1
|
Oster C, Kessler L, Blau T, Keyvani K, Pabst KM, Fendler WP, Fragoso Costa P, Lazaridis L, Schmidt T, Feldheim J, Pierscianek D, Schildhaus HU, Sure U, Ahmadipour Y, Kleinschnitz C, Guberina N, Stuschke M, Deuschl C, Scheffler B, Herrmann K, Kebir S, Glas M. The Role of Fibroblast Activation Protein in Glioblastoma and Gliosarcoma: A Comparison of Tissue, 68Ga-FAPI-46 PET Data, and Survival Data. J Nucl Med 2024; 65:1217-1223. [PMID: 38960714 DOI: 10.2967/jnumed.123.267151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
Despite their unique histologic features, gliosarcomas belong to the group of glioblastomas and are treated according to the same standards. Fibroblast activation protein (FAP) is a component of a tumor-specific subpopulation of fibroblasts that plays a critical role in tumor growth and invasion. Some case studies suggest an elevated expression of FAP in glioblastoma and a particularly strong expression in gliosarcoma attributed to traits of predominant mesenchymal differentiation. However, the prognostic impact of FAP and its diagnostic and therapeutic potential remain unclear. Here, we investigate the clinical relevance of FAP expression in gliosarcoma and glioblastoma and how it correlates with 68Ga-FAP inhibitor (FAPI)-46 PET uptake. Methods: Patients diagnosed with gliosarcoma or glioblastoma without sarcomatous differentiation with an overall survival of less than 2.5 y were enrolled. Histologic examination included immunohistochemistry and semiquantitative scoring of FAP (0-3, with higher values indicating stronger expression). Additionally, 68Ga-FAPI-46 PET scans were performed in a subset of glioblastomas without sarcomatous differentiation patients. The clinical SUVs were correlated with FAP expression levels in surgically derived tumor tissue and relevant prognostic factors. Results: Of the 61 patients who were enrolled, 13 of them had gliosarcoma. Immunohistochemistry revealed significantly more FAP in gliosarcomas than in glioblastomas without sarcomatous differentiation of tumor tissue (P < 0.0001). In the latter, FAP expression was confined to the perivascular space, whereas neoplastic cells additionally expressed FAP in gliosarcoma. A significant correlation of immunohistochemical FAP with SUVmean and SUVpeak of 68Ga-FAPI-46 PET indicates that clinical tracer uptake represents FAP expression of the tumor. Although gliosarcomas express higher levels of FAP than do glioblastomas without sarcomatous differentiation, overall survival does not significantly differ between the groups. Conclusion: The analysis reveals a significant correlation between SUVmean and SUVpeak in 68Ga-FAPI-46 PET and immunohistochemical FAP expression. This study indicates that FAP expression is much more abundant in the gliosarcoma subgroup of glioblastomas. This could open not only a diagnostic but also a therapeutic gap, since FAP could be explored as a theranostic target to enhance survival in a distinct subgroup of high-risk brain tumor patients with poor survival prognosis.
Collapse
Affiliation(s)
- Christoph Oster
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Tobias Blau
- Institute of Neuropathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Lazaros Lazaridis
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Teresa Schmidt
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Jonas Feldheim
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Daniela Pierscianek
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, St. Marienhospital Lünen, Lünen, Germany
| | - Hans Ulrich Schildhaus
- Institute of Pathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Discovery Life Sciences Biomarker Services GmbH, Kassel, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Yahya Ahmadipour
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Nika Guberina
- Department of Radiotherapy, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Cornelius Deuschl
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany; and
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Heidelberg, Germany
| | - Sied Kebir
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Glas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Lei M, Liu J, Gao Y, Dai W, Huang H, Jiang Q, Liu Z. DPP Inhibition Enhances the Efficacy of PD-1 Blockade by Remodeling the Tumor Microenvironment in Lewis Lung Carcinoma Model. Biomolecules 2024; 14:391. [PMID: 38672409 PMCID: PMC11047990 DOI: 10.3390/biom14040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The remarkable efficacy of cancer immunotherapy has been established in several tumor types. Of the various immunotherapies, PD-1/PD-L1 inhibitors are most extensively used in the treatment of many cancers in clinics. These inhibitors restore the suppressed antitumor immune response and inhibit tumor progression by blocking the PD-1/PD-L1 signaling. However, the low response rate is a major limitation in the clinical application of PD-1/PD-L1 inhibitors. Therefore, combination strategies that enhance the response rate are the need of the hour. In this investigation, PT-100 (also referred to as Talabostat, Val-boroPro, and BXCL701), an orally administered and nonselective dipeptidyl peptidase inhibitor, not only augmented the effectiveness of anti-PD-1 therapy but also significantly improved T immune cell infiltration and reversed the immunosuppressive tumor microenvironment. The combination of PT-100 and anti-PD-1 antibody increased the number of CD4+ and CD8+ T cells. Moreover, the mRNA expression of T cell-associated molecules was elevated in the tumor microenvironment. The results further suggested that PT-100 dramatically reduced the ratio of tumor-associated macrophages. These findings provide a promising combination strategy for immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Mengrong Lei
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China (Y.G.); (W.D.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Junyan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Gao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China (Y.G.); (W.D.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Wenting Dai
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China (Y.G.); (W.D.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China (Y.G.); (W.D.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Qingqing Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China (Y.G.); (W.D.)
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Glabman RA, Olkowski CP, Minor HA, Bassel LL, Kedei N, Choyke PL, Sato N. Tumor Suppression by Anti-Fibroblast Activation Protein Near-Infrared Photoimmunotherapy Targeting Cancer-Associated Fibroblasts. Cancers (Basel) 2024; 16:449. [PMID: 38275890 PMCID: PMC10813865 DOI: 10.3390/cancers16020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) constitute a prominent cellular component of the tumor stroma, with various pro-tumorigenic roles. Numerous attempts to target fibroblast activation protein (FAP), a highly expressed marker in immunosuppressive CAFs, have failed to demonstrate anti-tumor efficacy in human clinical trials. Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor therapy that utilizes an antibody-photo-absorbing conjugate activated by near-infrared light. In this study, we examined the therapeutic efficacy of CAF depletion by NIR-PIT in two mouse tumor models. Using CAF-rich syngeneic lung and spontaneous mammary tumors, NIR-PIT against FAP or podoplanin was performed. Anti-FAP NIR-PIT effectively depleted FAP+ CAFs, as well as FAP+ myeloid cells, and suppressed tumor growth, whereas anti-podoplanin NIR-PIT was ineffective. Interferon-gamma production by CD8 T and natural killer cells was induced within hours after anti-FAP NIR-PIT. Additionally, lung metastases were reduced in the treated spontaneous mammary cancer model. Depletion of FAP+ stromal as well as FAP+ myeloid cells effectively suppressed tumor growth in bone marrow chimeras, suggesting that the depletion of both cell types in one treatment is an effective therapeutic approach. These findings highlight a promising therapy for selectively eliminating immunosuppressive FAP+ cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Raisa A. Glabman
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Colleen P. Olkowski
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Hannah A. Minor
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Laura L. Bassel
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA;
| | - Noemi Kedei
- Collaborative Protein Technology Resources, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| |
Collapse
|
4
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
5
|
Bukhari M, Patel N, Fontana R, Santiago-Medina M, Jiang Y, Li D, Pestonjamasp K, Christiansen VJ, Jackson KW, McKee PA, Yang J. Fibroblast activation protein drives tumor metastasis via a protease-independent role in invadopodia stabilization. Cell Rep 2023; 42:113302. [PMID: 37862167 PMCID: PMC10742343 DOI: 10.1016/j.celrep.2023.113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
During metastasis, tumor cells invade through the basement membrane and intravasate into blood vessels and then extravasate into distant organs to establish metastases. Here, we report a critical role of a transmembrane serine protease fibroblast activation protein (FAP) in tumor metastasis. Expression of FAP and TWIST1, a metastasis driver, is significantly correlated in several types of human carcinomas, and FAP is required for TWIST1-induced breast cancer metastasis to the lung. Mechanistically, FAP is localized at invadopodia and required for invadopodia-mediated extracellular matrix degradation independent of its proteolytic activity. Live cell imaging shows that association of invadopodia precursors with FAP at the cell membrane promotes the stabilization and growth of invadopodia precursors into mature invadopodia. Together, our study identified FAP as a functional target of TWIST1 in driving tumor metastasis via promoting invadopodia-mediated matrix degradation and uncovered a proteolytic activity-independent role of FAP in stabilizing invadopodia precursors for maturation.
Collapse
Affiliation(s)
- Maurish Bukhari
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Navneeta Patel
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rosa Fontana
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Miguel Santiago-Medina
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Yike Jiang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Dongmei Li
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Kersi Pestonjamasp
- Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Victoria J Christiansen
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kenneth W Jackson
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Patrick A McKee
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Kalaei Z, Manafi-Farid R, Rashidi B, Kiani FK, Zarei A, Fathi M, Jadidi-Niaragh F. The Prognostic and therapeutic value and clinical implications of fibroblast activation protein-α as a novel biomarker in colorectal cancer. Cell Commun Signal 2023; 21:139. [PMID: 37316886 DOI: 10.1186/s12964-023-01151-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
The identification of contributing factors leading to the development of Colorectal Cancer (CRC), as the third fatal malignancy, is crucial. Today, the tumor microenvironment has been shown to play a key role in CRC progression. Fibroblast-Activation Protein-α (FAP) is a type II transmembrane cell surface proteinase expressed on the surface of cancer-associated fibroblasts in tumor stroma. As an enzyme, FAP has di- and endoprolylpeptidase, endoprotease, and gelatinase/collagenase activities in the Tumor Microenvironment (TME). According to recent reports, FAP overexpression in CRC contributes to adverse clinical outcomes such as increased lymph node metastasis, tumor recurrence, and angiogenesis, as well as decreased overall survival. In this review, studies about the expression level of FAP and its associations with CRC patients' prognosis are reviewed. High expression levels of FAP and its association with clinicopathological factors have made as a potential target. In many studies, FAP has been evaluated as a therapeutic target and diagnostic factor into which the current review tries to provide a comprehensive insight. Video Abstract.
