1
|
Sikder S, Bhattacharya A, Agrawal A, Sethi G, Kundu TK. Micro-RNAs in breast cancer progression and metastasis: A chromatin and metabolic perspective. Heliyon 2024; 10:e38193. [PMID: 39386816 PMCID: PMC11462366 DOI: 10.1016/j.heliyon.2024.e38193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Breast cancer is a highly complex disease with multiple subtypes. While many of the breast cancer cases are sporadic some can be familial or hereditary. Genomic integrity is closely monitored by several mechanisms, such as DNA damage machinery and mitotic checkpoints. Any defect in the key genes involved in the regulation of these mechanisms often results in genomic instability, predisposing the cells to malignancy. This results in altered expression of many coding and noncoding genes. The noncoding RNAs especially the long noncoding RNA (lncRNAs) and microRNA (miRNAs) act as key regulators of cancer gene networks. Some miRNAs repress the expression of the heterochromatin-associated proteins, inducing the formation of open chromatin, and promoting the expression of genes required for oncogenesis. Additionally, specific miRNAs may also favour cancer progression and metastasis by regulating the expression of genes that support the metabolic microenvironment essential for cancer cell growth and proliferation. Understanding how these noncoding RNAs contribute to breast cancer development opens potential avenues for therapeutic intervention, targeting their dysregulated activity.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Aditya Bhattacharya
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Aayushi Agrawal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore
| | - Tapas K. Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
2
|
Ghosh N, Mahalanobish S, Sil PC. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem Pharmacol 2024; 228:116326. [PMID: 38815626 DOI: 10.1016/j.bcp.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hepatic urea cycle, previously known as ornithine cycle, is the chief biochemical pathway that deals with the disposal of excessive nitrogen in form of urea, resulted from protein breakdown and concomitant condensation of ammonia. Enzymes involved in urea cycle are expressed differentially outside hepatic tissue and are mostly involved in production of arginine from citrulline in arginine-depleted condition. Inline, cancer cells frequently adapt metabolic rewiring to support sufficient biomass production in order to sustain tumor cell survival, multiplication and subsequent growth. For the accomplishment of this aim, metabolic reprogramming in cancer cells is set in way so that cellular nitrogen and carbon repertoire can be utilized and channelized maximally towards anabolic reactions. A strategy to meet such outcome is to cut down unnecessary catabolic reactions and nitrogen elimination. Thus, transfigured urea cycle is a hallmark of neoplasia. During oncogenesis, altered expression and regulation of enzymes involved in urea cycle is a revolutionary approach meet to maximum incorporation of nitrogen for sustaining tumor specific biogenesis. Currently, we have reviewed neoplasm-specific deregulations of urea cycle-enzymes in different types and stages of cancers suggesting its context-oriented dynamic nature. Considering such insight to be valuable in terms of prospective cancer diagnosis and therapeutics adaptive evolution of deregulated urea cycle has been enlightened.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
3
|
Stefan A, Gentilucci L, Ruffolo F, Rossi V, Sordi S, He T, di Stefano G, Santino F, Brigotti M, Scotti C, Iamele L, de Jonge H, Piaz FD, Santarcangelo DR, Hochkoeppler A. Peptides inhibiting the assembly of monomeric human l-lactate dehydrogenase into catalytically active homotetramer decrease the synthesis of lactate in cultured cells. Protein Sci 2024; 33:e5161. [PMID: 39276013 PMCID: PMC11400633 DOI: 10.1002/pro.5161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
The energetic metabolism of cancer cells relies on a substantial commitment of pyruvate to the catalytic action of lactate-generating dehydrogenases. This coupling mainly depends on lactate dehydrogenase A (LDH-A), which is overexpressed in different types of cancers, and therefore represents an appealing therapeutic target. Taking into account that the activity of LDHs is exclusively exerted by their tetrameric forms, it was recently shown that peptides perturbing the monomers-to-tetramer assembly inhibit human LDH-A (hLDH-A). However, to identify these peptides, tetrameric hLDH-A was transiently exposed to strongly acidic conditions inducing its dissociation into monomers, which were tested as a target for peptides at low pH. Nevertheless, the availability of native monomeric hLDH-A would allow performing similar screenings under physiological conditions. Here we report on the unprecedented isolation of recombinant monomeric hLDH-A at neutral pH, and on its use to identify peptides inhibiting the assembly of the tetrameric enzyme. Remarkably, the GQNGISDL octapeptide, mimicking the 296-303 portion of hLDH-A C-terminal region, was observed to effectively inhibit the target enzyme. Moreover, by dissecting the action of this octapeptide, the cGQND cyclic tetrapeptide was found to act as the parental compound. Furthermore, we performed assays using MCF7 and BxPC3 cultured cells, exclusively expressing hLDH-A and hLDH-B, respectively. By means of these assays we detected a selective action of linear and cyclic GQND tetrapeptides, inhibiting lactate secretion in MCF7 cells only. Overall, our observations suggest that peptides mimicking the C-terminal region of hLDH-A effectively interfere with protein-protein interactions responsible for the assembly of the tetrameric enzyme.
Collapse
Affiliation(s)
- Alessandra Stefan
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
- CSGI, University of FirenzeSesto FiorentinoItaly
| | - Luca Gentilucci
- Department of Chemistry “Giacomo Ciamician”University of BolognaBolognaItaly
| | - Francesca Ruffolo
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Valentina Rossi
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Sofia Sordi
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Tingting He
- Department of Chemistry “Giacomo Ciamician”University of BolognaBolognaItaly
| | | | - Federica Santino
- Department of Chemistry “Giacomo Ciamician”University of BolognaBolognaItaly
| | - Maurizio Brigotti
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Claudia Scotti
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Luisa Iamele
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Hugo de Jonge
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | | | - Alejandro Hochkoeppler
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
- CSGI, University of FirenzeSesto FiorentinoItaly
| |
Collapse
|
4
|
Liu Y, Miao Z, Yang Q. AGC1-mediated Metabolic Reprogramming and Autophagy Sustain Survival of Hepatocellular Carcinoma Cells under Glutamine Deprivation. Cell Biochem Biophys 2024; 82:2037-2053. [PMID: 38789662 DOI: 10.1007/s12013-024-01311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
The dependence of hepatocellular carcinoma (HCC) cells on glutamine suggests the feasibility of targeting glutamine metabolism for therapy. However, drugs inhibiting glutamine uptake and breakdown have not shown promising outcomes. Therefore, investigating the mechanism of glutamine metabolism reprogramming in HCC cells is crucial. We used bioinformatics approaches to investigate the metabolic flux of glutamine in HCC cells and validated it using qRT-PCR and western blotting. HCC cells were cultured in glutamine-deprived medium, and changes in glutamate and ATP levels were monitored. Western blotting was employed to assess the expression of AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) and autophagy-related proteins. The impact of Solute carrier family 25 member 12 (AGC1) on HCC cell proliferation was studied using CCK-8 and colony formation assays. Furthermore, the effects of AGC1 knockdown via siRNA on metabolic reprogramming and energy supply during glutamine deprivation in HCC were explored. During glutamine deprivation, HCC cells sustain cytosolic asparagine synthesis and ATP production through AGC1. Low ATP levels activate AMPK and inhibit mTOR activation, inducing autophagy to rescue HCC cell survival. Knockdown of AGC1 inhibits mitochondrial aspartate output and continuously activates autophagy, rendering HCC cells more sensitive to glutamine deprivation. AGC1 serves as a critical node in the reprogramming of glutamine metabolism and energy supply in HCC cells. This study provides theoretical support for overcoming resistance to drugs targeting glutamine metabolism.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
5
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
6
|
Wang RH, Chen PR, Chen YT, Chen YC, Chu YH, Chien CC, Chien PC, Lo SY, Wang ZL, Tsou MC, Chen SY, Chiu GS, Chen WL, Wu YH, Wang LHC, Wang WC, Lin SY, Kung HJ, Wang LH, Cheng HC, Lin KT. Hydrogen sulfide coordinates glucose metabolism switch through destabilizing tetrameric pyruvate kinase M2. Nat Commun 2024; 15:7463. [PMID: 39198443 PMCID: PMC11358145 DOI: 10.1038/s41467-024-51875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Most cancer cells reprogram their glucose metabolic pathway from oxidative phosphorylation to aerobic glycolysis for energy production. By reducing enzyme activity of pyruvate kinase M2 (PKM2), cancer cells attain a greater fraction of glycolytic metabolites for macromolecule synthesis needed for rapid proliferation. Here we demonstrate that hydrogen sulfide (H2S) destabilizes the PKM2 tetramer into monomer/dimer through sulfhydration at cysteines, notably at C326, leading to reduced PKM2 enzyme activity and increased PKM2-mediated transcriptional activation. Blocking PKM2 sulfhydration at C326 through amino acid mutation stabilizes the PKM2 tetramer and crystal structure further revealing the tetramer organization of PKM2-C326S. The PKM2-C326S mutant in cancer cells rewires glucose metabolism to mitochondrial respiration, significantly inhibiting tumor growth. In this work, we demonstrate that PKM2 sulfhydration by H2S inactivates PKM2 activity to promote tumorigenesis and inhibiting this process could be a potential therapeutic approach for targeting cancer metabolism.
Collapse
Grants
- National Science and Technology Council (Taiwan), 108-2314-B-007-003-MY3, 111-2320-B-007-005-MY3; National Tsing Hua University (NTHU), 111Q2713E1, 112Q2511E1, and 112Q2521E1, 113Q2524E1.
- National Science and Technology Council (Taiwan), 110-2320-B-007-004-MY3; National Health Research Institutes (Taiwan), NHRI-EX113-11124BI. National Tsing Hua University (NTHU), 112QI033E1
- National Science and Technology Council (Taiwan),110-2320-B-039-066; Ministry of Education (Taiwan), CMRC-CENTER-0
- National Science and Technology Council (Taiwan), 108-2311-B-007-002-MY3, 111-2311-B-007-009
Collapse
Affiliation(s)
- Rong-Hsuan Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Pin-Ru Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yue-Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Chang Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Hsin Chu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Chen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Chen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shao-Yun Lo
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zhong-Liang Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Chen Tsou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ssu-Yu Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Guang-Shen Chiu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Ling Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Hsuan Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hsing-Jien Kung
- College of Medical Science and Technology, PhD Program for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Lu-Hai Wang
- Chiese Medicine Research Center, and Institute of Integrated Medicine, China Medical University, Taichung City, Taiwan.
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Kai-Ti Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
7
|
Kang S, Antoniewicz MR, Hay N. Metabolic and transcriptomic reprogramming during contact inhibition-induced quiescence is mediated by YAP-dependent and YAP-independent mechanisms. Nat Commun 2024; 15:6777. [PMID: 39117624 PMCID: PMC11310444 DOI: 10.1038/s41467-024-51117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Metabolic rewiring during the proliferation-to-quiescence transition is poorly understood. Here, using a model of contact inhibition-induced quiescence, we conducted 13C-metabolic flux analysis in proliferating (P) and quiescent (Q) mouse embryonic fibroblasts (MEFs) to investigate this process. Q cells exhibit reduced glycolysis but increased TCA cycle flux and mitochondrial respiration. Reduced glycolytic flux in Q cells correlates with reduced glycolytic enzyme expression mediated by yes-associated protein (YAP) inhibition. The increased TCA cycle activity and respiration in Q cells is mediated by induced mitochondrial pyruvate carrier (MPC) expression, rendering them vulnerable to MPC inhibition. The malate-to-pyruvate flux, which generates NADPH, is markedly reduced by modulating malic enzyme 1 (ME1) dimerization in Q cells. Conversely, the malate dehydrogenase 1 (MDH1)-mediated oxaloacetate-to-malate flux is reversed and elevated in Q cells, driven by high mitochondrial-derived malate levels, reduced cytosolic oxaloacetate, elevated MDH1 levels, and a high cytoplasmic NAD+/NADH ratio. Transcriptomic analysis revealed large number of genes are induced in Q cells, many of which are associated with the extracellular matrix (ECM), while YAP-dependent and cell cycle-related genes are repressed. The results suggest that high TCA cycle flux and respiration in Q cells are required to generate ATP and amino acids to maintain de-novo ECM protein synthesis and secretion.
