1
|
Guo L, Liu Z, Jia X, Wang Q, Ji J, Lv N, Liu Z, Zhou Q, Sun C, Wang Y. Mitochondrial Protein TAMM41 Modulates Depressive-like Behaviors. Mol Neurobiol 2024; 61:10561-10573. [PMID: 38750395 DOI: 10.1007/s12035-024-04233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 11/24/2024]
Abstract
Several lines of evidence have highlighted the crucial role of mitochondria-based therapy in depression. However, there are still less mitochondrial targets for the depression treatment. TAM41 mitochondrial translocator assembly and maintenance homolog (TAMM41) is a mitochondrial inner membrane protein for maintaining mitochondrial function, which is tightly related to many brain diseases including Alzheimer's diseases and epilepsy. Here, we investigated whether TAMM41 would be a potential target to treat depression. We found that the expression of TAMM41 was markedly lower in corticosterone-induced depression, lipopolysaccharide-induced depression, and depressed patients. Meanwhile, loss of TAMM41 resulted in increased immobility in the forced swim test (FST), tail suspension test (TST), and center time in open field test (OFT), suggesting depressive-like behaviors in mice. Moreover, genetic overexpression of TAMM41 obviously exerted antidepressant-like activities. Mechanistically, proteomics revealed that pacsin1 might be the underlying target of TAMM41. Further data supported that TAMM41 regulated the expression of pacsin1, and its antidepressant-like effect at least partially was attributed to pacsin1. In addition, exosomes containing TAMM41 was sufficient to exhibit antidepressant-like effect, suggesting an alternative strategy to exert the effect of TAMM41. Taken together, the present study demonstrates the antidepressant-like effect of TAMM41 and sheds light on its molecular mechanism. These finding provide new insights into a therapeutic strategy targeting mitochondria in the development of novel antidepressants.
Collapse
Affiliation(s)
- Lin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Ziyu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Xiaoxia Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Qinghua Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Jianlun Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Na Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Zhidong Liu
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Qin Zhou
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 379 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Congcong Sun
- Department of Neurology, Qilu Hospital of Shandong University, 44 Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China.
| |
Collapse
|
2
|
Venkatraman K, Lee CT, Budin I. Setting the curve: the biophysical properties of lipids in mitochondrial form and function. J Lipid Res 2024; 65:100643. [PMID: 39303982 PMCID: PMC11513603 DOI: 10.1016/j.jlr.2024.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Mitochondrial membranes are defined by their diverse functions, complex geometries, and unique lipidomes. In the inner mitochondrial membrane, highly curved membrane folds known as cristae house the electron transport chain and are the primary sites of cellular energy production. The outer mitochondrial membrane is flat by contrast, but is critical for the initiation and mediation of processes key to mitochondrial physiology: mitophagy, interorganelle contacts, fission and fusion dynamics, and metabolite transport. While the lipid composition of both the inner mitochondrial membrane and outer mitochondrial membrane have been characterized across a variety of cell types, a mechanistic understanding for how individual lipid classes contribute to mitochondrial structure and function remains nebulous. In this review, we address the biophysical properties of mitochondrial lipids and their related functional roles. We highlight the intrinsic curvature of the bulk mitochondrial phospholipid pool, with an emphasis on the nuances surrounding the mitochondrially-synthesized cardiolipin. We also outline emerging questions about other lipid classes - ether lipids, and sterols - with potential roles in mitochondrial physiology. We propose that further investigation is warranted to elucidate the specific properties of these lipids and their influence on mitochondrial architecture and function.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Christopher T Lee
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Okamoto K. CDP-DAG synthesis by peripheral membrane-bound Tam41-type enzymes. J Biochem 2024; 176:175-177. [PMID: 38896689 DOI: 10.1093/jb/mvae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
Cytidine diphosphate diacylglycerol (CDP-DAG) is a critical intermediate that is converted to multiple phospholipids in prokaryotes and eukaryotes. In budding yeast, CDP-DAG synthesis from cytidine triphosphate (CTP) and phosphatidic acid (PA) is catalyzed by the membrane-integrated protein Cds1 in the endoplasmic reticulum and the peripheral membrane-bound protein Tam41 in mitochondria. Although a recent study revealed that the fission yeast SpTam41 consists of a nucleotidyltransferase domain and a winged helix domain, forming an active-site pocket for CTP binding between the two domains together with a C-terminal amphipathic helix for membrane association, how CTP and Mg 2+, a most-favoured divalent cation, are accommodated with PA remains obscure. A more recent report by Kimura et al. (J. Biochem. 2022; 171:429-441) solved the crystal structure of FbTam41, a functional ortholog from a Firmicutes bacterium, with CTP-Mg 2+, successfully providing a detailed molecular view of CDP-DAG synthesis. In this commentary, our current understanding of Tam41-mediated reaction is discussed.
Collapse
Affiliation(s)
- Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Gil-Pitarch C, Serrano-Maciá M, Simon J, Mosca L, Conter C, Rejano-Gordillo CM, Zapata-Pavas LE, Peña-Sanfélix P, Azkargorta M, Rodríguez-Agudo R, Lachiondo-Ortega S, Mercado-Gómez M, Delgado TC, Porcelli M, Aurrekoetxea I, Sutherland JD, Barrio R, Xirodimas D, Aspichueta P, Elortza F, Martínez-Cruz LA, Nogueiras R, Iruzubieta P, Crespo J, Masson S, McCain MV, Reeves HL, Andrade RJ, Lucena MI, Mayor U, Goikoetxea-Usandizaga N, González-Recio I, Martínez-Chantar ML. Neddylation inhibition prevents acetaminophen-induced liver damage by enhancing the anabolic cardiolipin pathway. Cell Rep Med 2024; 5:101653. [PMID: 39019009 PMCID: PMC11293357 DOI: 10.1016/j.xcrm.2024.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Drug-induced liver injury (DILI) is a significant cause of acute liver failure (ALF) and liver transplantation in the Western world. Acetaminophen (APAP) overdose is a main contributor of DILI, leading to hepatocyte cell death through necrosis. Here, we identified that neddylation, an essential post-translational modification involved in the mitochondria function, was upregulated in liver biopsies from patients with APAP-induced liver injury (AILI) and in mice treated with an APAP overdose. MLN4924, an inhibitor of the neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8)-activating enzyme (NAE-1), ameliorated necrosis and boosted liver regeneration in AILI. To understand how neddylation interferes in AILI, whole-body biotinylated NEDD8 (bioNEDD8) and ubiquitin (bioUB) transgenic mice were investigated under APAP overdose with and without MLN4924. The cytidine diphosphate diacylglycerol (CDP-DAG) synthase TAM41, responsible for producing cardiolipin essential for mitochondrial activity, was found modulated under AILI and restored its levels by inhibiting neddylation. Understanding this ubiquitin-like crosstalk in AILI is essential for developing promising targeted inhibitors for DILI treatment.
Collapse
Affiliation(s)
- Clàudia Gil-Pitarch
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Jorge Simon
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Laura Mosca
- Department of Life Sciences, Health and Health Professions, Link University, Via del Casale di San Pio V, 44 00165 Rome, Italy
| | - Carolina Conter
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Claudia M Rejano-Gordillo
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain; Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, University Institute of Biosanitary Research of Extremadura (INUBE), 06071 Badajoz, Spain
| | - L Estefanía Zapata-Pavas
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Patricia Peña-Sanfélix
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRed-ISCIII, CIBERehd, Science and Technology Park of Bizkaia, 48160 Derio, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Maria Mercado-Gómez
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Marina Porcelli
- Department of Life Sciences, Health and Health Professions, Link University, Via del Casale di San Pio V, 44 00165 Rome, Italy
| | - Igor Aurrekoetxea
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | | | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRed-ISCIII, CIBERehd, Science and Technology Park of Bizkaia, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Rubén Nogueiras
- Department of Physiology, School of Medicine-Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; Department of Physiology, CIMUS, 15782 University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39011 Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39011 Santander, Spain
| | - Steven Masson
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, NE7 7DN Newcastle upon Tyne, UK; Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Misti Vanette McCain
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Helen L Reeves
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, NE7 7DN Newcastle upon Tyne, UK; Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain; Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29590 Málaga, Spain
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, 29590 Málaga, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Irene González-Recio
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain.
| | - María L Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain.
| |
Collapse
|
5
|
Jordan EN, Shirali Hossein Zade R, Pillay S, van Lent P, Abeel T, Kayser O. Integrated omics of Saccharomyces cerevisiae CENPK2-1C reveals pleiotropic drug resistance and lipidomic adaptations to cannabidiol. NPJ Syst Biol Appl 2024; 10:63. [PMID: 38821949 PMCID: PMC11143246 DOI: 10.1038/s41540-024-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Yeast metabolism can be engineered to produce xenobiotic compounds, such as cannabinoids, the principal isoprenoids of the plant Cannabis sativa, through heterologous metabolic pathways. However, yeast cell factories continue to have low cannabinoid production. This study employed an integrated omics approach to investigate the physiological effects of cannabidiol on S. cerevisiae CENPK2-1C yeast cultures. We treated the experimental group with 0.5 mM CBD and monitored CENPK2-1C cultures. We observed a latent-stationary phase post-diauxic shift in the experimental group and harvested samples in the inflection point of this growth phase for transcriptomic and metabolomic analysis. We compared the transcriptomes of the CBD-treated yeast and the positive control, identifying eight significantly overexpressed genes with a log fold change of at least 1.5 and a significant adjusted p-value. Three notable genes were PDR5 (an ABC-steroid and cation transporter), CIS1, and YGR035C. These genes are all regulated by pleiotropic drug resistance linked promoters. Knockout and rescue of PDR5 showed that it is a causal factor in the post-diauxic shift phenotype. Metabolomic analysis revealed 48 significant spectra associated with CBD-fed cell pellets, 20 of which were identifiable as non-CBD compounds, including fatty acids, glycerophospholipids, and phosphate-salvage indicators. Our results suggest that mitochondrial regulation and lipidomic remodeling play a role in yeast's response to CBD, which are employed in tandem with pleiotropic drug resistance (PDR). We conclude that bioengineers should account for off-target product C-flux, energy use from ABC-transport, and post-stationary phase cell growth when developing cannabinoid-biosynthetic yeast strains.
