1
|
Guan F, Bronk L, Kerr M, Li Y, Braby LA, Sobieski M, Wang X, Zhang X, Stephan C, Grosshans DR, Mohan R. Interpreting the biological effects of protons as a function of physical quantity: linear energy transfer or microdosimetric lineal energy spectrum? Sci Rep 2024; 14:25181. [PMID: 39448656 PMCID: PMC11502811 DOI: 10.1038/s41598-024-73619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
The choice of appropriate physical quantities to characterize the biological effects of ionizing radiation has evolved over time coupled with advances in scientific understanding. The basic hypothesis in radiation dosimetry is that the energy deposited by ionizing radiation initiates all the consequences of exposure in a biological sample (e.g., DNA damage, reproductive cell death). Physical quantities defined to characterize energy deposition have included dose, a measure of the mean energy imparted per unit mass of the target, and linear energy transfer (LET), a measure of the mean energy deposition per unit distance that charged particles traverse in a medium. The primary advantage of using the "dose and LET" physical system is its relative simplicity, especially for presenting and recording results. Inclusion of additional information such as the energy spectrum of charged particles renders this approach adequate to describe the biological effects of large dose levels from homogeneous sources. The primary disadvantage of this system is that it does not provide a unique description of the stochastic nature of radiation interactions. We and others have used dose-averaged LET (LETd) as a correlative physical quantity to the relative biological effectiveness (RBE) of proton beams. This approach is based on established experimental findings that proton RBE increases with LETd. However, this approach might not be applicable to intensity-modulated proton therapy or other applications in which the proton energy spectrum is highly heterogeneous. In the current study, we irradiated cancer cells with scanning proton beams with identical LETd (3.4 keV/µm) but arising from two different proton energy/LET spectra (a narrow spectrum in group 1 and a widespread heterogeneous spectrum in group 2). Clonogenic survival after irradiation revealed significant differences in RBE at any cell surviving fraction: e.g., at a surviving fraction of 0.1, the RBE was 0.97 ± 0.03 in group 1 and 1.16 ± 0.04 in group 2 (p≤0.01), validating our hypothesis that LETd alone may not adequately indicate proton RBE. Further analysis showed that microdosimetric spectrum (the probability density function of the stochastic physical quantity lineal energy y) was helpful for interpreting observed differences in biological effects. However, more accurate use of microdosimetric spectrum to quantify RBE requires a cell line-specific mechanistic model.
Collapse
Affiliation(s)
- Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Lawrence Bronk
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Matthew Kerr
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Yuting Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Leslie A Braby
- Department of Nuclear Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Mary Sobieski
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Xiaochun Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Shyllon S, Penfold S, Dalfsen R, Kirkness E, Hug B, Rowshanfarzad P, Devlin P, Tang C, Le H, Gorayski P, Grogan G, Kearvell R, Ebert MA. Dosimetric comparison of proton therapy and CyberKnife in stereotactic body radiation therapy for liver cancers. Phys Eng Sci Med 2024; 47:1203-1212. [PMID: 38809365 PMCID: PMC11408538 DOI: 10.1007/s13246-024-01440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Stereotactic body radiation therapy (SBRT) has been increasingly used for the ablation of liver tumours. CyberKnife and proton beam therapy (PBT) are two advanced treatment technologies suitable to deliver SBRT with high dose conformity and steep dose gradients. However, there is very limited data comparing the dosimetric characteristics of CyberKnife to PBT for liver SBRT. PBT and CyberKnife plans were retrospectively generated using 4DCT datasets of ten patients who were previously treated for hepatocellular carcinoma (HCC, N = 5) and liver metastasis (N = 5). Dose volume histogram data was assessed and compared against selected criteria; given a dose prescription of 54 Gy in 3 fractions for liver metastases and 45 Gy in 3 fractions for HCC, with previously published consensus-based normal tissue dose constraints. Comparison of evaluation parameters showed a statistically significant difference for target volume coverage and liver, lungs and spinal cord (p < 0.05) dose, while chest wall and skin did not indicate a significant difference between the two modalities. A number of optimal normal tissue constraints was violated by both the CyberKnife and proton plans for the same patients due to proximity of tumour to chest wall. PBT resulted in greater organ sparing, the extent of which was mainly dependent on tumour location. Tumours located on the liver periphery experienced the largest increase in organ sparing. Organ sparing for CyberKnife was comparable with PBT for small target volumes.
Collapse
Affiliation(s)
- Samuel Shyllon
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia
- Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Scott Penfold
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Department of Physics, University of Adelaide, Adelaide, SA, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA, Australia
| | - Ray Dalfsen
- PT Product Engineering, Elekta, Adelaide, SA, Australia
| | - Elsebe Kirkness
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Ben Hug
- 5D Clinics, Claremont, WA, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia.
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia.
| | | | - Colin Tang
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- 5D Clinics, Claremont, WA, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA, Australia
| | - Garry Grogan
- Radiotherapy Physics, The Churchill Hospital, Headington, Oxford, UK
| | | | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- 5D Clinics, Claremont, WA, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| |
Collapse
|
3
|
Jones B. Modelling of RBE differences in selected points within similar spread-out Bragg-peaks (SOBP) placed at superficial and deep water phantom locations in passively scattered beams but not in scanned pencil beams: A hypothesis. Phys Med 2024; 124:104488. [PMID: 39074409 DOI: 10.1016/j.ejmp.2024.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/31/2024] Open
Abstract
PURPOSE To model relative biological effectiveness (RBE) differences found in two studies which used spread-out Bragg-peaks (SOBP) placed at (a) superficial depth and (b) at the maximum range depth. For pencil beam scanning (PBS), RBE at similar points within the SOBP did not change between the two extreme SOBP placement depths; in passively scattered beams (PSB), high RBE values (typically 1.2-1.3) were found within superficially- placed SOBP but reduced to lower values (1-1.07) at similar points within the extreme-depth positioned SOBP. The dose, LET (linear energy transfer) distributions along each SOBP were closely comparable regardless of placement depth, but significant changes in dose rate occurred with depth in the PSB beam. METHODS The equations used allow α and β changes with falling dose rate (the converse to FLASH studies) in PSB, resulting in reduced α/β ratios, compatible with a reduction in micro-volumetric energy transfer (the product of Fluence and LET), with commensurate reductions in RBE. The experimental depth-distances, positions within SOBP, observed dose-rates and radiosensitivity ratios were used to estimate the changes in RBE. RESULTS RBE values within a 5 % tolerance limit of the experimental results for PSB were found at the deepest SOBP placement. No RBE changes were predicted for PBS beams, as in the published results. CONCLUSIONS Enhanced proton therapy toxicity might occur with PBS when compared with PSB for deeply positioned SOBP due to the maintenance of higher RBE. Scanned pencil beam users need to be vigilant about RBE and further research is indicated.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, University of Oxford, Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
4
|
Bălan C, Granja C, Mytsin G, Shvidky S, Molokanov A, Marek L, Chiș V, Oancea C. Particle tracking, recognition and LET evaluation of out-of-field proton therapy delivered to a phantom with implants. Phys Med Biol 2024; 69:165006. [PMID: 38986478 DOI: 10.1088/1361-6560/ad61b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective.This study aims to assess the composition of scattered particles generated in proton therapy for tumors situated proximal to some titanium (Ti) dental implants. The investigation involves decomposing the mixed field and recording Linear Energy Transfer (LET) spectra to quantify the influence of metallic dental inserts located behind the tumor.Approach.A therapeutic conformal proton beam was used to deliver the treatment plan to an anthropomorphic head phantom with two types of implants inserted in the target volume (made of Ti and plastic, respectively). The scattered radiation resulted during the irradiation was detected by a hybrid semiconductor pixel detector MiniPIX Timepix3 that was placed distal to the Spread-out Bragg peak. Visualization and field decomposition of stray radiation were generated using algorithms trained in particle recognition based on artificial intelligence neural networks (AI NN). Spectral sensitive aspects of the scattered radiation were collected using two angular positions of the detector relative to the beam direction: 0° and 60°.Results.Using AI NN, 3 classes of particles were identified: protons, electrons & photons, and ions & fast neutrons. Placing a Ti implant in the beam's path resulted in predominantly electrons and photons, contributing 52.2% of the total number of detected particles, whereas for plastic implants, the contribution was 65.4%. Scattered protons comprised 45.5% and 31.9% with and without metal inserts, respectively. The LET spectra were derived for each group of particles identified, with values ranging from 0.01 to 7.5 keVμm-1for Ti implants/plastic implants. The low-LET component was primarily composed of electrons and photons, while the high-LET component corresponded to protons and ions.Significance.This method, complemented by directional maps, holds the potential for evaluating and validating treatment plans involving stray radiation near organs at risk, offering precise discrimination of the mixed field, and enhancing in this way the LET calculation.
Collapse
Affiliation(s)
- Cristina Bălan
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
- Department of Radiotherapy, The Oncology Institute 'Prof. Dr Ion Chiricuta', Cluj-Napoca, Romania
| | | | - Gennady Mytsin
- International Intergovernmental Organization Joint Institute for Nuclear Research (JINR), Dubna, Russia
| | - Sergey Shvidky
- International Intergovernmental Organization Joint Institute for Nuclear Research (JINR), Dubna, Russia
| | - Alexander Molokanov
- International Intergovernmental Organization Joint Institute for Nuclear Research (JINR), Dubna, Russia
| | | | - Vasile Chiș
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | | |
Collapse
|
5
|
Paganetti H, Simone CB, Bosch WR, Haas-Kogan D, Kirsch DG, Li H, Liang X, Liu W, Mahajan A, Story MD, Taylor PA, Willers H, Xiao Y, Buchsbaum JC. NRG Oncology White Paper on the Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)02974-2. [PMID: 39059509 DOI: 10.1016/j.ijrobp.2024.07.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
This position paper, led by the NRG Oncology Particle Therapy Work Group, focuses on the concept of relative biologic effect (RBE) in clinical proton therapy (PT), with the goal of providing recommendations for the next-generation clinical trials with PT on the best practice of investigating and using RBE, which could deviate from the current standard proton RBE value of 1.1 relative to photons. In part 1, current clinical utilization and practice are reviewed, giving the context and history of RBE. Evidence for variation in RBE is presented along with the concept of linear energy transfer (LET). The intertwined nature of tumor radiobiology, normal tissue constraints, and treatment planning with LET and RBE considerations is then reviewed. Part 2 summarizes current and past clinical data and then suggests the next steps to explore and employ tools for improved dynamic models for RBE. In part 3, approaches and methods for the next generation of prospective clinical trials are explored, with the goal of optimizing RBE to be both more reflective of clinical reality and also deployable in trials to allow clinical validation and interpatient comparisons. These concepts provide the foundation for personalized biologic treatments reviewed in part 4. Finally, we conclude with a summary including short- and long-term scientific focus points for clinical PT. The practicalities and capacity to use RBE in treatment planning are reviewed and considered with more biological data in hand. The intermediate step of LET optimization is summarized and proposed as a potential bridge to the ultimate goal of case-specific RBE planning that can be achieved as a hypothesis-generating tool in near-term proton trials.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - David G Kirsch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Buchsbaum
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
6
|
Xu J, Carney TE, Zhou R, Shepard C, Kanai Y. Real-Time Time-Dependent Density Functional Theory for Simulating Nonequilibrium Electron Dynamics. J Am Chem Soc 2024; 146:5011-5029. [PMID: 38362887 DOI: 10.1021/jacs.3c08226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The explicit real-time propagation approach for time-dependent density functional theory (RT-TDDFT) has increasingly become a popular first-principles computational method for modeling various time-dependent electronic properties of complex chemical systems. In this Perspective, we provide a nontechnical discussion of how this first-principles simulation approach has been used to gain novel physical insights into nonequilibrium electron dynamics phenomena in recent years. Following a concise overview of the RT-TDDFT methodology from a practical standpoint, we discuss our recent studies on the electronic stopping of DNA in water and the Floquet topological phase as examples. Our discussion focuses on how RT-TDDFT simulations played a unique role in deriving new scientific understandings. We then discuss existing challenges and some new advances at the frontier of RT-TDDFT method development for studying increasingly complex dynamic phenomena and systems.