Collapse
Affiliation(s)
- Soeun Kang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
8
|
Wu Z, Bezwada D, Cai F, Harris RC, Ko B, Sondhi V, Pan C, Vu HS, Nguyen PT, Faubert B, Cai L, Chen H, Martin-Sandoval M, Do D, Gu W, Zhang Y, Zhang Y, Brooks B, Kelekar S, Zacharias LG, Oaxaca KC, Patricio JS, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. Cell Metab 2024; 36:1504-1520.e9. [PMID: 38876105 PMCID: PMC11240302 DOI: 10.1016/j.cmet.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.
Collapse
Affiliation(s)
- Zheng Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert C Harris
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Varun Sondhi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunxiao Pan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phong T Nguyen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Faubert
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongli Chen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Zhang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bailey Brooks
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - K Celeste Oaxaca
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joao S Patricio
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Javier Garcia-Bermudez
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Lopes EC, Shi F, Sawant A, Ibrahim M, Gomez-Jenkins M, Hu Z, Manchiraju P, Bhatt V, Wang W, Hinrichs CS, Wallace DC, Su X, Rabinowitz JD, Chan CS, Guo JY, Ganesan S, Lattime EC, White E. RESPIRATION DEFECTS LIMIT SERINE SYNTHESIS REQUIRED FOR LUNG CANCER GROWTH AND SURVIVAL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596339. [PMID: 38853873 PMCID: PMC11160605 DOI: 10.1101/2024.05.28.596339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mitochondrial function is important for both energetic and anabolic metabolism. Pathogenic mitochondrial DNA (mtDNA) mutations directly impact these functions, resulting in the detrimental consequences seen in human mitochondrial diseases. The role of pathogenic mtDNA mutations in human cancers is less clear; while pathogenic mtDNA mutations are observed in some cancer types, they are almost absent in others. We report here that the proofreading mutant DNA polymerase gamma ( PolG D256A ) induced a high mtDNA mutation burden in non-small-cell lung cancer (NSCLC), and promoted the accumulation of defective mitochondria, which is responsible for decreased tumor cell proliferation and viability and increased cancer survival. In NSCLC cells, pathogenic mtDNA mutations increased glycolysis and caused dependence on glucose. The glucose dependency sustained mitochondrial energetics but at the cost of a decreased NAD+/NADH ratio that inhibited de novo serine synthesis. Insufficient serine synthesis, in turn, impaired the downstream synthesis of GSH and nucleotides, leading to impaired tumor growth that increased cancer survival. Unlike tumors with intact mitochondrial function, NSCLC with pathogenic mtDNA mutations were sensitive to dietary serine and glycine deprivation. Thus, mitochondrial function in NSCLC is required specifically to sustain sufficient serine synthesis for nucleotide production and redox homeostasis to support tumor growth, explaining why these cancers preserve functional mtDNA. In brief High mtDNA mutation burden in non-small-cell lung cancer (NSCLC) leads to the accumulation of respiration-defective mitochondria and dependency on glucose and glycolytic metabolism. Defective respiratory metabolism causes a massive accumulation of cytosolic nicotinamide adenine dinucleotide + hydrogen (NADH), which impedes serine synthesis and, thereby, glutathione (GSH) and nucleotide synthesis, leading to impaired tumor growth and increased survival. Highlights Proofreading mutations in Polymerase gamma led to a high burden of mitochondrial DNA mutations, promoting the accumulation of mitochondria with respiratory defects in NSCLC.Defective respiration led to reduced proliferation and viability of NSCLC cells increasing survival to cancer.Defective respiration caused glucose dependency to fuel elevated glycolysis.Altered glucose metabolism is associated with high NADH that limits serine synthesis, leading to impaired GSH and nucleotide production.Mitochondrial respiration defects sensitize NSCLC to dietary serine/glycine starvation, further increasing survival. Abstract Figure
Collapse
|
10
|
Tidwell TR, Røsland G, Tronstad KJ, Søreide K, Hagland HR. Comparing in vitro cytotoxic drug sensitivity in colon and pancreatic cancer using 2D and 3D cell models: Contrasting viability and growth inhibition in clinically relevant dose and repeated drug cycles. Cancer Med 2024; 13:e7318. [PMID: 38872378 PMCID: PMC11176582 DOI: 10.1002/cam4.7318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND In vitro drug screening that is more translatable to the in vivo tumor environment can reduce both time and cost of cancer drug development. Here we address some of the shortcomings in screening and show how treatment with 5-fluorouracil (5-FU) in 2D and 3D culture models of colorectal cancer (CRC) and pancreatic ductal adenocarcinomas (PDAC) give different responses regarding growth inhibition. METHODS The sensitivity of the cell lines at clinically relevant 5-FU concentrations was monitored over 4 days of treatment in both 2D and 3D cultures for CRC (SW948 and HCT116) and PDAC (Panc-1 and MIA-Pa-Ca-2) cell lines. The 3D cultures were maintained beyond this point to enable a second treatment cycle at Day 14, following the timeline of a standard clinical 5-FU regimen. RESULTS Evaluation after one cycle did not reveal significant growth inhibition in any of the CRC or PDAC 2D models. By the end of the second cycle of treatment the CRC spheroids reached 50% inhibition at clinically achievable concentrations in the 3D model, but not in the 2D model. The PDAC models were not sensitive to clinical doses even after two cycles. High content viability metrics point to even lower response in the resistant PDAC models. CONCLUSION This study reveals the limitations of testing drugs in 2D cancer models and short exposure in 3D models, and the importance of using appropriate growth inhibition analysis. We found that screening with longer exposure and several cycles of treatment in 3D models suggests a more reliable way to assess drug sensitivity.
Collapse
Affiliation(s)
- Tia R Tidwell
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Gro Røsland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Kjetil Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical medicine, University of Bergen, Bergen, Norway
- Gastrointestinal Translational Research Group, Stavanger University Hospital, Stavanger, Norway
| | - Hanne R Hagland
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
11
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. JCI Insight 2024; 9:e174329. [PMID: 38815134 PMCID: PMC11383364 DOI: 10.1172/jci.insight.174329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
The nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism end product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. These results demonstrate the broad and dramatic effects nutrient levels can have on drug response and how incorporation of human-specific physiological nutrient medium might help identify compounds whose efficacy could be influenced in humans.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Philippa A Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Kelly O Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank M Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan L Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
12
|
Abbott KL, Ali A, Reinfeld BI, Deik A, Subudhi S, Landis MD, Hongo RA, Young KL, Kunchok T, Nabel CS, Crowder KD, Kent JR, Madariaga MLL, Jain RK, Beckermann KE, Lewis CA, Clish CB, Muir A, Rathmell WK, Rathmell J, Vander Heiden MG. Metabolite profiling of human renal cell carcinoma reveals tissue-origin dominance in nutrient availability. eLife 2024; 13:RP95652. [PMID: 38787918 PMCID: PMC11126308 DOI: 10.7554/elife.95652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.
Collapse
Affiliation(s)
- Keene L Abbott
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Bradley I Reinfeld
- Medical Scientist Training Program, Vanderbilt UniversityNashvilleUnited States
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
- Graduate Program in Cancer Biology, Vanderbilt UniversityNashvilleUnited States
| | - Amy Deik
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Sonu Subudhi
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Madelyn D Landis
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Rachel A Hongo
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Kirsten L Young
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Christopher S Nabel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Kayla D Crowder
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Johnathan R Kent
- Department of Surgery, University of Chicago MedicineChicagoUnited States
| | | | - Rakesh K Jain
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Kathryn E Beckermann
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Caroline A Lewis
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Clary B Clish
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Alexander Muir
- Ben May Department of Cancer Research, University of ChicagoChicagoUnited States
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMCNashvilleUnited States
| | - Jeffrey Rathmell
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMCNashvilleUnited States
- Department of Pathology, Microbiology and Immunology, VUMCNashvilleUnited States
| | - Matthew G Vander Heiden
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Dana-Farber Cancer InstituteBostonUnited States
| |
Collapse
|
13
|
Mukha D, Dessain J, O’Connor S, Pniewski K, Bertolazzi F, Patel J, Mullins M, Schug ZT. Identification of Fasnall as a therapeutically effective Complex I inhibitor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592013. [PMID: 38766222 PMCID: PMC11100613 DOI: 10.1101/2024.05.03.592013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Proliferating cancer cells actively utilize anabolic processes for biomass production, including de novo biosynthesis of amino acids, nucleotides, and fatty acids. The key enzyme of the fatty acid biosynthesis pathway, fatty acid synthase (FASN), is widely recognized as a promising therapeutic target in cancer and other health conditions1,2. Here, we establish a metabolic signature of FASN inhibition using a panel of pharmacological inhibitors (GSK2194069, TVB-2640, TVB-3166, C75, cerulenin, and Fasnall). We find that the activity of commonly used FASN inhibitors is inconsistent with the metabolic signature of FASN inhibition (accumulation of malonate, succinate, malonyl coenzyme A, succinyl coenzyme A, and other metabolic perturbations). Moreover, we show that one of these putative FASN inhibitors, Fasnall, is a respiratory Complex I inhibitor that mimics FASN inhibition through NADH accumulation and consequent depletion of the tricarboxylic acid cycle metabolites. We demonstrate that Fasnall impairs tumor growth in several oxidative phosphorylation-dependent cancer models, including combination therapy-resistant melanoma patient-derived xenografts. Fasnall administration does not reproduce neurological side effects in mice reported for other Complex I inhibitors3,4. Our results have significant implications for understanding the FASN role in human health and disease and provide evidence of therapeutic potential for Complex I inhibitors with fast systemic clearance. Our findings also highlight the continuing need for validation of small molecule inhibitors to distinguish high-quality chemical probes and to expand the understanding of their application.
Collapse
Affiliation(s)
- Dzmitry Mukha
- Molecular and Cellular Oncogenesis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, United States
| | - Jena Dessain
- Molecular and Cellular Oncogenesis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, United States
| | - Seamus O’Connor
- Molecular and Cellular Oncogenesis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, United States
| | - Katherine Pniewski
- Molecular and Cellular Oncogenesis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, United States
| | - Fabrizio Bertolazzi
- Molecular and Cellular Oncogenesis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, United States
- Cellular and Molecular Biology Program, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jeet Patel
- Department of Cell & Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Mary Mullins
- Department of Cell & Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Zachary T. Schug
- Molecular and Cellular Oncogenesis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
14
|
Urrutia AA, Mesa-Ciller C, Guajardo-Grence A, Alkan HF, Soro-Arnáiz I, Vandekeere A, Ferreira Campos AM, Igelmann S, Fernández-Arroyo L, Rinaldi G, Lorendeau D, De Bock K, Fendt SM, Aragonés J. HIF1α-dependent uncoupling of glycolysis suppresses tumor cell proliferation. Cell Rep 2024; 43:114103. [PMID: 38607920 PMCID: PMC11063627 DOI: 10.1016/j.celrep.2024.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Hypoxia-inducible factor-1α (HIF1α) attenuates mitochondrial activity while promoting glycolysis. However, lower glycolysis is compromised in human clear cell renal cell carcinomas, in which HIF1α acts as a tumor suppressor by inhibiting cell-autonomous proliferation. Here, we find that, unexpectedly, HIF1α suppresses lower glycolysis after the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, leading to reduced lactate secretion in different tumor cell types when cells encounter a limited pyruvate supply such as that typically found in the tumor microenvironment in vivo. This is because HIF1α-dependent attenuation of mitochondrial oxygen consumption increases the NADH/NAD+ ratio that suppresses the activity of the NADH-sensitive GAPDH glycolytic enzyme. This is manifested when pyruvate supply is limited, since pyruvate acts as an electron acceptor that prevents the increment of the NADH/NAD+ ratio. Furthermore, this anti-glycolytic function provides a molecular basis to explain how HIF1α can suppress tumor cell proliferation by increasing the NADH/NAD+ ratio.