Collapse
Affiliation(s)
- Zahra Kalaei
- Department of Biology, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
| | - Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asieh Zarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Therapeutic Targeting of Cancer-Associated Fibroblasts in the Non-Small Cell Lung Cancer Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15020335. [PMID: 36672284 PMCID: PMC9856659 DOI: 10.3390/cancers15020335] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer death worldwide. The most common lung cancer is non-small cell lung cancer (NSCLC), with an overall 5-year survival rate of around 20% because NSCLC is a metastatic disease. A better understanding of the mechanism underlying lung cancer metastasis is therefore urgently needed. The tumor microenvironment involves different types of stromal cells and functions as key components in the progression of NSCLC. Through epithelial-mesenchymal transition (EMT), in which epithelial cells lose their polarity and acquire mesenchymal potential, cancer cells acquire metastatic abilities, as well as cancer stem-cell-like potential. We previously reported that cancer-associated fibroblasts (CAFs) interact with lung cancer cells to allow for the acquisition of malignancy and treatment resistance by paracrine loops via EMT signals in the tumor microenvironment. Furthermore, CAFs regulate the cytotoxic activity of immune cells via various cytokines and chemokines, creating a microenvironment of immune tolerance. Regulation of CAFs can therefore affect immune responses. Recent research has shown several roles of CAFs in NSCLC tumorigenesis, owing to their heterogeneity, so molecular markers of CAFs should be elucidated to better classify tumor-promoting subtypes and facilitate the establishment of CAF-specific targeted therapies. CAF-targeted cancer treatments may suppress EMT and regulate the niche of cancer stem cells and the immunosuppressive network and thus may prove useful for NSCLC treatment through multiple mechanisms.
Collapse
|
8
|
Jin J, Barnett JD, Krishnamachary B, Mironchik Y, Luo CK, Kobayashi H, Bhujwalla ZM. Evaluating near-infrared photoimmunotherapy for targeting fibroblast activation protein-α expressing cells in vitro and in vivo. Cancer Sci 2023; 114:236-246. [PMID: 36169301 PMCID: PMC9807523 DOI: 10.1111/cas.15601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Photoimmunotherapy (PIT), carried out using an Ab conjugated to the near infrared dye IRDye700DX, is achieving significant success in target-specific elimination of cells. Fibroblast activation protein alpha (FAP-α) is an important target in cancer because of its expression by cancer-associated fibroblasts (CAFs) as well as by some cancer cells. Cancer-associated fibroblasts that express FAP-α have protumorigenic and immune suppressive functions. Using immunohistochemistry of human breast cancer tissue microarrays, we identified an increase of FAP-α+ CAFs in invasive breast cancer tissue compared to adjacent normal tissue. We found FAP-α expression increased in fibroblasts cocultured with cancer cells. In proof-of-principle studies, we engineered human FAP-α overexpressing MDA-MB-231 and HT-1080 cancer cells and murine FAP-α overexpressing NIH-3T3 fibroblasts to evaluate several anti-FAP-α Abs and selected AF3715 based on its high binding affinity with both human and mouse FAP-α. After conjugation of AF3715 with the phthalocyanine dye IR700, the resultant Ab conjugate, FAP-α-IR700, was evaluated in cells and tumors for its specificity and effectiveness in eliminating FAP-α expressing cell populations with PIT. Fibroblast activation protein-α-IR700-PIT resulted in effective FAP-α-specific cell killing in the engineered cancer cells and in two patient-derived CAFs in a dose-dependent manner. Following an intravenous injection, FAP-α-IR700 retention was three-fold higher than IgG-IR700 in FAP-α overexpressing tumors, and two-fold higher compared to WT tumors. Fibroblast activation protein-α-IR700-PIT resulted in significant growth inhibition of tumors derived from FAP-α overexpressing human cancer cells. A reduction of endogenous FAP-α+ murine CAFs was identified at 7 days after FAP-α-IR700-PIT. Fibroblast activation protein-α-targeted near infrared PIT presents a promising strategy to eliminate FAP-α+ CAFs.
Collapse
Affiliation(s)
- Jiefu Jin
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - James D Barnett
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Catherine K Luo
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Hisataka Kobayashi
- Laboratory of Molecular Theranostics Molecular Imaging Branch, NCI/NIH, Bethesda, Maryland, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Li C, Qiu Y, Zhang Y. Research Progress on Therapeutic Targeting of Cancer-Associated Fibroblasts to Tackle Treatment-Resistant NSCLC. Pharmaceuticals (Basel) 2022; 15:1411. [PMID: 36422541 PMCID: PMC9696940 DOI: 10.3390/ph15111411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for most lung cancer cases and is the leading cause of cancer-related deaths worldwide. Treatment options for lung cancer are no longer limited to surgery, radiotherapy, and chemotherapy, as targeted therapy and immunotherapy offer a new hope for patients. However, drug resistance in chemotherapy and targeted therapy, and the low response rates to immunotherapy remain important challenges. Similar to tumor development, drug resistance occurs because of significant effects exerted by the tumor microenvironment (TME) along with cancer cell mutations. Cancer-associated fibroblasts (CAFs) are a key component of the TME and possess multiple functions, including cross-talking with cancer cells, remodeling of the extracellular matrix (ECM), secretion of various cytokines, and promotion of epithelial-mesenchymal transition, which in turn provide support for the growth, invasion, metastasis, and drug resistance of cancer cells. Therefore, CAFs represent valuable therapeutic targets for lung cancer. Herein, we review the latest progress in the use of CAFs as potential targets and mediators of drug resistance for NSCLC treatment. We explored the role of CAFs on the regulation of the TME and surrounding ECM, with particular emphasis on treatment strategies involving combined CAF targeting within the current framework of cancer treatment.
Collapse
|
10
|
Peltier A, Seban RD, Buvat I, Bidard FC, Mechta-Grigoriou F. Fibroblast heterogeneity in solid tumors: From single cell analysis to whole-body imaging. Semin Cancer Biol 2022; 86:262-272. [PMID: 35489628 DOI: 10.1016/j.semcancer.2022.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/09/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023]
Abstract
Cancer-Associated Fibroblasts (CAFs) represent the most prominent component of the tumor microenvironment (TME). Recent studies demonstrated that CAF are heterogeneous and composed of different subpopulations exerting distinct functions in cancer. CAF populations differentially modulate various aspects of tumor growth, including cancer cell proliferation, extra-cellular matrix remodeling, metastatic dissemination, immunosuppression and resistance to treatment. Among other markers, the Fibroblast Activation Protein (FAP) led to the identification of a specific CAF subpopulation involved in metastatic spread and immunosuppression. Expression of FAP at the surface of CAF is detected in many different cancer types of poor prognosis. Thus, FAP recently appears as an appealing target for therapeutic and molecular imaging applications. In that context, 68Ga-labeled radiopharmaceutical-FAP-inhibitors (FAPI) have been recently developed and validated for quantitatively mapping FAP expression over the whole-body using Positron Emission Tomography (PET/CT). In this review, we describe the main current knowledge on CAF subpopulations and their distinct functions in solid tumors, as well as the promising diagnostic and therapeutic implications of radionuclides targeting FAP.
Collapse
Affiliation(s)
- Agathe Peltier
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248 Paris, France; Inserm, U830, 26, rue d'Ulm, Paris, F-75005 France
| | - Romain-David Seban
- Nuclear Medicine Department, Institut Curie Hospital Group, 35 rue Dailly, 92210 Saint-Cloud, France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Inserm, Institut Curie, Orsay, France
| | - Irène Buvat
- Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Inserm, Institut Curie, Orsay, France.
| | - François-Clément Bidard
- Department of Medical Oncology, Inserm CIC-BT 1428, Institut Curie, UVSQ/Paris Saclay University, Saint-Cloud, France.
| | - Fatima Mechta-Grigoriou
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248 Paris, France; Inserm, U830, 26, rue d'Ulm, Paris, F-75005 France.
| |
Collapse
|
11
|
Cheng CS, Yang PW, Sun Y, Song SL, Chen Z. Fibroblast activation protein-based theranostics in pancreatic cancer. Front Oncol 2022; 12:969731. [PMID: 36263225 PMCID: PMC9574192 DOI: 10.3389/fonc.2022.969731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Fibroblast activation protein-α (FAP) is a type II transmembrane serine protease that has specific endopeptidase activity. Given its well-established selective expression in the activated stromal fibroblasts of epithelial cancers, although not in quiescent fibroblasts, FAP has received substantial research attention as a diagnostic marker and therapeutic target. Pancreatic cancer is characterized by an abundant fibrotic or desmoplastic stroma, leading to rapid progression, therapeutic resistance, and poor clinical outcomes. Numerous studies have revealed that the abundant expression of FAP in cancer cells, circulating tumor cells, stromal cells, and cancer-associated fibroblasts (CAFs) of pancreatic adenocarcinoma is implicated in diverse cancer-related signaling pathways, contributing to cancer progression, invasion, migration, metastasis, immunosuppression, and resistance to treatment. In this article, we aim to systematically review the recent advances in research on FAP in pancreatic adenocarcinoma, including its utility as a diagnostic marker, therapeutic potential, and correlation with prognosis. We also describe the functional role of FAP-overexpressing stromal cells, particulary CAFs, in tumor immuno- and metabolic microenvironments, and summarize the mechanisms underlying the contribution of FAP-overexpressing CAFs in pancreatic cancer progression and treatment resistance. Furthermore, we discuss whether targeting FAP-overexpressing CAFs could represent a potential therapeutic strategy and describe the development of FAP-targeted probes for diagnostic imaging. Finally, we assess the emerging basic and clinical studies regarding the bench-to-bedside translation of FAP in pancreatic cancer.
