1
|
Zhang J, Yang W, Zhu Y, Li Z, Zheng Y, Zhang Y, Gao W, Zhang X, Wu Z, Gao L. Microenvironment-induced programmable nanotherapeutics restore mitochondrial dysfunction for the amelioration of non-alcoholic fatty liver disease. Acta Biomater 2025:S1742-7061(25)00027-3. [PMID: 39805524 DOI: 10.1016/j.actbio.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disorder with severe complications. Mitochondrial dysfunction due to over-opening of the mitochondrial permeability transition pore (mPTP) in liver cells plays a central role in the development and progression of NAFLD. Restoring mitochondrial function is a promising strategy for NAFLD therapy. Herein, we designed and developed a microenvironment-induced programmable nanotherapeutic to restore mitochondrial function and ameliorate NAFLD. Cyclosporine A (CsA), as a highly effective inhibitors of the opening of mPTP, was chosen in the present work. Nanotherapeutics were prepared by assembling two structurally simple multifunctional glucosamine derivatives: dextran-grafted galactose (Dex-Gal) and Dex-triphenylphosphine (Dex-TPP). Galactose units in the nanotherapeutics guide the hepatocyte-specific uptake. Detachment of galactose from acidic lysosomes via Schiff base cleavage exposes the TPP moieties, which subsequently steers the nanotherapeutics to escape from lysosomes and target mitochondria through an enhanced positive charge, enabling precise in situ drug delivery. Simultaneously, the nanotherapeutics improved mitochondrial dysfunction by inhibiting palmitic acid-induced opening of the mitochondrial permeability transition pore in HepG2 cells, maintaining mitochondrial membrane potential, and decreasing reactive oxygen species production. Furthermore, CsA@Dex-Gal/TPP accumulated in the livers of NAFLD mice, restored mitochondrial autophagy, regulated abnormalities in glucose and lipid metabolism, and improved hepatic lipid deposition. This study offers a new cascading strategy for targeting liver cell mitochondria to treat NAFLD and other mitochondria-associated diseases. STATEMENT OF SIGNIFICANCE: We design microenvironment-induced programmable nanotherapeutics for NAFLD Nanotherapeutics has the capabilities of lysosomal escape and mitochondrial targeting Nanotherapeutics improves mitochondrial dysfunction and ameliorates NAFLD This study offers a new cascading strategy for other mitochondria-associated diseases.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Wenyi Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Yue Zhu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Zhanbin Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weisong Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Protasoni M, López-Polo V, Stephan-Otto Attolini C, Brandariz J, Herranz N, Mateo J, Ruiz S, Fernandez-Capetillo O, Kovatcheva M, Serrano M. Cyclophilin D plays a critical role in the survival of senescent cells. EMBO J 2024; 43:5972-6000. [PMID: 39448884 PMCID: PMC11612481 DOI: 10.1038/s44318-024-00259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Senescent cells play a causative role in many diseases, and their elimination is a promising therapeutic strategy. Here, through a genome-wide CRISPR/Cas9 screen, we identify the gene PPIF, encoding the mitochondrial protein cyclophilin D (CypD), as a novel senolytic target. Cyclophilin D promotes the transient opening of the mitochondrial permeability transition pore (mPTP), which serves as a failsafe mechanism for calcium efflux. We show that senescent cells exhibit a high frequency of transient CypD/mPTP opening events, known as 'flickering'. Inhibition of CypD using genetic or pharmacologic tools, including cyclosporin A, leads to the toxic accumulation of mitochondrial Ca2+ and the death of senescent cells. Genetic or pharmacological inhibition of NCLX, another mitochondrial calcium efflux channel, also leads to senolysis, while inhibition of the main Ca2+ influx channel, MCU, prevents senolysis induced by CypD inhibition. We conclude that senescent cells are highly vulnerable to elevated mitochondrial Ca2+ ions, and that transient CypD/mPTP opening is a critical adaptation mechanism for the survival of senescent cells.
Collapse
Affiliation(s)
- Margherita Protasoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge, CB21 6GP, UK
| | - Vanessa López-Polo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | | | - Nicolas Herranz
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sergio Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20814, USA
| | - Oscar Fernandez-Capetillo
- Spanish National Cancer Research Center (CNIO), 28028, Madrid, Spain
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge, CB21 6GP, UK.