Collapse
Affiliation(s)
- Andrés A Urrutia
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Claudia Mesa-Ciller
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Andrea Guajardo-Grence
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - H Furkan Alkan
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Inés Soro-Arnáiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Ana Margarida Ferreira Campos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sebastian Igelmann
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Lucía Fernández-Arroyo
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Doriane Lorendeau
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
15
|
Abbott KL, Ali A, Reinfeld BI, Deik A, Subudhi S, Landis MD, Hongo RA, Young KL, Kunchok T, Nabel CS, Crowder KD, Kent JR, Madariaga MLL, Jain RK, Beckermann KE, Lewis CA, Clish CB, Muir A, Rathmell WK, Rathmell JC, Vander Heiden MG. Metabolite profiling of human renal cell carcinoma reveals tissue-origin dominance in nutrient availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573250. [PMID: 38187626 PMCID: PMC10769456 DOI: 10.1101/2023.12.24.573250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer driven tissue factors in shaping nutrient availability in these tumors.
Collapse
Affiliation(s)
- Keene L. Abbott
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bradley I. Reinfeld
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonu Subudhi
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Madelyn D. Landis
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Rachel A. Hongo
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Kirsten L. Young
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Christopher S. Nabel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Johnathan R. Kent
- Department of Surgery, University of Chicago Medicine, Chicago, IL, USA
| | | | - Rakesh K. Jain
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryn E. Beckermann
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Present address: UMass Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
| | | | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMC, Nashville, TN, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMC, Nashville, TN, USA
| | - Matthew G. Vander Heiden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
16
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
17
|
Zhang Z, Li P, Chen Y, Chen Y, Wang X, Shen S, Zhao Y, Zhu Y, Wang T. Mitochondria-mediated ferroptosis induced by CARD9 ablation prevents MDSCs-dependent antifungal immunity. Cell Commun Signal 2024; 22:210. [PMID: 38566195 PMCID: PMC10986078 DOI: 10.1186/s12964-024-01581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Caspase Recruitment Domain-containing protein 9 (CARD9) expressed in myeloid cells has been demonstrated to play an antifungal immunity role in protecting against disseminated candidiasis. Hereditary CARD9 ablation leads to fatal disseminated candidiasis. However, the myeloid cell types and molecular mechanisms implicated in CARD9 protecting against disseminated candidiasis remain wholly elusive. METHODS The role of CARD9 ablation in exacerbating disseminated candidiasis was determined in vivo and in vitro. The molecular mechanism by which CARD9 ablation promotes acute kidney injury in disseminated candidiasis was identified by RNA-sequencing analysis. The expression of mitochondrial proteins and ferroptosis-associated proteins were measured by Quantitative real-time PCR and western blot. RESULTS CARD9 ablation resulted in a reduced proportion of myeloid-derived suppressor cells (MDSCs) and a substantially lower expression of solute carrier family 7 member 11 (SLC7A11) in the kidneys, which increased susceptibility to acute kidney injury and renal ferroptosis during disseminated Candida tropicalis (C. tropicalis) infection. Moreover, CARD9-deficient MDSCs were susceptible to ferroptosis upon stimulation with C. tropicalis, which was attributed to augmented mitochondrial oxidative phosphorylation (OXPHOS) caused by reduced SLC7A11 expression. Mechanistically, C-type lectin receptors (CLRs)-mediated recognition of C. tropicalis promoted the expression of SLC7A11 which was transcriptionally manipulated by the Syk-PKCδ-CARD9-FosB signaling axis in MDSCs. FosB enhanced SLC7A11 transcription by binding to the promoter of SLC7A11 in MDSCs stimulated with C. tropicalis. Mitochondrial OXPHOS, which was negatively regulated by SLC7A11, was responsible for inducing ferroptosis of MDSCs upon C. tropicalis stimulation. Finally, pharmacological inhibition of mitochondrial OXPHOS or ferroptosis significantly increased the number of MDSCs in the kidneys to augment host antifungal immunity, thereby attenuating ferroptosis and acute kidney injury exacerbated by CARD9 ablation during disseminated candidiasis. CONCLUSIONS Collectively, our findings show that CARD9 ablation enhances mitochondria-mediated ferroptosis in MDSCs, which negatively regulates antifungal immunity. We also identify mitochondria-mediated ferroptosis in MDSCs as a new molecular mechanism of CARD9 ablation-exacerbated acute kidney injury during disseminated candidiasis, thus targeting mitochondria-mediated ferroptosis is a novel therapeutic strategy for acute kidney injury in disseminated candidiasis.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Pengfei Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Ying Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxi Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiuzhu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yanan Zhu
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, China.
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
18
|
Bibbò F, Asadzadeh F, Boccia A, Sorice C, Bianco O, Saccà CD, Majello B, Donofrio V, Bifano D, De Martino L, Quaglietta L, Cristofano A, Covelli EM, Cinalli G, Ferrucci V, De Antonellis P, Zollo M. Targeting Group 3 Medulloblastoma by the Anti-PRUNE-1 and Anti-LSD1/KDM1A Epigenetic Molecules. Int J Mol Sci 2024; 25:3917. [PMID: 38612726 PMCID: PMC11011515 DOI: 10.3390/ijms25073917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Medulloblastoma (MB) is a highly malignant childhood brain tumor. Group 3 MB (Gr3 MB) is considered to have the most metastatic potential, and tailored therapies for Gr3 MB are currently lacking. Gr3 MB is driven by PRUNE-1 amplification or overexpression. In this paper, we found that PRUNE-1 was transcriptionally regulated by lysine demethylase LSD1/KDM1A. This study aimed to investigate the therapeutic potential of inhibiting both PRUNE-1 and LSD1/KDM1A with the selective inhibitors AA7.1 and SP-2577, respectively. We found that the pharmacological inhibition had a substantial efficacy on targeting the metastatic axis driven by PRUNE-1 (PRUNE-1-OTX2-TGFβ-PTEN) in Gr3 MB. Using RNA seq transcriptomic feature data in Gr3 MB primary cells, we provide evidence that the combination of AA7.1 and SP-2577 positively affects neuronal commitment, confirmed by glial fibrillary acidic protein (GFAP)-positive differentiation and the inhibition of the cytotoxic components of the tumor microenvironment and the epithelial-mesenchymal transition (EMT) by the down-regulation of N-Cadherin protein expression. We also identified an impairing action on the mitochondrial metabolism and, consequently, oxidative phosphorylation, thus depriving tumors cells of an important source of energy. Furthermore, by overlapping the genomic mutational signatures through WES sequence analyses with RNA seq transcriptomic feature data, we propose in this paper that the combination of these two small molecules can be used in a second-line treatment in advanced therapeutics against Gr3 MB. Our study demonstrates that the usage of PRUNE-1 and LSD1/KDM1A inhibitors in combination represents a novel therapeutic approach for these highly aggressive metastatic MB tumors.
Collapse
Affiliation(s)
- Francesca Bibbò
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Fatemeh Asadzadeh
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
- SEMM European School of Molecular Medicine, 20139 Milan, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Carmen Sorice
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Carmen Daniela Saccà
- Department of Biology, University Federico II of Naples, 80138 Naples, Italy; (C.D.S.); (B.M.)
| | - Barbara Majello
- Department of Biology, University Federico II of Naples, 80138 Naples, Italy; (C.D.S.); (B.M.)
| | - Vittoria Donofrio
- Department of Pathology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (V.D.); (D.B.)
| | - Delfina Bifano
- Department of Pathology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (V.D.); (D.B.)
| | - Lucia De Martino
- Pediatric Neuro-Oncology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (L.D.M.); (L.Q.)
| | - Lucia Quaglietta
- Pediatric Neuro-Oncology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (L.D.M.); (L.Q.)
| | - Adriana Cristofano
- Pediatric Neuroradiology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (A.C.); (E.M.C.)
| | - Eugenio Maria Covelli
- Pediatric Neuroradiology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (A.C.); (E.M.C.)
| | - Giuseppe Cinalli
- Pediatric Neurosurgery, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy;
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Pasqualino De Antonellis
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
- DAI Medicina di Laboratorio e Trasfusionale, ‘AOU Federico II Policlinico’, 80131 Naples, Italy
| |
Collapse
|
19
|
Jiao Y, Zhao H, Lu L, Zhao X, Wang Y, Zheng B. Transcriptome-wide analysis of the differences between MCF7 cells cultured in DMEM or αMEM. PLoS One 2024; 19:e0298262. [PMID: 38547234 PMCID: PMC10977736 DOI: 10.1371/journal.pone.0298262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/22/2024] [Indexed: 04/02/2024] Open
Abstract
MCF7 cells have been used as an experimental model for breast cancer for decades. Typically, a culture medium is designed to supply cells with the nutrients essential for their continuous proliferation. Each medium has a specific nutritional composition. Therefore, cells cultured in different media may exhibit differences in their metabolism. However, only a few studies have investigated the effects of media on cells. In this study, we compared the effects of Dulbecco's modified Eagle medium (DMEM) and minimum essential medium alpha modification (αMEM) on MCF7 cells. The two media differentially affected the morphology, cell cycle, and proliferation of MCF7 cells, but had no effect on cell death. Replacement of DMEM with αMEM led to a decrease in ATP production and an increase in reactive oxygen species production, but did not affect the cell viability. RNA-sequencing and bioinformatic analyses revealed 721 significantly upregulated and 1247 downregulated genes in cells cultured in αMEM for 48 h compared with that in cells cultured in DMEM. The enriched gene ontology terms were related to mitosis and cell proliferation. Kyoto encyclopedia of genes and genomes analysis revealed cell cycle and DNA replication as the top two significant pathways. MCF7 cells were hypoxic when cultured in αMEM. These results show that the culture medium considerably affects cultured cells. Thus, the stability of the culture system in a study is very important to obtain reliable results.