Collapse
Affiliation(s)
- Chien-shan Cheng
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Pei-wen Yang
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun Sun
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Shao-li Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Nuclear Medicine Department, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Zhen Chen,
| |
Collapse
|
12
|
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T, Singh S. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev 2022; 189:114504. [PMID: 35998825 DOI: 10.1016/j.addr.2022.114504] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is emerging as one of the primary barriers in cancer therapy. Cancer-associated fibroblasts (CAF) are a common inhabitant of the TME in several tumor types and play a critical role in tumor progression and drug resistance via different mechanisms such as desmoplasia, angiogenesis, immune modulation, and cancer metabolism. Due to their abundance and significance in pro-tumorigenic mechanisms, CAF are gaining attention as a diagnostic target as well as to improve the efficacy of cancer therapy by their modulation. In this review, we highlight existing imaging techniques that are used for the visualization of CAF and CAF-induced fibrosis and provide an overview of compounds that are known to modulate CAF activity. Subsequently, we also discuss CAF-targeted and CAF-modulating nanocarriers. Finally, our review addresses ongoing challenges and provides a glimpse into the prospects that can spearhead the transition of CAF-targeted therapies from opportunity to reality.
Collapse
Affiliation(s)
- Rahul Rimal
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Aisa Hosseinnejad
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Section: Engineered Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Mona CE, Benz MR, Hikmat F, Grogan TR, Lueckerath K, Razmaria A, Riahi R, Slavik R, Girgis MD, Carlucci G, Kelly KA, French SW, Czernin J, Dawson DW, Calais J. Correlation of 68Ga-FAPi-46 PET Biodistribution with FAP Expression by Immunohistochemistry in Patients with Solid Cancers: Interim Analysis of a Prospective Translational Exploratory Study. J Nucl Med 2022; 63:1021-1026. [PMID: 34740953 PMCID: PMC9258565 DOI: 10.2967/jnumed.121.262426] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
Fibroblast activation protein (FAP)-expressing cancer-associated fibroblasts confer treatment resistance and promote metastasis and immunosuppression. Because FAP is overexpressed in many cancers, radiolabeled molecules targeting FAP are studied for their use as pancancer theranostic agents. This study aimed to establish the spectrum of FAP expression across various cancers by immunohistochemistry and to explore whether 68Ga FAP inhibitor (FAPi)-46 PET biodistribution faithfully reflects FAP expression from resected cancer and non-cancer specimens. Methods: We conducted a FAP expression screening using immunohistochemistry on a pancancer human tissue microarray (141 patients, 14 different types of cancer) and an interim analysis of a prospective exploratory imaging trial in cancer patients. Volunteer patients underwent 1 whole-body 68Ga-FAPi-46 PET/CT scan and, subsequently, surgical resection of their primary tumor or metastasis. 68Ga-FAPi-46 PET SUVmax and SUVmean was correlated with FAP immunohistochemistry score in cancer and tumor-adjacent non-cancer tissues for each patient. Results: FAP was expressed across all 14 cancer types on tissue microarray with variable intensity and frequency, ranging from 25% to 100% (mean, 76.6% ± 25.3%). Strong FAP expression was observed in 50%-100% of cancers of the bile duct, bladder, colon, esophagus, stomach, lung, oropharynx, ovary, and pancreas. Fifteen patients with various cancer types (colorectal [n = 4], head and neck [n = 3], pancreas [n = 2], breast [n = 2], stomach [n = 1], esophagus [n = 2], and uterus [n = 1]) underwent surgery after their 68Ga-FAPi-46 PET/CT scan within a mean interval of 16.1 ± 14.4 d. 68Ga-FAPi-46 SUVs and immunohistochemistry scores were higher in cancer than in tumor-adjacent non-cancer tissue: mean SUVmax 7.7 versus 1.6 (P < 0.001), mean SUVmean 6.2 versus 1.0 (P < 0.001), and mean FAP immunohistochemistry score 2.8 versus 0.9 (P < 0.001). FAP immunohistochemistry scores strongly correlated with 68Ga-FAPi 46 SUVmax and SUVmean: r = 0.781 (95% CI, 0.376-0.936; P < 0.001) and r = 0.783 (95% CI, 0.379-0.936; P < 0.001), respectively. Conclusion: In this interim analysis of a prospective exploratory imaging trial, 68Ga-FAPi-46 PET biodistribution across multiple cancers strongly correlated with FAP tissue expression. These findings support further exploration of FAPi PET as a pancancer imaging biomarker for FAP expression and as a stratification tool for FAP-targeted therapies.
Collapse
Affiliation(s)
- Christine E Mona
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California;
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
- Institute of Urologic Oncology, UCLA, Los Angeles, California
| | - Matthias R Benz
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Firas Hikmat
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Tristan R Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Katharina Lueckerath
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
- Institute of Urologic Oncology, UCLA, Los Angeles, California
| | - Aria Razmaria
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Rana Riahi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Roger Slavik
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Mark D Girgis
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Giuseppe Carlucci
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Kimberly A Kelly
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, and Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Samuel W French
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
- Institute of Urologic Oncology, UCLA, Los Angeles, California
| | - David W Dawson
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California;
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
- Institute of Urologic Oncology, UCLA, Los Angeles, California
| |
Collapse
|
14
|
Fibroblast Activation Protein Inhibitor Theranostics. PET Clin 2022; 17:453-464. [PMID: 35717101 DOI: 10.1016/j.cpet.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The evolution of the fibroblast activation protein inhibitor molecules over the past decade has brought into the forefront a novel theranostic agent that has the potential of matching the workhorse of PET/computed tomography, [fluorine-18] fluoro-2-deoxy-d-glucose (18F-FDG). It is hoped that in the next decade it can act as a complementary tracer to 18F-FDG, in providing phenotypic and biomarker information and also in directing fibroblast activation protein-targeted therapies.
Collapse
|
15
|
Wu Z, Hua Y, Shen Q, Yu C. Research progress on the role of fibroblast activation protein in diagnosis and treatment of cancer. Nucl Med Commun 2022; 43:746-755. [PMID: 35506275 DOI: 10.1097/mnm.0000000000001565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibroblast activation protein (FAP) is a type II transmembrane protein, which is over-expressed in cancer-associated fibroblasts (CAFs). CAFs are tumor stromal cells that constitute a major component of cancer volume and are reportedly related to tumorigenesis, angiogenesis, metastasis, promotion of drug resistance and induction of tumor immunity. FAP is widely acknowledged as the signature protein of CAFs. At present, FAP inhibitors (FAPI) have achieved ideal results in tumor PET/computed tomography (CT) imaging. Theoretically, FAP-targeted drugs can inhibit tumor progression. Nonetheless, no satisfactory therapeutic effect has been observed so far, which has impeded their implementation in clinical practice. In this review, we describe the characteristics of FAP and its role in the occurrence and development of cancer. We also highlight the potential value of targeting FAP to improve current diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Zhaoye Wu
- Wuxi School of Medicine, Jiangnan University
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuqi Hua
- Wuxi School of Medicine, Jiangnan University
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qiaoling Shen
- Wuxi School of Medicine, Jiangnan University
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chunjing Yu
- Wuxi School of Medicine, Jiangnan University
| |
Collapse
|
16
|
Huang R, Pu Y, Huang S, Yang C, Yang F, Pu Y, Li J, Chen L, Huang Y. FAPI-PET/CT in Cancer Imaging: A Potential Novel Molecule of the Century. Front Oncol 2022; 12:854658. [PMID: 35692767 PMCID: PMC9174525 DOI: 10.3389/fonc.2022.854658] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblast activation protein (FAP), a type II transmembrane serine protease, is highly expressed in more than 90% of epithelial tumors and is closely associated with various tumor invasion, metastasis, and prognosis. Using FAP as a target, various FAP inhibitors (FAPIs) have been developed, most of which have nanomolar levels of FAP affinity and high selectivity and are used for positron emission tomography (PET) imaging of different tumors. We have conducted a systematic review of the available data; summarized the biological principles of FAPIs for PET imaging, the synthesis model, and metabolic characteristics of the radiotracer; and compared the respective values of FAPIs and the current mainstream tracer 18F-Fludeoxyglucose (18F-FDG) in the clinical management of tumor and non-tumor lesions. Available research evidence indicates that FAPIs are a molecular imaging tool complementary to 18F-FDG and are expected to be the new molecule of the century with better imaging effects than 18F-FDG in a variety of cancers, including gastrointestinal tumors, liver tumors, breast tumors, and nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Rong Huang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Shun Huang
- Department of Nuclear medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Fake Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China.,Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
17
|
Tajaldini M, Saeedi M, Amiriani T, Amiriani AH, Sedighi S, Mohammad Zadeh F, Dehghan M, Jahanshahi M, Zanjan Ghandian M, Khalili P, Poorkhani AH, Alizadeh AM, Khori V. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs); where do they stand in tumorigenesis and how they can change the face of cancer therapy? Eur J Pharmacol 2022; 928:175087. [PMID: 35679891 DOI: 10.1016/j.ejphar.2022.175087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