| |
Collapse
|
3
|
Zhang Z, Miao J, Wang H, Ali I, Nguyen D, Chen W, Wang Y. Accelerated mitochondrial dynamics promote spermatogonial differentiation. Stem Cell Reports 2024; 19:1548-1563. [PMID: 39393359 PMCID: PMC11589200 DOI: 10.1016/j.stemcr.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
At different stages of spermatogenesis, germ cell mitochondria differ remarkably in morphology, architecture, and functions. However, it remains elusive how mitochondria change their features during spermatogonial differentiation, which in turn impacts spermatogonial stem cell fate decision. In this study, we observed that mitochondrial fusion and fission were both upregulated during spermatogonial differentiation. As a result, the mitochondrial morphology remained unaltered. Enhanced mitochondrial fusion and fission promoted spermatogonial differentiation, while the deficiency in DRP1-mediated fission led to a stage-specific blockage of spermatogenesis at differentiating spermatogonia. Our data further revealed that increased expression of pro-fusion factor MFN1 upregulated mitochondrial metabolism, whereas DRP1 specifically regulated mitochondrial permeability transition pore opening in differentiating spermatogonia. Taken together, our findings unveil how proper spermatogonial differentiation is precisely controlled by concurrently accelerated and properly balanced mitochondrial fusion and fission in a germ cell stage-specific manner, thereby providing critical insights about mitochondrial contribution to stem cell fate decision.
Collapse
Affiliation(s)
- Zhaoran Zhang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Junru Miao
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Hanben Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Izza Ali
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Duong Nguyen
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Chen
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Guo L. F-ATP synthase inhibitory factor 1 and mitochondria-organelle interactions: New insight and implications. Pharmacol Res 2024; 208:107393. [PMID: 39233058 DOI: 10.1016/j.phrs.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitochondria are metabolic hub, and act as primary sites for reactive oxygen species (ROS) and metabolites generation. Mitochondrial Ca2+ uptake contributes to Ca2+ storage. Mitochondria-organelle interactions are important for cellular metabolic adaptation, biosynthesis, redox balance, cell fate. Organelle communications are mediated by Ca2+/ROS signals, vesicle transport and membrane contact sites. The permeability transition pore (PTP) is an unselective channel that provides a release pathway for Ca2+/ROS, mtDNA and metabolites. F-ATP synthase inhibitory factor 1 (IF1) participates in regulation of PTP opening and is required for the translocation of transcriptional factors c-Myc/PGC1α to mitochondria to stimulate metabolic switch. IF1, a mitochondrial specific protein, has been suggested to regulate other organelles including nucleus, endoplasmic reticulum and lysosomes. IF1 may be able to mediate mitochondria-organelle interactions and cellular physiology through regulation of PTP activity.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
5
|
Dumbali SP, Horton PD, Moore TI, Wenzel PL. Mitochondrial permeability transition dictates mitochondrial maturation upon switch in cellular identity of hematopoietic precursors. Commun Biol 2024; 7:967. [PMID: 39122870 PMCID: PMC11316084 DOI: 10.1038/s42003-024-06671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The mitochondrial permeability transition pore (mPTP) is a supramolecular channel that regulates exchange of solutes across cristae membranes, with executive roles in mitochondrial function and cell death. The contribution of the mPTP to normal physiology remains debated, although evidence implicates the mPTP in mitochondrial inner membrane remodeling in differentiating progenitor cells. Here, we demonstrate that strict control over mPTP conductance shapes metabolic machinery as cells transit toward hematopoietic identity. Cells undergoing the endothelial-to-hematopoietic transition (EHT) tightly control chief regulatory elements of the mPTP. During EHT, maturing arterial endothelium restricts mPTP activity just prior to hematopoietic commitment. After transition in cellular identity, mPTP conductance is restored. In utero treatment with NIM811, a molecule that blocks sensitization of the mPTP to opening by Cyclophilin D (CypD), amplifies oxidative phosphorylation (OXPHOS) in hematopoietic precursors and increases hematopoiesis in the embryo. Additionally, differentiating pluripotent stem cells (PSCs) acquire greater organization of mitochondrial cristae and hematopoietic activity following knockdown of the CypD gene, Ppif. Conversely, knockdown of Opa1, a GTPase critical for proper cristae architecture, induces cristae irregularity and impairs hematopoiesis. These data elucidate a mechanism that regulates mitochondrial maturation in hematopoietic precursors and underscore a role for the mPTP in the acquisition of hematopoietic fate.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paulina D Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis I Moore
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
6
|
Glorieux C, Liu S, Trachootham D, Huang P. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov 2024; 23:583-606. [PMID: 38982305 DOI: 10.1038/s41573-024-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