Collapse
Affiliation(s)
- Erin Noel Jordan
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
| | - Ramin Shirali Hossein Zade
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Paul van Lent
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Oliver Kayser
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
| |
Collapse
|
6
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
7
|
Osawa T, Fujikawa K, Shimamoto K. Structures, functions, and syntheses of glycero-glycophospholipids. Front Chem 2024; 12:1353688. [PMID: 38389730 PMCID: PMC10881803 DOI: 10.3389/fchem.2024.1353688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Biological membranes consist of integral and peripheral protein-associated lipid bilayers. Although constituent lipids vary among cells, membrane lipids are mainly classified as phospholipids, glycolipids, and sterols. Phospholipids are further divided into glycerophospholipids and sphingophospholipids, whereas glycolipids are further classified as glyceroglycolipids and sphingoglycolipids. Both glycerophospholipids and glyceroglycolipids contain diacylglycerol as the common backbone, but their head groups differ. Most glycerolipids have polar head groups containing phosphate esters or sugar moieties. However, trace components termed glycero-glycophospholipids, each possessing both a phosphate ester and a sugar moiety, exist in membranes. Recently, the unique biological activities of glycero-glycophospholipids have attracted considerable attention. In this review, we describe the structure, distribution, function, biosynthesis, and chemical synthetic approaches of representative glycero-glycophospholipids-phosphatidylglucoside (PtdGlc) and enterobacterial common antigen (ECA). In addition, we introduce our recent studies on the rare glycero-glyco"pyrophospho"lipid, membrane protein integrase (MPIase), which is involved in protein translocation across biomembranes.
Collapse
Affiliation(s)
- Tsukiho Osawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Shimamoto K, Fujikawa K, Osawa T, Mori S, Nomura K, Nishiyama KI. Key contributions of a glycolipid to membrane protein integration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:387-413. [PMID: 39085064 DOI: 10.2183/pjab.100.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Regulation of membrane protein integration involves molecular devices such as Sec-translocons or the insertase YidC. We have identified an integration-promoting factor in the inner membrane of Escherichia coli called membrane protein integrase (MPIase). Structural analysis revealed that, despite its enzyme-like name, MPIase is a glycolipid with a long glycan comprising N-acetyl amino sugars, a pyrophosphate linker, and a diacylglycerol (DAG) anchor. Additionally, we found that DAG, a minor membrane component, blocks spontaneous integration. In this review, we demonstrate how they contribute to Sec-independent membrane protein integration in bacteria using a comprehensive approach including synthetic chemistry and biophysical analyses. DAG blocks unfavorable spontaneous integrations by suppressing mobility in the membrane core, whereas MPIase compensates for this. Moreover, MPIase plays critical roles in capturing a substrate protein to prevent its aggregation, attracting it to the membrane surface, facilitating its insertion into the membrane, and delivering it to other factors. The combination of DAG and MPIase efficiently regulates the integration of membrane proteins.
Collapse
Affiliation(s)
- Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Tsukiho Osawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
9
|
Kobayashi K, Jimbo H, Nakamura Y, Wada H. Biosynthesis of phosphatidylglycerol in photosynthetic organisms. Prog Lipid Res 2024; 93:101266. [PMID: 38040200 DOI: 10.1016/j.plipres.2023.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Phosphatidylglycerol (PG) is a unique phospholipid class with its indispensable role in photosynthesis and growth in land plants, algae, and cyanobacteria. PG is the only major phospholipid in the thylakoid membrane of cyanobacteria and plant chloroplasts and a main lipid component in photosynthetic protein-cofactor complexes such as photosystem I and photosystem II. In plants and algae, PG is also essential as a substrate for the biosynthesis of cardiolipin, which is a unique lipid present only in mitochondrial membranes and crucial for the functions of mitochondria. PG biosynthesis pathways in plants include three membranous organelles, plastids, mitochondria, and the endoplasmic reticulum in a complex manner. While the molecular biology underlying the role of PG in photosynthetic functions is well established, many enzymes responsible for the PG biosynthesis are only recently cloned and functionally characterized in the model plant species including Arabidopsis thaliana and Chlamydomonas reinhardtii and cyanobacteria such as Synechocystis sp. PCC 6803. The characterization of those enzymes helps understand not only the metabolic flow for PG production but also the crosstalk of biosynthesis pathways between PG and other lipids. This review aims to summarize recent advances in the understanding of the PG biosynthesis pathway and functions of involved enzymes.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan.
| | - Haruhiko Jimbo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Nakamura
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Sun H, Zhang J, Ye Q, Jiang T, Liu X, Zhang X, Zeng F, Li J, Zheng Y, Han X, Su C, Shi Y. LPGAT1 controls MEGDEL syndrome by coupling phosphatidylglycerol remodeling with mitochondrial transport. Cell Rep 2023; 42:113214. [PMID: 37917582 PMCID: PMC10729602 DOI: 10.1016/j.celrep.2023.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Qianqian Ye
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Ting Jiang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xueling Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xiaoyang Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Fanyu Zeng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Jie Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Chuan Su
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Burguera S, Frontera A, Bauzá A. Enzymatic reversion of Pt(II) nucleophilicity through charge dumping: the case of Pt(CN) 42. Chem Commun (Camb) 2023; 59:12847-12850. [PMID: 37791416 DOI: 10.1039/d3cc03816e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Combining computations and X-ray structure analysis we have demonstrated that [Pt(CN4)]2- can behave as a Lewis acid inside an enzyme's cavity. The nature of a counterintuitive contact found between a catalytically active GLN residue belonging to a mitochondrial synthase and the Pt(II) center was investigated by combining molecular dynamics and quantum mechanics calculations. Results confirm the electron acceptor role of [Pt(CN4)]2-, serving as an inspiration for the design of biomolecular cages able to tweak the nucleophilic/electrophilic character of an organometallic compound.
Collapse
Affiliation(s)
- Sergi Burguera
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa Km 7.5, 07122, Palma de Mallorca, Baleares, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa Km 7.5, 07122, Palma de Mallorca, Baleares, Spain.
| | - Antonio Bauzá
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa Km 7.5, 07122, Palma de Mallorca, Baleares, Spain.
| |
Collapse
|
12
|
Abstract
Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.
Collapse
Affiliation(s)
- Alaumy Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Travis H. Richard
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M. Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Korbecki J, Bosiacki M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis. Cancers (Basel) 2023; 15:cancers15072183. [PMID: 37046844 PMCID: PMC10093493 DOI: 10.3390/cancers15072183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) by fatty acid synthase (FASN), elongases, and desaturases. We also describe the significance of individual fatty acids in glioblastoma tumorigenesis, as well as the importance of glycerophospholipid and triacylglycerol synthesis in this process. Specifically, we show the significance and function of various isoforms of glycerol-3-phosphate acyltransferases (GPAT), 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT), lipins, as well as enzymes involved in the synthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). This review also highlights the involvement of diacylglycerol O-acyltransferase (DGAT) in triacylglycerol biosynthesis. Due to significant gaps in knowledge, the GEPIA database was utilized to demonstrate the significance of individual enzymes in glioblastoma tumorigenesis. Finally, we also describe the significance of lipid droplets in glioblastoma and the impact of fatty acid synthesis, particularly docosahexaenoic acid (DHA), on cell membrane fluidity and signal transduction from the epidermal growth factor receptor (EGFR).
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
15
|
Zhang Q, Boundjou NB, Jia L, Wang X, Zhou L, Peisker H, Li Q, Guo L, Dörmann P, Lyu D, Zhou Y. Cytidine diphosphate diacylglycerol synthase is essential for mitochondrial structure and energy production in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:338-354. [PMID: 36789486 DOI: 10.1111/tpj.16139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 05/10/2023]
Abstract
Cytidine diphosphate diacylglycerol (CDP-DAG), an important intermediate for glycerolipid biosynthesis, is synthesized under the catalytic activity of CDP-DAG synthase (CDS) to produce anionic phosphoglycerolipids such as phosphatidylglycerol (PG) and cardiolipin (CL). Previous studies showed that Arabidopsis CDSs are encoded by a small gene family, termed CDS1-CDS5, the members of which are integral membrane proteins in endoplasmic reticulum (ER) and in plastids. However, the details on how CDP-DAG is provided for mitochondrial membrane-specific phosphoglycerolipids are missing. Here we present the identification of a mitochondrion-specific CDS, designated CDS6. Enzymatic activity of CDS6 was demonstrated by the complementation of CL synthesis in the yeast CDS-deficient tam41Δ mutant. The Arabidopsis cds6 mutant lacking CDS6 activity showed decreased mitochondrial PG and CL biosynthesis capacity, a severe growth deficiency finally leading to plant death. These defects were rescued partly by complementation with CDS6 or supplementation with PG and CL. The ultrastructure of mitochondria in cds6 was abnormal, missing the structures of cristae. The degradation of triacylglycerol (TAG) in lipid droplets and starch in chloroplasts in the cds6 mutant was impaired. The expression of most differentially expressed genes involved in the mitochondrial electron transport chain was upregulated, suggesting an energy-demanding stage in cds6. Furthermore, the contents of polar glycerolipids in cds6 were dramatically altered. In addition, cds6 seedlings lost the capacity for cell proliferation and showed a higher oxidase activity. Thus, CDS6 is indispensable for the biosynthesis of PG and CL in mitochondria, which is critical for establishing mitochondrial structure, TAG degradation, energy production and seedling development.