Collapse
Affiliation(s)
- Yang Jiao
- NHC Key Laboratory of Periconception Health Birth in Western China, Kunming, 650500, Yunnan, China
- Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan, China
| | - Hongbo Zhao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan, China
| | - Lin Lu
- Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan, China
| | - Xiangyu Zhao
- Wuhuajianmei Dental Clinic, Kunming, Yunnan, China
| | - Yanchun Wang
- Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan, China
| | - Bingrong Zheng
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
20
|
Loopmans S, Tournaire G, Stockmans I, Stegen S, Carmeliet G. Hypoxia rewires glucose and glutamine metabolism in different sources of skeletal stem and progenitor cells similarly, except for pyruvate. J Bone Miner Res 2024; 39:150-160. [PMID: 38477776 DOI: 10.1093/jbmr/zjad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 03/14/2024]
Abstract
Skeletal stem and progenitor cells (SSPCs) are crucial for bone development, homeostasis, and repair. SSPCs are considered to reside in a rather hypoxic niche in the bone, but distinct SSPC niches have been described in different skeletal regions, and they likely differ in oxygen and nutrient availability. Currently it remains unknown whether the different SSPC sources have a comparable metabolic profile and respond in a similar manner to hypoxia. In this study, we show that cell proliferation of all SSPCs was increased in hypoxia, suggesting that SSPCs can indeed function in a hypoxic niche in vivo. In addition, low oxygen tension increased glucose consumption and lactate production, but affected pyruvate metabolism cell-specifically. Hypoxia decreased tricarboxylic acid (TCA) cycle anaplerosis and altered glucose entry into the TCA cycle from pyruvate dehydrogenase to pyruvate carboxylase and/or malic enzyme. Finally, a switch from glutamine oxidation to reductive carboxylation was observed in hypoxia, as well as cell-specific adaptations in the metabolism of other amino acids. Collectively, our findings show that SSPCs from different skeletal locations proliferate adequately in hypoxia by rewiring glucose and amino acid metabolism in a cell-specific manner.
Collapse
Affiliation(s)
- Shauni Loopmans
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven 3000, Belgium
| | - Guillaume Tournaire
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven 3000, Belgium
| | - Ingrid Stockmans
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven 3000, Belgium
| | - Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven 3000, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
21
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F, Huang C. A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol 2024; 260:129607. [PMID: 38253153 DOI: 10.1016/j.ijbiomac.2024.129607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Serine is a metabolite with ever-expanding metabolic and non-metabolic signaling attributes. By providing one‑carbon units for macromolecule biosynthesis and functional modifications, serine and serine metabolism largely impinge on cellular survival and function. Cancer cells frequently have a preference for serine metabolic reprogramming to create a conducive metabolic state for survival and aggressiveness, making intervention of cancer-associated rewiring of serine metabolism a promising therapeutic strategy for cancer treatment. Beyond providing methyl donors for methylation in modulation of innate immunity, serine metabolism generates formyl donors for mitochondrial tRNA formylation which is required for mitochondrial function. Interestingly, fully developed neurons lack the machinery for serine biosynthesis and rely heavily on astrocytic l-serine for production of d-serine to shape synaptic plasticity. Here, we recapitulate recent discoveries that address the medical significance of serine and serine metabolism in malignancies, mitochondrial-associated disorders, and neurodegenerative pathologies. Metabolic control and epigenetic- and posttranslational regulation of serine metabolism are also discussed. Given the metabolic similarities between cancer cells, neurons and germ cells, we further propose the relevance of serine metabolism in testicular homeostasis. Our work provides valuable hints for future investigations that will lead to a deeper understanding of serine and serine metabolism in cellular physiology and pathology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | | | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
22
|
Davidsen K, Marvin JS, Aggarwal A, Brown TA, Sullivan LB. An engineered biosensor enables dynamic aspartate measurements in living cells. eLife 2024; 12:RP90024. [PMID: 38393319 PMCID: PMC10942590 DOI: 10.7554/elife.90024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry (MS)-based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a green fluorescent protein (GFP)-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose-dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by MS and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high-throughput applications of variables that affect aspartate levels.
Collapse
Affiliation(s)
- Kristian Davidsen
- Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
| | - Jonathan S Marvin
- Howard Hughes Medical Institute (HHMI), Janelia Research CampusAshburnUnited States
| | - Abhi Aggarwal
- Howard Hughes Medical Institute (HHMI), Janelia Research CampusAshburnUnited States
| | - Timothy A Brown
- Howard Hughes Medical Institute (HHMI), Janelia Research CampusAshburnUnited States
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| |
Collapse
|
23
|
Martín-Cano FE, Gaitskell-Phillips G, Becerro-Rey L, da Silva E, Masot J, Redondo E, Silva-Rodríguez A, Ortega-Ferrusola C, Gil MC, Peña FJ. Pyruvate enhances stallion sperm function in high glucose media improving overall metabolic efficiency. Theriogenology 2024; 215:113-124. [PMID: 38029686 DOI: 10.1016/j.theriogenology.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
If a mechanism of more efficient glycolysis depending on pyruvate is present in stallion spermatozoa, detrimental effects of higher glucose concentrations that are common in current commercial extenders could be counteracted. To test this hypothesis, spermatozoa were incubated in a 67 mM Glucose modified Tyrode's media in the presence of 1- or 10-mM pyruvate and in the Tyrode's basal media which contains 5 mM glucose. Spermatozoa incubated for 3 h at 37 °C in 67 mM Tyrode's media with 10 mM pyruvate showed increased motility in comparison with aliquots incubated in Tyrode's 5 mM glucose and Tyrode's 67 mM glucose (57.1 ± 3.5 and 58.1 ± 1.9 to 73.0 ± 1.1 %; P < 0.01). Spermatozoa incubated in Tyrode's with 67 mM glucose 10 mM pyruvate maintained the viability along the incubation (64.03 ± 15.4 vs 61.3 ± 10.2), while spermatozoa incubated in 67 mM Glucose-Tyrode's showed a decrease in viability (38.01 ± 11.2, P < 0.01). 40 mM oxamate, an inhibitor of the lactate dehydrogenase LDH, reduced sperm viability (P < 0.05, from 76 ± 5 in 67 mM Glucose/10 mM pyruvate to 68.0 ± 4.3 %, P < 0.05). Apoptotic markers increased in the presence of oxamate. (P < 0.01). UHPLC/MS/MS showed that 10 mM pyruvate increased pyruvate, lactate, ATP and NAD+ while phosphoenolpyruvate decreased. The mechanisms that explain the improvement of in presence of 10 mM pyruvate involve the conversion of lactate to pyruvate and increased NAD+ enhancing the efficiency of the glycolysis.
Collapse
Affiliation(s)
- Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eva da Silva
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Javier Masot
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eloy Redondo
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
24
|
Vasan K, Chandel NS. Molecular and cellular mechanisms underlying the failure of mitochondrial metabolism drugs in cancer clinical trials. J Clin Invest 2024; 134:e176736. [PMID: 38299592 PMCID: PMC10836798 DOI: 10.1172/jci176736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
|
25
|
Wen S, Tu X, Zang Q, Zhu Y, Li L, Zhang R, Abliz Z. Liquid chromatography-mass spectrometry-based metabolomics and fluxomics reveals the metabolic alterations in glioma U87MG multicellular tumor spheroids versus two-dimensional cell cultures. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9670. [PMID: 38124173 DOI: 10.1002/rcm.9670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 12/23/2023]
Abstract
RATIONALE Multicellular tumor spheroids (MCTSs) that reconstitute the metabolic characteristics of in vivo tumor tissue may facilitate the discovery of molecular biomarkers and effective anticancer therapies. However, little is known about how cancer cells adapt their metabolic changes in complex three-dimensional (3D) microenvironments. Here, using the two-dimensional (2D) cell model as control, the metabolic phenotypes of glioma U87MG multicellular tumor spheroids were systematically investigated based on static metabolomics and dynamic fluxomics analysis. METHODS A liquid chromatography-mass spectrometry-based global metabolomics and lipidomics approach was adopted to survey the cellular samples from 2D and 3D culture systems, revealing marked molecular differences between them. Then, by means of metabolomic pathway analysis, the metabolic pathways altered in glioma MCTSs were found using 13 C6 -glucose as a tracer to map the metabolic flux of glycolysis, the tricarboxylic acid (TCA) cycle, de novo nucleotide synthesis, and de novo lipid biosynthesis in the MCTS model. RESULTS We found nine metabolic pathways as well as glycerolipid, glycerophospholipid and sphingolipid metabolism to be predominantly altered in glioma MCTSs. The reduced nucleotide metabolism, amino acid metabolism and glutathione metabolism indicated an overall lower cellular activity in MCTSs. Through dynamic fluxomics analysis in the MCTS model, we found that cells cultured in MCTSs exhibited increased glycolysis activity and de novo lipid biosynthesis activity, and decreased the TCA cycle and de novo purine nucleotide biosynthesis activity. CONCLUSIONS Our study highlights specific, altered biochemical pathways in MCTSs, emphasizing dysregulation of energy metabolism and lipid metabolism, and offering novel insight into metabolic events in glioma MCTSs.
Collapse
Affiliation(s)
- Shanjing Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyi Tu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Limei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
26
|
Fang Z, Wang C, Yang J, Song Z, Xie C, Ji Y, Wang Z, Du X, Zheng Q, Chen C, Hu Z, Zhong Y. Oxyhaemoglobin saturation NIR-IIb imaging for assessing cancer metabolism and predicting the response to immunotherapy. NATURE NANOTECHNOLOGY 2024; 19:124-130. [PMID: 37696994 DOI: 10.1038/s41565-023-01501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
In vivo quantitative assessment of oxyhaemoglobin saturation (sO2) status in tumour-associated vessels could provide insights into cancer metabolism and behaviour. Here we develop a non-invasive in vivo sO2 imaging technique to visualize the sO2 levels of healthy and tumour tissue based on photoluminescence bioimaging in the near-infrared IIb (NIR-IIb; 1,500-1,700 nm) window. Real-time dynamic sO2 imaging with a high frame rate (33 Hz) reveals the cerebral arteries and veins through intact mouse scalp/skull, and this imaging is consistent with the haemodynamic analysis results. Utilizing our non-invasive sO2 imaging, the tumour-associated-vessel sO2 levels of various cancer models are evaluated. A positive correlation between the tumour-associated-vessel sO2 levels and the basal oxygen consumption rate of corresponding cancer cells at the early stages of tumorigenesis suggests that cancer cells modulate the tumour metabolic microenvironment. We also find that a positive therapeutic response to the checkpoint blockade cancer immunotherapy could lead to a dramatic decrease of the tumour-associated-vessel sO2 levels. Two-plex dynamic NIR-IIb imaging can be used to simultaneously observe tumour-vessel sO2 and PD-L1, allowing a more accurate prediction of immunotherapy response.
Collapse
Affiliation(s)
- Zhiguo Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenlei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingrun Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhizheng Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyu Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xiaohui Du
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Zheng
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yeteng Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Noè R, Inglese N, Romani P, Serafini T, Paoli C, Calciolari B, Fantuz M, Zamborlin A, Surdo NC, Spada V, Spacci M, Volta S, Ermini ML, Di Benedetto G, Frusca V, Santi C, Lefkimmiatis K, Dupont S, Voliani V, Sancineto L, Carrer A. Organic Selenium induces ferroptosis in pancreatic cancer cells. Redox Biol 2023; 68:102962. [PMID: 38029455 PMCID: PMC10698006 DOI: 10.1016/j.redox.2023.102962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) cells reprogram both mitochondrial and lysosomal functions to support growth. At the same time, this causes significant dishomeostasis of free radicals. While this is compensated by the upregulation of detoxification mechanisms, it also represents a potential vulnerability. Here we demonstrate that PDA cells are sensitive to the inhibition of the mevalonate pathway (MVP), which supports the biosynthesis of critical antioxidant intermediates and protect from ferroptosis. We attacked the susceptibility of PDA cells to ferroptotic death with selenorganic compounds, including dibenzyl diselenide (DBDS) that exhibits potent pro-oxidant properties and inhibits tumor growth in vitro and in vivo. DBDS treatment induces the mobilization of iron from mitochondria enabling uncontrolled lipid peroxidation. Finally, we showed that DBDS and statins act synergistically to promote ferroptosis and provide evidence that combined treatment is a viable strategy to combat PDA.