Reactive oxygen species (ROS) in biological systems are transient but essential molecules that are generated and eliminated by a complex set of delicately balanced molecular machineries. Disruption of redox homeostasis has been associated with various human diseases, especially cancer, in which increased ROS levels are thought to have a major role in tumour development and progression. As such, modulation of cellular redox status by targeting ROS and their regulatory machineries is considered a promising therapeutic strategy for cancer treatment. Recently, there has been major progress in this field, including the discovery of novel redox signalling pathways that affect the metabolism of tumour cells as well as immune cells in the tumour microenvironment, and the intriguing ROS regulation of biomolecular phase separation. Progress has also been made in exploring redox regulation in cancer stem cells, the role of ROS in determining cell fate and new anticancer agents that target ROS. This Review discusses these research developments and their implications for cancer therapy and drug discovery, as well as emerging concepts, paradoxes and future perspectives.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shihua Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Hu Z, Yang L, Zhang M, Tang H, Huang Y, Su Y, Ding Y, Li C, Wang M, Zhou Y, Zhang Q, Guo L, Wu Y, Wang Q, Liu N, Kang H, Wu Y, Yao D, Li Y, Ruan Z, Wang H, Bao F, Liu G, Wang J, Wang Y, Wang W, Lu G, Qin D, Pei D, Chan WY, Liu X. A novel protein CYTB-187AA encoded by the mitochondrial gene CYTB modulates mammalian early development. Cell Metab 2024; 36:1586-1597.e7. [PMID: 38703762 DOI: 10.1016/j.cmet.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The mitochondrial genome transcribes 13 mRNAs coding for well-known proteins essential for oxidative phosphorylation. We demonstrate here that cytochrome b (CYTB), the only mitochondrial-DNA-encoded transcript among complex III, also encodes an unrecognized 187-amino-acid-long protein, CYTB-187AA, using the standard genetic code of cytosolic ribosomes rather than the mitochondrial genetic code. After validating the existence of this mtDNA-encoded protein arising from cytosolic translation (mPACT) using mass spectrometry and antibodies, we show that CYTB-187AA is mainly localized in the mitochondrial matrix and promotes the pluripotent state in primed-to-naive transition by interacting with solute carrier family 25 member 3 (SLC25A3) to modulate ATP production. We further generated a transgenic knockin mouse model of CYTB-187AA silencing and found that reduction of CYTB-187AA impairs females' fertility by decreasing the number of ovarian follicles. For the first time, we uncovered the novel mPACT pattern of a mitochondrial mRNA and demonstrated the physiological function of this 14th protein encoded by mtDNA.
Collapse
Affiliation(s)
- Zhijuan Hu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Maolei Zhang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haite Tang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yile Huang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Yujie Su
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingzhe Ding
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Chong Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mengfei Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunhao Zhou
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Liman Guo
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Yue Wu
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Qianqian Wang
- State Key Laboratory of Medicinal Chemistry Biology, Nankai University, Tianjin, China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemistry Biology, Nankai University, Tianjin, China
| | - Haoran Kang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Wu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Deyang Yao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yukun Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zifeng Ruan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Feixiang Bao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guopan Liu
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Junwei Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Wuming Wang
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Gang Lu
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wai-Yee Chan
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xingguo Liu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
8
|
Chen Z, Tan X, Jin T, Wang Y, Dai L, Shen G, Zhang C, Qu L, Long L, Shen C, Cao X, Wang J, Li H, Yue X, Shi C. Pharmaceutical Manipulation of Mitochondrial F0F1-ATP Synthase Enables Imaging and Protection of Myocardial Ischemia/Reperfusion Injury Through Stress-induced Selective Enrichment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307880. [PMID: 38093654 PMCID: PMC10916578 DOI: 10.1002/advs.202307880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Indexed: 02/17/2024]
Abstract
To rescue ischemic myocardium from progressing to myocardial infarction, timely identification of the infarct size and reperfusion is crucial. However, fast and accurate identification, as well as the targeted protection of injured cardiomyocytes following ischemia/reperfusion (I/R) injury, remain significantly challenging. Here, a near infrared heptamethine dye IR-780 is shown that has the potential to quickly monitor the area at risk following I/R injury by selectively entering the cardiomyocytes of the at-risk heart tissues. Preconditioning with IR-780 or timely IR-780 administration before reperfusion significantly protects the heart from ischemia and oxidative stress-induced cell death, myocardial remodeling, and heart failure in both rat and pig models. Furthermore, IR-780 can directly bind to F0F1-ATP synthase of cardiomyocytes, rapidly decrease the mitochondrial membrane potential, and subsequently slow down the mitochondrial energy metabolism, which induces the mitochondria into a "quiescent state" and results in mitochondrial permeability transition pore inhibition by preventing mitochondrial calcium overload. Collectively, the findings show the feasibility of IR-780-based imaging and protection strategy for I/R injury in a preclinical context and indicate that moderate mitochondrial function depression is a mode of action that can be targeted in the development of cardioprotective reagents.