Collapse
Affiliation(s)
- Jianhang Xu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas E Carney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ruiyi Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher Shepard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Kuan EC, Wang EW, Adappa ND, Beswick DM, London NR, Su SY, Wang MB, Abuzeid WM, Alexiev B, Alt JA, Antognoni P, Alonso-Basanta M, Batra PS, Bhayani M, Bell D, Bernal-Sprekelsen M, Betz CS, Blay JY, Bleier BS, Bonilla-Velez J, Callejas C, Carrau RL, Casiano RR, Castelnuovo P, Chandra RK, Chatzinakis V, Chen SB, Chiu AG, Choby G, Chowdhury NI, Citardi MJ, Cohen MA, Dagan R, Dalfino G, Dallan I, Dassi CS, de Almeida J, Dei Tos AP, DelGaudio JM, Ebert CS, El-Sayed IH, Eloy JA, Evans JJ, Fang CH, Farrell NF, Ferrari M, Fischbein N, Folbe A, Fokkens WJ, Fox MG, Lund VJ, Gallia GL, Gardner PA, Geltzeiler M, Georgalas C, Getz AE, Govindaraj S, Gray ST, Grayson JW, Gross BA, Grube JG, Guo R, Ha PK, Halderman AA, Hanna EY, Harvey RJ, Hernandez SC, Holtzman AL, Hopkins C, Huang Z, Huang Z, Humphreys IM, Hwang PH, Iloreta AM, Ishii M, Ivan ME, Jafari A, Kennedy DW, Khan M, Kimple AJ, Kingdom TT, Knisely A, Kuo YJ, Lal D, Lamarre ED, Lan MY, Le H, Lechner M, Lee NY, Lee JK, Lee VH, Levine CG, Lin JC, Lin DT, Lobo BC, Locke T, Luong AU, Magliocca KR, Markovic SN, Matnjani G, McKean EL, Meço C, Mendenhall WM, Michel L, Na'ara S, Nicolai P, Nuss DW, Nyquist GG, Oakley GM, Omura K, Orlandi RR, Otori N, Papagiannopoulos P, Patel ZM, Pfister DG, Phan J, Psaltis AJ, Rabinowitz MR, Ramanathan M, Rimmer R, Rosen MR, Sanusi O, Sargi ZB, Schafhausen P, Schlosser RJ, Sedaghat AR, Senior BA, Shrivastava R, Sindwani R, Smith TL, Smith KA, Snyderman CH, Solares CA, Sreenath SB, Stamm A, Stölzel K, Sumer B, Surda P, Tajudeen BA, Thompson LDR, Thorp BD, Tong CCL, Tsang RK, Turner JH, Turri-Zanoni M, Udager AM, van Zele T, VanKoevering K, Welch KC, Wise SK, Witterick IJ, Won TB, Wong SN, Woodworth BA, Wormald PJ, Yao WC, Yeh CF, Zhou B, Palmer JN. International Consensus Statement on Allergy and Rhinology: Sinonasal Tumors. Int Forum Allergy Rhinol 2024; 14:149-608. [PMID: 37658764 DOI: 10.1002/alr.23262] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Sinonasal neoplasms, whether benign and malignant, pose a significant challenge to clinicians and represent a model area for multidisciplinary collaboration in order to optimize patient care. The International Consensus Statement on Allergy and Rhinology: Sinonasal Tumors (ICSNT) aims to summarize the best available evidence and presents 48 thematic and histopathology-based topics spanning the field. METHODS In accordance with prior International Consensus Statement on Allergy and Rhinology documents, ICSNT assigned each topic as an Evidence-Based Review with Recommendations, Evidence-Based Review, and Literature Review based on the level of evidence. An international group of multidisciplinary author teams were assembled for the topic reviews using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses format, and completed sections underwent a thorough and iterative consensus-building process. The final document underwent rigorous synthesis and review prior to publication. RESULTS The ICSNT document consists of four major sections: general principles, benign neoplasms and lesions, malignant neoplasms, and quality of life and surveillance. It covers 48 conceptual and/or histopathology-based topics relevant to sinonasal neoplasms and masses. Topics with a high level of evidence provided specific recommendations, while other areas summarized the current state of evidence. A final section highlights research opportunities and future directions, contributing to advancing knowledge and community intervention. CONCLUSION As an embodiment of the multidisciplinary and collaborative model of care in sinonasal neoplasms and masses, ICSNT was designed as a comprehensive, international, and multidisciplinary collaborative endeavor. Its primary objective is to summarize the existing evidence in the field of sinonasal neoplasms and masses.
Collapse
Affiliation(s)
- Edward C Kuan
- Departments of Otolaryngology-Head and Neck Surgery and Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Eric W Wang
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel M Beswick
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shirley Y Su
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marilene B Wang
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Waleed M Abuzeid
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Borislav Alexiev
- Department of Pathology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Jeremiah A Alt
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Paolo Antognoni
- Division of Radiation Oncology, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Pete S Batra
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Mihir Bhayani
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Diana Bell
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Manuel Bernal-Sprekelsen
- Otorhinolaryngology Department, Surgery and Medical-Surgical Specialties Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Christian S Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, UNICANCER, Université Claude Bernard Lyon I, Lyon, France
| | - Benjamin S Bleier
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Juliana Bonilla-Velez
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Claudio Callejas
- Department of Otolaryngology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Ricardo L Carrau
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Roy R Casiano
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paolo Castelnuovo
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Rakesh K Chandra
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Simon B Chen
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Alexander G Chiu
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Garret Choby
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Naweed I Chowdhury
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Martin J Citardi
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Marc A Cohen
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roi Dagan
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Gianluca Dalfino
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Iacopo Dallan
- Department of Otolaryngology-Head and Neck Surgery, Pisa University Hospital, Pisa, Italy
| | | | - John de Almeida
- Department of Otolaryngology-Head and Neck Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Angelo P Dei Tos
- Section of Pathology, Department of Medicine, University of Padua, Padua, Italy
| | - John M DelGaudio
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Charles S Ebert
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ivan H El-Sayed
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Jean Anderson Eloy
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - James J Evans
- Department of Neurological Surgery and Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christina H Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nyssa F Farrell
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Marco Ferrari
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Nancy Fischbein
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Adam Folbe
- Department of Otolaryngology-Head and Neck Surgery, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Meha G Fox
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul A Gardner
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mathew Geltzeiler
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Christos Georgalas
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Nicosia Medical School, Nicosia, Cyprus
| | - Anne E Getz
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, Colorado, USA
| | - Satish Govindaraj
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stacey T Gray
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Jessica W Grayson
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bradley A Gross
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jordon G Grube
- Department of Otolaryngology-Head and Neck Surgery, Albany Medical Center, Albany, New York, USA
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Ashleigh A Halderman
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ehab Y Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard J Harvey
- Rhinology and Skull Base Research Group, Applied Medical Research Centre, University of South Wales, Sydney, New South Wales, Australia
| | - Stephen C Hernandez
- Department of Otolaryngology-Head and Neck Surgery, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Adam L Holtzman
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Claire Hopkins
- Department of Otolaryngology-Head and Neck Surgery, Guys and St Thomas' Hospital, London, UK
| | - Zhigang Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Zhenxiao Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Ian M Humphreys
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Alfred M Iloreta
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Masaru Ishii
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Aria Jafari
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohemmed Khan
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam J Kimple
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Todd T Kingdom
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, Colorado, USA
| | - Anna Knisely
- Department of Otolaryngology, Head and Neck Surgery, Swedish Medical Center, Seattle, Washington, USA
| | - Ying-Ju Kuo
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Devyani Lal
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric D Lamarre
- Head and Neck Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ming-Ying Lan
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Matt Lechner
- UCL Division of Surgery and Interventional Science and UCL Cancer Institute, University College London, London, UK
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jivianne K Lee
- Department of Head and Neck Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Victor H Lee
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Corinna G Levine
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jin-Ching Lin
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, Taiwan
| | - Derrick T Lin
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Brian C Lobo
- Department of Otolaryngology-Head and Neck Surgery, University of Florida, Gainesville, Florida, USA
| | - Tran Locke
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Amber U Luong
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kelly R Magliocca
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Svetomir N Markovic
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gesa Matnjani
- Department of Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Erin L McKean
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Cem Meço
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara University Medical School, Ankara, Turkey
- Department of Otorhinolaryngology Head and Neck Surgery, Salzburg Paracelsus Medical University, Salzburg, Austria
| | - William M Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Loren Michel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shorook Na'ara
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Piero Nicolai
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Daniel W Nuss
- Department of Otolaryngology-Head and Neck Surgery, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Gurston G Nyquist
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gretchen M Oakley
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Kazuhiro Omura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Richard R Orlandi
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Peter Papagiannopoulos
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - David G Pfister
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alkis J Psaltis
- Department of Otolaryngology-Head and Neck Surgery, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Mindy R Rabinowitz
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan Rimmer
- Department of Otolaryngology-Head and Neck Surgery, Yale University, New Haven, Connecticut, USA
| | - Marc R Rosen
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Olabisi Sanusi
- Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Zoukaa B Sargi
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Philippe Schafhausen
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rodney J Schlosser
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ahmad R Sedaghat
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brent A Senior
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raj Shrivastava
- Department of Neurosurgery and Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raj Sindwani
- Head and Neck Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Timothy L Smith
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Kristine A Smith
- Department of Otolaryngology-Head and Neck Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carl H Snyderman
- Departments of Otolaryngology-Head and Neck Surgery and Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - C Arturo Solares
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Satyan B Sreenath
- Department of Otolaryngology-Head and Neck Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Aldo Stamm
- São Paulo ENT Center (COF), Edmundo Vasconcelos Complex, São Paulo, Brazil
| | - Katharina Stölzel
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Baran Sumer
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pavol Surda
- Department of Otolaryngology-Head and Neck Surgery, Guys and St Thomas' Hospital, London, UK
| | - Bobby A Tajudeen
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Brian D Thorp
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles C L Tong
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymond K Tsang
- Department of Otolaryngology-Head and Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Justin H Turner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mario Turri-Zanoni
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Aaron M Udager
- Department of Pathology, Michigan Center for Translational Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Thibaut van Zele
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Kyle VanKoevering
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Kevin C Welch
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah K Wise
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ian J Witterick
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tae-Bin Won
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Stephanie N Wong
- Division of Otorhinolaryngology, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Bradford A Woodworth
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter-John Wormald
- Department of Otolaryngology-Head and Neck Surgery, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - William C Yao
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Chien-Fu Yeh
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing Zhou
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Wu XY, Chen M, Cao L, Li M, Chen JY. Proton Therapy in Breast Cancer: A Review of Potential Approaches for Patient Selection. Technol Cancer Res Treat 2024; 23:15330338241234788. [PMID: 38389426 PMCID: PMC10894553 DOI: 10.1177/15330338241234788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/25/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Proton radiotherapy may be a compelling technical option for the treatment of breast cancer due to its unique physical property known as the "Bragg peak." This feature offers distinct advantages, promising superior dose conformity within the tumor area and reduced radiation exposure to surrounding healthy tissues, enhancing the potential for better treatment outcomes. However, proton therapy is accompanied by inherent challenges, primarily higher costs and limited accessibility when compared to well-developed photon irradiation. Thus, in clinical practice, it is important for radiation oncologists to carefully select patients before recommendation of proton therapy to ensure the transformation of dosimetric benefits into tangible clinical benefits. Yet, the optimal indications for proton therapy in breast cancer patients remain uncertain. While there is no widely recognized methodology for patient selection, numerous attempts have been made in this direction. In this review, we intended to present an inspiring summarization and discussion about the current practices and exploration on the approaches of this treatment decision-making process in terms of treatment-related side-effects, tumor control, and cost-efficiency, including the normal tissue complication probability (NTCP) model, the tumor control probability (TCP) model, genomic biomarkers, cost-effectiveness analyses (CEAs), and so on. Additionally, we conducted an evaluation of the eligibility criteria in ongoing randomized controlled trials and analyzed their reference value in patient selection. We evaluated the pros and cons of various potential patient selection approaches and proposed possible directions for further optimization and exploration. In summary, while proton therapy holds significant promise in breast cancer treatment, its integration into clinical practice calls for a thoughtful, evidence-driven strategy. By continuously refining the patient selection criteria, we can harness the full potential of proton radiotherapy while ensuring maximum benefit for breast cancer patients.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Mei Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lu Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Min Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jia-Yi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Ma M, Gong Y, Tang X, Deng P, Qian J, Hu X, Wu J, Ding Z. Solitary fibrous tumor in the saddle area treated with neuroendoscopic surgery and proton therapy: A case report and literature review. Oncol Lett 2023; 26:505. [PMID: 37920432 PMCID: PMC10618926 DOI: 10.3892/ol.2023.14092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023] Open
Abstract
Solitary fibrous tumor (SFT) of the central nervous system is a rare fibroblastic tumor of mesenchymal origin. SFTs in the saddle area are much less common. In January 2022, a 43-year-old female patient was admitted with SFT 3 months following partial resection of a microscopic transsphenoidal saddle area tumor at a different hospital. Magnetic resonance imaging indicated that the unresected part of the tumor was significantly enhanced on T1 enhancement, which strongly indicated a recurrence. Subsequently, the patient underwent transnasal endoscopic saddle area tumor resection at our hospital and the tumor was successfully removed. By using postoperative pathology examination, immunohistochemical analysis of Bcl-2, cluster of differentiation 99, STAT6 and vimentin, and a fusion gene test performed by high-throughput sequencing technology, the SFT was definitively diagnosed. Following 3 months of follow-up, the patient was found to have tumor recurrence in the cavernous sinus and absence of tumor growth in the pituitary fossa. Therefore, the patient received proton therapy and tumor growth was controlled effectively.