Collapse
Affiliation(s)
- Roberta Noè
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Noemi Inglese
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padova, 35126, Padova, Italy
| | - Thauan Serafini
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | - Carlotta Paoli
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Beatrice Calciolari
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Marco Fantuz
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Agata Zamborlin
- NEST-Scuola Normale Superiore, 56127, Pisa, Italy; Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy
| | - Nicoletta C Surdo
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy
| | - Vittoria Spada
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | - Martina Spacci
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Sara Volta
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy
| | - Giulietta Di Benedetto
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy; Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Claudio Santi
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, 06122, Perugia, PG, Italy
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padova, 35126, Padova, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy; Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genova, 16148, Genoa, Italy.
| | - Luca Sancineto
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, 06122, Perugia, PG, Italy.
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy.
| |
Collapse
|
28
|
Davidsen K, Marvin JS, Aggarwal A, Brown TA, Sullivan LB. An engineered biosensor enables dynamic aspartate measurements in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546775. [PMID: 37425831 PMCID: PMC10327124 DOI: 10.1101/2023.06.27.546775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a GFP-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by mass spectrometry and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high throughput applications of variables that affect aspartate levels.
Collapse
Affiliation(s)
- Kristian Davidsen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and cellular biology program, University of Washington, Seattle, WA, USA
| | - Jonathan S Marvin
- Howard Hughes Medical Institute (HHMI), Janelia Research Campus, Ashburn, VA, USA
| | - Abhi Aggarwal
- Howard Hughes Medical Institute (HHMI), Janelia Research Campus, Ashburn, VA, USA
| | - Timothy A Brown
- Howard Hughes Medical Institute (HHMI), Janelia Research Campus, Ashburn, VA, USA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
29
|
Choi YS, Song JE, Kim E, Kim CH, Lee JE, Song HT. Hyperpolarized [1- 13C]pyruvate Magnetic Resonance Spectroscopy Shows That Agmatine Increased Lactate Production in the Brain of Type 2 Diabetic Mice. Yonsei Med J 2023; 64:625-632. [PMID: 37727922 PMCID: PMC10522877 DOI: 10.3349/ymj.2022.0554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) is associated with a 2-fold increased risk of developing Alzheimer's disease. In earlier research, agmatine has been demonstrated to alleviate diabetes symptoms and increase cognitive performance. However, it is unclear whether the improvement of cognitive function is attributable to the reduction of diabetic symptoms or its direct influence on brain metabolism. Using hyperpolarized (HP) [1-13C]pyruvate magnetic resonance spectroscopy (MRS), this study intends to evaluate the influence of agmatine on brain metabolism. MATERIALS AND METHODS ICR mice were fed a high-fat diet and injected with streptozotocin to develop a T2DM animal model. During a 2-week period, T2DM mice were treated with normal saline or 100 mg/kg of agmatine, and brain HP [1-13C]pyruvate MRS was performed. The effect of agmatine on lactate generation and NADH/NAD+ redox state was investigated using C6 and neuro-2a (N2a) cells. RESULTS As a perfusion marker, the total 13C signals in the brain of T2DM mice (p=0.07) and agmatine-treated mice (p<0.05) were reduced. The conversion constant (Kpl) from [1-13C]pyruvate to [1-13C]lactate was not distinguishable in the brains of T2DM mice but was significantly increased in the brains of agmatine-treated T2DM mice. Treating C6 and N2a cells with agmatine increased NADH/NAD+ratio and lactate generation. CONCLUSION Agmatine influences the NADH/NAD+ redox state in the brains of T2DM mice, which may be connected with enhanced cognitive performance and increased conversion of HP [1-13C]pyruvate to HP [1-13C]lactate.
Collapse
Affiliation(s)
- Young-Suk Choi
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Eun Song
- Department of Radiology, Stanford University, Palo Alto, CA, USA
- Promaxo Inc., Oakland, CA, USA
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
- BK21 PLUS Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- BK21 PLUS Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Anatomy and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Ho-Taek Song
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
30
|
Liu D, Wang Y, Li X, Wang Y, Zhang Z, Wang Z, Zhang X. Participation of protein metabolism in cancer progression and its potential targeting for the management of cancer. Amino Acids 2023; 55:1223-1246. [PMID: 37646877 DOI: 10.1007/s00726-023-03316-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Cancer malignancies may broadly be described as heterogeneous disorders manifested by uncontrolled cellular growth/division and proliferation. Tumor cells utilize metabolic reprogramming to accomplish the upregulated nutritional requirements for sustaining their uncontrolled growth, proliferation, and survival. Metabolic reprogramming also called altered or dysregulated metabolism undergoes modification in normal metabolic pathways for anabolic precursor's generation that serves to continue biomass formation that sustains the growth, proliferation, and survival of carcinogenic cells under a nutrition-deprived microenvironment. A wide range of dysregulated/altered metabolic pathways encompassing different metabolic regulators have been described; however, the current review is focused to explain deeply the metabolic pathways modifications inducing upregulation of proteins/amino acids metabolism. The essential modification of various metabolic cycles with their consequent outcomes meanwhile explored promising therapeutic targets playing a pivotal role in metabolic regulation and is successfully employed for effective target-specific cancer treatment. The current review is aimed to understand the metabolic reprogramming of different proteins/amino acids involved in tumor progression along with potential therapeutic perspective elucidating targeted cancer therapy via these targets.
Collapse
Affiliation(s)
- Dalong Liu
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yun Wang
- Department of Thoracic Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Xiaojiang Li
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yan Wang
- Department of Neurosurgery, People's Hospital of Jilin City, Jilin, 136200, China
| | - Zhiqiang Zhang
- Department of Orthopedics, Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Zhifeng Wang
- Department of Traditional Chinese Medicine, Changchun Chaoyang District Hospital of Traditional Chinese Medicine, Changchun, 130000, China
| | - Xudong Zhang
- Department of Brain Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China.
| |
Collapse
|
31
|
Broeks MH, Meijer NWF, Westland D, Bosma M, Gerrits J, German HM, Ciapaite J, van Karnebeek CDM, Wanders RJA, Zwartkruis FJT, Verhoeven-Duif NM, Jans JJM. The malate-aspartate shuttle is important for de novo serine biosynthesis. Cell Rep 2023; 42:113043. [PMID: 37647199 DOI: 10.1016/j.celrep.2023.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/17/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
The malate-aspartate shuttle (MAS) is a redox shuttle that transports reducing equivalents across the inner mitochondrial membrane while recycling cytosolic NADH to NAD+. We genetically disrupted each MAS component to generate a panel of MAS-deficient HEK293 cell lines in which we performed [U-13C]-glucose tracing. MAS-deficient cells have reduced serine biosynthesis, which strongly correlates with the lactate M+3/pyruvate M+3 ratio (reflective of the cytosolic NAD+/NADH ratio), consistent with the NAD+ dependency of phosphoglycerate dehydrogenase in the serine synthesis pathway. Among the MAS-deficient cells, those lacking malate dehydrogenase 1 (MDH1) show the most severe metabolic disruptions, whereas oxoglutarate-malate carrier (OGC)- and MDH2-deficient cells are less affected. Increasing the NAD+-regenerating capacity using pyruvate supplementation resolves most of the metabolic disturbances. Overall, we show that the MAS is important for de novo serine biosynthesis, implying that serine supplementation could be used as a therapeutic strategy for MAS defects and possibly other redox disorders.
Collapse
Affiliation(s)
- Melissa H Broeks
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands.
| | - Nils W F Meijer
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Denise Westland
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Marjolein Bosma
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Johan Gerrits
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Hannah M German
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Jolita Ciapaite
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Clara D M van Karnebeek
- Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Departments of Pediatrics and Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Departments of Pediatrics and Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Fried J T Zwartkruis
- dLAB, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands.
| |
Collapse
|
32
|
Abbott KL, Ali A, Casalena D, Do BT, Ferreira R, Cheah JH, Soule CK, Deik A, Kunchok T, Schmidt DR, Renner S, Honeder SE, Wu M, Chan SH, Tseyang T, Stoltzfus AT, Michel SLJ, Greaves D, Hsu PP, Ng CW, Zhang CJ, Farsidjani A, Kent JR, Madariaga MLL, Gramatikov IMT, Matheson NJ, Lewis CA, Clish CB, Rees MG, Roth JA, Griner LM, Muir A, Auld DS, Vander Heiden MG. Screening in serum-derived medium reveals differential response to compounds targeting metabolism. Cell Chem Biol 2023; 30:1156-1168.e7. [PMID: 37689063 PMCID: PMC10581593 DOI: 10.1016/j.chembiol.2023.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
A challenge for screening new anticancer drugs is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels, which can influence cell metabolism and drug sensitivity. A general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To address this, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We screened several small molecule libraries and found that compounds targeting metabolic enzymes were differentially effective in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.
Collapse
Affiliation(s)
- Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dominick Casalena
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Raphael Ferreira
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jaime H Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christian K Soule
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Daniel R Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Steffen Renner
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Sophie E Honeder
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michelle Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Tenzin Tseyang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Andrew T Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Daniel Greaves
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA
| | - Christopher W Ng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chelsea J Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Farsidjani
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Johnathan R Kent
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | | | - Iva Monique T Gramatikov
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nicholas J Matheson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Douglas S Auld
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Li Y, Liu X, Wan L, Han B, Ma S, Pan H, Wei J, Cui X. Metformin suppresses cardiac fibroblast proliferation under high-glucose conditions via regulating the mitochondrial complex I protein Grim-19 involved in the Sirt1/Stat3 signaling pathway. Free Radic Biol Med 2023; 206:1-12. [PMID: 37353174 DOI: 10.1016/j.freeradbiomed.2023.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Hyperglycemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Currently, no approved drug is available for preventing or treating diabetes-induced cardiac fibrosis. Metformin has been reported to improve glycemic control and ameliorate diabetic cardiomyopathy. This study aimed to investigate the effects and mechanism of metformin on diabetes-induced cardiac fibrosis and high glucose-induced proliferation of cardiac fibroblasts (CFs). In this study, db/db mice were treated with metformin [250 mg/kg⋅d, gavage]. CFs were cultured in high-glucose medium to mimic an in vitro diabetes model and then subjected to treatment with or without metformin. Cardiac fibrosis was analyzed using immunohistochemistry, Masson's trichrome staining, and Western blot analysis. Cell Counting Kit-8 (CCK-8) assays and cell colony formation assays were used to examine cell proliferation capacity. Transwell and scratch-wound assays were used to detect the migration ability of CFs. Retinoid-interferon-induced mortality-19 (Grim-19), sirtuin1 (Sirt1), and signal transducer and activator of transcription 3 (Stat3) were detected using Western blot analysis. The genes downstream of the Stat3 pathway were detected using quantitative reverse transcription PCR (qRT‒PCR). Metformin treatment markedly attenuated cardiac fibrosis in db/db mice and the proliferation and migration of CFs under high-glucose conditions. Mechanistically, we found an intersection between metformin and Grim-19 using bioinformatics. Metformin was found to suppress the expression of p-Stat3 and elevate the expression of mitochondrial complex I protein Grim-19 and Sirt1, thus inhibiting the proliferation and migration of CFs under high-glucose conditions. Our data suggested that metformin inhibited the proliferation and migration of CFs by regulating the expression of mitochondrial complex I Grim-19 protein involved in the Sirt1/Stat3 signaling pathway under high-glucose conditions, thus providing new ideas for treating diabetes-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Yongguang Li
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Xiangdong Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200000, People's Republic of China
| | - Lili Wan
- Division of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Beibei Han
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Shixin Ma
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Hongyuan Pan
- Saint Paul's School, 325 Pleasant Street, Concord, NH, 03301, USA
| | - Junbo Wei
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China; Department of Cardiology, Renhe Hospital, 1999 Changjiang West Road, Shanghai, 200431, People's Republic of China.