Collapse
Affiliation(s)
- Zelin Chen
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Xu Tan
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Taotao Jin
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Yu Wang
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Linyong Dai
- Department of UrologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqing401120China
| | - Gufang Shen
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Can Zhang
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Langfan Qu
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Lei Long
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Chongxing Shen
- Department of UrologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqing401120China
| | - Xiaohui Cao
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Jianwu Wang
- Department of UrologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqing401120China
| | - Huijuan Li
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Xiaofeng Yue
- Department of UrologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqing401120China
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| |
Collapse
|
9
|
Deisl C, Moe OW, Hilgemann DW. Constitutive Plasma Membrane Turnover in T-REx293 cells via Ordered Membrane Domain Endocytosis under Mitochondrial Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576124. [PMID: 38293164 PMCID: PMC10827192 DOI: 10.1101/2024.01.17.576124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Clathrin/dynamin-independent endocytosis of ordered plasma membrane domains (ordered membrane domain endocytosis, OMDE) can become massive in response to cytoplasmic Ca elevations, G protein activation by non-hydrolyzable GTP analogs, and enhanced oxidative metabolism. In patch-clamped murine bone marrow macrophages (BMMs), cytoplasmic succinate and pyruvate, but not β-hydroxybutyrate, induce OMDE of 75% of the plasma membrane within 2 min. The responses require palmitoylation of membrane proteins, being decreased by 70% in BMMs lacking the acyltransferase, DHHC5, by treatment with carnitine to shift long-chain acyl groups from cytoplasmic to mitochondrial acyl-CoAs, by bromopalmitate/albumin complexes to block DHHCs, and by the mitochondria-specific cyclosporin, NIM811, to block permeability transition pores that may release mitochondrial coenzyme A into the cytoplasm. Using T-REx293 cells, OMDE amounts to 40% with succinate, pyruvate, or GTPγS, and it is inhibited by actin cytoskeleton disruption. Pyruvate-induced OMDE is blocked by the hydrophobic antioxidant, edaravone, which prevents permeability transition pore openings. Using fluorescent 3kD dextrans to monitor endocytosis, OMDE appears to be constitutively active in T-REx293 cells but not in BMMs. After 1 h without substrates or bicarbonate, pyruvate and hydroxybutyrate inhibit constitutive OMDE, as expected for a shift of CoA from long-chain acyl-CoAs to other CoA metabolites. In the presence of bicarbonate, pyruvate strongly enhances OMDE, which is then blocked by β-hydroxybutyrate, bromopalmitate/albumin complexes, cyclosporines, or edaravone. After pyruvate responses, T-REx293 cells grow normally with no evidence for apoptosis. Fatty acid-free albumin (15 μM) inhibits basal OMDE in T-REx293 cells, as do cyclosporines, carnitine, and RhoA blockade. Surprisingly, OMDE in the absence of substrates and bicarbonate is not inhibited by siRNA knockdown of the acyltransferases, DHHC5 or DHHC2, which are required for activated OMDE in patch clamp experiments. We verify biochemically that small CoA metabolites decrease long-chain acyl-CoAs. We verify also that palmitoylations of many PM-associated proteins decrease and increase when OMDE is inhibited and stimulated, respectively, by different metabolites. STED microscopy reveals that vesicles formed during constitutive OMDE in T-REX293 cells have 90 to 130 nm diameters. In summary, OMDE is likely a major G-protein-dependent endocytic mechanism that can be constitutively active in some cell types, albeit not BMMs. OMDE depends on different DHHC acyltransferases in different circumstances and can be limited by local supplies of fatty acids, CoA, and long-chain acyl-CoAs.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
11
|
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 2023; 30:1869-1885. [PMID: 37460667 PMCID: PMC10406888 DOI: 10.1038/s41418-023-01187-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Christoph Gerle
- Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Karch
- Department of Integrative Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, State College, PA, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T. Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. Nat Commun 2023; 14:2502. [PMID: 37130865 PMCID: PMC10154337 DOI: 10.1038/s41467-023-38049-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Group 3 medulloblastoma (G3 MB) carries the worst prognosis of all MB subgroups. MYC oncoprotein is elevated in G3 MB tumors; however, the mechanisms that support MYC abundance remain unclear. Using metabolic and mechanistic profiling, we pinpoint a role for mitochondrial metabolism in regulating MYC. Complex-I inhibition decreases MYC abundance in G3 MB, attenuates the expression of MYC-downstream targets, induces differentiation, and prolongs male animal survival. Mechanistically, complex-I inhibition increases inactivating acetylation of antioxidant enzyme SOD2 at K68 and K122, triggering the accumulation of mitochondrial reactive oxygen species that promotes MYC oxidation and degradation in a mitochondrial pyruvate carrier (MPC)-dependent manner. MPC inhibition blocks the acetylation of SOD2 and oxidation of MYC, restoring MYC abundance and self-renewal capacity in G3 MB cells following complex-I inhibition. Identification of this MPC-SOD2 signaling axis reveals a role for metabolism in regulating MYC protein abundance that has clinical implications for treating G3 MB.