Collapse
Affiliation(s)
- Mian Ma
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Yuhui Gong
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Xiaoyu Tang
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Peng Deng
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Jinhong Qian
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Xiaolong Hu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Jiandong Wu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Zhiliang Ding
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| |
Collapse
|
10
|
Smulders B, Stolarczyk L, Seiersen K, Nørrevang O, Sommer Kristensen B, Schut DA, Thomsen K, Lassen-Ramshad Y, Høyer M, Muhic A, Vestergaard A. Prediction of dose-sparing by protons assessed by a knowledge-based planning tool in radiotherapy of brain tumours. Acta Oncol 2023; 62:1541-1545. [PMID: 37793798 DOI: 10.1080/0284186x.2023.2264482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Bob Smulders
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Liliana Stolarczyk
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Klaus Seiersen
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Ole Nørrevang
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Bente Sommer Kristensen
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Deborah Anne Schut
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Karsten Thomsen
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Yasmin Lassen-Ramshad
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Aida Muhic
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Anne Vestergaard
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Gerken LRH, Gerdes ME, Pruschy M, Herrmann IK. Prospects of nanoparticle-based radioenhancement for radiotherapy. MATERIALS HORIZONS 2023; 10:4059-4082. [PMID: 37555747 PMCID: PMC10544071 DOI: 10.1039/d3mh00265a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Maren E Gerdes
- Karolinska Institutet, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
12
|
Borbinha J, Ferreira P, Costa D, Vaz P, Di Maria S. Targeted radionuclide therapy directed to the tumor phenotypes: A dosimetric approach using MC simulations. Appl Radiat Isot 2023; 192:110569. [PMID: 36436229 DOI: 10.1016/j.apradiso.2022.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND In Targeted Radionuclide Therapy (TRT), the continuous technological effort in imaging tumor phenotypes (i.e. sub-volumes with different phenotypic characteristics) and in precise radiopharmaceutical tumor-targeting, is allowing for a better dosimetric optimization at the tumor phenotype level. The aim of this study was to evaluate the dosimetric efficiency (considering strategic absorbed dose delivery to the phenotypes) of personalized TRT directed to the tumor phenotypes. METHODS The dosimetric assessment was performed using a four-phenotype realistic tumor model implemented within the ICRP reference voxel phantom and simulations using the state-of-the-art Monte Carlo program PENELOPE. The dose assessment was performed for five radionuclides commonly used in therapy and/or diagnostic procedures: 125I, 99mTc, 177Lu, 161Tb and 67Ga. Two irradiation scenarios were considered: (i) the Whole Tumor Treatment Planning Scenario (WTTPS), i.e. the four phenotypes irradiated with the same radionuclide; (ii) the Phenotype Treatment Planning Scenario (PTPS), i.e. each phenotype irradiated by a single radionuclide. The optimal radionuclide configurations were studied considering the maximization of the absorbed dose delivered to the tumor and the minimization of dose to healthy tissues. RESULTS In WTTPS, 125I outperforms the other radionuclides in terms of the ratio of the maximum absorbed dose delivered to the tumor and the minimum absorbed dose delivered to healthy tissues. In the PTPS, the use of 161Tb in combination with the other radionuclides maximizes the absorbed dose in the tumor tissues while simultaneously minimizing dose to healthy tissue, compared to the WTTPS. In agreement with recent pre-clinical studies, our computational results confirm and indicate the beneficial additive dosimetric effects of Auger and conversion electrons of 161Tb with respect to 177Lu, when considering the same cumulated activity for both. Interestingly, in considering a realistic tumor model, the better dosimetric performances of 161Tb were confirmed also for tumor volumes ranging from 1.98 cm3 to 33.32 cm3. CONCLUSIONS Dose assessment in realistic non-homogeneous tumor models could provide more insights with respect to consider only homogenous water-spheres tumor models and should be taken into account in dosimetry-based TRT planning studies.
Collapse
Affiliation(s)
- Jorge Borbinha
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| | - Paulo Ferreira
- Champalimaud Centre for the Unknown, Fundação Champalimaud, Avenida Brasília, 1400-038, Lisboa, Portugal.
| | - Durval Costa
- Champalimaud Centre for the Unknown, Fundação Champalimaud, Avenida Brasília, 1400-038, Lisboa, Portugal.
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| | - Salvatore Di Maria
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| |
Collapse
|
13
|
Chaudhary P, Milluzzo G, McIlvenny A, Ahmed H, McMurray A, Maiorino C, Polin K, Romagnani L, Doria D, McMahon SJ, Botchway SW, Rajeev PP, Prise KM, Borghesi M. Cellular irradiations with laser-driven carbon ions at ultra-high dose rates. Phys Med Biol 2023; 68. [PMID: 36625355 DOI: 10.1088/1361-6560/aca387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023]
Abstract
Objective.Carbon is an ion species of significant radiobiological interest, particularly in view of its use in cancer radiotherapy, where its large Relative Biological Efficiency is often exploited to overcome radio resistance. A growing interest in highly pulsed carbon delivery has arisen in the context of the development of the FLASH radiotherapy approach, with recent studies carried out at dose rates of 40 Gy s-1. Laser acceleration methods, producing ultrashort ion bursts, can now enable the delivery of Gy-level doses of carbon ions at ultra-high dose rates (UHDRs), exceeding 109Gy s-1. While studies at such extreme dose rate have been carried out so far using low LET particles such as electrons and protons, the radiobiology of high-LET, UHDR ions has not yet been explored. Here, we report the first application of laser-accelerated carbon ions generated by focussing 1020W cm-2intense lasers on 10-25 nm carbon targets, to irradiate radioresistant patient-derived Glioblastoma stem like cells (GSCs).Approach.We exposed GSCs to 1 Gy of 9.5 ± 0.5 MeV/n carbon ions delivered in a single ultra-short (∼400-picosecond) pulse, at a dose rate of 2 × 109Gy s-1, generated using the ASTRA GEMINI laser of the Central Laser Facility at the Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK. We quantified carbon ion-induced DNA double strand break (DSB) damage using the 53BP1 foci formation assay and used 225 kVp x-rays as a reference radiation.Main Results.Laser-accelerated carbon ions induced complex DNA DSB damage, as seen through persistent 53BP1 foci (11.5 ± 0.4 foci/cell/Gy) at 24 h and significantly larger foci (1.69 ± 0.07μm2) than x-rays induced ones (0.63 ± 0.02μm2). The relative foci induction value for laser-driven carbon ions relative to conventional x-rays was 3.2 ± 0.3 at 24 h post-irradiation also confirming the complex nature of the induced damage.Significance.Our study demonstrates the feasibility of radiobiology investigations at unprecedented dose rates using laser-accelerated high-LET carbon ions in clinically relevant models.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom.,Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Giuliana Milluzzo
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare,, via S Sofia 62, I-95123 Catania, Sicily, Italy
| | - Aodhan McIlvenny
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Hamad Ahmed
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Experimental Science Group, Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Aaron McMurray
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Carla Maiorino
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom.,Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare,, via S Sofia 62, I-95123 Catania, Sicily, Italy.,Extreme Light Infrastructure (ELI-NP) and Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering (IFIN-HH), Str. Reactorului No. 30, 077125 Bucharest, Magurele, Romania.,University College Cork, College of Medicine and Health, Discipline of Diagnostic Radiography and Radiation Therapy, Brookfield Health Sciences Complex, Brookfield College Road, T12AK54, Cork, United Kingdom
| | - Kathryn Polin
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Lorenzo Romagnani
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Laboratoire LULI, École Polytechnique, Route de Saclay, F-91128 Palaiseau, Paris, France
| | - Domenico Doria
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom.,Extreme Light Infrastructure (ELI-NP) and Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering (IFIN-HH), Str. Reactorului No. 30, 077125 Bucharest, Magurele, Romania
| | - Stephen J McMahon
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Stanley W Botchway
- Research Complex at Harwell & Central Laser facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Pattathil P Rajeev
- Experimental Science Group, Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxford, OX11 0QX, England, United Kingdom
| | - Kevin M Prise
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Marco Borghesi
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
14
|
Kasamatsu K, Matsuura T, Yasuda K, Miyazaki K, Takao S, Tamura M, Otsuka M, Uchinami Y, Aoyama H. Hyperfractionated intensity-modulated proton therapy for pharyngeal cancer with variable relative biological effectiveness: A simulation study. Med Phys 2022; 49:7815-7825. [PMID: 36300598 DOI: 10.1002/mp.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The relative biological effectiveness (RBE) of proton is considered to be dependent on biological parameters and fractional dose. While hyperfractionated photon therapy was effective in the treatment of patients with head and neck cancers, its effect in intensity-modulated proton therapy (IMPT) under the variable RBE has not been investigated in detail. PURPOSE To study the effect of variable RBE on hyperfractionated IMPT for the treatment of pharyngeal cancer. We investigated the biologically effective dose (BED) to determine the theoretical effective hyperfractionated schedule. METHODS The treatment plans of three pharyngeal cancer patients were used to define the ΔBED for the clinical target volume (CTV) and soft tissue (acute and late reaction) as the difference between the BED for the altered schedule with variable RBE and conventional schedule with constant RBE. The ΔBED with several combinations of parameters (treatment days, number of fractions, and prescribed dose) was comprehensively calculated. Of the candidate schedules, the one that commonly gave a higher ΔBED for CTV was selected as the resultant schedule. The BED volume histogram was used to compare the influence of variable RBE and fractionation. RESULTS In the conventional schedule, compared with the constant RBE, the variable RBE resulted in a mean 2.6 and 2.7 Gy reduction of BEDmean for the CTV and soft tissue (acute reaction) of the three plans, respectively. Moreover, the BEDmean for soft tissue (late reaction) increased by 7.4 Gy, indicating a potential risk of increased RBE. Comprehensive calculation of the ΔBED resulted in the hyperfractionated schedule of 80.52 Gy (RBE = 1.1)/66 fractions in 6.5 weeks. When variable RBE was used, compared with the conventional schedule, the hyperfractionated schedule increased the BEDmean for CTV by 7.6 Gy; however, this was associated with a 7.8 Gy increase for soft tissue (acute reaction). The BEDmean for soft tissue (late reaction) decreased by 2.4 Gy. CONCLUSION The results indicated a potential effect of the variable RBE on IMPT for pharyngeal cancer but with the possibility that hyperfractionation could outweigh this effect. Although biological uncertainties require conservative use of the resultant schedule, hyperfractionation is expected to be an effective strategy in IMPT for pharyngeal cancer.
