgery, critical illness, or immobility, while cautioning against therapies that might disrupt natural inflammation resolution processes. This consensus not only reaffirms the role of specific lipid components in enhancing patient outcomes, but also suggests a shift towards nutrition-based therapeutic strategies in clinical settings, advocating for the proactive evidence-based use of lipid emulsions enriched with omega-3 PUFAs. Furthermore, we should seek to apply our knowledge concerning DHA, EPA, and their SPM derivatives, to produce more informative randomized controlled trial protocols, thus allowing more authoritative clinical recommendations.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Hale Building for Transformative Medicine, Boston, Massachusetts, USA
| | - Magnus Bäck
- Department of Medicine Solna, Karolinska Institute, Solna, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- INSERM U1116, Université de Lorraine, Nancy University Hospital, Vandoeuvre les Nancy, France
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council of Rome, Rome, Italy
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bettina Mittendorfer
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Department of Nutrition & Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Philip C Calder
- Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Dan L Waitzberg
- Department of Gastroenterology, School of Medicine, University of Sao Paulo, Hospital das Clínicas LIM 35, Ganep-Human Nutrition, Sao Paulo, Brazil
| | - Christian Stoppe
- Department of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Stanislaw Klek
- Surgical Oncology Clinic, The Maria Sklodowska-Curie National Cancer Institute, Krakow, Poland
| | - Robert G Martindale
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The very-long chain (VLC) omega-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) promote optimal development, physiological function and healthy ageing and help to manage disease. EPA and DHA are sourced mainly from fish, which is not sustainable. This review explores alternative sustainable sources. RECENT FINDINGS Recent research confirms that higher intake and status of EPA and DHA are associated with health benefits including lower risk of incident type-2 diabetes and cardiovascular disease mortality. Meta-analyses confirm benefits of intravenous EPA and DHA in hospitalized adults. Algal oils and seed oils from some genetically modified (GM) plants are sources of EPA and DHA. An oil from GM camelina showed equivalence with fish oil in human trials. Ahiflower oil, a source of stearidonic acid, had biological effects in experimental studies that might translate into health benefits. An intravenous lipid emulsion based on Ahiflower oil has been tested in experimental research. Pine nut oil (PNO) is a source of pinolenic acid, which is not an omega-3 PUFA but has similar actions. SUMMARY Algal oils, oils from GM seed crops, Ahiflower oil and other sources of stearidonic acid, and nonomega-3 oils including PNO, are plant-sourced sustainable alternatives to fish-sourced VLC omega-3 PUFAs.
Collapse
Affiliation(s)
- Ella J Baker
- School of Human Development and Health, Faculty of Medicine
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
13
|
Lauwers C, De Bruyn L, Langouche L. Impact of critical illness on cholesterol and fatty acids: insights into pathophysiology and therapeutic targets. Intensive Care Med Exp 2023; 11:84. [PMID: 38015312 PMCID: PMC10684846 DOI: 10.1186/s40635-023-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
Critical illness is characterized by a hypercatabolic response encompassing endocrine and metabolic alterations. Not only the uptake, synthesis and metabolism of glucose and amino acids is majorly affected, but also the homeostasis of lipids and cholesterol is altered during acute and prolonged critical illness. Patients who suffer from critically ill conditions such as sepsis, major trauma, surgery or burn wounds display an immediate and sustained reduction in low plasma LDL-, HDL- and total cholesterol concentrations, together with a, less pronounced, increase in plasma free fatty acids. The severity of these alterations is associated with severity of illness, but the underlying pathophysiological mechanisms are multifactorial and only partly clarified. This narrative review aims to provide an overview of the current knowledge of how lipid and cholesterol uptake, synthesis and metabolism is affected during critical illness. Reduced nutritional uptake, increased scavenging of lipoproteins as well as an increased conversion to cortisol or other cholesterol-derived metabolites might all play a role in the decrease in plasma cholesterol. The acute stress response to critical illness creates a lipolytic cocktail, which might explain the increase in plasma free fatty acids, although reduced uptake and oxidation, but also increased lipogenesis, especially in prolonged critical illness, will also affect the circulating levels. Whether a disturbed lipid homeostasis warrants intervention or should primarily be interpreted as a signal of severity of illness requires further research.
Collapse
Affiliation(s)
- Caroline Lauwers
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Lauren De Bruyn
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
| |
Collapse
|
14
|
Liu H, Chen J, Shao W, Yan S, Ding S. Efficacy and safety of Omega-3 polyunsaturated fatty acids in adjuvant treatments for colorectal cancer: A meta-analysis of randomized controlled trials. Front Pharmacol 2023; 14:1004465. [PMID: 37144220 PMCID: PMC10151497 DOI: 10.3389/fphar.2023.1004465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Background: Colorectal cancer (CRC) ranks third globally. There are many adverse reactions to treatments such as surgeries and post-surgical chemotherapy, which affect patients' prognosis and reduce their life quality. Omega-3 polyunsaturated fatty acids (O3FAs) have become an essential part of immune nutrition due to their anti-inflammatory properties, which improve body immunity and have attracted widespread attention. A systematic review focused on the efficacy and safety of O3FAs for patients undergoing surgeries in combination with chemotherapy or a surgery alone is lacking. Objectives: To evaluate the efficacy of O3FAs in the adjuvant treatment of CRC, a meta-analysis was conducted on patients with CRC who underwent surgeries in combination with chemotherapy or a surgery alone. Methods: As of March 2023, publications have been obtained using search terms from digital databases such as PubMed, Web of Science, Embase and Cochrane Library. Only randomized clinical trials (RCTs) evaluating the efficacy and safety of O3FAs following adjuvant treatments for CRC were included in the meta-analysis. Key outcomes were tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-1beta (IL-1β), albumin, body mass index (BMI), weight, the rate of infectious and non-infectious complications, the length of hospital stay (LOS), CRC mortality and life quality. Results: After screening 1,080 studies, 19 RCTs (n = 1,556) with O3FAs in CRC were included, in all of which at least one efficacy or safety outcome was examined. Compared to the control group, the level of TNF-α (MD = -0.79, 95% CI: 1.51 to -0.07, p = 0.03) and IL-6 was reduced due to O3FA-enriched nutrition during the perioperative period (MD = -4.70, 95% CI: 6.59 to -2.80, p < 0.00001). It also reduces LOS (MD = 9.36, 95% CI: 2.16 to 16.57, p = 0.01). No significant differences were found in CRP, IL-1β, albumin, BMI, weight, the rate of infectious and non-infectious complications, CRC mortality or life quality. The inflammatory status of patients with CRC undergoing adjuvant therapies decreased after a total parenteral nutrition (TPN) O3FA supplementation (TNF-α, MD = -1.26, 95% CI: 2.25 to -0.27, p = 0.01, I 2 = 4%, n = 183 participants). The rate of infectious and non-infectious complications was reduced among patients with CRC undergoing adjuvant therapies after a parenteral nutrition (PN) O3FA supplementation (RR = 3.73, 95% CI: 1.52 to 9.17, p = 0.004, I 2 = 0%, n = 76 participants). Conclusion: Our observations suggest that supplementation with O3FAs has little or no effect on patients with CRC undergoing adjuvant therapies and that a prolonged inflammatory state may be modified. To validate these findings, well-designed, large-scale, randomized and controlled studies on homogeneous patient populations are expected.
Collapse
Affiliation(s)
- Haoshuang Liu
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jingfeng Chen
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weihao Shao
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
- *Correspondence: Suying Ding,
| |
Collapse
|