Collapse
Affiliation(s)
- Emma Martell
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Helgi Kuzmychova
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Esha Kaul
- Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Harshal Senthil
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Ludivine Coudière Morrison
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Agnes Fresnoza
- Central Animal Care Services, University of Manitoba, Winnipeg, MB, Canada
| | - Jamie Zagozewski
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chris M Anderson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Versha Banerji
- CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Tamra E Werbowetski-Ogilvie
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba, Winnipeg, MB, Canada
| | - Tanveer Sharif
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Dumbali SP, Wenzel PL. Mitochondrial Permeability Transition in Stem Cells, Development, and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:1-22. [PMID: 35739412 DOI: 10.1007/5584_2022_720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The mitochondrial permeability transition (mPT) is a process that permits rapid exchange of small molecules across the inner mitochondrial membrane (IMM) and thus plays a vital role in mitochondrial function and cellular signaling. Formation of the pore that mediates this flux is well-documented in injury and disease but its regulation has also emerged as critical to the fate of stem cells during embryonic development. The precise molecular composition of the mPTP has been enigmatic, with far more genetic studies eliminating molecular candidates than confirming them. Rigorous studies in the recent decade have implicated central involvement of the F1Fo ATP synthase, or complex V of the electron transport chain, and continue to confirm a regulatory role for Cyclophilin D (CypD), encoded by Ppif, in modulating the sensitivity of the pore to opening. A host of endogenous molecules have been shown to trigger flux characteristic of mPT, including positive regulators such as calcium ions, reactive oxygen species, inorganic phosphate, and fatty acids. Conductance of the pore has been described as low or high, and reversibility of pore opening appears to correspond with the relative abundance of negative regulators of mPT such as adenine nucleotides, hydrogen ion, and divalent cations that compete for calcium-binding sites in the mPTP. Current models suggest that distinct pores could be responsible for differing reversibility and conductance depending upon cellular context. Indeed, irreversible propagation of mPT inevitably leads to collapse of transmembrane potential, arrest of ATP synthesis, mitochondrial swelling, and cell death. Future studies should clarify ambiguities in mPTP structure and reveal new roles for mPT in dictating specialized cellular functions beyond cell survival that are tied to mitochondrial fitness including stem cell self-renewal and fate. The focus of this review is to describe contemporary models of the mPTP and highlight how pore activity impacts stem cells and development.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
14
|
Li W, Long Q, Wu H, Zhou Y, Duan L, Yuan H, Ding Y, Huang Y, Wu Y, Huang J, Liu D, Chen B, Zhang J, Qi J, Du S, Li L, Liu Y, Ruan Z, Liu Z, Liu Z, Zhao Y, Lu J, Wang J, Chan WY, Liu X. Nuclear localization of mitochondrial TCA cycle enzymes modulates pluripotency via histone acetylation. Nat Commun 2022; 13:7414. [PMID: 36460681 PMCID: PMC9718843 DOI: 10.1038/s41467-022-35199-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pluripotent stem cells hold great promise in regenerative medicine and developmental biology studies. Mitochondrial metabolites, including tricarboxylic acid (TCA) cycle intermediates, have been reported to play critical roles in pluripotency. Here we show that TCA cycle enzymes including Pdha1, Pcb, Aco2, Cs, Idh3a, Ogdh, Sdha and Mdh2 are translocated to the nucleus during somatic cell reprogramming, primed-to-naive transition and totipotency acquisition. The nuclear-localized TCA cycle enzymes Pdha1, Pcb, Aco2, Cs, Idh3a promote somatic cell reprogramming and primed-to-naive transition. In addition, nuclear-localized TCA cycle enzymes, particularly nuclear-targeted Pdha1, facilitate the 2-cell program in pluripotent stem cells. Mechanistically, nuclear Pdha1 increases the acetyl-CoA and metabolite pool in the nucleus, leading to chromatin remodeling at pluripotency genes by enhancing histone H3 acetylation. Our results reveal an important role of mitochondrial TCA cycle enzymes in the epigenetic regulation of pluripotency that constitutes a mitochondria-to-nucleus retrograde signaling mode in different states of pluripotent acquisition.