Collapse
Affiliation(s)
- Koki Kasamatsu
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Koichi Yasuda
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koichi Miyazaki
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Research and Development Group, Hitachi, Ltd., Hitachi-shi, Japan
| | - Seishin Takao
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Masaya Tamura
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Manami Otsuka
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Uchinami
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Jones B. The influence of hypoxia on LET and RBE relationships with implications for ultra-high dose rates and FLASH modelling. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6ebb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To investigate relationships between linear energy transfer (LET), fluence rates, changes in radiosensitivity and the oxygen enhancement ratio (OER) in different ion beams and extend these concepts to ultra-high dose rate (UHDR) or FLASH effects. Approach. LET values providing maximum relative biological effect (RBE), designated as LETU, are found for neon, carbon and helium beams. Proton experiments show reduced RBEs with depth in scattered (divergent) beams, but not with scanned beams, suggesting that instantaneous fluence rates (related to track separation distances) can modify RBE, all other RBE-determining factors being equal. Micro-volumetric energy transfer per μm3 (mVET) is defined by LET × fluence. High fluence rates will increase mVET rates, with proportional shifts of LETU to lower values due to more rapid energy transfer. From the relationship between LETU and OER at conventional dose rates, OER reductions in UHDR/FLASH exposures can be estimated and biological effective dose analysis of experimental lung and skin reactions becomes feasible. Main results. The Furusawa et al data show that hypoxic LETU values exceed their oxic counterparts. OER reduces from around 3–1.25 at LETU, although the relative radiosensitivities of the oxic and hypoxic α parameters (the OER(α)) exceed those of the standard OER values. Increased fluence rates are predicted to reduce LETU and OER. Large FLASH single doses will minimise RBE increments due to the β parameter reducing by a factor of 0.5–0.25 consistent with oxygen depletion, causing radioresistance. Similar results will occur for photons. Tissue α/β ratios increase by around 10 in FLASH conditions, agreeing with derived ion-beam dose rate equations. Significance. Increasing dose rates enhance local energy deposition rate per unit volume, probably causing oxygen depletion and radioresistance in pre-existing hypoxic sites during UHDR/FLASH exposures. The modelled equations provide testable hypotheses for further dose rate investigations in photon, proton and ion beams.
Collapse
|
16
|
Zhang H, Zhou W. Low-energy X-ray irradiation: A novel non-thermal microbial inactivation technology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:287-328. [PMID: 35659355 DOI: 10.1016/bs.afnr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the last several decades, food irradiation technology has been proven neither to reduce the nutritional value of foods more than other preservation technologies, nor to make foods radioactive or dangerous to eat. Furthermore, food irradiation is a non-thermal food processing technology that helps preserve more heat sensitive nutrients than those found in thermally processed foods. Conventional food irradiation technologies, including γ-ray, electron beam and high energy X-ray, have certain limitations and drawbacks, such as involving radioactive isotopes, low penetration ability, and economical unfeasibility, respectively. Owing to the recent developments in instrumentation technology, more compact and cheaper tabletop low-energy X-ray sources have become available. The generation of low-energy X-ray, unlike γ-ray, does not involve radioactive isotopes and the cost is lower than high energy X-ray. Furthermore, low-energy X-ray possesses unique advantages, i.e., high linear energy transfer (LET) value and high relative biological effect (RBE) value. The advantages allow low-energy X-ray irradiation to provide a higher microbial inactivation efficacy than γ-ray and high energy X-ray irradiation. In the last few years, various applications reported in the literature indicate that low-energy X-ray irradiation has a great potential to become an alternative food preservation technique. This chapter discusses the technical advances of low-energy X-ray irradiation, microbial inactivation mechanism, factors influencing its efficiency, current applications, consumer acceptance, and limitations.
Collapse
Affiliation(s)
- Hongfei Zhang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Jones B. Risk assessment for proton therapy in the central nervous system by assuming small increments in RBE. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
A pilot study of a novel method to visualize three-dimensional dose distribution on skin surface images to evaluate radiation dermatitis. Sci Rep 2022; 12:2729. [PMID: 35177737 PMCID: PMC8854641 DOI: 10.1038/s41598-022-06713-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/27/2022] [Indexed: 11/09/2022] Open
Abstract
Predicting the radiation dose‒toxicity relationship is important for local tumor control and patients’ quality of life. We developed a first intuitive evaluation system that directly matches the three-dimensional (3D) dose distribution with the skin surface image of patients with radiation dermatitis (RD) to predict RD in patients undergoing radiotherapy. Using an RGB-D camera, 82 3D skin surface images (3DSSIs) were acquired from 19 patients who underwent radiotherapy. 3DSSI data acquired included 3D skin surface shape and optical imaging of the area where RD occurs. Surface registration between 3D skin dose (3DSD) and 3DSSI is performed using the iterative closest point algorithm, then reconstructed as a two-dimensional color image. The developed system successfully matched 3DSSI and 3DSD, and visualized the planned dose distribution onto the patient's RD image. The dose distribution pattern was consistent with the occurrence pattern of RD. This new approach facilitated the evaluation of the direct correlation between skin-dose distribution and RD and, therefore, provides a potential to predict the probability of RD and thereby decrease RD severity by enabling informed treatment decision making by physicians. However, the results need to be interpreted with caution due to the small sample size.
Collapse
|
19
|
Hwang E, Burnet NG, Crellin AM, Ahern V, Thwaites DI, Gaito S, Chang YC, Smith E. A Novel Model and Infrastructure for Clinical Outcomes Data Collection and Their Systematic Evaluation for UK Patients Receiving Proton Beam Therapy. Clin Oncol (R Coll Radiol) 2021; 34:11-18. [PMID: 34602320 DOI: 10.1016/j.clon.2021.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
AIMS To establish an infrastructure for sustainable, comprehensive data collection and systematic outcomes evaluation for UK patients receiving proton beam therapy (PBT). MATERIALS AND METHODS A Proton Outcomes Working Group was formed in 2014 to develop a national minimum dataset for PBT patients and to define a clinically integrated informatics solution for data collection. The Christie Proton Beam Therapy Centre formed its Proton Clinical Outcomes Unit in 2018 to collect, curate and analyse outcomes data prospectively for UK-treated patients and retrospectively for UK patients referred abroad for PBT since 2008 via the Proton Overseas Programme (POP). RESULTS A single electronic form (eForm) was developed to capture the agreed data, using a data tree approach including conditional logic: data items are requested once, further questions depend on previous answers and are sensitive to tumour site and patient pathway time point. Relevant data automatically populate other forms, saving time, prompting completeness of clinical assessments and ensuring data consistency. Completed eForm data populate the electronic patient record and generate individualised outputs, including consultation letters, treatment summary and surveillance plans, based on organs at risk irradiated, age and sex. All data regarding POP-treated patients are verified and migrated into the system, ensuring that patient data, whether overseas or UK treated, are consistently recorded. The eForm utilises a 'user friendly' web portal interface, the Clinical Web Portal, including clickable tables and infographics. Data items are coded to a universally recognised standard comparable with other data systems. Patient-reported outcomes are also integrated, highlighting significant toxicities and prompting a response. Outcomes data can be correlated with dosimetric DICOM data to support radiation dose modelling. CONCLUSION Outcomes data from both POP-treated and The Christie-treated patients support long-term care, allow evaluation of PBT efficacy and safety, assist future selection of PBT patients and support hypothesis generation for future clinical trials.
Collapse
Affiliation(s)
- E Hwang
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Institute of Medical Physics, School of Physics, University of Sydney, New South Wales, Australia.
| | - N G Burnet
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - A M Crellin
- NHS England National Clinical Lead Proton Beam Therapy, UK
| | - V Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia; Medical Physics, Leeds Institute of Cancer and Pathology, School of Medicine, Leeds University, Leeds, UK
| | - D I Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, New South Wales, Australia; Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - S Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK
| | - Y-C Chang
- University College London Hospital NHS Foundation Trust (UCLH), London, UK
| | - E Smith
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
20
|
LaRiviere MJ, Dreyfuss A, Taunk NK, Freedman GM. Proton Reirradiation for Locoregionally Recurrent Breast Cancer. Adv Radiat Oncol 2021; 6:100710. [PMID: 34409209 PMCID: PMC8361062 DOI: 10.1016/j.adro.2021.100710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose Local-regional recurrence (LRR) of breast cancer after prior adjuvant radiation (RT) can present a clinical challenge. Proton therapy is recommended by the American Society for Radiation Oncology in cases where reirrradiation is needed; however, data are limited. We present the toxicity and outcomes after reirradiation for local-regional recurrence of breast cancer with proton therapy. Methods and Materials A single-institution retrospective review identified patients with the following criteria: LRR of breast cancer, prior photon radiation to the same region, proton beam reirradiation, and definitive intent. Surgery or systemic therapy at the time of recurrence was used when indicated. The log-rank test was used to compare Kaplan-Meier survival estimates. Kruskal-Wallis tests were performed to compare worst reported toxicities with clinical variables. Results The population included 27 patients with a history of prior radiation and treated with proton therapy for LRR between 2012 and 2019. The median interval between courses was 9.7 years. Proton reirradiation regimens included whole breast/chest wall (WB/CW) with regional nodal RT (22/27), nodal RT alone (2/27), or WB/CW alone (3/27). The median dose was 51 Gy, and the most common fractionation was 1.5 Gy twice daily. Median follow-up after reirradiation was 16.6 months. Acute grade 3 toxicities included dermatitis in 2 patients and breast pain in 2 patients. Grade 2 or higher late toxicities included 6 G2 rib fractures and 1 G2 brachial plexopathy, 1 G3 dermatitis, 1 G3 breast pain, and 1 G4 dermatitis. Twelve patients had new documented recurrences of which 1 was a second in-field LRR, and there were 7 deaths. Conclusions Proton salvage reirradiation to median 51 Gy in 1.5 Gy twice daily appears to be safe with acceptable acute and late toxicity, and effective with >95% local-regional control.