Collapse
Affiliation(s)
- Qiyue Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| | | | - Lijun Jia
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| | - Xinliang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Ling Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Helga Peisker
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, 53115, Germany
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, 53115, Germany
| | - Dianqiu Lyu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| | - Yonghong Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| |
Collapse
|
16
|
Kamemoto Y, Hikage R, Han Y, Sekiya Y, Sawasato K, Nishiyama KI. Coordinated upregulation of two CDP-diacylglycerol synthases, YnbB and CdsA, is essential for cell growth and membrane protein export in the cold. FEMS Microbiol Lett 2023; 370:fnad131. [PMID: 38070879 DOI: 10.1093/femsle/fnad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023] Open
Abstract
YnbB is a paralogue of CdsA, a CDP-diacylglycerol synthase. While the cdsA gene is essential, the ynbB gene is dispensable. So far, no phenotype of ynbB knockout has been observed. We found that a ynbB knockout strain acquired cold-sensitivity on growth under CdsA-limited conditions. We found that MPIase, a glycolipid involved in protein export, is cold-upregulated to facilitate protein export in the cold, by increasing the mRNA levels of not only CdsA but also that of YnbB. Under non-permissive conditions, phospholipid biosynthesis proceeded normally, however, MPIase upregulation was inhibited with accumulation of precursors of membrane and secretory proteins such as M13 procoat and proOmpA, indicating that YnbB is dedicated to MPIase biosynthesis, complementing the CdsA function.
Collapse
Affiliation(s)
- Yuki Kamemoto
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Runa Hikage
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Youjung Han
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Yusei Sekiya
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Katsuhiro Sawasato
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Ken-Ichi Nishiyama
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
- Department of Applied Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
17
|
The Lipid Profile of the Endomyces magnusii Yeast upon the Assimilation of the Substrates of Different Types and upon Calorie Restriction. J Fungi (Basel) 2022; 8:jof8111233. [PMID: 36422054 PMCID: PMC9698397 DOI: 10.3390/jof8111233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The study analyzes the dynamics in the lipid profile of the Endomyces magnusii yeast during the long-lasting cultivation using the substrates of “enzymatic” or “oxidative” type. Moreover, we studied its changes upon calorie restriction (CR) (0.5% glucose) and glucose depletion (0.2% glucose). Di-(DAGs), triacylglycerides (TAGs) and free fatty acids (FFAs) dominate in the storage lipid fractions. The TAG level was high in all the cultures tested and reached 80% of the total lipid amount. While being cultured on 2% substrates, the level of storage lipids decreased at the four-week stage, whereas upon CR their initially low amount doubled. Phosphatidylethanolamines (PE), sterols (St) (up to 62% of total lipids), phosphatidylcholines (PC), and phosphatidic acids (PA) (more than 40% of total lipids) were dominating in the membrane lipids of E magnusii. Upon CR at the late stationary growth stages (3–4 weeks), the total level of membrane lipid was two-fold higher than those on glycerol and 2% glucose. The palmitic acid C16:0 (from 10 to 23%), the palmitoleic acid C16:1 (from 4.3 to 15.9%), the oleic acid C18:1 (from 23.4 to 59.2%), and the linoleic acid C18:2 (from 10.8 to 49.2%) were the dominant fatty acids (FAs) of phospholipids. Upon glucose depletion (0.2% glucose), the total amount of storage and membrane lipids in the cells was comparable to that in the cells both on 2% and 0.5% glucose. High levels of PC and sphingolipids (SL) at the late stationary growth stages and an increased PA level throughout the whole experiment were typical for the membrane lipids composition upon the substrate depletion. There was shown a crucial role of St, PA, and a high share of the unsaturated FAs in the membrane phospholipids upon the adaptation of the E. magnusii yeast to the long-lasting cultivation upon the substrate restriction is shown. The autophagic processes in some fractions of the cell population provide the support of high level of lipid components at the late stages of cultivation upon substrate depletion under the CR conditions. CR is supposed to play the key role in regulating the lipid synthesis and risen resistance to oxidative stress, as well as its possible biotechnological application.
Collapse
|
18
|
Prola A, Pilot-Storck F. Cardiolipin Alterations during Obesity: Exploring Therapeutic Opportunities. BIOLOGY 2022; 11:1638. [PMID: 36358339 PMCID: PMC9687765 DOI: 10.3390/biology11111638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 08/13/2023]
Abstract
Cardiolipin is a specific phospholipid of the mitochondrial inner membrane that participates in many aspects of its organization and function, hence promoting proper mitochondrial ATP production. Here, we review recent data that have investigated alterations of cardiolipin in different tissues in the context of obesity and the related metabolic syndrome. Data relating perturbations of cardiolipin content or composition are accumulating and suggest their involvement in mitochondrial dysfunction in tissues from obese patients. Conversely, cardiolipin modulation is a promising field of investigation in a search for strategies for obesity management. Several ways to restore cardiolipin content, composition or integrity are emerging and may contribute to the improvement of mitochondrial function in tissues facing excessive fat storage. Inversely, reduction of mitochondrial efficiency in a controlled way may increase energy expenditure and help fight against obesity and in this perspective, several options aim at targeting cardiolipin to achieve a mild reduction of mitochondrial coupling. Far from being just a victim of the deleterious consequences of obesity, cardiolipin may ultimately prove to be a possible weapon to fight against obesity in the future.
Collapse
Affiliation(s)
- Alexandre Prola
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Fanny Pilot-Storck
- Team Relaix, INSERM, IMRB, Université Paris-Est Créteil, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
| |
Collapse
|
19
|
Hoffmann JJ, Becker T. Crosstalk between Mitochondrial Protein Import and Lipids. Int J Mol Sci 2022; 23:ijms23095274. [PMID: 35563660 PMCID: PMC9101885 DOI: 10.3390/ijms23095274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondria import about 1000 precursor proteins from the cytosol. The translocase of the outer membrane (TOM complex) forms the major entry site for precursor proteins. Subsequently, membrane-bound protein translocases sort the precursor proteins into the outer and inner membrane, the intermembrane space, and the matrix. The phospholipid composition of mitochondrial membranes is critical for protein import. Structural and biochemical data revealed that phospholipids affect the stability and activity of mitochondrial protein translocases. Integration of proteins into the target membrane involves rearrangement of phospholipids and distortion of the lipid bilayer. Phospholipids are present in the interface between subunits of protein translocases and affect the dynamic coupling of partner proteins. Phospholipids are required for full activity of the respiratory chain to generate membrane potential, which in turn drives protein import across and into the inner membrane. Finally, outer membrane protein translocases are closely linked to organellar contact sites that mediate lipid trafficking. Altogether, intensive crosstalk between mitochondrial protein import and lipid biogenesis controls mitochondrial biogenesis.
Collapse
|
20
|
Biallelic variants in TAMM41 are associated with low muscle cardiolipin levels, leading to neonatal mitochondrial disease. HGG ADVANCES 2022; 3:100097. [PMID: 35321494 PMCID: PMC8935507 DOI: 10.1016/j.xhgg.2022.100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial disorders are clinically and genetically heterogeneous, with variants in mitochondrial or nuclear genes leading to varied clinical phenotypes. TAMM41 encodes a mitochondrial protein with cytidine diphosphate-diacylglycerol synthase activity: an essential early step in the biosynthesis of phosphatidylglycerol and cardiolipin. Cardiolipin is a mitochondria-specific phospholipid that is important for many mitochondrial processes. We report three unrelated individuals with mitochondrial disease that share clinical features, including lethargy at birth, hypotonia, developmental delay, myopathy, and ptosis. Whole exome and genome sequencing identified compound heterozygous variants in TAMM41 in each proband. Western blot analysis in fibroblasts showed a mild oxidative phosphorylation (OXPHOS) defect in only one of the three affected individuals. In skeletal muscle samples, however, there was severe loss of subunits of complexes I–IV and a decrease in fully assembled OXPHOS complexes I–V in two subjects as well as decreased TAMM41 protein levels. Similar to the tissue-specific observations on OXPHOS, cardiolipin levels were unchanged in subject fibroblasts but significantly decreased in the skeletal muscle of affected individuals. To assess the functional impact of the TAMM41 missense variants, the equivalent mutations were modeled in yeast. All three mutants failed to rescue the growth defect of the Δtam41 strains on non-fermentable (respiratory) medium compared with wild-type TAM41, confirming the pathogenicity of the variants. We establish that TAMM41 is an additional gene involved in mitochondrial phospholipid biosynthesis and modification and that its deficiency results in a mitochondrial disorder, though unlike families with pathogenic AGK (Sengers syndrome) and TAFAZZIN (Barth syndrome) variants, there was no evidence of cardiomyopathy.