Collapse
Affiliation(s)
- Wei Li
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qi Long
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Hao Wu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yanshuang Zhou
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Lifan Duan
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hao Yuan
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yingzhe Ding
- grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yile Huang
- grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yi Wu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Jinyu Huang
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Delong Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Baodan Chen
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Jian Zhang
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China
| | - Juntao Qi
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shiwei Du
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Linpeng Li
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yang Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zifeng Ruan
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zihuang Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zichao Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yifan Zhao
- grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Jianghuan Lu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Junwei Wang
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Wai-Yee Chan
- grid.10784.3a0000 0004 1937 0482CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xingguo Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
15
|
Cannino G, Urbani A, Gaspari M, Varano M, Negro A, Filippi A, Ciscato F, Masgras I, Gerle C, Tibaldi E, Brunati AM, Colombo G, Lippe G, Bernardi P, Rasola A. The mitochondrial chaperone TRAP1 regulates F-ATP synthase channel formation. Cell Death Differ 2022; 29:2335-2346. [PMID: 35614131 PMCID: PMC9751095 DOI: 10.1038/s41418-022-01020-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/31/2023] Open
Abstract
Binding of the mitochondrial chaperone TRAP1 to client proteins shapes bioenergetic and proteostatic adaptations of cells, but the panel of TRAP1 clients is only partially defined. Here we show that TRAP1 interacts with F-ATP synthase, the protein complex that provides most cellular ATP. TRAP1 competes with the peptidyl-prolyl cis-trans isomerase cyclophilin D (CyPD) for binding to the oligomycin sensitivity-conferring protein (OSCP) subunit of F-ATP synthase, increasing its catalytic activity and counteracting the inhibitory effect of CyPD. Electrophysiological measurements indicate that TRAP1 directly inhibits a channel activity of purified F-ATP synthase endowed with the features of the permeability transition pore (PTP) and that it reverses PTP induction by CyPD, antagonizing PTP-dependent mitochondrial depolarization and cell death. Conversely, CyPD outcompetes the TRAP1 inhibitory effect on the channel. Our data identify TRAP1 as an F-ATP synthase regulator that can influence cell bioenergetics and survival and can be targeted in pathological conditions where these processes are dysregulated, such as cancer.
Collapse
Affiliation(s)
- Giuseppe Cannino
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Andrea Urbani
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, viale Europa, 88100, Catanzaro, Italy
| | - Mariaconcetta Varano
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, viale Europa, 88100, Catanzaro, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Antonio Filippi
- Department of Medicine, University of Udine, via Colugna 50, 33100, Udine, Italy
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
- Institute of Neuroscience, National Research Council, Viale G. Colombo 3, 35131, Padova, Italy
| | - Christoph Gerle
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Elena Tibaldi
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121, Padova, Italy
| | - Anna Maria Brunati
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121, Padova, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100, Pavia, Italy
- Institute of Chemical and Technological Sciences "Giulio Natta"- SCITEC, Via Mario Bianco 9, 20131, Milano, Italy
| | - Giovanna Lippe
- Department of Medicine, University of Udine, via Colugna 50, 33100, Udine, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
- Institute of Neuroscience, National Research Council, Viale G. Colombo 3, 35131, Padova, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
16
|
Li L, Chen M, Liu W, Tai P, Liu X, Liu JX. Zebrafish cox17 modulates primitive erythropoiesis via regulation of mitochondrial metabolism to facilitate hypoxia tolerance. FASEB J 2022; 36:e22596. [PMID: 36208295 DOI: 10.1096/fj.202200829r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Cox17 is required in the assembly of mitochondrial intermembrane space (IMS) and Cu metallization of cytochrome C oxidase (CcO) in mitochondria as well as Cu homeostasis in cells. Cox deficiency is associated with hematopoietic diseases such as tubulopathy and leukodystrophy, but whether and how cox17 functions in hematopoiesis are still unknown. Here, we report the effects of zebrafish cox17 deficiency on primitive erythropoiesis, mitochondrial metabolism, and hypoxia tolerance. Cox17-/- larvae were sensitive to hypoxia stress, with reduced primitive erythropoiesis. Meanwhile, cox17-/- mutants showed a significant reduction in the expression of pivotal transcriptional regulators in erythropoiesis, such as scl, lmo2, and gata1a at 14 h post fertilization (hpf), with expression remaining downregulated for scl but upregulated for lmo2 and gata1a at 24 hpf. Mechanistically, cox17-/- mutants showed impaired mitochondrial metabolism, coupled with a significant decrease in the mitochondrial membrane potential, ATP and SAM content, and the ratio of SAM and SAH. Additionally, disrupting mitochondrial metabolism in wild type (WT) larvae treated with carbonyl cyanide 3-chlorophenylhydrazone (CCCP) could mimic the primitive erythropoiesis defects observed in cox17-/- mutants. Moreover, cox17-/- mutants exhibited significantly downregulated WNT signaling and upregulated ER stress, with a significant reduction of beta-Catenin in gata1a+ cells and of binding enrichment in both scl and lmo2 promoters of the WNT transcriptional factor TCF4. This is the first report on the novel linkage of cox17 deficiency with defective primitive erythropoiesis and reduced hypoxia tolerance. This study has shed light on the potential mechanism by which Cox deficiency, especially cox17 deficiency, induces Cu homeostasis imbalance, leading to hematopoietic diseases.