The tumor microenvironment (TME) and its components have recently attracted tremendous attention in cancer treatment strategies, as alongside the genetic and epigenetic alterations in tumor cells, TME could also provide a fertile background for malignant cells to survive and proliferate. Interestingly, TME plays a vital role in the mediation of cancer metastasis and drug resistance even against immunotherapeutic agents. Among different cells that are presenting in TME, tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) have shown to have significant value in the regulation of angiogenesis, tumor metastasis, and drug-resistance through manipulating the composition as well as the organization of extracellular matrix (ECM). Evidence has shown that the presence of both TAMs and CAFs in TME is associated with poor prognosis and failure of chemotherapeutic agents. It seems that these cells together with ECM form a shield around tumor cells to protect them from the toxic agents and even the adaptive arm of the immune system, which is responsible for tumor surveillance. Given this, targeting TAMs and CAFs seems to be an essential approach to potentiate the cytotoxic effects of anti-cancer agents, either conventional chemotherapeutic drugs or immunotherapies. In the present review, we aimed to take a deep look at the mechanobiology of CAFs and TAMs in tumor progression and to discuss the available therapeutic approaches for harnessing these cells in TME.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Hossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Sedighi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Mohammad Zadeh
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Dehghan
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maziar Zanjan Ghandian
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Khalili
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
18
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
19
|
Fitzgerald AA, Wang S, Agarwal V, Marcisak EF, Zuo A, Jablonski SA, Loth M, Fertig EJ, MacDougall J, Zhukovsky E, Trivedi S, Bhatia D, O'Neill V, Weiner LM. DPP inhibition alters the CXCR3 axis and enhances NK and CD8+ T cell infiltration to improve anti-PD1 efficacy in murine models of pancreatic ductal adenocarcinoma. J Immunother Cancer 2021; 9:jitc-2021-002837. [PMID: 34737215 PMCID: PMC8578994 DOI: 10.1136/jitc-2021-002837] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer death in the USA by 2030. Immune checkpoint inhibitors fail to control most PDAC tumors because of PDAC’s extensive immunosuppressive microenvironment and poor immune infiltration, a phenotype also seen in other non-inflamed (ie, ‘cold’) tumors. Identifying novel ways to enhance immunotherapy efficacy in PDAC is critical. Dipeptidyl peptidase (DPP) inhibition can enhance immunotherapy efficacy in other cancer types; however, the impact of DPP inhibition on PDAC tumors remains unexplored. Methods We examined the effects of an oral small molecule DPP inhibitor (BXCL701) on PDAC tumor growth using mT3-2D and Pan02 subcutaneous syngeneic murine models in C57BL/6 mice. We explored the effects of DPP inhibition on the tumor immune landscape using RNAseq, immunohistochemistry, cytokine evaluation and flow cytometry. We then tested if BXCL701 enhanced anti-programmed cell death protein 1 (anti-PD1) efficacy and performed immune cell depletion and rechallenged studies to explore the relevance of cytotoxic immune cells to combination treatment efficacy. Results In both murine models of PDAC, DPP inhibition enhanced NK and T cell immune infiltration and reduced tumor growth. DPP inhibition also enhanced the efficacy of anti-PD1. The efficacy of dual anti-PD1 and BXCL701 therapy was dependent on both CD8+ T cells and NK cells. Mice treated with this combination therapy developed antitumor immune memory that cleared some tumors after re-exposure. Lastly, we used The Cancer Genome Atlas (TCGA) to demonstrate that increased NK cell content, but not T cell content, in human PDAC tumors is correlated with longer overall survival. We propose that broad DPP inhibition enhances antitumor immune response via two mechanisms: (1) DPP4 inhibition increases tumor content of CXCL9/10, which recruits CXCR3+ NK and T cells, and (2) DPP8/9 inhibition activates the inflammasome, resulting in proinflammatory cytokine release and Th1 response, further enhancing the CXCL9/10-CXCR3 axis. Conclusions These findings show that DPP inhibition with BXCL701 represents a pharmacologic strategy to increase the tumor microenvironment immune cell content to improve anti-PD1 efficacy in PDAC, suggesting BXCL701 can enhance immunotherapy efficacy in ‘cold’ tumor types. These findings also highlight the potential importance of NK cells along with T cells in regulating PDAC tumor growth.
Collapse
Affiliation(s)
- Allison A Fitzgerald
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Shangzi Wang
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Veena Agarwal
- Immune-oncology, BioXcel Therapeutics Inc, New Haven, Connecticut, USA
| | - Emily F Marcisak
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Annie Zuo
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Sandra A Jablonski
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Melanie Loth
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Elana J Fertig
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | | | | | | | - Dimple Bhatia
- BioXcel Therapeutics Inc, New Haven, Connecticut, USA
| | - Vince O'Neill
- BioXcel Therapeutics Inc, New Haven, Connecticut, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
20
|
Imlimthan S, Moon ES, Rathke H, Afshar-Oromieh A, Rösch F, Rominger A, Gourni E. New Frontiers in Cancer Imaging and Therapy Based on Radiolabeled Fibroblast Activation Protein Inhibitors: A Rational Review and Current Progress. Pharmaceuticals (Basel) 2021; 14:1023. [PMID: 34681246 PMCID: PMC8540221 DOI: 10.3390/ph14101023] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, the tumor microenvironment (TME) has become a new paradigm of cancer diagnosis and therapy due to its unique biological features, mainly the interconnection between cancer and stromal cells. Within the TME, cancer-associated fibroblasts (CAFs) demonstrate as one of the most critical stromal cells that regulate tumor cell growth, progression, immunosuppression, and metastasis. CAFs are identified by various biomarkers that are expressed on their surfaces, such as fibroblast activation protein (FAP), which could be utilized as a useful target for diagnostic imaging and treatment. One of the advantages of targeting FAP-expressing CAFs is the absence of FAP expression in quiescent fibroblasts, leading to a controlled targetability of diagnostic and therapeutic compounds to the malignant tumor stromal area using radiolabeled FAP-based ligands. FAP-based radiopharmaceuticals have been investigated strenuously for the visualization of malignancies and delivery of theranostic radiopharmaceuticals to the TME. This review provides an overview of the state of the art in TME compositions, particularly CAFs and FAP, and their roles in cancer biology. Moreover, relevant reports on radiolabeled FAP inhibitors until the year 2021 are highlighted-as well as the current limitations, challenges, and requirements for those radiolabeled FAP inhibitors in clinical translation.
Collapse
Affiliation(s)
- Surachet Imlimthan
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Euy Sung Moon
- Department of Chemistry—TRIGA Site, Johannes Gutenberg—University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Hendrik Rathke
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Frank Rösch
- Department of Chemistry—TRIGA Site, Johannes Gutenberg—University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Axel Rominger
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Eleni Gourni
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| |
Collapse
|
21
|
Maia A, Wiemann S. Cancer-Associated Fibroblasts: Implications for Cancer Therapy. Cancers (Basel) 2021; 13:3526. [PMID: 34298736 PMCID: PMC8307167 DOI: 10.3390/cancers13143526] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumour cells do not exist as an isolated entity. Instead, they are surrounded by and closely interact with cells of the environment they are emerged in. The tumour microenvironment (TME) is not static and several factors, including cancer cells and therapies, have been described to modulate several of its components. Fibroblasts are key elements of the TME with the capacity to influence tumour progression, invasion and response to therapy, which makes them attractive targets in cancer treatment. In this review, we focus on fibroblasts and their numerous roles in the TME with a special attention to recent findings describing their heterogeneity and role in therapy response. Furthermore, we explore how different therapies can impact these cells and their communication with cancer cells. Finally, we highlight potential strategies targeting this cell type that can be employed for improving patient outcome.
Collapse
Affiliation(s)
- Ana Maia
- German Cancer Research Center (DKFZ), Division of Molecular Genome Analysis, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Stefan Wiemann
- German Cancer Research Center (DKFZ), Division of Molecular Genome Analysis, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Jiang X, Wang X, Shen T, Yao Y, Chen M, Li Z, Li X, Shen J, Kou Y, Chen S, Zhou X, Luo Z, Cheng Z. FAPI-04 PET/CT Using [ 18F]AlF Labeling Strategy: Automatic Synthesis, Quality Control, and In Vivo Assessment in Patient. Front Oncol 2021; 11:649148. [PMID: 33816303 PMCID: PMC8017320 DOI: 10.3389/fonc.2021.649148] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
68Ga labeled FAPI is the current standard for FAPI-PET, but its batch activity is limited. [18F]AlF-NOTA-FAPI-04 is a promising alternative combining the advantages of a chelator-based radiolabeling method with the unique properties of fluorine-18. The objective of this study was to develop a quick automatic method for synthesis of [18F]AlF-NOTA-FAPI-04 using a AllinOne synthesis system, and perform PET imaging with [18F]AlF-NOTA-FAPI-04 on patients. [18F]AlF-NOTA-FAPI-04 was produced, and its quality control was conducted by HPLC equipped with a radioactive detector. [18F]AlF-NOTA-FAPI-04 PET/CT imaging was performed in normal BALB/c mice (n = 3) and 4T1 breast cancer models (n = 3) to determine its biodistribution. Then [18F]AlF-NOTA-FAPI-04 and 18F-fluorodeoxyglucose (FDG) PET/CT imaging were performed in an invasive ductal carcinoma patient (female, 54 years old). The synthesis time of [18F]AlF-NOTA-FAPI-04 was about 25 min, and the radiochemical yield was 26.4 ± 1.5% (attenuation correction, n = 10). The radiochemical purity was above 99.0% and was above 98.0% after 6 h. The product was colorless transparent solution with pH value of 7.0-7.5, and the specific activity was 49.41 ± 3.19 GBq/μmol. PET/CT imaging in mice showed that physiological uptake of [18F]AlF-NOTA-FAPI-04 was mainly in the biliary system and bladder, and [18F]AlF-NOTA-FAPI-04 highly concentrated in tumor xenografts. PET/CT imaging in the patient showed that [18F]AlF-NOTA-FAPI-04 obtained high tumor background ratio (TBR) value of 8.44 in segment V and VI, while TBR value was 2.55 by 18F-FDG. [18F]AlF-NOTA-FAPI-04 could be synthesized with high radiochemical yield and batch production by AllinOne module and show excellent diagnosis performance in cancer patients.