Collapse
|
21
|
Xu J, Chen S, Wang W, Man Lam S, Xu Y, Zhang S, Pan H, Liang J, Huang X, Wang Y, Li T, Jiang Y, Wang Y, Ding M, Shui G, Yang H, Huang X. Hepatic CDP-diacylglycerol synthase 2 deficiency causes mitochondrial dysfunction and promotes rapid progression of NASH and fibrosis. Sci Bull (Beijing) 2022; 67:299-314. [PMID: 36546079 DOI: 10.1016/j.scib.2021.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 01/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of pathologies, ranging from steatosis to nonalcoholic steatohepatitis (NASH). The factors promoting the progression of steatosis to NASH are still unclear. Recent studies suggest that mitochondrial lipid composition is critical in NASH development. Here, we showed that CDP-DAG synthase 2 (Cds2) was downregulated in genetic or diet-induced NAFLD mouse models. Liver-specific deficiency of Cds2 provoked hepatic steatosis, inflammation and fibrosis in five-week-old mice. CDS2 is enriched in mitochondria-associated membranes (MAMs), and hepatic Cds2 deficiency impaired mitochondrial function and decreased mitochondrial PE levels. Overexpression of phosphatidylserine decarboxylase (PISD) alleviated the NASH-like phenotype in Cds2f/f;AlbCre mice and abnormal mitochondrial morphology and function caused by CDS2 deficiency in hepatocytes. Additionally, dietary supplementation with an agonist of peroxisome proliferator-activated receptor alpha (PPARα) attenuated mitochondrial defects and ameliorated the NASH-like phenotype in Cds2f/f;AlbCre mice. Finally, Cds2 overexpression protected against high-fat diet-induced hepatic steatosis and obesity. Thus, Cds2 modulates mitochondrial function and NASH development.
Collapse
Affiliation(s)
- Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Shaohua Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Pan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Robinson BP, Hawbaker S, Chiang A, Jordahl EM, Anaokar S, Nikiforov A, Bowman RW, Ziegler P, McAtee CK, Patton-Vogt J, O’Donnell AF. Alpha-arrestins Aly1/Art6 and Aly2/Art3 regulate trafficking of the glycerophosphoinositol transporter Git1 and impact phospholipid homeostasis. Biol Cell 2022; 114:3-31. [PMID: 34562280 PMCID: PMC11583686 DOI: 10.1111/boc.202100007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND INFORMATION Phosphatidylinositol (PI) is an essential phospholipid, critical to membrane bilayers. The complete deacylation of PI by B-type phospholipases produces intracellular and extracellular glycerophosphoinositol (GPI). Extracellular GPI is transported into the cell via Git1, a member of the Major Facilitator Superfamily of transporters at the yeast plasma membrane. Internalized GPI is degraded to produce inositol, phosphate and glycerol, thereby contributing to these pools. GIT1 gene expression is controlled by nutrient balance, with phosphate or inositol starvation increasing GIT1 expression to stimulate GPI uptake. However, less is known about control of Git1 protein levels or localization. RESULTS We find that the α-arrestins, an important class of protein trafficking adaptor, regulate Git1 localization and this is dependent upon their interaction with the ubiquitin ligase Rsp5. Specifically, α-arrestin Aly2 stimulates Git1 trafficking to the vacuole under basal conditions, but in response to GPI-treatment, either Aly1 or Aly2 promote Git1 vacuole trafficking. Cell surface retention of Git1, as occurs in aly1∆ aly2∆ cells, is linked to impaired growth in the presence of exogenous GPI and results in increased uptake of radiolabeled GPI, suggesting that accumulation of GPI somehow causes cellular toxicity. Regulation of α-arrestin Aly1 by the protein phosphatase calcineurin improves steady-state and substrate-induced trafficking of Git1, however, calcineurin plays a larger role in Git1 trafficking beyond regulation of α-arrestins. Interestingly, loss of Aly1 and Aly2 increased phosphatidylinositol-3-phosphate on the limiting membrane of the vacuole, and this was further exacerbated by GPI addition, suggesting that the effect is partially linked to Git1. Loss of Aly1 and Aly2 leads to increased incorporation of inositol label from [3 H]-inositol-labelled GPI into PI, confirming that internalized GPI influences PI balance and indicating a role for the a-arrestins in this regulation. CONCLUSIONS The α-arrestins Aly1 and Aly2 are novel regulators of Git1 trafficking with previously unanticipated roles in controlling phospholipid distribution and balance. SIGNIFICANCE To our knowledge, this is the first example of α-arrestin regulation of phosphatidyliniositol-3-phosphate levels. In future studies it will be exciting to determine if other α-arrestins similarly alter PI and PIPs to change the cellular landscape.
Collapse
Affiliation(s)
| | - Sarah Hawbaker
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annette Chiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric M. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sanket Anaokar
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Alexiy Nikiforov
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ray W. Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Philip Ziegler
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Xu Y, Phoon CKL, Ren M, Schlame M. A simple mechanistic explanation for Barth syndrome and cardiolipin remodeling. J Inherit Metab Dis 2022; 45:51-59. [PMID: 34611930 DOI: 10.1002/jimd.12445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
Barth syndrome is a multisystem disorder caused by an abnormal metabolism of the mitochondrial lipid cardiolipin. In this review, we discuss physical properties, biosynthesis, membrane assembly, and function of cardiolipin. We hypothesize that cardiolipin reduces packing stress in the inner mitochondrial membrane, which arises as a result of protein crowding. According to this hypothesis, patients with Barth syndrome are unable to meet peak energy demands because they fail to concentrate the proteins of oxidative phosphorylation to a high surface density in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Yang Xu
- Department of Anesthesiology, New York University School of Medicine, New York, New York, USA
| | - Colin K L Phoon
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
24
|
Kimura K, Kawai F, Kubota-Kawai H, Watanabe Y, Tomii K, Kojima R, Hirata K, Yamamori Y, Endo T, Tamura Y. Crystal structure of Tam41 cytidine diphosphate diacylglycerol synthase from a Firmicutes bacterium. J Biochem 2021; 171:429-441. [PMID: 34964897 DOI: 10.1093/jb/mvab154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Translocator assembly and maintenance 41 (Tam41) catalyzes the synthesis of cytidine diphosphate diacylglycerol (CDP-DAG), which is a high-energy intermediate phospholipid critical for generating cardiolipin in mitochondria. Although Tam41 is present almost exclusively in eukaryotic cells, a Firmicutes bacterium contains the gene encoding Tam41-type CDP-DAG synthase (FbTam41). FbTam41 converted phosphatidic acid (PA) to CDP-DAG using a ternary complex mechanism in vitro. Additionally, FbTam41 functionally substituted yeast Tam41 in vivo. These results demonstrate that Tam41-type CDP-DAG synthase functions in some prokaryotic cells. We determined the crystal structure of FbTam41 lacking the C-terminal 18 residues in the cytidine triphosphate (CTP)-Mg2+ bound form at a resolution of 2.6 Å. The crystal structure showed that FbTam41 contained a positively charged pocket that specifically accommodated CTP-Mg2+ and PA in close proximity. By using this structure, we constructed a model for the full-length structure of FbTam41 containing the last α-helix, which was missing in the crystal structure. Based on this model, we propose a molecular mechanism for CDP-DAG synthesis in bacterial cells and mitochondria.
Collapse
Affiliation(s)
- Keisuke Kimura
- Graduate School of Global Symbiotic Sciences, Yamagata University, Japan
| | | | | | | | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Rieko Kojima
- Faculty of Science, Yamagata University, Japan.,Toyama Prefectural Institute for Pharmaceutical Research, Toyama 939-0363, Japan
| | | | - Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | | |
Collapse
|
25
|
Hao G, Barker GC. Fatty acid secretion by the white rot fungus, Trametes versicolor. J Ind Microbiol Biotechnol 2021; 49:6426184. [PMID: 34788844 PMCID: PMC9113147 DOI: 10.1093/jimb/kuab083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022]
Abstract
Fungi can acquire and store nutrients through decomposing and converting organic matter into fatty acids. This research demonstrates for the first time that the white-rot fungus Trametes versicolor has the ability to secrete extracellular droplets which can contain a high concentration of long chain fatty acids and unsaturated fatty acids as well as monosaccharides and polysaccharides. The concentration and composition of the fatty acids varied according to the age of the droplet and the feedstock used for growth of the fungi. The results raise the possibility that these droplets could be harvested offering a new approach for the microbial generation of oil from waste.
Collapse
Affiliation(s)
- Guyu Hao
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Guy C Barker
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
26
|
Iovine JC, Claypool SM, Alder NN. Mitochondrial compartmentalization: emerging themes in structure and function. Trends Biochem Sci 2021; 46:902-917. [PMID: 34244035 PMCID: PMC11008732 DOI: 10.1016/j.tibs.2021.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022]
Abstract
Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases.
Collapse
Affiliation(s)
- Joseph C Iovine
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Steven M Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
27
|
Lenoir G, D'Ambrosio JM, Dieudonné T, Čopič A. Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Front Cell Dev Biol 2021; 9:737907. [PMID: 34540851 PMCID: PMC8440936 DOI: 10.3389/fcell.2021.737907] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Phosphatidylserine (PS) is a negatively charged phospholipid that displays a highly uneven distribution within cellular membranes, essential for establishment of cell polarity and other processes. In this review, we discuss how combined action of PS biosynthesis enzymes in the endoplasmic reticulum (ER), lipid transfer proteins (LTPs) acting within membrane contact sites (MCS) between the ER and other compartments, and lipid flippases and scramblases that mediate PS flip-flop between membrane leaflets controls the cellular distribution of PS. Enrichment of PS in specific compartments, in particular in the cytosolic leaflet of the plasma membrane (PM), requires input of energy, which can be supplied in the form of ATP or by phosphoinositides. Conversely, coupling between PS synthesis or degradation, PS flip-flop and PS transfer may enable PS transfer by passive flow. Such scenario is best documented by recent work on the formation of autophagosomes. The existence of lateral PS nanodomains, which is well-documented in the case of the PM and postulated for other compartments, can change the steepness or direction of PS gradients between compartments. Improvements in cellular imaging of lipids and membranes, lipidomic analysis of complex cellular samples, reconstitution of cellular lipid transport reactions and high-resolution structural data have greatly increased our understanding of cellular PS homeostasis. Our review also highlights how budding yeast has been instrumental for our understanding of the organization and transport of PS in cells.