Collapse
Affiliation(s)
- LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - MingYue Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - PengZhi Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science; Guangzhou Medical University, Guangzhou, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
18
|
Sautchuk R, Kalicharan BH, Escalera-Rivera K, Jonason JH, Porter GA, Awad HA, Eliseev RA. Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation. eLife 2022; 11:e75023. [PMID: 35635445 PMCID: PMC9191891 DOI: 10.7554/elife.75023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Cyclophilin D (CypD) promotes opening of the mitochondrial permeability transition pore (MPTP) which plays a key role in both cell physiology and pathology. It is, therefore, beneficial for cells to tightly regulate CypD and MPTP but little is known about such regulation. We have reported before that CypD is downregulated and MPTP deactivated during differentiation in various tissues. Herein, we identify BMP/Smad signaling, a major driver of differentiation, as a transcriptional regulator of the CypD gene, Ppif. Using osteogenic induction of mesenchymal lineage cells as a BMP/Smad activation-dependent differentiation model, we show that CypD is in fact transcriptionally repressed during this process. The importance of such CypD downregulation is evidenced by the negative effect of CypD 'rescue' via gain-of-function on osteogenesis both in vitro and in a mouse model. In sum, we characterized BMP/Smad signaling as a regulator of CypD expression and elucidated the role of CypD downregulation during cell differentiation.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | - Brianna H Kalicharan
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | | | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, University of RochesterRochesterUnited States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
- Department of Pharmacology & Physiology, University of RochesterRochesterUnited States
| |
Collapse
|
19
|
Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol 2022; 23:266-285. [PMID: 34880425 DOI: 10.1038/s41580-021-00433-y] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial permeability transition (mPT) is a phenomenon that abruptly causes the flux of low molecular weight solutes (molecular weight up to 1,500) across the generally impermeable inner mitochondrial membrane. The mPT is mediated by the so-called mitochondrial permeability transition pore (mPTP), a supramolecular entity assembled at the interface of the inner and outer mitochondrial membranes. In contrast to mitochondrial outer membrane permeabilization, which mostly activates apoptosis, mPT can trigger different cellular responses, from the physiological regulation of mitophagy to the activation of apoptosis or necrosis. Although there are several molecular candidates for the mPTP, its molecular nature remains contentious. This lack of molecular data was a significant setback that prevented mechanistic insight into the mPTP, pharmacological targeting and the generation of informative animal models. In recent years, experimental evidence has highlighted mitochondrial F1Fo ATP synthase as a participant in mPTP formation, although a molecular model for its transition to the mPTP is still lacking. Recently, the resolution of the F1Fo ATP synthase structure by cryogenic electron microscopy led to a model for mPTP gating. The elusive molecular nature of the mPTP is now being clarified, marking a turning point for understanding mitochondrial biology and its pathophysiological ramifications. This Review provides an up-to-date reference for the understanding of the mammalian mPTP and its cellular functions. We review current insights into the molecular mechanisms of mPT and validated observations - from studies in vivo or in artificial membranes - on mPTP activity and functions. We end with a discussion of the contribution of the mPTP to human disease. Throughout the Review, we highlight the multiple unanswered questions and, when applicable, we also provide alternative interpretations of the recent discoveries.
Collapse
|
20
|
Histone demethylase IBM1-mediated meiocyte gene expression ensures meiotic chromosome synapsis and recombination. PLoS Genet 2022; 18:e1010041. [PMID: 35192603 PMCID: PMC8896719 DOI: 10.1371/journal.pgen.1010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/04/2022] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Histone methylation and demethylation play important roles in plant growth and development, but the involvement of histone demethylation during meiosis is poorly understood. Here we show that disruption of Arabidopsis thaliana INCREASE IN BONSAI METHYLATION 1 (IBM1) causes incomplete synapsis, chromosome entanglement and reduction of recombination during meiosis, leading to sterility. Interestingly, these ibm1 meiotic defects are rescued by mutations in either SUVH4/KYP or CMT3. Using transcriptomic analyses we show that mutation of IBM1 down-regulates thousands of genes expressed in meiocytes, and that expression of about 38% of these genes are restored to wild type levels in ibm1 cmt3 double mutants. Changes in the expression of 437 of these, including the ARABIDOPSIS MEI2-LIKE AML3-5 genes, are correlated with a significant reduction of gene body CHG methylation. Consistently, the aml3 aml4 aml5 triple have defects in synapsis and chromosome entanglement similar to ibm1. Genetic analysis shows that aml3 aml4 aml5 ibm1 quadruple mutants resembles the ibm1 single mutant. Strikingly, over expression of AML5 in ibm1 can partially rescue the ibm1 meiotic defects. Taken together, our results demonstrate that histone demethylase IBM1 is required for meiosis likely via coordinated regulation of meiocyte gene expression during meiosis.