Collapse
Affiliation(s)
- Xiao Jiang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China.,Institute of Isotope, China Institute of Atomic Energy, Beijing, China
| | - Xiaoxiong Wang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Taipeng Shen
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Yutang Yao
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Meihua Chen
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Zeng Li
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Xiuli Li
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Jiaqi Shen
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Ying Kou
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Shirong Chen
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Xing Zhou
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Zhifu Luo
- Institute of Isotope, China Institute of Atomic Energy, Beijing, China
| | - Zhuzhong Cheng
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| |
Collapse
|
23
|
Wu Y, Shi T, Wang J, He R. Talabostat Alleviates Obesity and Associated Metabolic Dysfunction via Suppression of Macrophage-Driven Adipose Inflammation. Obesity (Silver Spring) 2021; 29:327-336. [PMID: 33342076 DOI: 10.1002/oby.23058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/30/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Adipose tissue macrophages (ATMs) play critical roles in obesity-associated inflammation that contributes to metabolic dysfunction. Talabostat (TB) exerts some therapeutic effects on tumors and obesity. However, it remains unknown whether the metabolic benefits of TB on obesity is dependent on ATM-mediated adipose inflammation. METHODS Male C57BL/6J mice were fed a normal chow diet (NCD) or a high-fat diet for 12 weeks, and mice were orally administered TB daily at a low dose (0.5 mg/kg). RESULTS Administration of TB to mice fed a high-fat diet significantly improved adiposity and obesity-associated metabolic dysfunction, including glucose intolerance and insulin resistance, hyperlipidemia and hepatic steatosis, which were accompanied by increased whole-body energy expenditure. RNA sequencing analysis revealed extensive alterations in the transcriptome profiles associated with lipid metabolism and immune responses in adipose tissue of obese mice. Notably, TB treatment led to a significant reduction in ATM accumulation and a shift of the activation state of ATMs from the proinflammatory M1-like to the anti-inflammatory M2-like phenotype. Moreover, depletion of ATMs significantly abolished the TB-induced metabolic benefits. CONCLUSIONS Our study demonstrates that TB at a low dose could increase energy expenditure and control ATM-mediated adipose inflammation in obese mice, thereby alleviating obesity and its associated metabolic dysfunction.
Collapse
Affiliation(s)
- Yunyun Wu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tiancong Shi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiqiu Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Abstract
Fibroblast activation protein-α (FAP) is a type-II transmembrane serine protease expressed almost exclusively to pathological conditions including fibrosis, arthritis, and cancer. Across most cancer types, elevated FAP is associated with worse clinical outcomes. Despite the clear association between FAP and disease severity, the biological reasons underlying these clinical observations remain unclear. Here we review basic FAP biology and FAP's role in non-oncologic and oncologic disease. We further explore how FAP may worsen clinical outcomes via its effects on extracellular matrix remodeling, intracellular signaling regulation, angiogenesis, epithelial-to-mesenchymal transition, and immunosuppression. Lastly, we discuss the potential to exploit FAP biology to improve clinical outcomes.
Collapse
Affiliation(s)
- Allison A Fitzgerald
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3870 Reservoir Road NW, Washington, DC, 20057, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3870 Reservoir Road NW, Washington, DC, 20057, USA.
| |
Collapse
|
25
|
Brennen WN, J Thorek DL, Jiang W, Krueger TE, Antony L, Denmeade SR, Isaacs JT. Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy 2020; 13:155-175. [PMID: 33148078 DOI: 10.2217/imt-2020-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment contributes to disease progression through multiple mechanisms, including immune suppression mediated in part by fibroblast activation protein (FAP)-expressing cells. Herein, a review of FAP biology is presented, supplemented with primary data. This includes FAP expression in prostate cancer and activation of latent reservoirs of TGF-β and VEGF to produce a positive feedback loop. This collectively suggests a normal wound repair process subverted during cancer pathophysiology. There has been immense interest in targeting FAP for diagnostic, monitoring and therapeutic purposes. Until recently, this development has outpaced an understanding of the biology; impeding optimal translation into the clinic. A summary of these applications is provided with an emphasis on eliminating tumor-infiltrating FAP-positive cells to overcome stromal barriers to immuno-oncological responses.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel L J Thorek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63310, USA.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63310, USA
| | - Wen Jiang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Timothy E Krueger
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
26
|
Altmann A, Haberkorn U, Siveke J. The Latest Developments in Imaging of Fibroblast Activation Protein. J Nucl Med 2020; 62:160-167. [PMID: 33127618 DOI: 10.2967/jnumed.120.244806] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast activation protein (FAP), a membrane-anchored peptidase, is highly expressed in cancer-associated fibroblasts in more than 90% of epithelial tumors and contributes to progression and worse prognosis of different cancers. Therefore, FAP is considered a promising target for radionuclide-based approaches for diagnosis and treatment of tumors and for the diagnosis of nonmalignant diseases associated with a remodeling of the extracellular matrix. Accordingly, a variety of quinolone-based FAP inhibitors (FAPIs) coupled to chelators were developed displaying specific binding to human and murine FAP with a rapid and almost complete internalization. Because of a high tumor uptake and a very low accumulation in normal tissues, as well as a rapid clearance from the circulation, a high contrast is obtained for FAPI PET/CT imaging even at 10 min after tracer administration. Moreover, FAPI PET/CT provides advantages over 18F-FDG PET/CT in several tumor entities for initial staging and detection of tumor recurrence and metastases, including peritonitis carcinomatosa.
Collapse
Affiliation(s)
- Annette Altmann
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany .,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Jens Siveke
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany; and.,Division of Solid Tumor Translational Oncology, German Cancer Consortium, Essen, Germany, and German Cancer Research Center, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
27
|
Schnapp G, Hoevels Y, Bakker RA, Schreiner P, Klein T, Nar H. A Single Second Shell Amino Acid Determines Affinity and Kinetics of Linagliptin Binding to Type 4 Dipeptidyl Peptidase and Fibroblast Activation Protein. ChemMedChem 2020; 16:630-639. [PMID: 33030297 PMCID: PMC7984154 DOI: 10.1002/cmdc.202000591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 01/10/2023]
Abstract
Drugs targeting type 4 dipeptidyl peptidase (DPP‐4) are beneficial for glycemic control, whereas fibroblast activation protein alpha (FAP‐α) is a potential target for cancer therapies. Unlike other gliptins, linagliptin displays FAP inhibition. We compared biophysical and structural characteristics of linagliptin binding to DPP‐4 and FAP to better understand what differentiates linagliptin from other gliptins. Linagliptin exhibited high binding affinity (KD) and a slow off‐rate (koff) when dissociating from DPP‐4 (KD 6.6 pM; koff 5.1×10−5 s−1), and weaker inhibitory potency to FAP (KD 301 nM; koff>1 s−1). Co‐structures of linagliptin with DPP‐4 or FAP were similar except for one second shell amino acid difference: Asp663 (DPP‐4) and Ala657 (FAP). pH dependence of enzymatic activities and binding of linagliptin for DPP‐4 and FAP are dependent on this single amino acid difference. While linagliptin may not display any anticancer activity at therapeutic doses, our findings may guide future studies for the development of optimized inhibitors.