Collapse
Affiliation(s)
- Michael J LaRiviere
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alexandra Dreyfuss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neil K Taunk
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gary M Freedman
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Horendeck D, Walsh KD, Hirakawa H, Fujimori A, Kitamura H, Kato TA. High LET-Like Radiation Tracks at the Distal Side of Accelerated Proton Bragg Peak. Front Oncol 2021; 11:690042. [PMID: 34178687 PMCID: PMC8222778 DOI: 10.3389/fonc.2021.690042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Proton therapy is a type of hadron radiotherapy used for treating solid tumors. Unlike heavy charged elements, proton radiation is considered to be low LET (Linear Energy Transfer) radiation, like X-rays. However, the clinical SOBP (Spread Out Bragg Peak) proton radiation is considered to be higher in relative biological effectiveness (RBE) than both X-ray and their own entrance region. The RBE is estimated to be 1.1–1.2, which can be attributed to the higher LET at the SOBP region than at the entrance region. In order to clarify the nature of higher LET near the Bragg peak of proton radiation and its potential cytotoxic effects, we utilized a horizontal irradiation system with CHO cells. Additionally, we examined DNA repair mutants, analyzed cytotoxicity with colony formation, and assessed DNA damage and its repair with γ-H2AX foci assay in a high-resolution microscopic scale analysis along with the Bragg peak. Besides confirming that the most cytotoxic effects occurred at the Bragg peak, extended cytotoxicity was observed a few millimeters after the Bragg peak. γ-H2AX foci numbers reached a maximum at the Bragg peak and reduced dramatically after the Bragg peak. However, in the post-Bragg peak region, particle track-like structures were sporadically observed. This region contains foci that are more difficult to repair. The peak and post-Bragg peak regions contain rare high LET-like radiation tracks and can cause cellular lethality. This may have caused unwanted side effects and complexities of outputs for the proton therapy treatment.
Collapse
Affiliation(s)
- Dakota Horendeck
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kade D Walsh
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hirokazu Hirakawa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hisashi Kitamura
- Radiation Emergency Medical Assistance Team, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
22
|
Clinical Progress in Proton Radiotherapy: Biological Unknowns. Cancers (Basel) 2021; 13:cancers13040604. [PMID: 33546432 PMCID: PMC7913745 DOI: 10.3390/cancers13040604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Proton radiation therapy is a more recent type of radiotherapy that uses proton beams instead of classical photon or X-rays beams. The clinical benefit of proton therapy is that it allows to treat tumors more precisely. As a result, proton radiotherapy induces less toxicity to healthy tissue near the tumor site. Despite the experience in the clinical use of protons, the response of cells to proton radiation, the radiobiology, is less understood. In this review, we describe the current knowledge about proton radiobiology. Abstract Clinical use of proton radiation has massively increased over the past years. The main reason for this is the beneficial depth-dose distribution of protons that allows to reduce toxicity to normal tissues surrounding the tumor. Despite the experience in the clinical use of protons, the radiobiology after proton irradiation compared to photon irradiation remains to be completely elucidated. Proton radiation may lead to differential damages and activation of biological processes. Here, we will review the current knowledge of proton radiobiology in terms of induction of reactive oxygen species, hypoxia, DNA damage response, as well as cell death after proton irradiation and radioresistance.
Collapse
|
23
|
Conte V, Agosteo S, Bianchi A, Bolst D, Bortot D, Catalano R, Cirrone GAP, Colautti P, Cuttone G, Guatelli S, James B, Mazzucconi D, Rosenfeld AB, Selva A, Tran L, Petringa G. Microdosimetry of a therapeutic proton beam with a mini-TEPC and a MicroPlus-Bridge detector for RBE assessment. Phys Med Biol 2020; 65:245018. [PMID: 33086208 DOI: 10.1088/1361-6560/abc368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton beams are widely used worldwide to treat localized tumours, the lower entrance dose and no exit dose, thus sparing surrounding normal tissues, being the main advantage of this treatment modality compared to conventional photon techniques. Clinical proton beam therapy treatment planning is based on the use of a general relative biological effectiveness (RBE) of 1.1 along the whole beam penetration depth, without taking into account the documented increase in RBE at the end of the depth dose profile, in the Bragg peak and beyond. However, an inaccurate estimation of the RBE can cause both underdose or overdose, in particular it can cause the unfavourable situation of underdosing the tumour and overdosing the normal tissue just beyond the tumour, which limits the treatment success and increases the risk of complications. In view of a more precise dose delivery that takes into account the variation of RBE, experimental microdosimetry offers valuable tools for the quality assurance of LET or RBE-based treatment planning systems. The purpose of this work is to compare the response of two different microdosimetry systems: the mini-TEPC and the MicroPlus-Bridge detector. Microdosimetric spectra were measured across the 62 MeV spread out Bragg peak of CATANA with the mini-TEPC and with the Bridge microdosimeter. The frequency and dose distributions of lineal energy were compared and the different contributions to the spectra were analysed, discussing the effects of different site sizes and chord length distributions. The shape of the lineal energy distributions measured with the two detectors are markedly different, due to the different water-equivalent sizes of the sensitive volumes: 0.85 μm for the TEPC and 17.3 μm for the silicon detector. When the Loncol's biological weighting function is applied to calculate the microdosimetric assessment of the RBE, both detectors lead to results that are consistent with biological survival data for glioma U87 cells. Both the mini-TEPC and the MicroPlus-Bridge detector can be used to assess the RBE variation of a 62 MeV modulated proton beam along its penetration depth. The microdosimetric assessment of the RBE based on the Loncol's weighting function is in good agreement with radiobiological results when the 10% biological uncertainty is taken into account.
Collapse
Affiliation(s)
- V Conte
- INFN Laboratori Nazionali di Legnaro, viale dell'Università 2 35020 Legnaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gu W, Ruan D, Zou W, Dong L, Sheng K. Linear energy transfer weighted beam orientation optimization for intensity-modulated proton therapy. Med Phys 2020; 48:57-70. [PMID: 32542711 DOI: 10.1002/mp.14329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In intensity-modulated proton therapy (IMPT), unaccounted-for variation in biological effectiveness contributes to the discrepancy between the constant relative biological effectiveness (RBE) model prediction and experimental observation. It is desirable to incorporate biological doses in treatment planning to improve modeling accuracy and consequently achieve a higher therapeutic ratio. This study addresses this demand by developing a method to incorporate linear energy transfer (LET) into beam orientation optimization (BOO). METHODS Instead of RBE-weighted dose, this LET weighted BOO (LETwBOO) framework uses the dose and LET product (LET × D) as the biological surrogate. The problem is formulated with a physical dose fidelity term, a LET × D constraint term, and a group sparsity term. The LET × D of organs at risks is penalized for minimizing the biological effect while maintaining the physical dose objectives. Group sparsity is used to reduce the number of active beams from 600-800 non-coplanar candidate beams to between 2 and 4. This LETwBOO method was tested on three skull base tumor (SBT) patients and three bilateral head-and-neck (H&N) patients. The LETwBOO plans were compared with IMPT plans using manually selected beams with only physical dose constraint (MAN) and the initial MAN plan reoptimized with additional LET × D constraint (LETwMAN). RESULTS The LETwBOO plans show superior physical dose and LET × D sparing. On average, the [mean, maximal] doses of organs at risks (OARs) in LETwBOO are reduced by [2.85, 4.6] GyRBE from the MAN plans in the SBT cases and reduced by [0.9, 2.5] GyRBE in the H&N cases, while LETwMAN is comparable to MAN. cLET × Ds of PTVs are comparable in LETwBOO and LETwMAN, where c is a scaling factor of 0.04 μm/keV. On average, in the SBT cases, LETwBOO reduces the OAR [mean, maximal] cLET × D by [1.1, 2.9] Gy from the MAN plans, compared to the reduction by LETwMAN from MAN of [0.7, 1.7] Gy. In the H&N cases, LETwBOO reduces the OAR [mean, maximal] cLET × D by [0.8, 2.6] Gy from the MAN plans, compared to the reduction by LETwMAN from MAN of [0.3, 1.2] Gy. CONCLUSION We developed a novel LET weighted BOO method for IMPT to generate plans with improved physical and biological OAR sparing compared with the plans unaccounted for biological effects from BOO.
Collapse
Affiliation(s)
- Wenbo Gu
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Dan Ruan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
25
|
Mara E, Clausen M, Khachonkham S, Deycmar S, Pessy C, Dörr W, Kuess P, Georg D, Gruber S. Investigating the impact of alpha/beta and LET d on relative biological effectiveness in scanned proton beams: An in vitro study based on human cell lines. Med Phys 2020; 47:3691-3702. [PMID: 32347564 PMCID: PMC7496287 DOI: 10.1002/mp.14212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE A relative biological effectiveness (RBE) of 1.1 is commonly used in clinical proton therapy, irrespective of tissue type and depth. This in vitro study was conducted to quantify the RBE of scanned protons as a function of the dose-averaged linear energy transfer (LETd ) and the sensitivity factor (α/ß)X . Additionally, three phenomenological models (McNamara, Rørvik, and Jones) and one mechanistic model (repair-misrepair-fixation, RMF) were applied to the experimentally derived data. METHODS Four human cell lines (FaDu, HaCat, Du145, SKMel) with differential (α/ß)X ratios were irradiated in a custom-designed irradiation setup with doses between 0 and 6 Gy at proximal, central, and distal positions of a 80 mm spread-out Bragg peak (SOBP) centered at 80 mm (setup A: proton energies 66.5-135.6 MeV) and 155 mm (setup B: proton energies 127.2-185.9 MeV) depth, respectively. LETd values at the respective cell positions were derived from Monte Carlo simulations performed with the treatment planning system (TPS, RayStation). Dosimetric measurements were conducted to verify dose homogeneity and dose delivery accuracy. RBE values were derived for doses that resulted in 90 % (RBE90 ) and 10 % (RBE10 ) of cell survival, and survival after a 0.5 Gy dose (RBE0.5Gy ), 2 Gy dose (RBE2Gy ), and 6 Gy dose (RBE6Gy ). RESULTS LETd values at sample positions were 1.9, 2.1, 2.5, 2.8, 4.1, and 4.5 keV/µm. For the cell lines with high (α/ß)X ratios (FaDu, HaCat), the LETd did not impact on the RBE. For low (α/ß)X cell lines (Du145, SKMel), LQ-derived survival curves indicated a clear correlation of LETd and RBE. RBE90 values up to 2.9 and RBE10 values between 1.4 and 1.8 were obtained. Model-derived RBE predictions slightly overestimated the RBE for the high (α/ß)X cell lines, although all models except the Jones model provided RBE values within the experimental uncertainty. For low (α/ß)X cell lines, no agreement was found between experiments and model predictions, that is, all models underestimated the measured RBE. CONCLUSIONS The sensitivity parameter (α/ß)X was observed to be a major influencing factor for the RBE of protons and its sensitivity toward LETd changes. RBE prediction models are applicable for high (α/ß)X cell lines but do not estimate RBE values with sufficient accuracy in low (α/ß)X cell lines.