Collapse
Affiliation(s)
- Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Juan Martín D'Ambrosio
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Thibaud Dieudonné
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
28
|
Sekiya Y, Sawasato K, Nishiyama KI. Expression of Cds4/5 of Arabidopsis chloroplasts in E. coli reveals the membrane topology of the C-terminal region of CDP-diacylglycerol synthases. Genes Cells 2021; 26:727-738. [PMID: 34166546 DOI: 10.1111/gtc.12880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
CDP-diacylglycerol synthases (Cds) are conserved from bacteria to eukaryotes. Bacterial CdsA is involved not only in phospholipid biosynthesis but also in biosynthesis of glycolipid MPIase, an essential glycolipid that catalyzes membrane protein integration. We found that both Cds4 and Cds5 of Arabidopsis chloroplasts complement cdsA knockout by supporting both phospholipid and MPIase biosyntheses. Comparison of the sequences of CdsA and Cds4/5 suggests a difference in membrane topology at the C-termini, since the region assigned as the last transmembrane region of CdsA, which follows the conserved cytoplasmic domain, is missing in Cds4/5. Deletion of the C-terminal region abolished the function, indicating the importance of the region. Both 6 × His tag attachment to CdsA and substitution of the C-terminal 6 residues with 6 × His did not affect the function. These 6 × His tags were sensitive to protease added from the cytosolic side in vitro, indicating that this region is not a transmembrane one but forms a membrane-embedded reentrant loop. Thus, the C-terminal region of Cds homologues forms a reentrant loop, of which structure is important for the Cds function.
Collapse
Affiliation(s)
- Yusei Sekiya
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Katsuhiro Sawasato
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
29
|
Tamura Y, Kawano S, Endo T. Lipid homeostasis in mitochondria. Biol Chem 2021; 401:821-833. [PMID: 32229651 DOI: 10.1515/hsz-2020-0121] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are surrounded by the two membranes, the outer and inner membranes, whose lipid compositions are optimized for proper functions and structural organizations of mitochondria. Although a part of mitochondrial lipids including their characteristic lipids, phosphatidylethanolamine and cardiolipin, are synthesized within mitochondria, their precursor lipids and other lipids are transported from other organelles, mainly the ER. Mitochondrially synthesized lipids are re-distributed within mitochondria and to other organelles, as well. Recent studies pointed to the important roles of inter-organelle contact sites in lipid trafficking between different organelle membranes. Identification of Ups/PRELI proteins as lipid transfer proteins shuttling between the mitochondrial outer and inner membranes established a part of the molecular and structural basis of the still elusive intra-mitochondrial lipid trafficking.
Collapse
Affiliation(s)
- Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
30
|
Dowhan W, Bogdanov M. Eugene P. Kennedy's Legacy: Defining Bacterial Phospholipid Pathways and Function. Front Mol Biosci 2021; 8:666203. [PMID: 33842554 PMCID: PMC8027125 DOI: 10.3389/fmolb.2021.666203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
In the 1950's and 1960's Eugene P. Kennedy laid out the blueprint for phospholipid biosynthesis in somatic cells and Escherichia coli, which have been coined the Kennedy Pathways for phospholipid biosynthesis. His research group continued to make seminal contributions in the area of phospholipids until his retirement in the early 1990's. During these years he mentored many young scientists that continued to build on his early discoveries and who also mentored additional scientists that continue to make important contributions in areas related to phospholipids and membrane biogenesis. This review will focus on the initial E. coli Kennedy Pathways and how his early contributions have laid the foundation for our current understanding of bacterial phospholipid genetics, biochemistry and function as carried on by his scientific progeny and others who have been inspired to study microbial phospholipids.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
31
|
Acoba MG, Senoo N, Claypool SM. Phospholipid ebb and flow makes mitochondria go. J Cell Biol 2021; 219:151918. [PMID: 32614384 PMCID: PMC7401802 DOI: 10.1083/jcb.202003131] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondria, so much more than just being energy factories, also have the capacity to synthesize macromolecules including phospholipids, particularly cardiolipin (CL) and phosphatidylethanolamine (PE). Phospholipids are vital constituents of mitochondrial membranes, impacting the plethora of functions performed by this organelle. Hence, the orchestrated movement of phospholipids to and from the mitochondrion is essential for cellular integrity. In this review, we capture recent advances in the field of mitochondrial phospholipid biosynthesis and trafficking, highlighting the significance of interorganellar communication, intramitochondrial contact sites, and lipid transfer proteins in maintaining membrane homeostasis. We then discuss the physiological functions of CL and PE, specifically how they associate with protein complexes in mitochondrial membranes to support bioenergetics and maintain mitochondrial architecture.
Collapse
Affiliation(s)
- Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
32
|
Cebolla VL, Jarne C, Vela J, Garriga R, Membrado L, Galbán J. Scanning densitometry and mass spectrometry for HPTLC analysis of lipids: The last 10 years. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2020.1866600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Carmen Jarne
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Jesús Vela
- Departamento de Química Analítica, EINA, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Garriga
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Luis Membrado
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Javier Galbán
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
33
|
Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Mol Cell Biochem 2021; 476:1605-1629. [PMID: 33415565 DOI: 10.1007/s11010-020-04021-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Barth syndrome is a rare X-linked genetic disease classically characterized by cardiomyopathy, skeletal myopathy, growth retardation, neutropenia, and 3-methylglutaconic aciduria. It is caused by mutations in the tafazzin gene localized to chromosome Xq28.12. Mutations in tafazzin may result in alterations in the level and molecular composition of the mitochondrial phospholipid cardiolipin and result in large elevations in the lysophospholipid monolysocardiolipin. The increased monolysocardiolipin:cardiolipin ratio in blood is diagnostic for the disease, and it leads to disruption in mitochondrial bioenergetics. In this review, we discuss cardiolipin structure, synthesis, and function and provide an overview of the clinical and cellular pathophysiology of Barth Syndrome. We highlight known pharmacological management for treatment of the major pathological features associated with the disease. In addition, we discuss non-pharmacological management. Finally, we highlight the most recent promising therapeutic options for this rare mitochondrial disease including lipid replacement therapy, peroxisome proliferator-activated receptor agonists, tafazzin gene replacement therapy, induced pluripotent stem cells, mitochondria-targeted antioxidants and peptides, and the polyphenolic compound resveratrol.
Collapse
|
34
|
Shiino H, Furuta S, Kojima R, Kimura K, Endo T, Tamura Y. Phosphatidylserine flux into mitochondria unveiled by organelle-targeted Escherichia coli phosphatidylserine synthase PssA. FEBS J 2020; 288:3285-3299. [PMID: 33283454 DOI: 10.1111/febs.15657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 11/26/2022]
Abstract
Most phospholipids are synthesised in the endoplasmic reticulum and distributed to other cellular membranes. Although the vesicle transport contributes to the phospholipid distribution among the endomembrane system, exactly how phospholipids are transported to, from and between mitochondrial membranes remains unclear. To gain insights into phospholipid transport routes into mitochondria, we expressed the Escherichia coli phosphatidylserine (PS) synthase PssA in various membrane compartments with distinct membrane topologies in yeast cells lacking a sole PS synthase (Cho1). Interestingly, PssA could complement loss of Cho1 when targeted to the endoplasmic reticulum (ER), peroxisome, or lipid droplet membranes. Synthesised PS could be converted to phosphatidylethanolamine (PE) by Psd1, the mitochondrial PS decarboxylase, suggesting that phospholipids synthesised in the peroxisomes and low doses (LDs) can efficiently reach mitochondria. Furthermore, we found that PssA which has been integrated into the mitochondrial inner membrane (MIM) from the matrix side could partially complement the loss of Cho1. The PS synthesised in the MIM was also converted to PE, indicating that PS flops across the MIM to become PE. These findings expand our understanding of the intracellular phospholipid transport routes via mitochondria.