Collapse
Affiliation(s)
- Gisela Schnapp
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Yvette Hoevels
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Remko A Bakker
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | | | - Thomas Klein
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Herbert Nar
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| |
Collapse
|
28
|
Hilmi M, Nicolle R, Bousquet C, Neuzillet C. Cancer-Associated Fibroblasts: Accomplices in the Tumor Immune Evasion. Cancers (Basel) 2020; 12:cancers12102969. [PMID: 33066357 PMCID: PMC7602282 DOI: 10.3390/cancers12102969] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary A growing number of studies suggest that cancer-associated fibroblasts (CAFs) modulate both myeloid and lymphoid cells through secretion of molecules (i.e., chemical function) and production of the extracellular matrix (ECM), i.e., physical function. Even though targeting functions CAFs is a relevant strategy, published clinical trials solely aimed at targeting the stroma showed disappointing results, despite being based on solid preclinical evidence. Our review dissects the interactions between CAFs and immune cells and explains how a deeper understanding of CAF subpopulations is the cornerstone to propose relevant therapies that will ultimately improve survival of patients with cancer. Abstract Cancer-associated fibroblasts (CAFs) are prominent cells within the tumor microenvironment, by communicating with other cells within the tumor and by secreting the extracellular matrix components. The discovery of the immunogenic role of CAFs has made their study particularly attractive due to the potential applications in the field of cancer immunotherapy. Indeed, CAFs are highly involved in tumor immune evasion by physically impeding the immune system and interacting with both myeloid and lymphoid cells. However, CAFs do not represent a single cell entity but are divided into several subtypes with different functions that may be antagonistic. Considering that CAFs are orchestrators of the tumor microenvironment and modulate immune cells, targeting their functions may be a promising strategy. In this review, we provide an overview of (i) the mechanisms involved in immune regulation by CAFs and (ii) the therapeutic applications of CAFs modulation to improve the antitumor immune response and the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Marc Hilmi
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Correspondence: ; Tel.: +33-06-8547-3027
| | - Rémy Nicolle
- Programme Cartes d’Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France;
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, 31000 Toulouse, France;
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Institut Curie, Cell Migration and Invasion, UMR144, PSL Research University, 26, rue d’Ulm, F-75005 Paris, France
| |
Collapse
|
29
|
Wang X, Gessier F, Perozzo R, Stojkov D, Hosseini A, Amirshahrokhi K, Kuchen S, Yousefi S, Lötscher P, Simon HU. RIPK3–MLKL–Mediated Neutrophil Death Requires Concurrent Activation of Fibroblast Activation Protein-α. THE JOURNAL OF IMMUNOLOGY 2020; 205:1653-1663. [DOI: 10.4049/jimmunol.2000113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022]
|
30
|
Coto-Llerena M, Ercan C, Kancherla V, Taha-Mehlitz S, Eppenberger-Castori S, Soysal SD, Ng CKY, Bolli M, von Flüe M, Nicolas GP, Terracciano LM, Fani M, Piscuoglio S. High Expression of FAP in Colorectal Cancer Is Associated With Angiogenesis and Immunoregulation Processes. Front Oncol 2020; 10:979. [PMID: 32733792 PMCID: PMC7362758 DOI: 10.3389/fonc.2020.00979] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast activation protein α (FAP) plays an important role in tissue remodeling and helps tumor cells invade surrounding tissue. We sought to investigate FAP as a prognostic molecular marker in colorectal cancer (CRC) using immunohistochemical and transcriptomic data. FAP expression and clinicopathological information were obtained from The Cancer Genome Atlas data set. The association of FAP expression and tissue cellular heterogeneity landscape was explored using the xCell method. We evaluated FAP protein expression in a cohort of 92 CRCs and 19 non-tumoral tissues. We observed that FAP was upregulated in tumors both at the mRNA and protein levels, and its expression was associated with advanced stages, poor survival, and consensus molecular subtype 4. FAP expression was also associated with angiogenesis and collagen degradation. We observed an enrichment in immune-cell process-related genes associated with FAP overexpression. Colorectal cancers with high FAP expression display an inflamed phenotype enriched for macrophages and monocytes. Those tumors showed enrichment for regulatory T cell populations and depletion of TH1 and natural killer T cells, pointing to an immunosuppressive environment. Colorectal cancers with high levels of stromal FAP are associated with aggressive disease progression and survival. Our results suggest that FAP plays additional roles in tumor progression such as modulation of angiogenesis and immunoregulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Mairene Coto-Llerena
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Caner Ercan
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Venkatesh Kancherla
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Stephanie Taha-Mehlitz
- Visceral Surgery Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Visceral Surgery, Clarunis University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | | | - Savas D. Soysal
- Department of Visceral Surgery, Clarunis University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Charlotte K. Y. Ng
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Martin Bolli
- Department of Visceral Surgery, Clarunis University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Markus von Flüe
- Department of Visceral Surgery, Clarunis University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | | | - Luigi M. Terracciano
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
- Visceral Surgery Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Visceral Surgery, Clarunis University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
31
|
Zhang B, Liu F, Yang MF, Xu J, Wang Z, Zhang J, Wang R, Yang X. A cell-based fluorescent assay for FAP inhibitor discovery. Bioorg Med Chem Lett 2020; 30:127253. [PMID: 32527554 DOI: 10.1016/j.bmcl.2020.127253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
Abstract
To facilitate the discovery of FAP inhibitors, a convenient cell-based fluorescent assay was developed by using a commonly available U87MG cell line and a FAP-specific substrate Suc-Gly-Pro-AMC. The assay enabled the fast determination of multiple IC50s by simply incubating a solution of phosphate-buffered saline in a 96-well plate within 30 min. The substrate specificity, cross-reaction and other related conditions were systematically optimized. This method was successfully applied to determine the IC50s of seven known inhibitors. The results are in consistence with the trend reported, which indicating that this practical assay is a valuable method to accelerate the discovery of FAP inhibitor.
Collapse
Affiliation(s)
- Bingye Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Futao Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Min-Fu Yang
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jianfeng Xu
- JYAMS PET Research & Development Limited., Nanjing 211100, China
| | - Zheng Wang
- JYAMS PET Research & Development Limited., Nanjing 211100, China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China.
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China; Institute of Medical Technology, Peking University, Beijing 100191, China.
| |
Collapse
|
32
|
Šimková A, Bušek P, Šedo A, Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140409. [PMID: 32171757 DOI: 10.1016/j.bbapap.2020.140409] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
Fibroblast activation protein (FAP) is a non-classical serine protease expressed predominantly in conditions accompanied by tissue remodeling, particularly cancer. Due to its plasma membrane localization, FAP represents a promising molecular target for tumor imaging and treatment. The unique enzymatic activity of FAP facilitates development of diagnostic and therapeutic tools based on molecular recognition of FAP by substrates and small-molecule inhibitors, in addition to conventional antibody-based strategies. In this review, we provide background on the pathophysiological role of FAP and discuss its potential for diagnostic and therapeutic applications. Furthermore, we present a detailed analysis of the structural patterns crucial for substrate and inhibitor recognition by the FAP active site and determinants of selectivity over the related proteases dipeptidyl peptidase IV and prolyl endopeptidase. We also review published data on targeting of the tumor microenvironment with FAP antibodies, FAP-targeted prodrugs, activity-based probes and small-molecule inhibitors. We describe use of a recently developed, selective FAP inhibitor with low-nanomolar potency in inhibitor-based targeting strategies including synthetic antibody mimetics based on hydrophilic polymers and inhibitor conjugates for PET imaging. In conclusion, recent advances in understanding of the molecular structure and function of FAP have significantly contributed to the development of several tools with potential for translation into clinical practice.
Collapse
Affiliation(s)
- Adéla Šimková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| |
Collapse
|
33
|
Wu QQ, Zhao M, Huang GZ, Zheng ZN, Chen Y, Zeng WS, Lv XZ. Fibroblast Activation Protein (FAP) Overexpression Induces Epithelial-Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma by Down-Regulating Dipeptidyl Peptidase 9 (DPP9). Onco Targets Ther 2020; 13:2599-2611. [PMID: 32273729 PMCID: PMC7113806 DOI: 10.2147/ott.s243417] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Fibroblast activation protein (FAP) acts as a tumor promoter via epithelial–mesenchymal transition (EMT) in human oral squamous cell carcinoma (OSCC). The present study was designed to investigate the FAP targeting proteins and explore the precise mechanism by which FAP promotes EMT in OSCC. Patients and Methods Proteins interacting with FAP were found and filtered by immunoprecipitation-mass spectrometry (IP-MS). Both DPP9 protein and mRNA were examined in 90 paired OSCC samples and matched normal tissue. DPP9 knockdown was conducted to determine its function in OSCC in vitro and in vivo. Results Dipeptidyl peptidase 9 (DPP9) was identified as interacting with FAP intracellularly by IP-MS. The levels of both DPP9 protein and mRNA were down-regulated in OSCC tissue. Lower DPP9 expression was correlated with unfavorable survival rates of OSCC patients. DPP9 knockdown accelerates the proliferation of OSCC cells in vitro and in vivo. Overexpression of FAP leads to a reduction in DPP9 expression. Likewise, DPP9 overexpression reverses the proliferation, migration, invasion and EMT induced by FAP during OSCC. Conclusion Our study finds that FAP promotes EMT of OSCC by down-regulating DPP9 in a non-enzymatic manner. FAP-DPP9 pathway could be a potential therapeutic target of OSCC.
Collapse
Affiliation(s)
- Qing-Qing Wu
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Meng Zhao
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Guang-Zhao Huang
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ze-Nan Zheng
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuechuan Chen
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wei-Sen Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiao-Zhi Lv
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
34
|
Truffi M, Sorrentino L, Corsi F. Fibroblasts in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:15-29. [PMID: 32040852 DOI: 10.1007/978-3-030-37184-5_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The implications of a tumor microenvironment in cancer initiation and progression have drawn interest in recent years. Within the tumor stroma, fibroblasts represent a predominant cell type and are responsible for the majority of extracellular components within the tumor microenvironment, such as matrix and soluble factors. A switch from quiescent fibroblasts to cancer-associated fibroblasts triggers a large variety of pro-tumorigenic signals that support tumor progression and shape the surrounding pathological stroma, with the remodeling of tissue architecture and repression of the local immune response. The heterogeneous nature of cancer-associated fibroblasts and their multiple functions are subject of active research as they could represent promising targets for cutting-edge therapeutic approaches to cancer and the tumor microenvironment.
Collapse
Affiliation(s)
- Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli studi di Milano, Milano, Italy
| | - Luca Sorrentino
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli studi di Milano, Milano, Italy
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy. .,Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli studi di Milano, Milano, Italy.
| |
Collapse
|
35
|
Cole AJ, Fayomi AP, Anyaeche VI, Bai S, Buckanovich RJ. An evolving paradigm of cancer stem cell hierarchies: therapeutic implications. Theranostics 2020; 10:3083-3098. [PMID: 32194856 PMCID: PMC7053211 DOI: 10.7150/thno.41647] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Over a decade of research has confirmed the critical role of cancer stem-like cells (CSCs) in tumor initiation, chemoresistance, and metastasis. Increasingly, CSC hierarchies have begun to be defined with some recurring themes. This includes evidence that these hierarchies are 'flexible,' with both cell state transitions and dedifferentiation events possible. These findings pose therapeutic hurdles and opportunities. Here, we review cancer stem cell hierarchies and their interactions with the tumor microenvironment. We also discuss the current therapeutic approaches designed to target CSC hierarchies and initial clinical trial results for CSC targeting agents. While cancer stem cell targeted therapies are still in their infancy, we are beginning to see encouraging results that suggest a positive outlook for CSC-targeting approaches.