Collapse
Affiliation(s)
- Elisabeth Mara
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,University of Applied Science, Wiener Neustadt, Austria
| | - Monika Clausen
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Suphalak Khachonkham
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,Division of Radiation Therapy, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Simon Deycmar
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Clara Pessy
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Dörr
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Dietmar Georg
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Sylvia Gruber
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,EBG MedAustron GmbH, Wiener Neustadt, Austria
| |
Collapse
|
26
|
Protons Show Greater Relative Biological Effectiveness for Mammary Tumorigenesis with Higher ERα- and HER2-Positive Tumors Relative to γ-rays in APC Min/+ Mice. Int J Radiat Oncol Biol Phys 2020; 107:202-211. [PMID: 32036005 PMCID: PMC9835149 DOI: 10.1016/j.ijrobp.2020.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE Exposure to ionizing radiation increases risk of breast cancer. Although proton radiation is encountered in outer space and in medicine, we do not fully understand breast cancer risks from protons owing to limited in vivo data. The purpose of this study was to comparatively assess the effects of γ-rays and protons on mammary tumorigenesis in APCMin/+ mice. METHODS AND MATERIALS Female APCMin/+ mice were exposed to 1 GeV protons (1.88 or 4.71 Gy) and 137Cs γ-rays (2 or 5 Gy). Mice were euthanized 100 to 110 days after irradiation, at which point mammary tumors were scored, tumor grades were assessed, and relative biological effectiveness was calculated. Molecular phenotypes were determined by assessing estrogen receptor α (ERα) and human epidermal growth factor receptor 2 (HER2) status. ERα downstream signaling was assessed by immunohistochemistry. RESULTS Exposure to proton radiation led to increased mammary tumor frequency at both proton radiation doses compared with γ-rays. The calculated relative biological effectiveness for proton radiation-induced mammary tumorigenesis was 3.11 for all tumors and >5 for malignant tumors relative to γ-rays. Tumor frequency per unit of radiation was higher at the lower dose, suggesting a saturation effect at the higher dose. Protons induced more adenocarcinomas relative to γ-rays, and proton-induced tumors show greater ERα and HER2 positivity and higher activation of the ERα downstream PI3K/Akt and cyclin D1 pathways relative to γ-rays. CONCLUSIONS Our data demonstrate that protons pose a higher risk of mammary tumorigenesis relative to γ-rays. We also show that proton radiation-induced tumors in APCMin/+ mice are ERα- and HER2-positive, which is consistent with our previous data on radiation-induced estrogenic response in wild-type mice. Although this study establishes APCMin/+ as a model with adequate signal-to-noise ratio for space radiation-induced mammary tumorigenesis, further studies will be required to address the uncertainties in space radiation-induced breast cancer risk estimation.
Collapse
|
27
|
Proton therapy for head and neck squamous cell carcinomas: A review of the physical and clinical challenges. Radiother Oncol 2020; 147:30-39. [PMID: 32224315 DOI: 10.1016/j.radonc.2020.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
The quality of radiation therapy has been shown to significantly influence the outcomes for head and neck squamous cell carcinoma (HNSCC) patients. The results of dosimetric studies suggest that intensity-modulated proton therapy (IMPT) could be of added value for HNSCC by being more effective than intensity-modulated (photon) radiation therapy (IMRT) for reducing side effects of radiation therapy. However, the physical properties of protons make IMPT more sensitive than photons to planning uncertainties. This could potentially have a negative effect on the quality of IMPT planning and delivery. For this review, the three French proton therapy centers collaborated to evaluate the differences between IMRT and IMPT. The review explored the effects of these uncertainties and their management for developing a robust and optimized IMPT treatment delivery plan to achieve clinical outcomes that are superior to those for IMRT. We also provide practical suggestions for the management of HNSCC carcinoma with IMPT. Because metallic dental implants can increase range uncertainties (3-10%), patient preparation for IMPT may require more systematic removal of in-field alien material than is done for IMRT. Multi-energy CT may be an alternative to calculate more accurately the dose distribution. The practical aspects that we describe are essential to guarantee optimal quality in radiation therapy in both model-based and randomized clinical trials.
Collapse
|
28
|
Burnet NG, Mackay RI, Smith E, Chadwick AL, Whitfield GA, Thomson DJ, Lowe M, Kirkby NF, Crellin AM, Kirkby KJ. Proton beam therapy: perspectives on the National Health Service England clinical service and research programme. Br J Radiol 2020; 93:20190873. [PMID: 31860337 PMCID: PMC7066938 DOI: 10.1259/bjr.20190873] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
The UK has an important role in the evaluation of proton beam therapy (PBT) and takes its place on the world stage with the opening of the first National Health Service (NHS) PBT centre in Manchester in 2018, and the second in London coming in 2020. Systematic evaluation of the role of PBT is a key objective. By September 2019, 108 patients had started treatment, 60 paediatric, 19 teenagers and young adults and 29 adults. Obtaining robust outcome data is vital, if we are to understand the strengths and weaknesses of current treatment approaches. This is important in demonstrating when PBT will provide an advantage and when it will not, and in quantifying the magnitude of benefit.The UK also has an important part to play in translational PBT research, and building a research capability has always been the vision. We are perfectly placed to perform translational pre-clinical biological and physical experiments in the dedicated research room in Manchester. The nature of DNA damage from proton irradiation is considerably different from X-rays and this needs to be more fully explored. A better understanding is needed of the relative biological effectiveness (RBE) of protons, especially at the end of the Bragg peak, and of the effects on tumour and normal tissue of PBT combined with conventional chemotherapy, targeted drugs and immunomodulatory agents. These experiments can be enhanced by deterministic mathematical models of the molecular and cellular processes of DNA damage response. The fashion of ultra-high dose rate FLASH irradiation also needs to be explored.
Collapse
Affiliation(s)
| | | | - Ed Smith
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Gillian A Whitfield
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | - David J Thomson
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | | | - Norman F Kirkby
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | | | - Karen J Kirkby
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| |
Collapse
|
29
|
Scholz M. State-of-the-Art and Future Prospects of Ion Beam Therapy: Physical and Radiobiological Aspects. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2935240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Ma D, Bronk L, Kerr M, Sobieski M, Chen M, Geng C, Yiu J, Wang X, Sahoo N, Cao W, Zhang X, Stephan C, Mohan R, Grosshans DR, Guan F. Exploring the advantages of intensity-modulated proton therapy: experimental validation of biological effects using two different beam intensity-modulation patterns. Sci Rep 2020; 10:3199. [PMID: 32081928 PMCID: PMC7035246 DOI: 10.1038/s41598-020-60246-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
In current treatment plans of intensity-modulated proton therapy, high-energy beams are usually assigned larger weights than low-energy beams. Using this form of beam delivery strategy cannot effectively use the biological advantages of low-energy and high-linear energy transfer (LET) protons present within the Bragg peak. However, the planning optimizer can be adjusted to alter the intensity of each beamlet, thus maintaining an identical target dose while increasing the weights of low-energy beams to elevate the LET therein. The objective of this study was to experimentally validate the enhanced biological effects using a novel beam delivery strategy with elevated LET. We used Monte Carlo and optimization algorithms to generate two different intensity-modulation patterns, namely to form a downslope and a flat dose field in the target. We spatially mapped the biological effects using high-content automated assays by employing an upgraded biophysical system with improved accuracy and precision of collected data. In vitro results in cancer cells show that using two opposed downslope fields results in a more biologically effective dose, which may have the clinical potential to increase the therapeutic index of proton therapy.
Collapse
Affiliation(s)
- Duo Ma
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lawrence Bronk
- Departments of Radiation and Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew Kerr
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mary Sobieski
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Mei Chen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Changran Geng
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Joycelyn Yiu
- Departments of Radiation and Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Xiaochun Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenhua Cao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David R Grosshans
- Departments of Radiation and Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Fada Guan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
LaRiviere MJ, Santos PMG, Hill-Kayser CE, Metz JM. Proton Therapy. Hematol Oncol Clin North Am 2019; 33:989-1009. [DOI: 10.1016/j.hoc.2019.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Jones B, Hill MA. Physical characteristics at the turnover-points of relative biological effect (RBE) with linear energy transfer (LET). Phys Med Biol 2019; 64:225010. [PMID: 31665711 DOI: 10.1088/1361-6560/ab52a5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This paper considers the kinematic physical characteristics of ionic beams for maximum relative bio-effectiveness (RBE). RBE studies, based on heterogenous cell survival studies at different laboratories and linear energy transfer (LET) conditions for proton, helium, carbon, neon and argon ions, have been further analysed to determine the LETU values where RBE is maximal and the LET-RBE relationship has a turnover point. The SRIM stopping power software and other classical equations are used to determine the particle velocities, kinetic energies and their effective ionic charges at LETU. The estimated mean LETU values increase with atomic number (Z). Each LETU has a unique relativistic velocity, β = v/c, the velocity v expressed as a fraction of the speed of light, (c), and which is non-linearly proportional to Z. For ions helium and heavier ions, these velocities indicate that the effective charge Z * is around 0.99 of the full Z value at each LETU, with remarkably stable velocities of 3-4 nm · fs-1 per nucleon, or around 6-8 nm · fs-1 per unit Z. For Z = 1, (protons and deuterium) some values fall outside these ranges but the result depends on the mix of proton and deuterium used in experiments. An alternative index of βA/Z 2 (A is the atomic mass number), suggests an average velocity of around 15 nm · fs-1 for each particle at LETU. These distances, traversed in the time of the radiochemical process initiation, are all within the dimensions of the nucleosome. Curve fitting of the data set provides a predictive equation for LETU for any ion, as LETU = 30.4 + [Formula: see text] (1 - Exp[-0.61 √ (Z - 1)]) when normalised to protons. These data can be extended to heavier ions such as silicon and iron and give values that are consistent with experimental data. Each ion probably has a unique LETU value. Kinematic studies show maximum bio-effectiveness occurs at particle velocities where electron stripping remains at around 99% and where the velocity per nucleon is around 3-4 nm · fs-1. This study enhances the limited prior knowledge about the physical conditions of particle beams that provide maximum bio-effectiveness, with applications in particle radiotherapy, radiation protection and space travel.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, Oxford Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DG, United Kingdom. Author to whom any correspondence should be addressed
| | | |
Collapse
|
33
|
Clausen M, Khachonkham S, Gruber S, Kuess P, Seemann R, Knäusl B, Mara E, Palmans H, Dörr W, Georg D. Phantom design and dosimetric characterization for multiple simultaneous cell irradiations with active pencil beam scanning. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:563-573. [PMID: 31541343 PMCID: PMC6768893 DOI: 10.1007/s00411-019-00813-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/09/2019] [Indexed: 05/04/2023]
Abstract
A new phantom was designed for in vitro studies on cell lines in horizontal particle beams. The phantom enables simultaneous irradiation at multiple positions along the beam path. The main purpose of this study was the detailed dosimetric characterization of the phantom which consists of various heterogeneous structures. The dosimetric measurements described here were performed under non-reference conditions. The experiment involved a CT scan of the phantom, dose calculations performed with the treatment planning system (TPS) RayStation employing both the Pencil Beam (PB) and Monte Carlo (MC) algorithms, and proton beam delivery. Two treatment plans reflecting the typical target location for head and neck cancer and prostate cancer treatment were created. Absorbed dose to water and dose homogeneity were experimentally assessed within the phantom along the Bragg curve with ionization chambers (ICs) and EBT3 films. LETd distributions were obtained from the TPS. Measured depth dose distributions were in good agreement with the Monte Carlo-based TPS data. Absorbed dose calculated with the PB algorithm was 4% higher than the absorbed dose measured with ICs at the deepest measurement point along the spread-out Bragg peak. Results of experiments using melanoma (SKMel) cell line are also presented. The study suggested a pronounced correlation between the relative biological effectiveness (RBE) and LETd, where higher LETd leads to elevated cell death and cell inactivation. Obtained RBE values ranged from 1.4 to 1.8 at the survival level of 10% (RBE10). It is concluded that dosimetric characterization of a phantom before its use for RBE experiments is essential, since a high dosimetric accuracy contributes to reliable RBE data and allows for a clearer differentiation between physical and biological uncertainties.