Collapse
Affiliation(s)
| | | | | | | | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | | |
Collapse
|
35
|
Ahmadpour ST, Mahéo K, Servais S, Brisson L, Dumas JF. Cardiolipin, the Mitochondrial Signature Lipid: Implication in Cancer. Int J Mol Sci 2020; 21:E8031. [PMID: 33126604 PMCID: PMC7662448 DOI: 10.3390/ijms21218031] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiolipins (CLs) are specific phospholipids of the mitochondria composing about 20% of the inner mitochondria membrane (IMM) phospholipid mass. Dysregulation of CL metabolism has been observed in several types of cancer. In most cases, the evidence for a role for CL in cancer is merely correlative, suggestive, ambiguous, and cancer-type dependent. In addition, CLs could play a pivotal role in several mitochondrial functions/parameters such as bioenergetics, dynamics, mitophagy, and apoptosis, which are involved in key steps of cancer aggressiveness (i.e., migration/invasion and resistance to treatment). Therefore, this review focuses on studies suggesting that changes in CL content and/or composition, as well as CL metabolism enzyme levels, may be linked with the progression and the aggressiveness of some types of cancer. Finally, we also introduce the main mitochondrial function in which CL could play a pivotal role with a special focus on its implication in cancer development and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jean-François Dumas
- Université de Tours, Inserm, Nutrition, Croissance et Cancer UMR1069, 37032 Tours, France; (S.T.A.); (K.M.); (S.S.); (L.B.)
| |
Collapse
|
36
|
Ji Z, Mao J, Chen S, Mao J. Antioxidant and anti-inflammatory activity of peptides from foxtail millet (Setaria italica) prolamins in HaCaT cells and RAW264.7 murine macrophages. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Ruan L, McNamara JT, Zhang X, Chang ACC, Zhu J, Dong Y, Sun G, Peterson A, Na CH, Li R. Solid-phase inclusion as a mechanism for regulating unfolded proteins in the mitochondrial matrix. SCIENCE ADVANCES 2020; 6:eabc7288. [PMID: 32821848 PMCID: PMC7406381 DOI: 10.1126/sciadv.abc7288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/22/2020] [Indexed: 05/05/2023]
Abstract
Proteostasis declines with age, characterized by the accumulation of unfolded or damaged proteins. Recent studies suggest that proteins constituting pathological inclusions in neurodegenerative diseases also enter and accumulate in mitochondria. How unfolded proteins are managed within mitochondria remains unclear. Here, we found that excessive unfolded proteins in the mitochondrial matrix of yeast cells are consolidated into solid-phase inclusions, which we term deposits of unfolded mitochondrial proteins (DUMP). Formation of DUMP occurs in mitochondria near endoplasmic reticulum-mitochondria contact sites and is regulated by mitochondrial proteins controlling the production of cytidine 5'-diphosphate-diacylglycerol. DUMP formation is age dependent but accelerated by exogenous unfolded proteins. Many enzymes of the tricarboxylic acid cycle were enriched in DUMP. During yeast cell division, DUMP formation is necessary for asymmetric inheritance of damaged mitochondrial proteins between mother and daughter cells. We provide evidence that DUMP-like structures may be induced by excessive unfolded proteins in human cells.
Collapse
Affiliation(s)
- Linhao Ruan
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua T. McNamara
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xi Zhang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexander Chih-Chieh Chang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jin Zhu
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yi Dong
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gordon Sun
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Amy Peterson
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Mechanobiology Institute and Department of Biological Science, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
38
|
Balla T, Kim YJ, Alvarez-Prats A, Pemberton J. Lipid Dynamics at Contact Sites Between the Endoplasmic Reticulum and Other Organelles. Annu Rev Cell Dev Biol 2020; 35:85-109. [PMID: 31590585 DOI: 10.1146/annurev-cellbio-100818-125251] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
39
|
Jennings W, Epand RM. CDP-diacylglycerol, a critical intermediate in lipid metabolism. Chem Phys Lipids 2020; 230:104914. [PMID: 32360136 DOI: 10.1016/j.chemphyslip.2020.104914] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
The roles of lipids expand beyond the basic building blocks of biological membranes. In addition to forming complex and dynamic barriers, the thousands of different lipid species in the cell contribute to essentially all the processes of life. Specific lipids are increasingly identified in cellular processes, including signal transduction, membrane trafficking, metabolic control and protein regulation. Tight control of their synthesis and degradation is essential for homeostasis. Most of the lipid molecules in the cell originate from a small number of critical intermediates. Thus, regulating the synthesis of intermediates is essential for lipid homeostasis and optimal biological functions. Cytidine diphosphate diacylglycerol (CDP-DAG) is an intermediate which occupies a branch point in lipid metabolism. CDP-DAG is incorporated into different synthetic pathways to form distinct phospholipid end-products depending on its location of synthesis. Identification and characterization of CDP-DAG synthases which catalyze the synthesis of CDP-DAG has been hampered by difficulties extracting these membrane-bound enzymes for purification. Recent developments have clarified the cellular localization of the CDP-DAG synthases and identified a new unrelated CDP-DAG synthase enzyme. These findings have contributed to a deeper understanding of the extensive synthetic and signaling networks stemming from this key lipid intermediate.
Collapse
Affiliation(s)
- William Jennings
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
40
|
Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol 2020; 18:22. [PMID: 32122349 PMCID: PMC7050145 DOI: 10.1186/s12915-020-0741-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023] Open
Abstract
Background Comparative analyses have indicated that the mitochondrion of the last eukaryotic common ancestor likely possessed all the key core structures and functions that are widely conserved throughout the domain Eucarya. To date, such studies have largely focused on animals, fungi, and land plants (primarily multicellular eukaryotes); relatively few mitochondrial proteomes from protists (primarily unicellular eukaryotic microbes) have been examined. To gauge the full extent of mitochondrial structural and functional complexity and to identify potential evolutionary trends in mitochondrial proteomes, more comprehensive explorations of phylogenetically diverse mitochondrial proteomes are required. In this regard, a key group is the jakobids, a clade of protists belonging to the eukaryotic supergroup Discoba, distinguished by having the most gene-rich and most bacteria-like mitochondrial genomes discovered to date. Results In this study, we assembled the draft nuclear genome sequence for the jakobid Andalucia godoyi and used a comprehensive in silico approach to infer the nucleus-encoded portion of the mitochondrial proteome of this protist, identifying 864 candidate mitochondrial proteins. The A. godoyi mitochondrial proteome has a complexity that parallels that of other eukaryotes, while exhibiting an unusually large number of ancestral features that have been lost particularly in opisthokont (animal and fungal) mitochondria. Notably, we find no evidence that the A. godoyi nuclear genome has or had a gene encoding a single-subunit, T3/T7 bacteriophage-like RNA polymerase, which functions as the mitochondrial transcriptase in all eukaryotes except the jakobids. Conclusions As genome and mitochondrial proteome data have become more widely available, a strikingly punctuate phylogenetic distribution of different mitochondrial components has been revealed, emphasizing that the pathways of mitochondrial proteome evolution are likely complex and lineage-specific. Unraveling this complexity will require comprehensive comparative analyses of mitochondrial proteomes from a phylogenetically broad range of eukaryotes, especially protists. The systematic in silico approach described here offers a valuable adjunct to direct proteomic analysis (e.g., via mass spectrometry), particularly in cases where the latter approach is constrained by sample limitation or other practical considerations.
Collapse
Affiliation(s)
- Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Gertraud Burger
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Michelle M Leger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.,Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Matt Sarrasin
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Čestmír Vlček
- Current address: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - B Franz Lang
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
41
|
How is the acyl chain composition of phosphoinositides created and does it matter? Biochem Soc Trans 2020; 47:1291-1305. [PMID: 31657437 PMCID: PMC6824679 DOI: 10.1042/bst20190205] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
The phosphoinositide (PIPn) family of signalling phospholipids are central regulators in membrane cell biology. Their varied functions are based on the phosphorylation pattern of their inositol ring, which can be recognized by selective binding domains in their effector proteins and be modified by a series of specific PIPn kinases and phosphatases, which control their interconversion in a spatial and temporal manner. Yet, a unique feature of PIPns remains largely unexplored: their unusually uniform acyl chain composition. Indeed, while most phospholipids present a range of molecular species comprising acyl chains of diverse length and saturation, PIPns in several organisms and tissues show the predominance of a single hydrophobic backbone, which in mammals is composed of arachidonoyl and stearoyl chains. Despite evolution having favoured this specific PIPn configuration, little is known regarding the mechanisms and functions behind it. In this review, we explore the metabolic pathways that could control the acyl chain composition of PIPns as well as the potential roles of this selective enrichment. While our understanding of this phenomenon has been constrained largely by the technical limitations in the methods traditionally employed in the PIPn field, we believe that the latest developments in PIPn analysis should shed light onto this old question.
Collapse
|
42
|
Blunsom NJ, Cockcroft S. CDP-Diacylglycerol Synthases (CDS): Gateway to Phosphatidylinositol and Cardiolipin Synthesis. Front Cell Dev Biol 2020; 8:63. [PMID: 32117988 PMCID: PMC7018664 DOI: 10.3389/fcell.2020.00063] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cytidine diphosphate diacylglycerol (CDP-DAG) is a key intermediate in the synthesis of phosphatidylinositol (PI) and cardiolipin (CL). Both PI and CL have highly specialized roles in cells. PI can be phosphorylated and these phosphorylated derivatives play major roles in signal transduction, membrane traffic, and maintenance of the actin cytoskeletal network. CL is the signature lipid of mitochondria and has a plethora of functions including maintenance of cristae morphology, mitochondrial fission, and fusion and for electron transport chain super complex formation. Both lipids are synthesized in different organelles although they share the common intermediate, CDP-DAG. CDP-DAG is synthesized from phosphatidic acid (PA) and CTP by enzymes that display CDP-DAG synthase activities. Two families of enzymes, CDS and TAMM41, which bear no sequence or structural relationship, have now been identified. TAMM41 is a peripheral membrane protein localized in the inner mitochondrial membrane required for CL synthesis. CDS enzymes are ancient integral membrane proteins found in all three domains of life. In mammals, they provide CDP-DAG for PI synthesis and for phosphatidylglycerol (PG) and CL synthesis in prokaryotes. CDS enzymes are critical for maintaining phosphoinositide levels during phospholipase C (PLC) signaling. Hydrolysis of PI (4,5) bisphosphate by PLC requires the resynthesis of PI and CDS enzymes catalyze the rate-limiting step in the process. In mammals, the protein products of two CDS genes (CDS1 and CDS2) localize to the ER and it is suggested that CDS2 is the major CDS for this process. Expression of CDS enzymes are regulated by transcription factors and CDS enzymes may also contribute to CL synthesis in mitochondria. Studies of CDS enzymes in protozoa reveal spatial segregation of CDS enzymes from the rest of the machinery required for both PI and CL synthesis identifying a key gap in our understanding of how CDP-DAG can cross the different membrane compartments in protozoa and in mammals.