| | - Xiaofang Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
34
|
Catalano L, Aminzadeh-Gohari S, Weber DD, Poupardin R, Stefan VE, Smiles WJ, Tevini J, Feichtinger RG, Derdak S, Bilban M, Bareswill S, Heimesaat MM, Kofler B. Triple Therapy with Metformin, Ketogenic Diet, and Metronomic Cyclophosphamide Reduced Tumor Growth in MYCN-Amplified Neuroblastoma Xenografts. Metabolites 2023; 13:910. [PMID: 37623854 PMCID: PMC10456943 DOI: 10.3390/metabo13080910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023] Open
Abstract
Neuroblastoma (NB) is a childhood cancer in which amplification of the MYCN gene is the most acknowledged marker of poor prognosis. MYCN-amplified NB cells rely on both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) for energy production. Previously, we demonstrated that a ketogenic diet (KD) combined with metronomic cyclophosphamide (CP) delayed tumor growth in MYCN-amplified NB xenografts. The anti-diabetic drug metformin (MET) also targets complex I of the OXPHOS system. Therefore, MET-induced disruptions of mitochondrial respiration may enhance the anti-tumor effect of CP when combined with a KD. In this study, we found that MET decreased cell proliferation and mitochondrial respiration in MYCN-amplified NB cell lines, while the combination of KD, MET, and low-dose CP (triple therapy) also reduced tumor growth and improved survival in vivo in MYCN-amplified NB xenografts. Gene ontology enrichment analysis revealed that this triple therapy had the greatest effect on the transcription of genes involved in fatty acid ß-oxidation, which was supported by the increased protein expression of CPT1A, a key mitochondrial fatty acid transporter. We suspect that alterations to ß-oxidation alongside the inhibition of complex I may hamper mitochondrial energy production, thus explaining these augmented anti-tumor effects, suggesting that the combination of MET and KD is an effective adjuvant therapy to CP in MYCN-amplified NB xenografts.
Collapse
Affiliation(s)
- Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Victoria E. Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - William J. Smiles
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Julia Tevini
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Bareswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| |
Collapse
|
35
|
Guo X, Tan S, Wang T, Sun R, Li S, Tian P, Li M, Wang Y, Zhang Y, Yan Y, Dong Z, Yan L, Yue X, Wu Z, Li C, Yamagata K, Gao L, Ma C, Li T, Liang X. NAD + salvage governs mitochondrial metabolism, invigorating natural killer cell antitumor immunity. Hepatology 2023; 78:468-485. [PMID: 35815363 DOI: 10.1002/hep.32658] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Natural killer (NK) cells are key players in tumor immunosurveillance, and metabolic adaptation manipulates their fate and functional state. The nicotinamide adenine dinucleotide (NAD + ) has emerged as a vital factor to link cellular metabolism and signaling transduction. Here, we identified NAD + metabolism as a central hub to determine the homeostasis and function of NK cells. APPROACH AND RESULTS NAD + level was elevated in activated NK cells. NAD + supplementation not only enhanced cytokine production and cytotoxicity but also improved the proliferation and viability of NK cells. Intriguingly, the salvage pathway was involved in maintaining NAD + homeostasis in activated NK cells. Genetic ablation or pharmacological blockade of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD + salvage pathway, markedly destroyed the viability and function of NK cells. Mechanistically, NAD + salvage dictated the mitochondrial homeostasis and oxidative phosphorylation activity to support the optimal function of NK cells. However, in human HCC tissues, NAMPT expression and NAD + level were significantly down-regulated in tumor-infiltrating NK cells, which negatively correlated with patient survival. And lactate accumulation in the tumor microenvironment was at least partially responsible for the transcriptional repression of NAMPT in NK cells. Further, deficiency of Nampt in NK cells accelerated the growth of HCC and melanoma. Supplementation of the NAD + precursor nicotinamide mononucleotide (NMN) significantly improved NK antitumor response in both mouse and human cell-derived xenografts. CONCLUSIONS These findings reveal NAD + salvage as an essential factor for NK-cell homeostasis and function, suggesting a potential strategy for invigorating NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Guo
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Siyu Tan
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Tixiao Wang
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Renhui Sun
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Shuangjie Li
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Panpan Tian
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Mengzhen Li
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Yuzhen Wang
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Yankun Zhang
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Yuchuan Yan
- Department of General Surgery , Qilu Hospital , Shandong University , Jinan , China
| | - Zhaoru Dong
- Department of General Surgery , Qilu Hospital , Shandong University , Jinan , China
| | - Lunjie Yan
- Department of General Surgery , Qilu Hospital , Shandong University , Jinan , China
| | - Xuetian Yue
- Department of Cellular Biology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Zhuanchang Wu
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education , Department of Histology and Embryology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Kazuya Yamagata
- Department of Medical Biochemistry , Faculty of Life Sciences , Kumamoto University , Kumamoto , Japan
| | - Lifen Gao
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
- Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy , Jinan , China
| | - Chunhong Ma
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
- Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy , Jinan , China
| | - Tao Li
- Department of General Surgery , Qilu Hospital , Shandong University , Jinan , China
| | - Xiaohong Liang
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
- Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy , Jinan , China
| |
Collapse
|
36
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550731. [PMID: 37546939 PMCID: PMC10402161 DOI: 10.1101/2023.07.26.550731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The non-physiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels impact therapeutic response by performing drug screening in human plasma-like medium (HPLM). We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that has recently failed in phase 3 clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism waste product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. Structural modelling studies suggest that uric acid interacts with the tubulin-rigosertib complex and may act as an uncompetitive inhibitor of rigosertib. These results offer a possible explanation for the failure of rigosertib in clinical trials and demonstrate the utility of physiological media to achieve in vitro results that better represent human therapeutic responses.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Philippa A. Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Kelly O. Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL
| | - Isaac S. Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Frank M. Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| |
Collapse
|
37
|
Nguyen HT, Tang W, Webster ALH, Whiteaker JR, Chandler CM, Errazquin R, Roohollahi K, Fritzke M, Hoskins EE, Jonlin E, Wakefield L, Sullivan LB, Chen EY, Dorsman J, Brakenhoff R, Paulovich AG, Grompe M, Garcia-Escudero R, Wells SI, Smogorzewska A, Monnat RJ. Fanconi anemia-isogenic head and neck cancer cell line pairs: A basic and translational science resource. Int J Cancer 2023; 153:183-196. [PMID: 36912284 DOI: 10.1002/ijc.34506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/27/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023]
Abstract
Fanconi anemia (FA) is a heritable malformation, bone marrow failure and cancer predisposition syndrome that confers an exceptionally high risk of squamous carcinomas. These carcinomas originate in epithelia lining the mouth, proximal esophagus, vulva and anus: their origins are not understood, and no effective ways have been identified to prevent or delay their appearance. Many FA-associated carcinomas are also therapeutically challenging: they may be multi-focal and stage-advanced at diagnosis, and most individuals with FA cannot tolerate standard-of-care systemic therapies such as DNA cross-linking drugs or ionizing radiation due to constitutional DNA damage hypersensitivity. We developed the Fanconi Anemia Cancer Cell Line Resource (FA-CCLR) to foster new work on the origins, treatment and prevention of FA-associated carcinomas. The FA-CCLR consists of Fanconi-isogenic head and neck squamous cell carcinoma (HNSCC) cell line pairs generated from five individuals with FA-associated HNSCC, and five individuals with sporadic HNSCC. Sporadic, isogenic HNSCC cell line pairs were generated in parallel with FA patient-derived isogenic cell line pairs to provide comparable experimental material to use to identify cell and molecular phenotypes driven by germline or somatic loss of Fanconi pathway function, and the subset of these FA-dependent phenotypes that can be modified, complemented or suppressed. All 10 FANC-isogenic cell line pairs are available to academic, non-profit and industry investigators via the "Fanconi Anemia Research Materials" Resource and Repository at Oregon Health & Sciences University, Portland OR.
Collapse
Affiliation(s)
- Hiep Tai Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Weiliang Tang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andrew L H Webster
- Laboratory of Genome Maintenance, Rockefeller University, New York, New York, USA
| | - Jeffrey R Whiteaker
- Fred Hutchinson Cancer Center, Clinical Research Division, Seattle, Washington, USA
| | - Christopher M Chandler
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ricardo Errazquin
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medio-ambientales y Tecnológicas), Madrid, Spain
| | | | - Madeline Fritzke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Erica Jonlin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- University of Washington Institute for Stem Cell and Regenerative Medicine, Seattle, Washington, USA
| | - Leslie Wakefield
- Departments of Pediatrics and Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Lucas B Sullivan
- Fred Hutchinson Cancer Center, Human Biology Division, Seattle, Washington, USA
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Ruud Brakenhoff
- Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Amanda G Paulovich
- Fred Hutchinson Cancer Center, Clinical Research Division, Seattle, Washington, USA
| | - Markus Grompe
- Departments of Pediatrics and Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Ramon Garcia-Escudero
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medio-ambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Susanne I Wells
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, New York, USA
| | - Raymond J Monnat
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
38
|
Zhang H, Nabel CS, Li D, O'Connor RÍ, Crosby CR, Chang SM, Hao Y, Stanley R, Sahu S, Levin DS, Chen T, Tang S, Huang HY, Meynardie M, Stephens J, Sherman F, Chafitz A, Costelloe N, Rodrigues DA, Fogarty H, Kiernan MG, Cronin F, Papadopoulos E, Ploszaj M, Weerasekara V, Deng J, Kiely P, Bardeesy N, Vander Heiden MG, Chonghaile TN, Dowling CM, Wong KK. Histone Deacetylase 6 Inhibition Exploits Selective Metabolic Vulnerabilities in LKB1 Mutant, KRAS Driven NSCLC. J Thorac Oncol 2023; 18:882-895. [PMID: 36958689 PMCID: PMC10332301 DOI: 10.1016/j.jtho.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/24/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
INTRODUCTION In KRAS-mutant NSCLC, co-occurring alterations in LKB1 confer a negative prognosis compared with other mutations such as TP53. LKB1 is a tumor suppressor that coordinates several signaling pathways in response to energetic stress. Our recent work on pharmacologic and genetic inhibition of histone deacetylase 6 (HDAC6) revealed the impaired activity of numerous enzymes involved in glycolysis. On the basis of these previous findings, we explored the therapeutic window for HDAC6 inhibition in metabolically-active KRAS-mutant lung tumors. METHODS Using cell lines derived from mouse autochthonous tumors bearing the KRAS/LKB1 (KL) and KRAS/TP53 mutant genotypes to control for confounding germline and somatic mutations in human models, we characterize the metabolic phenotypes at baseline and in response to HDAC6 inhibition. The impact of HDAC6 inhibition was measured on cancer cell growth in vitro and on tumor growth in vivo. RESULTS Surprisingly, KL-mutant cells revealed reduced levels of redox-sensitive cofactors at baseline. This is associated with increased sensitivity to pharmacologic HDAC6 inhibition with ACY-1215 and blunted ability to increase compensatory metabolism and buffer oxidative stress. Seeking synergistic metabolic combination treatments, we found enhanced cell killing and antitumor efficacy with glutaminase inhibition in KL lung cancer models in vitro and in vivo. CONCLUSIONS Exploring the differential metabolism of KL and KRAS/TP53-mutant NSCLC, we identified decreased metabolic reserve in KL-mutant tumors. HDAC6 inhibition exploited a therapeutic window in KL NSCLC on the basis of a diminished ability to compensate for impaired glycolysis, nominating a novel strategy for the treatment of KRAS-mutant NSCLC with co-occurring LKB1 mutations.