Collapse
Affiliation(s)
- Monika Clausen
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
| | - Suphalak Khachonkham
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Division of Radiation Therapy, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sylvia Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| | | | - Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Elisabeth Mara
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- University of Applied Science, Wiener Neustadt, Austria
| | - Hugo Palmans
- EBG MedAustron GmbH, Wiener Neustadt, Austria
- National Physical Laboratory, Teddington, UK
| | - Wolfgang Dörr
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| |
Collapse
|
34
|
Suman S, Kallakury BVS, Fornace AJ, Datta K. Fractionated and Acute Proton Radiation Show Differential Intestinal Tumorigenesis and DNA Damage and Repair Pathway Response in Apc Min/+ Mice. Int J Radiat Oncol Biol Phys 2019; 105:525-536. [PMID: 31271826 DOI: 10.1016/j.ijrobp.2019.06.2532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/08/2019] [Accepted: 06/24/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Proton radiation is a major component of the radiation field in outer space and is used clinically in radiation therapy of resistant cancers. Although epidemiologic studies in atom bomb survivors and radiologic workers have established radiation as a risk factor for colorectal cancer (CRC), we have yet to determine the risk of CRC posed by proton radiation owing to a lack of sufficient human or animal data. The purpose of the current study was to quantitatively and qualitatively characterize differential effects of acute and fractionated high-energy protons on colorectal carcinogenesis. METHODS AND MATERIALS We used ApcMin/+ mice, a well-studied CRC model, to examine acute versus fractionated proton radiation-induced differences in intestinal tumorigenesis and associated signaling pathways. Mice were exposed to 1.88 Gy of proton radiation delivered in a single fraction or in 4 equal daily fractions (0.47 Gy × 4). Intestinal tumor number and grade were scored 100 to 110 days after irradiation, and tumor and tumor-adjacent normal tissues were harvested to assess proliferative β-catenin/Akt pathways and DNA damage response and repair pathways relevant to colorectal carcinogenesis. RESULTS Significantly higher intestinal tumor number and grade, along with decreased differentiation, were observed after acute radiation relative to fractionated radiation. Acute protons induced upregulation of β-catenin and Akt pathways with increased proliferative marker phospho-histone H3. Increased DNA damage along with decreased DNA repair factors involved in mismatch repair and nonhomologous end joining were also observed after exposure to acute protons. CONCLUSIONS We show increased γH2AX, 53BP1, and 8-oxo-dG, suggesting that increased ongoing DNA damage along with decreased DNA repair factors and increased proliferative responses could be triggering a higher number of intestinal tumors after acute relative to fractionated proton exposures in ApcMin/+ mice. Taken together, our data suggest greater carcinogenic potential of acute relative to fractionated proton radiation.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC; Department of Oncology, Georgetown University Medical Center, Washington, DC
| | | | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC; Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Kamal Datta
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC; Department of Oncology, Georgetown University Medical Center, Washington, DC; Department of Pathology, Georgetown University Medical Center, Washington, DC.
| |
Collapse
|
35
|
Friedrich T. Proton RBE dependence on dose in the setting of hypofractionation. Br J Radiol 2019; 93:20190291. [PMID: 31437004 DOI: 10.1259/bjr.20190291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypofractionated radiotherapy is attractive concerning patient burden and therapy costs, but many aspects play a role when it comes to assess its safety. While exploited for conventional photon therapy and carbon ion therapy, hypofractionation with protons is only rarely applied. One reason for this is uncertainty in the described dose, mainly due to the relative biological effectiveness (RBE), which is small for protons, but not negligible. RBE is generally dose-dependent, and for higher doses as used in hypofractionation, a thorough RBE evaluation is needed. This review article focuses on the RBE variability in protons and associated issues or implications for hypofractionation.
Collapse
Affiliation(s)
- Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
36
|
Simulation of a radiobiology facility for the Centre for the Clinical Application of Particles. Phys Med 2019; 65:21-28. [PMID: 31430582 DOI: 10.1016/j.ejmp.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 01/14/2023] Open
Abstract
The Centre for the Clinical Application of Particles' Laser-hybrid Accelerator for Radiobiological Applications (LhARA) facility is being studied and requires simulation of novel accelerator components (such as the Gabor lens capture system), detector simulation and simulation of the ion beam interaction with cells. The first stage of LhARA will provide protons up to 15 MeV for in vitro studies. The second stage of LhARA will use a fixed-field accelerator to increase the energy of the particles to allow in vivo studies with protons and in vitro studies with heavier ions. BDSIM, a Geant4 based accelerator simulation tool, has been used to perform particle tracking simulations to verify the beam optics design done by BeamOptics and these show good agreement. Design parameters were defined based on an EPOCH simulation of the laser source and a series of mono-energetic input beams were generated from this by BDSIM. The tracking results show the large angular spread of the input beam (0.2 rad) can be transported with a transmission of almost 100% whilst keeping divergence at the end station very low (<0.1 mrad). The legacy of LhARA will be the demonstration of technologies that could drive a step-change in the provision of proton and light ion therapy (i.e. a laser source coupled to a Gabor lens capture and a fixed-field accelerator), and a system capable of delivering a comprehensive set of experimental data that can be used to enhance the clinical application of proton and light ion therapy.
Collapse
|
37
|
Jones B, Hopewell J. Spinal cord re-treatments using photon and proton based radiotherapy: LQ-derived tolerance doses. Phys Med 2019; 64:304-310. [DOI: 10.1016/j.ejmp.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022] Open
|
38
|
Beddok A, Vela A, Calugaru V, Tessonnier T, Kubes J, Dutheil P, Gérard A, Vidal M, Goudjil F, Florescu C, Kammerer E, Bénézery K, Hérault J, Bourhis J, Thariat J. [Proton therapy for head and neck squamous cell carcinomas: From physics to clinic]. Cancer Radiother 2019; 23:439-448. [PMID: 31358445 DOI: 10.1016/j.canrad.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/17/2022]
Abstract
Intensity-modulated radiation therapy (IMRT) is presently the recommended technique for the treatment of locally advanced head and neck carcinomas. Proton therapy would allow to reduce the volume of irradiated normal tissue and, thus, to decrease the risk of late dysphagia, xerostomia, dysgeusia and hypothyroidism. An exhaustive research was performed with the search engine PubMed by focusing on the papers about the physical difficulties that slow down use of proton therapy for head and neck carcinomas. Range uncertainties in proton therapy (±3 %) paradoxically limit the use of the steep dose gradient in distality. Calibration uncertainties can be important in the treatment of head and neck cancer in the presence of materials of uncertain stoichiometric composition (such as with metal implants, dental filling, etc.) and complex heterogeneities. Dental management for example may be different with IMRT or proton therapy. Some uncertainties can be somewhat minimized at the time of optimization. Inter- and intrafractional variations and uncertainties in Hounsfield units/stopping power can be integrated in a robust optimization process. Additional changes in patient's anatomy (tumour shrinkage, changes in skin folds in the beam patch, large weight loss or gain) require rescanning. Dosimetric and small clinical studies comparing photon and proton therapy have well shown the interest of proton therapy for head and neck cancers. Intensity-modulated proton therapy is a promising treatment as it can reduce the substantial toxicity burden of patients with head and neck squamous cell carcinoma compared to IMRT. Robust optimization will allow to perform an optimal treatment and to use proton therapy in current clinical practice.
Collapse
Affiliation(s)
- A Beddok
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France
| | - A Vela
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - V Calugaru
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France
| | - T Tessonnier
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - J Kubes
- Proton Therapy Centre Czech, Prague, République tchèque
| | - P Dutheil
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - A Gérard
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - M Vidal
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - F Goudjil
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France
| | - C Florescu
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - E Kammerer
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France
| | - K Bénézery
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - J Hérault
- Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France
| | - J Bourhis
- Département d'oncologie-radiothérapie, centre hospitalier universitaire vaudois, Lausanne, Suisse
| | - J Thariat
- Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Advanced Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue du Général-Harris, 14000 Caen, France; Laboratoire de physique corpusculaire IN2P3/Ensicaen - UMR6534, Unicaen - Normandie Université, 14000 Caen, France.
| | -
- Département d'oncologie-radiothérapie, institut Curie, 25, rue d'Ulm, 75005 Paris, France; Département d'oncologie-radiothérapie, centre François-Baclesse, Caen, 3, avenue du Général-Harris, 14000 Caen, France; Unicaen - Normandie Université, 14000 Caen, France; Proton Therapy Centre Czech, Prague, République tchèque; Centre Antoine-Lacassagne, département d'oncologie-radiothérapie, 33, avenue Valombrose, 06000 Nice, France; Département d'oncologie-radiothérapie, centre hospitalier universitaire vaudois, Lausanne, Suisse; Laboratoire de physique corpusculaire IN2P3/Ensicaen - UMR6534, Unicaen - Normandie Université, 14000 Caen, France
| |
Collapse
|
39
|
Sánchez‐Parcerisa D, López‐Aguirre M, Dolcet Llerena A, Udías JM. MultiRBE: Treatment planning for protons with selective radiobiological effectiveness. Med Phys 2019; 46:4276-4284. [DOI: 10.1002/mp.13718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniel Sánchez‐Parcerisa
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| | - Miguel López‐Aguirre
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| | | | - José Manuel Udías
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| |
Collapse
|
40
|
Gulliford SL, Prise KM. Relative Biological Effect/Linear Energy Transfer in Proton Beam Therapy: A Primer. Clin Oncol (R Coll Radiol) 2019; 31:809-812. [PMID: 31301957 DOI: 10.1016/j.clon.2019.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Affiliation(s)
- S L Gulliford
- Department of Radiotherapy Physics, University College Hospitals London, London, UK.
| | - K M Prise
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
41
|
Durante M, Flanz J. Charged particle beams to cure cancer: Strengths and challenges. Semin Oncol 2019; 46:219-225. [DOI: 10.1053/j.seminoncol.2019.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022]
|
42
|
Comparison of Proton and Photon Beam Irradiation in Radiation-Induced Intestinal Injury Using a Mouse Model. Int J Mol Sci 2019; 20:ijms20081894. [PMID: 30999572 PMCID: PMC6514697 DOI: 10.3390/ijms20081894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
When radiotherapy is applied to the abdomen or pelvis, normal tissue toxicity in the gastrointestinal (GI) tract is considered a major dose-limiting factor. Proton beam therapy has a specific advantage in terms of reduced doses to normal tissues. This study investigated the fundamental differences between proton- and X-ray-induced intestinal injuries in mouse models. C57BL/6J mice were irradiated with 6-MV X-rays or 230-MeV protons and were sacrificed after 84 h. The number of surviving crypts per circumference of the jejunum was identified using Hematoxylin and Eosin staining. Diverse intestinal stem cell (ISC) populations and apoptotic cells were analyzed using immunohistochemistry (IHC) and a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay, respectively. The crypt microcolony assay revealed a radiation-dose-dependent decrease in the number of regenerative crypts in the mouse jejunum; proton irradiation was more effective than X-ray irradiation with a relative biological effectiveness of 1.14. The jejunum is the most sensitive to radiations, followed by the ileum and the colon. Both types of radiation therapy decreased the number of radiosensitive, active cycling ISC populations. However, a higher number of radioresistant, reserve ISC populations and Paneth cells were eradicated by proton irradiation than X-ray irradiation, as shown in the IHC analyses. The TUNEL assay revealed that proton irradiation was more effective in enhancing apoptotic cell death than X-ray irradiation. This study conducted a detailed analysis on the effects of proton irradiation versus X-ray irradiation on intestinal crypt regeneration in mouse models. Our findings revealed that proton irradiation has a direct effect on ISC populations, which may result in an increase in the risk of GI toxicity during proton beam therapy.