Collapse
Affiliation(s)
| | - Shamshad Cockcroft
- Division of Biosciences, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
43
|
Yin N, Zhu G, Luo Q, Liu J, Chen X, Liu L. Engineering of membrane phospholipid component enhances salt stress tolerance in
Saccharomyces cerevisiae. Biotechnol Bioeng 2020; 117:710-720. [DOI: 10.1002/bit.27244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Nannan Yin
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Guoxing Zhu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Qiuling Luo
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Jia Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Xiulai Chen
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Liming Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| |
Collapse
|
44
|
Kwiatek JM, Han GS, Carman GM. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158434. [PMID: 30910690 PMCID: PMC6755077 DOI: 10.1016/j.bbalip.2019.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
In yeast and higher eukaryotes, phospholipids and triacylglycerol are derived from phosphatidate at the nuclear/endoplasmic reticulum membrane. In de novo biosynthetic pathways, phosphatidate is channeled into membrane phospholipids via its conversion to CDP-diacylglycerol. Its dephosphorylation to diacylglycerol is required for the synthesis of triacylglycerol as well as for the synthesis of phosphatidylcholine and phosphatidylethanolamine via the Kennedy pathway. In addition to the role of phosphatidate as a precursor, it is a regulatory molecule in the transcriptional control of phospholipid synthesis genes via the Henry regulatory circuit. Pah1 phosphatidate phosphatase and Dgk1 diacylglycerol kinase are key players that function counteractively in the control of the phosphatidate level at the nuclear/endoplasmic reticulum membrane. Loss of Pah1 phosphatidate phosphatase activity not only affects triacylglycerol synthesis but also disturbs the balance of the phosphatidate level, resulting in the alteration of lipid synthesis and related cellular defects. The pah1Δ phenotypes requiring Dgk1 diacylglycerol kinase exemplify the importance of the phosphatidate level in the misregulation of cellular processes. The catalytic function of Pah1 requires its translocation from the cytoplasm to the nuclear/endoplasmic reticulum membrane, which is regulated through its phosphorylation in the cytoplasm by multiple protein kinases as well as through its dephosphorylation by the membrane-associated Nem1-Spo7 protein phosphatase complex. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
45
|
Acaz-Fonseca E, Ortiz-Rodriguez A, Garcia-Segura LM, Astiz M. Sex differences and gonadal hormone regulation of brain cardiolipin, a key mitochondrial phospholipid. J Neuroendocrinol 2020; 32:e12774. [PMID: 31323169 DOI: 10.1111/jne.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Cardiolipin (CL) is a phospholipid that is almost exclusively located in the inner mitochondrial membrane of eukaryotic cells. As a result of its unique structure and distribution, CL establishes non-covalent bonds with a long list of proteins involved in ATP production, mitochondria biogenesis, mitophagy and apoptosis. Thus, the amount of CL, as well as its fatty acid composition and location, strongly impacts upon mitochondrial-dependent functions and therefore the metabolic homeostasis of different tissues. The brain is particularly sensitive to mitochondrial dysfunction as a result of its high metabolic demand. Several mitochondrial related-neurodegenerative disorders, as well as physiological ageing, show altered CL metabolism. Furthermore, mice lacking enzymes involved in CL synthesis show cognitive impairments. CL content and metabolism are regulated by gonadal hormones in the developing and adult brain. In neuronal cultures, oestradiol increases CL content, whereas adult ovariectomy decreases CL content and alters CL metabolism in the hippocampal mitochondria. Transient sex differences in brain CL metabolism have been detected during development. At birth, brain CL has a higher proportion of unsaturated fatty acids in the brain of male mice than in the brain of females. In addition, the expression of enzymes involved in CL de novo and recycling synthetic pathways is higher in males. Most of these sex differences are abolished by the neonatal androgenisation of females, suggesting a role for testosterone in the generation of sex differences in brain CL. The regulation of brain CL by gonadal hormones may be linked to their homeostatic and protective actions in neural cells, as well as the manifestation of sex differences in neurodegenerative disorders.
Collapse
Affiliation(s)
- Estefania Acaz-Fonseca
- Instituto Cajal-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Luis Miguel Garcia-Segura
- Instituto Cajal-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariana Astiz
- Institute of Neurobiology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
46
|
Yang X, Liang J, Ding L, Li X, Lam SM, Shui G, Ding M, Huang X. Phosphatidylserine synthase regulates cellular homeostasis through distinct metabolic mechanisms. PLoS Genet 2019; 15:e1008548. [PMID: 31869331 PMCID: PMC6946173 DOI: 10.1371/journal.pgen.1008548] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/07/2020] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylserine (PS), synthesized in the endoplasmic reticulum (ER) by phosphatidylserine synthase (PSS), is transported to the plasma membrane (PM) and mitochondria through distinct routes. The in vivo functions of PS at different subcellular locations and the coordination between different PS transport routes are not fully understood. Here, we report that Drosophila PSS regulates cell growth, lipid storage and mitochondrial function. In pss RNAi, reduced PS depletes plasma membrane Akt, contributing to cell growth defects; the metabolic shift from phospholipid synthesis to neutral lipid synthesis results in ectopic lipid accumulation; and the reduction of mitochondrial PS impairs mitochondrial protein import and mitochondrial integrity. Importantly, reducing PS transport from the ER to PM by loss of PI4KIIIα partially rescues the mitochondrial defects of pss RNAi. Together, our results uncover a balance between different PS transport routes and reveal that PSS regulates cellular homeostasis through distinct metabolic mechanisms. Phosphatidylserine (PS), a membrane phospholipid synthesized in the endoplasmic reticulum (ER) by the enzyme phosphatidylserine synthase (PSS), is transported to the plasma membrane (PM) and mitochondria through different paths. The cellular functions of PS at different places in the cell and the mechanisms that coordinate the different PS transport paths are not fully understood. Here, we identified that PSS regulates cell growth, lipid storage and mitochondrial function in the fruit fly larval salivary gland. We showed that loss of pss function has three effects: (1) reduced levels of PS lead to reduced levels of plasma membrane Akt, a key component in the insulin pathway, which is important for cell growth; (2) it causes a shift from phospholipid synthesis to neutral lipid synthesis, which results in excess lipid accumulation; and (3) it reduces the level of mitochondrial PS, which impairs mitochondrial protein import and mitochondrial morphology. We also found that reducing the transport of PS from the ER to PM partially rescues the mitochondrial defects caused by loss of pss function. Together, our results reveal that PSS regulates cellular homeostasis through distinct metabolic changes, and uncover a balance between different PS transport pathways.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, TaiAn, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Long Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sin-Man Lam
- LipidAll Technologies Co., Ltd. Changzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
47
|
Salem RM, Todd JN, Sandholm N, Cole JB, Chen WM, Andrews D, Pezzolesi MG, McKeigue PM, Hiraki LT, Qiu C, Nair V, Di Liao C, Cao JJ, Valo E, Onengut-Gumuscu S, Smiles AM, McGurnaghan SJ, Haukka JK, Harjutsalo V, Brennan EP, van Zuydam N, Ahlqvist E, Doyle R, Ahluwalia TS, Lajer M, Hughes MF, Park J, Skupien J, Spiliopoulou A, Liu A, Menon R, Boustany-Kari CM, Kang HM, Nelson RG, Klein R, Klein BE, Lee KE, Gao X, Mauer M, Maestroni S, Caramori ML, de Boer IH, Miller RG, Guo J, Boright AP, Tregouet D, Gyorgy B, Snell-Bergeon JK, Maahs DM, Bull SB, Canty AJ, Palmer CNA, Stechemesser L, Paulweber B, Weitgasser R, Sokolovska J, Rovīte V, Pīrāgs V, Prakapiene E, Radzeviciene L, Verkauskiene R, Panduru NM, Groop LC, McCarthy MI, Gu HF, Möllsten A, Falhammar H, Brismar K, Martin F, Rossing P, Costacou T, Zerbini G, Marre M, Hadjadj S, McKnight AJ, Forsblom C, McKay G, Godson C, Maxwell AP, Kretzler M, Susztak K, Colhoun HM, Krolewski A, Paterson AD, Groop PH, Rich SS, Hirschhorn JN, Florez JC. Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. J Am Soc Nephrol 2019; 30:2000-2016. [PMID: 31537649 PMCID: PMC6779358 DOI: 10.1681/asn.2019030218] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although diabetic kidney disease demonstrates both familial clustering and single nucleotide polymorphism heritability, the specific genetic factors influencing risk remain largely unknown. METHODS To identify genetic variants predisposing to diabetic kidney disease, we performed genome-wide association study (GWAS) analyses. Through collaboration with the Diabetes Nephropathy Collaborative Research Initiative, we assembled a large collection of type 1 diabetes cohorts with harmonized diabetic kidney disease phenotypes. We used a spectrum of ten diabetic kidney disease definitions based on albuminuria and renal function. RESULTS Our GWAS meta-analysis included association results for up to 19,406 individuals of European descent with type 1 diabetes. We identified 16 genome-wide significant risk loci. The variant with the strongest association (rs55703767) is a common missense mutation in the collagen type IV alpha 3 chain (COL4A3) gene, which encodes a major structural component of the glomerular basement membrane (GBM). Mutations in COL4A3 are implicated in heritable nephropathies, including the progressive inherited nephropathy Alport syndrome. The rs55703767 minor allele (Asp326Tyr) is protective against several definitions of diabetic kidney disease, including albuminuria and ESKD, and demonstrated a significant association with GBM width; protective allele carriers had thinner GBM before any signs of kidney disease, and its effect was dependent on glycemia. Three other loci are in or near genes with known or suggestive involvement in this condition (BMP7) or renal biology (COLEC11 and DDR1). CONCLUSIONS The 16 diabetic kidney disease-associated loci may provide novel insights into the pathogenesis of this condition and help identify potential biologic targets for prevention and treatment.