Collapse
Affiliation(s)
- Hua Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania; Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Christopher S Nabel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Dezhi Li
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Ruth Í O'Connor
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Caroline R Crosby
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sarah M Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yuan Hao
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, New York
| | - Robyn Stanley
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Soumyadip Sahu
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Daniel S Levin
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Ting Chen
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Sittinon Tang
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Hsin-Yi Huang
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Mary Meynardie
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Janaye Stephens
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Fiona Sherman
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Alison Chafitz
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | | | - Daniel A Rodrigues
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hilda Fogarty
- School of Medicine, University of Limerick, Limerick, Ireland
| | | | - Fiona Cronin
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Eleni Papadopoulos
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Magdalena Ploszaj
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Vajira Weerasekara
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jiehui Deng
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Patrick Kiely
- School of Medicine, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Triona Ni Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Catríona M Dowling
- School of Medicine, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland.
| | - Kwok-Kin Wong
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| |
Collapse
|
39
|
Hua Y, Zheng Y, Yao Y, Jia R, Ge S, Zhuang A. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing. J Transl Med 2023; 21:403. [PMID: 37344841 DOI: 10.1186/s12967-023-04263-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Metformin is a well-known anti-diabetic drug that has been repurposed for several emerging applications, including as an anti-cancer agent. It boasts the distinct advantages of an excellent safety and tolerability profile and high cost-effectiveness at less than one US dollar per daily dose. Epidemiological evidence reveals that metformin reduces the risk of cancer and decreases cancer-related mortality in patients with diabetes; however, the exact mechanisms are not well understood. Energy metabolism may be central to the mechanism of action. Based on altering whole-body energy metabolism or cellular state, metformin's modes of action can be divided into two broad, non-mutually exclusive categories: "direct effects", which induce a direct effect on cancer cells, independent of blood glucose and insulin levels, and "indirect effects" that arise from systemic metabolic changes depending on blood glucose and insulin levels. In this review, we summarize an updated account of the current knowledge on metformin antitumor action, elaborate on the underlying mechanisms in terms of the hallmarks of cancer, and propose potential applications for repurposing metformin for cancer therapeutics.
Collapse
Affiliation(s)
- Yu Hua
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
40
|
Fernandez Garcia E, Paudel U, Noji MC, Bowman CE, Rustgi AK, Pitarresi JR, Wellen KE, Arany Z, Weissenrieder JS, Foskett JK. The mitochondrial Ca 2+ channel MCU is critical for tumor growth by supporting cell cycle progression and proliferation. Front Cell Dev Biol 2023; 11:1082213. [PMID: 37363724 PMCID: PMC10285664 DOI: 10.3389/fcell.2023.1082213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: The mitochondrial uniporter (MCU) Ca2+ ion channel represents the primary means for Ca2+ uptake by mitochondria. Mitochondrial matrix Ca2+ plays critical roles in mitochondrial bioenergetics by impinging upon respiration, energy production and flux of biochemical intermediates through the TCA cycle. Inhibition of MCU in oncogenic cell lines results in an energetic crisis and reduced cell proliferation unless media is supplemented with nucleosides, pyruvate or α-KG. Nevertheless, the roles of MCU-mediated Ca2+ influx in cancer cells remain unclear, in part because of a lack of genetic models. Methods: MCU was genetically deleted in transformed murine fibroblasts for study in vitro and in vivo. Tumor formation and growth were studied in murine xenograft models. Proliferation, cell invasion, spheroid formation and cell cycle progression were measured in vitro. The effects of MCU deletion on survival and cell-death were determined by probing for live/death markers. Mitochondrial bioenergetics were studied by measuring mitochondrial matrix Ca2+ concentration, membrane potential, global dehydrogenase activity, respiration, ROS production and inactivating-phosphorylation of pyruvate dehydrogenase. The effects of MCU rescue on metabolism were examined by tracing of glucose and glutamine utilization for fueling of mitochondrial respiration. Results: Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced MCU-mediated Ca2+ uptake, altered mitochondrial matrix Ca2+ concentration responses to agonist stimulation, suppression of inactivating-phosphorylation of pyruvate dehydrogenase and a modest increase of mitochondrial respiration. Genetic MCU deletion inhibited growth of HEK293T cells and transformed fibroblasts in mouse xenograft models, associated with reduced proliferation and delayed cell-cycle progression. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro, both predictors of metastatic potential. Surprisingly, mitochondrial matrix [Ca2+], membrane potential, global dehydrogenase activity, respiration and ROS production were unaffected. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca2+ signals. Conclusion: Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on MCU for cell metabolism and Ca2+ dynamics necessary for cell-cycle progression and cell proliferation.
Collapse
Affiliation(s)
- Emily Fernandez Garcia
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Usha Paudel
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael C. Noji
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Caitlyn E. Bowman
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Jason R. Pitarresi
- Division of Hematology/Oncology, Departments of Medicine and Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Kathryn E. Wellen
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zolt Arany
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Jillian S. Weissenrieder
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - J. Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
41
|
Senkowski W, Gall-Mas L, Falco MM, Li Y, Lavikka K, Kriegbaum MC, Oikkonen J, Bulanova D, Pietras EJ, Voßgröne K, Chen YJ, Erkan EP, Dai J, Lundgren A, Grønning Høg MK, Larsen IM, Lamminen T, Kaipio K, Huvila J, Virtanen A, Engelholm L, Christiansen P, Santoni-Rugiu E, Huhtinen K, Carpén O, Hynninen J, Hautaniemi S, Vähärautio A, Wennerberg K. A platform for efficient establishment and drug-response profiling of high-grade serous ovarian cancer organoids. Dev Cell 2023:S1534-5807(23)00182-X. [PMID: 37148882 DOI: 10.1016/j.devcel.2023.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
The broad research use of organoids from high-grade serous ovarian cancer (HGSC) has been hampered by low culture success rates and limited availability of fresh tumor material. Here, we describe a method for generation and long-term expansion of HGSC organoids with efficacy markedly improved over previous reports (53% vs. 23%-38%). We established organoids from cryopreserved material, demonstrating the feasibility of using viably biobanked tissue for HGSC organoid derivation. Genomic, histologic, and single-cell transcriptomic analyses revealed that organoids recapitulated genetic and phenotypic features of original tumors. Organoid drug responses correlated with clinical treatment outcomes, although in a culture conditions-dependent manner and only in organoids maintained in human plasma-like medium (HPLM). Organoids from consenting patients are available to the research community through a public biobank and organoid genomic data are explorable through an interactive online tool. Taken together, this resource facilitates the application of HGSC organoids in basic and translational ovarian cancer research.
Collapse
Affiliation(s)
- Wojciech Senkowski
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Laura Gall-Mas
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matías Marín Falco
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Yilin Li
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Kari Lavikka
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Mette C Kriegbaum
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Daria Bulanova
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elin J Pietras
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Karolin Voßgröne
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yan-Jun Chen
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Erdogan Pekcan Erkan
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jun Dai
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Anastasia Lundgren
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Mia Kristine Grønning Høg
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Finsen Laboratory, Rigshospitalet, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Ida Marie Larsen
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Finsen Laboratory, Rigshospitalet, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Tarja Lamminen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Katja Kaipio
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Jutta Huvila
- Department of Pathology, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Anni Virtanen
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, 00260 Helsinki, Finland
| | - Lars Engelholm
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Finsen Laboratory, Rigshospitalet, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Pernille Christiansen
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Olli Carpén
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, 00260 Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Anna Vähärautio
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Krister Wennerberg
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
42
|
García EF, Paudel U, Noji MC, Bowman CE, Pitarresi JR, Rustgi AK, Wellen KE, Arany Z, Weissenrieder JS, Foskett JK. The mitochondrial Ca 2+ channel MCU is critical for tumor growth by supporting cell cycle progression and proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538295. [PMID: 37163088 PMCID: PMC10168388 DOI: 10.1101/2023.04.26.538295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The mitochondrial uniporter (MCU) Ca 2+ ion channel represents the primary means for Ca 2+ uptake into mitochondria. Here we employed in vitro and in vivo models with MCU genetically eliminated to understand how MCU contributes to tumor formation and progression. Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced mitochondrial Ca 2+ uptake, suppression of inactivating-phosphorylation of pyruvate dehydrogenase, a modest increase of basal mitochondrial respiration and a significant increase of acute Ca 2+ -dependent stimulation of mitochondrial respiration. Inhibition of mitochondrial Ca 2+ uptake by genetic deletion of MCU markedly inhibited growth of HEK293T cells and of transformed fibroblasts in mouse xenograft models. Reduced tumor growth was primarily a result of substantially reduced proliferation and fewer mitotic cells in vivo , and slower cell proliferation in vitro associated with delayed progression through S-phase of the cell cycle. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro , both predictors of metastatic potential. Surprisingly, mitochondrial matrix Ca 2+ concentration, membrane potential, global dehydrogenase activity, respiration and ROS production were unchanged by genetic deletion of MCU in transformed cells. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca 2+ signals. Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on mitochondrial Ca 2+ uptake for cell metabolism and Ca 2+ dynamics necessary for cell-cycle progression and cell proliferation.
Collapse
|
43
|
Hart ML, Quon E, Vigil ALBG, Engstrom IA, Newsom OJ, Davidsen K, Hoellerbauer P, Carlisle SM, Sullivan LB. Mitochondrial redox adaptations enable alternative aspartate synthesis in SDH-deficient cells. eLife 2023; 12:78654. [PMID: 36883551 PMCID: PMC10027318 DOI: 10.7554/elife.78654] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
The oxidative tricarboxylic acid (TCA) cycle is a central mitochondrial pathway integrating catabolic conversions of NAD +to NADH and anabolic production of aspartate, a key amino acid for cell proliferation. Several TCA cycle components are implicated in tumorigenesis, including loss-of-function mutations in subunits of succinate dehydrogenase (SDH), also known as complex II of the electron transport chain (ETC), but mechanistic understanding of how proliferating cells tolerate the metabolic defects of SDH loss is still lacking. Here, we identify that SDH supports human cell proliferation through aspartate synthesis but, unlike other ETC impairments, the effects of SDH inhibition are not ameliorated by electron acceptor supplementation. Interestingly, we find aspartate production and cell proliferation are restored to SDH-impaired cells by concomitant inhibition of ETC complex I (CI). We determine that the benefits of CI inhibition in this context depend on decreasing mitochondrial NAD+/NADH, which drives SDH-independent aspartate production through pyruvate carboxylation and reductive carboxylation of glutamine. We also find that genetic loss or restoration of SDH selects for cells with concordant CI activity, establishing distinct modalities of mitochondrial metabolism for maintaining aspartate synthesis. These data therefore identify a metabolically beneficial mechanism for CI loss in proliferating cells and reveal how compartmentalized redox changes can impact cellular fitness.