Collapse
Affiliation(s)
- Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adetunji P Fayomi
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shoumei Bai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Errarte P, Larrinaga G, López JI. The role of cancer-associated fibroblasts in renal cell carcinoma. An example of tumor modulation through tumor/non-tumor cell interactions. J Adv Res 2019; 21:103-108. [PMID: 32071778 PMCID: PMC7015466 DOI: 10.1016/j.jare.2019.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAF) are a cellular compartment of the tumor microenvironment (TME) with critical roles in tumor development. Fibroblast activation protein-α (FAP) is one of the proteins expressed by CAF and its immunohistochemical detection in routine practice is associated with tumor aggressiveness and shorter patient survival. For these reasons, FAP seems a good prognostic marker in many malignant neoplasms, including renal cell carcinoma (RCC). The start point of this Perspective paper is to review the role of CAF in the modulation of renal cell carcinoma evolution. In this sense, CAF have demonstrated to develop important protumor and/or antitumor activities. This apparent paradox suggests that some type of temporally or spatially-related specialization is present in this cellular compartment during tumor evolution. The end point is to remark that tumor/non-tumor cell interactions, in particular the symbiotic tumor/CAF connections, are permanent and ever-changing crucial phenomena along tumor lifetime. Interestingly, these interactions may be responsible of many therapeutic failures.
Collapse
Affiliation(s)
- Peio Errarte
- Department of Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain.,Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Gorka Larrinaga
- Department of Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain.,Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain.,Department of Nursing I, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - José I López
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain.,Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain.,Department of Medical-Surgical Specialties, University of the Basque Country, 48940 Leioa, Spain
| |
Collapse
|
37
|
Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A, Haberkorn U. Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm Chem 2019; 4:16. [PMID: 31659499 PMCID: PMC6658625 DOI: 10.1186/s41181-019-0069-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Tumors form a complex environment consisting of a variety of non-malignant cells. Especially cancer-associated fibroblasts have been shown to have an important role for different aspects of malignant tumors such as migration, metastasis, resistance to chemotherapy and immunosuppression. Therefore, a targeting of these cells may be useful for both imaging and therapy. In this respect, an interesting target is the fibroblast activation protein (FAP) which is expressed in activated fibroblasts, but not in quiescent fibroblasts, giving the opportunity to use this membrane-anchored enzyme as a target for radionuclide-based approaches for diagnosis and treatment of tumors and for the diagnosis of non-malignant disease associated with a remodelling of the extracellular matrix.
Collapse
Affiliation(s)
- Thomas Lindner
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Anastasia Loktev
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Annette Altmann
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
38
|
Gieniec KA, Butler LM, Worthley DL, Woods SL. Cancer-associated fibroblasts-heroes or villains? Br J Cancer 2019; 121:293-302. [PMID: 31289350 PMCID: PMC6738083 DOI: 10.1038/s41416-019-0509-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) were originally presumed to represent a homogeneous population uniformly driving tumorigenesis, united by their morphology and peritumoural location. Our understanding of CAFs has since been shaped by sophisticated in vitro and in vivo experiments, pathological association and, more recently, ablation, and it is now widely appreciated that CAFs form a group of highly heterogeneous cells with no single overarching marker. Studies have demonstrated that the CAF population contains different subtypes based on the expression of marker proteins with the capacity to promote or inhibit cancer, with their biological role as accomplices or adversaries dependent on many factors, including the cancer stage. So, while CAFs have been endlessly shown to promote the growth, survival and spread of tumours via improvements in functionality and an altered secretome, they are also capable of retarding tumorigenesis via largely unknown mechanisms. It is important to reconcile these disparate results so that the functions of, or factors produced by, tumour-promoting subtypes can be specifically targeted to improve cancer patient outcomes. This review will dissect out CAF complexity and CAF-directed cancer treatment strategies in order to provide a case for future, rational therapies.
Collapse
Affiliation(s)
- Krystyna A Gieniec
- School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M Butler
- School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Daniel L Worthley
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Susan L Woods
- School of Medicine, University of Adelaide, Adelaide, SA, Australia. .,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
39
|
Watanabe S, Noma K, Ohara T, Kashima H, Sato H, Kato T, Urano S, Katsube R, Hashimoto Y, Tazawa H, Kagawa S, Shirakawa Y, Kobayashi H, Fujiwara T. Photoimmunotherapy for cancer-associated fibroblasts targeting fibroblast activation protein in human esophageal squamous cell carcinoma. Cancer Biol Ther 2019; 20:1234-1248. [PMID: 31185791 DOI: 10.1080/15384047.2019.1617566] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are strongly implicated in tumor progression, including in the processes of tumorigenesis, invasion, and metastasis. The targeting of CAFs using various therapeutic approaches is a novel treatment strategy; however, the efficacy of such therapies remains limited. Recently, near-infrared photoimmunotherapy (NIR-PIT), which is a novel targeted therapy employing a cell-specific mAb conjugated to a photosensitizer, has been introduced as a new type of phototherapy. In this study, we have developed a novel NIR-PIT technique to target CAFs, by focusing on fibroblast activation protein (FAP), and we evaluate the treatment efficacy in vitro and in vivo. Esophageal carcinoma cells exhibited enhanced activation of fibroblasts, with FAP over-expressed in the cytoplasm and on the cell surface. FAP-IR700-mediated PIT showed induced rapid cell death specifically for those cells in vitro and in vivo, without adverse effects. This novel therapy for CAFs, designed as local control phototherapy, was safe and showed a promising inhibitory effect on FAP+ CAFs. PIT targeting CAFs via the specific marker FAP may be a therapeutic option for CAFs in the tumor microenvironment in the future.
Collapse
Affiliation(s)
- Shinichiro Watanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan.,Department of Pathology & Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hiroaki Sato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Shinichi Urano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Ryoichi Katsube
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yuuri Hashimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital , Okayama , Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| |
Collapse
|
40
|
Truffi M, Mazzucchelli S, Bonizzi A, Sorrentino L, Allevi R, Vanna R, Morasso C, Corsi F. Nano-Strategies to Target Breast Cancer-Associated Fibroblasts: Rearranging the Tumor Microenvironment to Achieve Antitumor Efficacy. Int J Mol Sci 2019; 20:ijms20061263. [PMID: 30871158 PMCID: PMC6471729 DOI: 10.3390/ijms20061263] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAF) are the most abundant cells of the tumor stroma and they critically influence cancer growth through control of the surrounding tumor microenvironment (TME). CAF-orchestrated reactive stroma, composed of pro-tumorigenic cytokines and growth factors, matrix components, neovessels, and deregulated immune cells, is associated with poor prognosis in multiple carcinomas, including breast cancer. Therefore, beyond cancer cells killing, researchers are currently focusing on TME as strategy to fight breast cancer. In recent years, nanomedicine has provided a number of smart delivery systems based on active targeting of breast CAF and immune-mediated overcome of chemoresistance. Many efforts have been made both to eradicate breast CAF and to reshape their identity and function. Nano-strategies for CAF targeting profoundly contribute to enhance chemosensitivity of breast tumors, enabling access of cytotoxic T-cells and reducing immunosuppressive signals. TME rearrangement also includes reorganization of the extracellular matrix to enhance permeability to chemotherapeutics, and nano-systems for smart coupling of chemo- and immune-therapy, by increasing immunogenicity and stimulating antitumor immunity. The present paper reviews the current state-of-the-art on nano-strategies to target breast CAF and TME. Finally, we consider and discuss future translational perspectives of proposed nano-strategies for clinical application in breast cancer.
Collapse
Affiliation(s)
- Marta Truffi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Arianna Bonizzi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Luca Sorrentino
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Raffaele Allevi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Renzo Vanna
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
| | - Carlo Morasso
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
- Breast Unit, Surgery Department, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
| |
Collapse
|
41
|
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther 2019; 198:135-159. [PMID: 30822465 DOI: 10.1016/j.pharmthera.2019.02.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD26/dipeptidyl peptidase (DPP)4 is a membrane-bound protein found in many cell types of the body, and a soluble form is present in body fluids. There is longstanding evidence that various primary tumors and also metastases express CD26/DPP4 to a variable extent. By cleaving dipeptides from peptides with a proline or alanine in the penultimate position at the N-terminus, it regulates the activity of incretin hormones, chemokines and many other peptides. Due to these effects and interactions with other molecules, a tumor promoting or suppressing role can be attributed to CD26/DPP4. In this review, we discuss the existing evidence on the expression of soluble or membrane-bound CD26/DPP4 in malignant diseases, along with the most recent findings on CD26/DPP4 as a therapeutic target in specific malignancies. The expression and possible involvement of the related DPP8 and DPP9 in cancer are also reviewed. A higher expression of CD26/DPP4 is found in a wide variety of tumor entities, however more research on CD26/DPP4 in the tumor microenvironment is needed to fully explore its use as a tumor biomarker. Circulating soluble CD26/DPP4 has also been studied as a cancer biomarker, however, the observed decrease in most cancer patients does not seem to be cancer specific. Encouraging results from experimental work and a recently reported first phase clinical trial targeting CD26/DPP4 in mesothelioma, renal and urological tumors pave the way for follow-up clinical studies, also in other tumor entities, possibly leading to the development of more effective complementary therapies against cancer.
Collapse
Affiliation(s)
- Njanja Enz
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany.
| |
Collapse
|
42
|
Coulibaly FS, Alnafisah AS, Oyler NA, Youan BBC. Direct and Real-Time Quantification Of Bortezomib Release From Alginate Microparticles Using Boron (11B) Nuclear Magnetic Resonance Spectroscopy. Mol Pharm 2018; 16:967-977. [DOI: 10.1021/acs.molpharmaceut.8b00873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fohona S. Coulibaly
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri—Kansas City, 2464 Charlotte, Kansas City, Missouri 64108, United States
| | - Abrar S. Alnafisah
- Department of Chemistry, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Nathan A. Oyler
- Department of Chemistry, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Bi-Botti C. Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri—Kansas City, 2464 Charlotte, Kansas City, Missouri 64108, United States
| |
Collapse
|
43
|
Puré E, Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 2018; 37:4343-4357. [PMID: 29720723 PMCID: PMC6092565 DOI: 10.1038/s41388-018-0275-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Fibroblast activation protein (FAP) is a cell-surface serine protease that acts on various hormones and extracellular matrix components. FAP is highly upregulated in a wide variety of cancers, and is often used as a marker for pro-tumorigenic stroma. It has also been proposed as a molecular target of cancer therapies, and, especially in recent years, a great deal of research has gone into design and testing of diverse FAP-targeted treatments. Yet despite this growing field of research, our knowledge of FAP's basic biology and functional roles in various cancers has lagged behind its use as a tumor-stromal marker. In this review, we summarize and analyze recent advances in understanding the functions of FAP in cancer, most notably its prognostic value in various tumor types, cellular effects on various cell types, and potential as a therapeutic target. We highlight outstanding questions in the field, the answers to which could shape preclinical and clinical studies of FAP.