Collapse
Affiliation(s)
- Rany M Salem
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Jennifer N Todd
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Center for Genomic Medicine and
| | - Niina Sandholm
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Joanne B Cole
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Center for Genomic Medicine and
| | - Wei-Min Chen
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Darrell Andrews
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension, Diabetes and Metabolism Center, University of Utah, Salt Lake City, Utah
| | - Paul M McKeigue
- Usher Institute of Population Health Sciences and Informatics and
| | - Linda T Hiraki
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chengxiang Qiu
- Departments of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine and
| | - Chen Di Liao
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jing Jing Cao
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Erkka Valo
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | | | - Stuart J McGurnaghan
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jani K Haukka
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Valma Harjutsalo
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
- The Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Eoin P Brennan
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Natalie van Zuydam
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Emma Ahlqvist
- Department of Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Ross Doyle
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | | | - Maria Lajer
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Maria F Hughes
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Jihwan Park
- Departments of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jan Skupien
- Joslin Diabetes Center, Boston, Massachusetts
| | | | | | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine and
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | | | - Hyun M Kang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Ronald Klein
- University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | - Xiaoyu Gao
- The George Washington University, Washington, DC
| | | | - Silvia Maestroni
- Complications of Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | | | | - Rachel G Miller
- University of Pittsburgh Public Health, Pittsburgh, Pennsylvania
| | - Jingchuan Guo
- University of Pittsburgh Public Health, Pittsburgh, Pennsylvania
| | | | - David Tregouet
- INSERM UMR_S 1166, Sorbonne Université, UPMC Univ Paris 06, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Beata Gyorgy
- INSERM UMR_S 1166, Sorbonne Université, UPMC Univ Paris 06, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | | | - David M Maahs
- Department of Pediatrics-Endocrinology, Stanford University, Stanford, California
| | - Shelley B Bull
- The Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Angelo J Canty
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Lars Stechemesser
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Raimund Weitgasser
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
- Department of Medicine, Diakonissen-Wehrle Hospital, Salzburg, Austria
| | | | - Vita Rovīte
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Valdis Pīrāgs
- University of Latvia, Riga, Latvia
- Pauls Stradins University Hospital, Riga, Latvia
| | | | - Lina Radzeviciene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Verkauskiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nicolae Mircea Panduru
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2nd Clinical Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Leif C Groop
- Department of Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Genentech, 1 DNA Way, South San Francisco, California
| | - Harvest F Gu
- Department of Clinical Science, Intervention and Technology and
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Anna Möllsten
- Division of Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Rolf Luft Center for Diabetes Research and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Rolf Luft Center for Diabetes Research and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| | - Finian Martin
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Tina Costacou
- University of Pittsburgh Public Health, Pittsburgh, Pennsylvania
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Michel Marre
- Department of Diabetology, Endocrinology and Nutrition, Bichat Hospital, DHU FIRE, Assistance Publique-Hôpitaux de Paris, Paris, France
- UFR de Médecine, Paris Diderot University, Sorbonne Paris Cité, Paris, France
- INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Samy Hadjadj
- Department of Endocrinology and Diabetology, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
- INSERM CIC 1402, Poitiers, France
- L'institut du thorax, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Amy J McKnight
- Centre for Public Health, Queens University of Belfast, Northern Ireland, UK
| | - Carol Forsblom
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Gareth McKay
- Centre for Public Health, Queens University of Belfast, Northern Ireland, UK
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - A Peter Maxwell
- Centre for Public Health, Queens University of Belfast, Northern Ireland, UK
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine and
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Katalin Susztak
- Departments of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Helen M Colhoun
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Per-Henrik Groop
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia; and
| | - Stephen S Rich
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Joel N Hirschhorn
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Jose C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts;
- Center for Genomic Medicine and
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Zhou J, Xu L, Duan X, Liu W, Zhao X, Wang X, Shang W, Fang X, Yang H, Jia L, Bai J, Zhao J, Wang L, Tong C. Large-scale RNAi screen identified Dhpr as a regulator of mitochondrial morphology and tissue homeostasis. SCIENCE ADVANCES 2019; 5:eaax0365. [PMID: 31555733 PMCID: PMC6750926 DOI: 10.1126/sciadv.aax0365] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/23/2019] [Indexed: 05/10/2023]
Abstract
Mitochondria are highly dynamic organelles. Through a large-scale in vivo RNA interference (RNAi) screen that covered around a quarter of the Drosophila melanogaster genes (4000 genes), we identified 578 genes whose knockdown led to aberrant shapes or distributions of mitochondria. The complex analysis revealed that knockdown of the subunits of proteasomes, spliceosomes, and the electron transport chain complexes could severely affect mitochondrial morphology. The loss of Dhpr, a gene encoding an enzyme catalyzing tetrahydrobiopterin regeneration, leads to a reduction in the numbers of tyrosine hydroxylase neurons, shorter lifespan, and gradual loss of muscle integrity and climbing ability. The affected mitochondria in Dhpr mutants are swollen and have fewer cristae, probably due to lower levels of Drp1 S-nitrosylation. Overexpression of Drp1, but not of S-nitrosylation-defective Drp1, rescued Dhpr RNAi-induced mitochondrial defects. We propose that Dhpr regulates mitochondrial morphology and tissue homeostasis by modulating S-nitrosylation of Drp1.
Collapse
Affiliation(s)
- Jia Zhou
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lingna Xu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiuying Duan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Liu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaocui Zhao
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xi Wang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weina Shang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuefei Fang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huan Yang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lijun Jia
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Bai
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiayao Zhao
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Liquan Wang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
- Corresponding author.
| |
Collapse
|
49
|
Inhibition of LPS-Induced Oxidative Damages and Potential Anti-Inflammatory Effects of Phyllanthus emblica Extract via Down-Regulating NF-κB, COX-2, and iNOS in RAW 264.7 Cells. Antioxidants (Basel) 2019; 8:antiox8080270. [PMID: 31382466 PMCID: PMC6721275 DOI: 10.3390/antiox8080270] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Phyllanthus emblica is an edible nutraceutical and functional food in the Asia area with medicinal and nutritive importance. The fruit extract of P. emblica is currently considered to be one of the effective functional foods for flesh maintenance and disease treatments because of its antioxidative and immunomodulatory properties. We examined the antioxidant abilities of the fruit extract powder by carrying out 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, iron reducing power, and metal chelating activity analysis and showed excellent antioxidative results. In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the result showed that the samples had no cytotoxic effect on RAW 264.7 cells even at a high concentration of 2 mg/mL. To investigate its immunomodulatory function, our estimation was to treat it with lipopolysaccharide (LPS) in RAW 264.7 cells to present anti-inflammatory capacities. The extract decreased reactive oxygen species (ROS) production levels in a dose-dependent manner measured by flow cytometry. We also examined various inflammatory mRNAs and proteins, including nuclear factor-κB (NF-κB), inducible nitric oxide synthases (iNOS), and cyclooxygenase-2 (COX-2). In quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting assay, all three targets were decreased by the extract, also in a dose-dependent manner. In conclusion, P. emblica fruit extract powder not only lessened antioxidative stress damages, but also inhibited inflammatory reactions.
Collapse
|
50
|
Blunsom NJ, Gomez-Espinosa E, Ashlin TG, Cockcroft S. Sustained phospholipase C stimulation of H9c2 cardiomyoblasts by vasopressin induces an increase in CDP-diacylglycerol synthase 1 (CDS1) through protein kinase C and cFos. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1072-1082. [PMID: 30862571 PMCID: PMC6495107 DOI: 10.1016/j.bbalip.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 01/18/2023]
Abstract
Chronic stimulation (24 h) with vasopressin leads to hypertrophy in H9c2 cardiomyoblasts and this is accompanied by continuous activation of phospholipase C. Consequently, vasopressin stimulation leads to a depletion of phosphatidylinositol levels. The substrate for phospholipase C is phosphatidylinositol (4, 5) bisphosphate (PIP2) and resynthesis of phosphatidylinositol and its subsequent phosphorylation maintains the supply of PIP2. The resynthesis of PI requires the conversion of phosphatidic acid to CDP-diacylglycerol catalysed by CDP-diacylglycerol synthase (CDS) enzymes. To examine whether the resynthesis of PI is regulated by vasopressin stimulation, we focussed on the CDS enzymes. Three CDS enzymes are present in mammalian cells: CDS1 and CDS2 are integral membrane proteins localised at the endoplasmic reticulum and TAMM41 is a peripheral protein localised in the mitochondria. Vasopressin selectively stimulates an increase CDS1 mRNA that is dependent on protein kinase C, and can be inhibited by the AP-1 inhibitor, T-5224. Vasopressin also stimulates an increase in cFos protein which is inhibited by a protein kinase C inhibitor. We conclude that vasopressin stimulates CDS1 mRNA through phospholipase C, protein kinase C and cFos and provides a potential mechanism for maintenance of phosphatidylinositol levels during long-term phospholipase C signalling.
Collapse
Affiliation(s)
- Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Evelyn Gomez-Espinosa
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Tim G Ashlin
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|