Collapse
Affiliation(s)
- Madeleine L Hart
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States
- Molecular Medicine & Mechanisms of Disease Program, University of Washington, Seattle, United States
| | - Evan Quon
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States
| | - Anna-Lena B G Vigil
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States
| | - Ian A Engstrom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States
| | - Oliver J Newsom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States
| | - Kristian Davidsen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States
| | - Samantha M Carlisle
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, United States
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States
| |
Collapse
|
44
|
Weiss-Sadan T, Ge M, Hayashi M, Gohar M, Yao CH, de Groot A, Harry S, Carlin A, Fischer H, Shi L, Wei TY, Adelmann CH, Wolf K, Vornbäumen T, Dürr BR, Takahashi M, Richter M, Zhang J, Yang TY, Vijay V, Fisher DE, Hata AN, Haigis MC, Mostoslavsky R, Bardeesy N, Papagiannakopoulos T, Bar-Peled L. NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer. Cell Metab 2023; 35:487-503.e7. [PMID: 36841242 PMCID: PMC9998367 DOI: 10.1016/j.cmet.2023.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/15/2022] [Accepted: 01/26/2023] [Indexed: 02/27/2023]
Abstract
Multiple cancers regulate oxidative stress by activating the transcription factor NRF2 through mutation of its negative regulator, KEAP1. NRF2 has been studied extensively in KEAP1-mutant cancers; however, the role of this pathway in cancers with wild-type KEAP1 remains poorly understood. To answer this question, we induced NRF2 via pharmacological inactivation of KEAP1 in a panel of 50+ non-small cell lung cancer cell lines. Unexpectedly, marked decreases in viability were observed in >13% of the cell lines-an effect that was rescued by NRF2 ablation. Genome-wide and targeted CRISPR screens revealed that NRF2 induces NADH-reductive stress, through the upregulation of the NAD+-consuming enzyme ALDH3A1. Leveraging these findings, we show that cells treated with KEAP1 inhibitors or those with endogenous KEAP1 mutations are selectively vulnerable to Complex I inhibition, which impairs NADH oxidation capacity and potentiates reductive stress. Thus, we identify reductive stress as a metabolic vulnerability in NRF2-activated lung cancers.
Collapse
Affiliation(s)
- Tommy Weiss-Sadan
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Maolin Ge
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Makiko Hayashi
- Department of Pathology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA; Laura and Isaac Pelmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Magdy Gohar
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Adriaan de Groot
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stefan Harry
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alexander Carlin
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hannah Fischer
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Shi
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ting-Yu Wei
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charles H Adelmann
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Konstantin Wolf
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tristan Vornbäumen
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benedikt R Dürr
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mariko Takahashi
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marianne Richter
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Junbing Zhang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tzu-Yi Yang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vindhya Vijay
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David E Fisher
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aaron N Hata
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Raul Mostoslavsky
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel Bardeesy
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA; Laura and Isaac Pelmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
45
|
Abbott KL, Ali A, Casalena D, Do BT, Ferreira R, Cheah JH, Soule CK, Deik A, Kunchok T, Schmidt DR, Renner S, Honeder SE, Wu M, Chan SH, Tseyang T, Greaves D, Hsu PP, Ng CW, Zhang CJ, Farsidjani A, Gramatikov IMT, Matheson NJ, Lewis CA, Clish CB, Rees MG, Roth JA, Griner LM, Muir A, Auld DS, Heiden MGV. Screening in serum-derived medium reveals differential response to compounds targeting metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.529972. [PMID: 36909640 PMCID: PMC10002634 DOI: 10.1101/2023.02.25.529972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A challenge for screening new candidate drugs to treat cancer is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels to propagate cells. Which nutrients are available can influence how cancer cells use metabolism to proliferate and impact sensitivity to some drugs, but a general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To enable screening of compounds to determine how the nutrient environment impacts drug efficacy, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We used this system to screen several small molecule libraries and found that compounds targeting metabolic enzymes were enriched as having differential efficacy in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.
Collapse
Affiliation(s)
- Keene L. Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dominick Casalena
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Brian T. Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | | | - Jaime H. Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christian K. Soule
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Daniel R. Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Steffen Renner
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Sophie E. Honeder
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michelle Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Tenzin Tseyang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Daniel Greaves
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peggy P. Hsu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA
| | - Christopher W. Ng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chelsea J. Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Farsidjani
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Iva Monique T. Gramatikov
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicholas J. Matheson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew G. Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Lesley Mathews Griner
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA
| | - Douglas S. Auld
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
46
|
Metformin inhibits oral squamous cell carcinoma progression through regulating RNA alternative splicing. Life Sci 2023; 315:121274. [PMID: 36509195 DOI: 10.1016/j.lfs.2022.121274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
AIMS Oral squamous cell carcinoma (OSCC) is considered as the sixth most common cancer worldwide characterized by high invasiveness, high metastasis rate and high mortality. It is urgent to explore novel therapeutic strategies to overcome this feature. Metformin is currently a strong candidate anti-tumor drug in multiple cancers. However, whether metformin could inhibit cancer progression by regulating RNA alternative splicing remains largely unknown. MAIN METHODS Cell proliferation and growth ability of CAL-27 and UM-SCC6 were analyzed by CCK8 and colony formation assays. Cell migration was judged by wound healing assay. Mechanistically, RNA-seq was applied to systematically identify genes that are regulated by metformin. The expression of metformin-regulated genes was determined by real-time quantitative PCR (RT-qPCR). Metformin-regulated alternative splicing events were confirmed by RT-PCR. KEY FINDINGS We demonstrated that metformin could significantly inhibit the proliferation and migration of oral squamous cell carcinoma cells. Mechanistically, in addition to transcriptional regulation, metformin induces a wide range of alternative splicing alteration, including genes involved in centrosome, cellular response to DNA damage stimulus, GTPase binding, histone modification, catalytic activity, regulation of cell cycle process and ATPase complex. Notably, metformin specifically modulates the splicing of NUBP2, a component of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA). Briefly, metformin favors the production of NUBP2-L, the long splicing isoform of NUBP2, thereby inhibiting cancer cell proliferation. SIGNIFICANCE Our findings provide mechanistic insights of metformin on RNA alternative splicing regulation, thus to offer a potential novel route for metformin to inhibit cancer progression.
Collapse
|
47
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Altea-Manzano P, Vandekeere A, Edwards-Hicks J, Roldan M, Abraham E, Lleshi X, Guerrieri AN, Berardi D, Wills J, Junior JM, Pantazi A, Acosta JC, Sanchez-Martin RM, Fendt SM, Martin-Hernandez M, Finch AJ. Reversal of mitochondrial malate dehydrogenase 2 enables anaplerosis via redox rescue in respiration-deficient cells. Mol Cell 2022; 82:4537-4547.e7. [PMID: 36327975 DOI: 10.1016/j.molcel.2022.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/13/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022]
Abstract
Inhibition of the electron transport chain (ETC) prevents the regeneration of mitochondrial NAD+, resulting in cessation of the oxidative tricarboxylic acid (TCA) cycle and a consequent dependence upon reductive carboxylation for aspartate synthesis. NAD+ regeneration alone in the cytosol can rescue the viability of ETC-deficient cells. Yet, how this occurs and whether transfer of oxidative equivalents to the mitochondrion is required remain unknown. Here, we show that inhibition of the ETC drives reversal of the mitochondrial aspartate transaminase (GOT2) as well as malate and succinate dehydrogenases (MDH2 and SDH) to transfer oxidative NAD+ equivalents into the mitochondrion. This supports the NAD+-dependent activity of the mitochondrial glutamate dehydrogenase (GDH) and thereby enables anaplerosis-the entry of glutamine-derived carbon into the TCA cycle and connected biosynthetic pathways. Thus, under impaired ETC function, the cytosolic redox state is communicated into the mitochondrion and acts as a rheostat to support GDH activity and cell viability.
Collapse
Affiliation(s)
- Patricia Altea-Manzano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain; Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven 3000, Belgium
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven 3000, Belgium
| | - Joy Edwards-Hicks
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Mar Roldan
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain
| | - Emily Abraham
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Xhordi Lleshi
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Ania Naila Guerrieri
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Domenica Berardi
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Jimi Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Jair Marques Junior
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Asimina Pantazi
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Rosario M Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven 3000, Belgium
| | - Miguel Martin-Hernandez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada, Junta de Andalucía, Granada 18016, Spain; Biochemistry and Molecular Biology I Department, School of Sciences, University of Granada, Avda Fuentenueva, 18071 Granada, Spain.
| | - Andrew J Finch
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK; Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
49
|
Ragni M, Fornelli C, Nisoli E, Penna F. Amino Acids in Cancer and Cachexia: An Integrated View. Cancers (Basel) 2022; 14:5691. [PMID: 36428783 PMCID: PMC9688864 DOI: 10.3390/cancers14225691] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Rapid tumor growth requires elevated biosynthetic activity, supported by metabolic rewiring occurring both intrinsically in cancer cells and extrinsically in the cancer host. The Warburg effect is one such example, burning glucose to produce a continuous flux of biomass substrates in cancer cells at the cost of energy wasting metabolic cycles in the host to maintain stable glycemia. Amino acid (AA) metabolism is profoundly altered in cancer cells, which use AAs for energy production and for supporting cell proliferation. The peculiarities in cancer AA metabolism allow the identification of specific vulnerabilities as targets of anti-cancer treatments. In the current review, specific approaches targeting AAs in terms of either deprivation or supplementation are discussed. Although based on opposed strategies, both show, in vitro and in vivo, positive effects. Any AA-targeted intervention will inevitably impact the cancer host, who frequently already has cachexia. Cancer cachexia is a wasting syndrome, also due to malnutrition, that compromises the effectiveness of anti-cancer drugs and eventually causes the patient's death. AA deprivation may exacerbate malnutrition and cachexia, while AA supplementation may improve the nutritional status, counteract cachexia, and predispose the patient to a more effective anti-cancer treatment. Here is provided an attempt to describe the AA-based therapeutic approaches that integrate currently distant points of view on cancer-centered and host-centered research, providing a glimpse of several potential investigations that approach cachexia as a unique cancer disease.
Collapse
Affiliation(s)
- Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Claudia Fornelli
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| |
Collapse
|
50
|
Kurelac I, Cavina B, Sollazzo M, Miglietta S, Fornasa A, De Luise M, Iorio M, Lama E, Traversa D, Nasiri HR, Ghelli A, Musiani F, Porcelli AM, Iommarini L, Gasparre G. NDUFS3 knockout cancer cells and molecular docking reveal specificity and mode of action of anti-cancer respiratory complex I inhibitors. Open Biol 2022; 12:220198. [PMID: 36349549 PMCID: PMC9653258 DOI: 10.1098/rsob.220198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Inhibition of respiratory complex I (CI) is becoming a promising anti-cancer strategy, encouraging the design and the use of inhibitors, whose mechanism of action, efficacy and specificity remain elusive. As CI is a central player of cellular bioenergetics, a finely tuned dosing of targeting drugs is required to avoid side effects. We compared the specificity and mode of action of CI inhibitors metformin, BAY 87-2243 and EVP 4593 using cancer cell models devoid of CI. Here we show that both BAY 87-2243 and EVP 4593 were selective, while the antiproliferative effects of metformin were considerably independent from CI inhibition. Molecular docking predictions indicated that the high efficiency of BAY 87-2243 and EVP 4593 may derive from the tight network of bonds in the quinone binding pocket, although in different sites. Most of the amino acids involved in such interactions are conserved across species and only rarely found mutated in human. Our data make a case for caution when referring to metformin as a CI-targeting compound, and highlight the need for dosage optimization and careful evaluation of molecular interactions between inhibitors and the holoenzyme.
Collapse
Affiliation(s)
- Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Beatrice Cavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Agnese Fornasa
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Maria Iorio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Eleonora Lama
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Daniele Traversa
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Hamid Razi Nasiri
- Department of Cellular Microbiology, University Hohenheim, Stuttgart, Germany
| | - Anna Ghelli
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy,Interdepartmental Centre for Industrial Research ‘Scienze della Vita e Tecnologie per la Salute’, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| |
Collapse
|