Collapse
Affiliation(s)
- Ellen Puré
- University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
44
|
Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC, Reed C, Peguero E, de Stanchina E, Kentsis A, Bachovchin DA. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med 2018; 24:1151-1156. [PMID: 29967349 PMCID: PMC6082709 DOI: 10.1038/s41591-018-0082-y] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/30/2018] [Indexed: 12/26/2022]
Abstract
Small-molecule inhibitors of the serine dipeptidases DPP8 and DPP9 (DPP8/9) induce a lytic form of cell death called pyroptosis in mouse and human monocytes and macrophages1,2. In mouse myeloid cells, Dpp8/9 inhibition activates the inflammasome sensor Nlrp1b, which in turn activates pro-caspase-1 to mediate cell death3, but the mechanism of DPP8/9 inhibitor-induced pyroptosis in human myeloid cells is not yet known. Here we show that the CARD-containing protein CARD8 mediates DPP8/9 inhibitor-induced pro-caspase-1-dependent pyroptosis in human myeloid cells. We further show that DPP8/9 inhibitors induce pyroptosis in the majority of human acute myeloid leukemia (AML) cell lines and primary AML samples, but not in cells from many other lineages, and that these inhibitors inhibit human AML progression in mouse models. Overall, this work identifies an activator of CARD8 in human cells and indicates that its activation by small-molecule DPP8/9 inhibitors represents a new potential therapeutic strategy for AML.
Collapse
Affiliation(s)
- Darren C Johnson
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Marian C Okondo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley J Chui
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahana D Rao
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fiona C Brown
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Casie Reed
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Peguero
- Antitumor Assessment Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A Bachovchin
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
45
|
Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO. Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol 2018; 68-69:435-451. [PMID: 29656147 DOI: 10.1016/j.matbio.2018.04.006] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
Liver fibrosis and in particular cirrhosis are the major causes of morbidity and mortality of patients with chronic liver disease. Their prevention or reversal have become major endpoints in clinical trials with novel liver specific drugs. Remarkable progress has been made with therapies that efficiently address the cause of the underlying liver disease, as in chronic hepatitis B and C. Highly effective antiviral therapy can prevent progression or even induce reversal in the majority of patients, but such treatment remains elusive for the majority of liver patients with advanced alcoholic or nonalcoholic steatohepatitis, genetic or autoimmune liver diseases. Moreover, drugs that would speed up fibrosis reversal are needed for patients with cirrhosis, since even with effective causal therapy reversal is slow or the disease may further progress. Therefore, highly efficient and specific antifibrotic agents are needed that can address advanced fibrosis, i.e., the detrimental downstream result of all chronic liver diseases. This review discusses targeted antifibrotic therapies that address molecules and mechanisms that are central to fibrogenesis or fibrolysis, including strategies that allow targeting of activated hepatic stellate cells and myofibroblasts and other fibrogenic effector cells. Focus is on collagen synthesis, integrins and cells and mechanisms specific including specific downregulation of TGFbeta signaling, major extracellular matrix (ECM) components, ECM-crosslinking, and ECM-receptors such as integrins and discoidin domain receptors, ECM-crosslinking and methods for targeted delivery of small interfering RNA, antisense oligonucleotides and small molecules to increase potency and reduce side effects. With an increased understanding of the biology of the ECM and liver fibrosis and an improved preclinical validation, the translation of these approaches to the clinic is currently ongoing. Application to patients with liver fibrosis and a personalized treatment is tightly linked to the development of noninvasive biomarkers of fibrosis, fibrogenesis and fibrolysis.
Collapse
Affiliation(s)
- Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| | - Muhammad Ashfaq-Khan
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Ai Ting Yang
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| |
Collapse
|
46
|
Jiang GM, Xu W, Du J, Zhang KS, Zhang QG, Wang XW, Liu ZG, Liu SQ, Xie WY, Liu HF, Liu JS, Wu BP. The application of the fibroblast activation protein α-targeted immunotherapy strategy. Oncotarget 2017; 7:33472-82. [PMID: 26985769 PMCID: PMC5078111 DOI: 10.18632/oncotarget.8098] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/28/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Guan-Min Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun-Shui Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiu-Gui Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiao-Wei Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhi-Gang Liu
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuang-Quan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wan-Ying Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui-Fang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing-Shi Liu
- Department of Anesthesia, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bai-Ping Wu
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
47
|
Egger C, Cannet C, Gérard C, Suply T, Ksiazek I, Jarman E, Beckmann N. Effects of the fibroblast activation protein inhibitor, PT100, in a murine model of pulmonary fibrosis. Eur J Pharmacol 2017; 809:64-72. [DOI: 10.1016/j.ejphar.2017.05.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 11/29/2022]
|
48
|
Vliegen G, Raju TK, Adriaensen D, Lambeir AM, De Meester I. The expression of proline-specific enzymes in the human lung. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:130. [PMID: 28462210 DOI: 10.21037/atm.2017.03.36] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathophysiology of lung diseases is very complex and proteolytic enzymes may play a role or could be used as biomarkers. In this review, the literature was searched to make an overview of what is known on the expression of the proline-specific peptidases dipeptidyl peptidase (DPP) 4, 8, 9, prolyl oligopeptidase (PREP) and fibroblast activation protein α (FAP) in the healthy and diseased lung. Search terms included asthma, chronic obstructive pulmonary disease (COPD), lung cancer, fibrosis, ischemia reperfusion injury and pneumonia. Knowledge on the loss or gain of protein expression and activity during disease might tie these enzymes to certain cell types, substrates or interaction partners that are involved in the pathophysiology of the disease, ultimately leading to the elucidation of their functional roles and a potential therapeutic target. Most data could be found on DPP4, while the other enzymes are less explored. Published data however often appear to be conflicting, the applied methods divers and the specificity of the assays used questionable. In conclusion, information on the expression of the proline-specific peptidases in the healthy and diseased lung is lacking, begging for further well-designed research.
Collapse
Affiliation(s)
- Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom K Raju
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
49
|
Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci U S A 2016; 113:7551-6. [PMID: 27317748 DOI: 10.1073/pnas.1600363113] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fibroblasts are common cell types in cancer stroma and lay down collagen required for survival and growth of cancer cells. Although some cancer therapy strategies target tumor fibroblasts, their origin remains controversial. Multiple publications suggest circulating mesenchymal precursors as a source of tumor-associated fibroblasts. However, we show by three independent approaches that tumor fibroblasts derive primarily from local, sessile precursors. First, transplantable tumors developing in a mouse expressing green fluorescent reporter protein (EGFP) under control of the type I collagen (Col-I) promoter (COL-EGFP) had green stroma, whereas we could not find COL-EGFP(+) cells in tumors developing in the parabiotic partner lacking the fluorescent reporter. Lack of incorporation of COL-EGFP(+) cells from the circulation into tumors was confirmed in parabiotic pairs of COL-EGFP mice and transgenic mice developing autochthonous intestinal adenomas. Second, transplantable tumors developing in chimeric mice reconstituted with bone marrow cells from COL-EGFP mice very rarely showed stromal fibroblasts expressing EGFP. Finally, cancer cells injected under full-thickness COL-EGFP skin grafts transplanted in nonreporter mice developed into tumors containing green stromal cells. Using multicolor in vivo confocal microscopy, we found that Col-I-expressing fibroblasts constituted approximately one-third of the stromal mass and formed a continuous sheet wrapping the tumor vessels. In summary, tumors form their fibroblastic stroma predominantly from precursors present in the local tumor microenvironment, whereas the contribution of bone marrow-derived circulating precursors is rare.
Collapse
|
50
|
Integral membrane protease fibroblast activation protein sensitizes fibrosarcoma to chemotherapy and alters cell death mechanisms. Apoptosis 2016; 20:1483-98. [PMID: 26342814 DOI: 10.1007/s10495-015-1166-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fibroblast activation protein (FAP), an integral membrane serine protease, is found on fibro- and osteo-sarcoma and on myofibroblasts in epithelial carcinoma, but rarely on other adult tissue. FAP has been demonstrated to be an excellent target for tumor imaging in clinical trials, and antibodies and other FAP-targeting drugs are in development. Here we have shown that FAP overexpression increased the growth of HT1080 fibrosarcoma cells in vitro and in vivo, and found that the expression of FAP affects response to chemotherapy. When treated with doxorubicin, expression of FAP increased susceptibility to the drug. In spite of this, FAP-HT1080 cells had fewer markers of classical apoptosis than HT1080 cells and neither necrosis nor necroptosis were enhanced. However, levels of early mitochondrial and lysosomal membrane permeability markers were increased, and autophagy switched from a protective function in HT1080 cells to part of the cell death mechanism with FAP expression. Therefore, FAP may affect how the tumor responds to chemotherapeutic drugs overall, which should be considered in targeted drug development. The overexpression of FAP also alters cell signaling and responses to the environment in this cell line. This includes cell death mechanisms, changing the response of HT1080 cells to doxorubicin from classical apoptosis to an organelle membrane permeability-dependent form of cell death.
Collapse
|