Collapse
|
43
|
Evolution of the Supermodel: Progress in Modelling Radiotherapy Response in Mice. Clin Oncol (R Coll Radiol) 2019; 31:272-282. [PMID: 30871751 DOI: 10.1016/j.clon.2019.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Mouse models are essential tools in cancer research that have been used to understand the genetic basis of tumorigenesis, cancer progression and to test the efficacies of anticancer treatments including radiotherapy. They have played a critical role in our understanding of radiotherapy response in tumours and normal tissues and continue to evolve to better recapitulate the underlying biology of humans. In addition, recent developments in small animal irradiators have significantly improved in vivo irradiation techniques, allowing previously unimaginable experimental approaches to be explored in the laboratory. The combination of contemporary mouse models with small animal irradiators represents a major step forward for the radiobiology field in being able to much more accurately replicate clinical exposure scenarios. As radiobiology studies become ever more sophisticated in reflecting developments in the clinic, it is increasingly important to understand the basis and potential limitations of extrapolating data from mice to humans. This review provides an overview of mouse models and small animal radiotherapy platforms currently being used as advanced radiobiological research tools towards improving the translational power of preclinical studies.
Collapse
|
44
|
Ghita M, Dunne V, Hanna GG, Prise KM, Williams JP, Butterworth KT. Preclinical models of radiation-induced lung damage: challenges and opportunities for small animal radiotherapy. Br J Radiol 2019; 92:20180473. [PMID: 30653332 DOI: 10.1259/bjr.20180473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite a major paradigm shift in radiotherapy planning and delivery over the past three decades with continuing refinements, radiation-induced lung damage (RILD) remains a major dose limiting toxicity in patients receiving thoracic irradiations. Our current understanding of the biological processes involved in RILD which includes DNA damage, inflammation, senescence and fibrosis, is based on clinical observations and experimental studies in mouse models using conventional radiation exposures. Whilst these studies have provided vital information on the pulmonary radiation response, the current implementation of small animal irradiators is enabling refinements in the precision and accuracy of dose delivery to mice which can be applied to studies of RILD. This review presents the current landscape of preclinical studies in RILD using small animal irradiators and highlights the challenges and opportunities for the further development of this emerging technology in the study of normal tissue damage in the lung.
Collapse
Affiliation(s)
- Mihaela Ghita
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Victoria Dunne
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Gerard G Hanna
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK.,2 Northern Ireland Cancer Centre, Belfast City Hospital , Belfast , Northern Ireland, UK
| | - Kevin M Prise
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Jaqueline P Williams
- 3 University of Rochester Medical Centre, University of Rochester , Rochester , USA
| | - Karl T Butterworth
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| |
Collapse
|
45
|
Braunstein S, Wang L, Newhauser W, Tenenholz T, Rong Y, van der Kogel A, Dominello M, Joiner MC, Burmeister J. Three discipline collaborative radiation therapy (3DCRT) special debate: The United States should build additional proton therapy facilities. J Appl Clin Med Phys 2019; 20:7-12. [PMID: 30735613 PMCID: PMC6370982 DOI: 10.1002/acm2.12537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Steve Braunstein
- Department of Radiation Oncology, University of California - San Francisco, San Francisco, CA, USA
| | - Li Wang
- Department of Radiation Oncology, University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA
| | - Todd Tenenholz
- Department of Radiation Oncology, West Virginia University, Morgantown, WV, USA
| | - Yi Rong
- Department of Radiation Oncology, University of California - Davis Cancer Center, Sacramento, CA, USA
| | | | - Michael Dominello
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael C Joiner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Burmeister
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Gershenson Radiation Oncology Center, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
46
|
Guan F, Geng C, Carlson DJ, Ma DH, Bronk L, Gates D, Wang X, Kry SF, Grosshans D, Mohan R. A mechanistic relative biological effectiveness model-based biological dose optimization for charged particle radiobiology studies. ACTA ACUST UNITED AC 2018; 64:015008. [PMID: 30523805 DOI: 10.1088/1361-6560/aaf5df] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In charged particle therapy, the objective is to exploit both the physical and radiobiological advantages of charged particles to improve the therapeutic index. Use of the beam scanning technique provides the flexibility to implement biological dose optimized intensity-modulated ion therapy (IMIT). An easy-to-implement algorithm was developed in the current study to rapidly generate a uniform biological dose distribution, namely the product of physical dose and the relative biological effectiveness (RBE), within the target volume using scanned ion beams for charged particle radiobiological studies. Protons, helium ions and carbon ions were selected to demonstrate the feasibility and flexibility of our method. The general-purpose Monte Carlo simulation toolkit Geant4 was used for particle tracking and generation of physical and radiobiological data needed for later dose optimizations. The dose optimization algorithm was developed using the Python (version 3) programming language. A constant RBE-weighted dose (RWD) spread-out Bragg peak (SOBP) in a water phantom was selected as the desired target dose distribution to demonstrate the applicability of the optimization algorithm. The mechanistic repair-misrepair-fixation (RMF) model was incorporated into the Monte Carlo particle tracking to generate radiobiological parameters and was used to predict the RBE of cell survival in the iterative process of the biological dose optimization for the three selected ions. The post-optimization generated beam delivery strategy can be used in radiation biology experiments to obtain radiobiological data to further validate and improve the accuracy of the RBE model. This biological dose optimization algorithm developed for radiobiology studies could potentially be extended to implement biologically optimized IMIT plans for patients.
Collapse
|
47
|
Proton therapy for treatment of intracranial benign tumors in adults: A systematic review. Cancer Treat Rev 2018; 72:56-64. [PMID: 30530009 DOI: 10.1016/j.ctrv.2018.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The depth-dose distribution of a proton beam, materialized by the Bragg peak makes it an attractive radiation modality as it reduces exposure of healthy tissues to radiations, compared with photon therapy Prominent indications, based on a long-standing experience are: intraocular melanomas, low-grade skull-base and spinal canal malignancies. However, many others potential indications are under investigations such as the benign morbid conditions that are compatible with an extended life-expectancy: low grade meningiomas, paragangliomas, pituitary adenomas, neurinomas craniopharyngioma or recurrent pleomorphic adenomas. MATERIALS Given the radiation-induced risk of secondary cancer and the potential neurocognitive and functional alteration with photonic radiotherapy, we systematically analyzed the existing clinical literature about the use of proton therapy as an irradiation modality for cervical or intracranial benign tumors. The aim of this review was to report clinical outcomes of adult patients with benign intracranial or cervical tumors treated with proton therapy and to discuss about potential advantages of proton therapy over intensity modulated radiotherapy or radiosurgery. RESULTS Twenty-four studies were included. There was no randomized studies. Most studies dealt with low grade meningiomas (n = 9). Studies concerning neurinoma (n = 4), pituitary adenoma (n = 5), paraganglioma (n = 5), or craniopharyngioma (n = 1) were fewer. Whatever the indication, long term local control was systematically higher than 90% and equivalent to series with conventional radiotherapy. CONCLUSION Proton-therapy for treatment of adult benign intracranial and cervical tumors is safe. Randomized or prospective cohorts with long term cognitive evaluations are needed to assess the real place of proton-therapy in the treatment of adults benign head and neck tumors.
Collapse
|
48
|
McMahon SJ, Paganetti H, Prise KM. LET-weighted doses effectively reduce biological variability in proton radiotherapy planning. ACTA ACUST UNITED AC 2018; 63:225009. [DOI: 10.1088/1361-6560/aae8a5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Ray S, Cekanaviciute E, Lima IP, Sørensen BS, Costes SV. Comparing Photon and Charged Particle Therapy Using DNA Damage Biomarkers. Int J Part Ther 2018; 5:15-24. [PMID: 31773017 DOI: 10.14338/ijpt-18-00018.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
Treatment modalities for cancer radiation therapy have become increasingly diversified given the growing number of facilities providing proton and carbon-ion therapy in addition to the more historically accepted photon therapy. An understanding of high-LET radiobiology is critical for optimization of charged particle radiation therapy and potential DNA damage response. In this review, we present a comprehensive summary and comparison of these types of therapy monitored primarily by using DNA damage biomarkers. We focus on their relative profiles of dose distribution and mechanisms of action from the level of nucleic acid to tumor cell death.
Collapse
Affiliation(s)
- Shayoni Ray
- USRA/NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | | | | |
Collapse
|
50
|
Toward A variable RBE for proton beam therapy. Radiother Oncol 2018; 128:68-75. [PMID: 29910006 DOI: 10.1016/j.radonc.2018.05.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/09/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022]
Abstract
In the clinic, proton beam therapy (PBT) is based on the use of a generic relative biological effectiveness (RBE) of 1.1 compared to photons in human cancers and normal tissues. However, the experimental basis for this RBE lacks any significant number of representative tumor models and clinically relevant endpoints for dose-limiting organs at risk. It is now increasingly appreciated that much of the variations of treatment responses in cancers are due to inter-tumoral genomic heterogeneity. Indeed, recently it has been shown that defects in certain DNA repair pathways, which are found in subsets of many cancers, are associated with a RBE increase in vitro. However, there currently exist little in vivo or clinical data that confirm the existence of similarly increased RBE values in human cancers. Furthermore, evidence for variable RBE values for normal tissue toxicity has been sparse and conflicting to date. If we could predict variable RBE values in patients, we would be able to optimally use and personalize PBT. For example, predictive tumor biomarkers may facilitate selection of patients with proton-sensitive cancers previously ineligible for PBT. Dose de-escalation may be possible to reduce normal tissue toxicity, especially in pediatric patients. Knowledge of increased tumor RBE may allow us to develop biologically optimized therapies to enhance local control while RBE biomarkers for normal tissues could lead to a better understanding and prevention of unusual PBT-associated toxicity. Here, we will review experimental data on the repair of proton damage to DNA that impact both RBE values and biophysical modeling to predict RBE variations. Experimental approaches for studying proton sensitivity in vitro and in vivo will be reviewed as well and recent clinical findings discussed. Ultimately, therapeutically exploiting the understudied biological advantages of protons and developing approaches to limit treatment toxicity should fundamentally impact the clinical use of PBT.
Collapse
|