Collapse
|
21
|
The Cumulative Formation of R-loop Interacts with Histone Modifications to Shape Cell Reprogramming. Int J Mol Sci 2022; 23:ijms23031567. [PMID: 35163490 PMCID: PMC8835745 DOI: 10.3390/ijms23031567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
R-loop, a three-stranded RNA/DNA structure, plays important roles in modulating genome stability and gene expression, but the molecular mechanism of R-loops in cell reprogramming remains elusive. Here, we comprehensively profiled the genome-wide landscape of R-loops during cell reprogramming. The results showed that the R-loop formation on most different types of repetitive elements is stage-specific in cell reprogramming. We unveiled that the cumulative deposition of an R-loop subset is positively correlated with gene expression during reprogramming. More importantly, the dynamic turnover of this R-loop subset is accompanied by the activation of the pluripotent transcriptional regulatory network (TRN). Moreover, the large accumulation of the active histone marker H3K4me3 and the reduction in H3K27me3 were also observed in these R-loop regions. Finally, we characterized the dynamic network of R-loops that facilitates cell fate transitions in reprogramming. Together, our study provides a new clue for deciphering the interplay mechanism between R-loops and HMs to control cell reprogramming.
Collapse
|
22
|
Redox Homeostasis and Regulation in Pluripotent Stem Cells: Uniqueness or Versatility? Int J Mol Sci 2021; 22:ijms222010946. [PMID: 34681606 PMCID: PMC8535588 DOI: 10.3390/ijms222010946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
Pluripotent stem cells (PSCs) hold great potential both in studies on developmental biology and clinical practice. Mitochondrial metabolism that encompasses pathways that generate ATP and produce ROS significantly differs between PSCs and somatic cells. Correspondingly, for quite a long time it was believed that the redox homeostasis in PSCs is also highly specific due to the hypoxic niche of their origin-within the pre-implantation blastocyst. However, recent research showed that redox parameters of cultivated PSCs have much in common with that of their differentiated progeny cells. Moreover, it has been proven that, similar to somatic cells, maintaining the physiological ROS level is critical for the regulation of PSC identity, proliferation, differentiation, and de-differentiation. In this review, we aimed to summarize the studies of redox metabolism and signaling in PSCs to compare the redox profiles of pluripotent and differentiated somatic cells. We collected evidence that PSCs possess metabolic plasticity and are able to adapt to both hypoxia and normoxia, that pluripotency is not strictly associated with anaerobic conditions, and that cellular redox homeostasis is similar in PSCs and many other somatic cells under in vitro conditions that may be explained by the high conservatism of the redox regulation system.
Collapse
|
23
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
24
|
Ying Z, Liu Z, Xiang G, Xin Y, Wang J, Liu X. Protocols for analysis of mitochondrial permeability transition pore opening in mouse somatic cell reprogramming. STAR Protoc 2021; 2:100568. [PMID: 34151295 PMCID: PMC8188620 DOI: 10.1016/j.xpro.2021.100568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. Here, we describe a protocol for imaging mitochondrial permeability transition pore (mPTP) opening in reprogramming of somatic cells using a confocal microscope. We also describe a method to sort high and low mPTP opening somatic cells by calcein fluorescence and reprogram these sorted cells to iPSCs. These protocols are also suitable for imaging mPTP opening and uncovering the mechanisms of mPTP function in other cell fate conversions. For complete details on the use and execution of this protocol, please refer to Ying et al. (2018).
Collapse
Affiliation(s)
- Zhongfu Ying
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zihuang Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ge Xiang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanmin Xin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
25
|
Szabo I, Zoratti M, Biasutto L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol 2021; 42:101846. [PMID: 33419703 PMCID: PMC8113036 DOI: 10.1016/j.redox.2020.101846] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pharmacological targeting of mitochondrial ion channels is emerging as a promising approach to eliminate cancer cells; as most of these channels are differentially expressed and/or regulated in cancer cells in comparison to healthy ones, this strategy may selectively eliminate the former. Perturbation of ion fluxes across the outer and inner membranes is linked to alterations of redox state, membrane potential and bioenergetic efficiency. This leads to indirect modulation of oxidative phosphorylation, which is/may be fundamental for both cancer and cancer stem cell survival. Furthermore, given the crucial contribution of mitochondria to intrinsic apoptosis, modulation of their ion channels leading to cytochrome c release may be of great advantage in case of resistance to drugs triggering apoptotic events upstream of the mitochondrial phase. In the present review, we give an overview of the known mitochondrial ion channels and of their modulators capable of killing cancer cells. In addition, we discuss state-of-the-art strategies using mitochondriotropic drugs or peptide-based approaches allowing a more efficient and selective targeting of mitochondrial ion channel-linked events.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Padova, Italy.
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Padova, Italy; Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
26
|
Wang W, Ren S, Lu Y, Chen X, Qu J, Ma X, Deng Q, Hu Z, Jin Y, Zhou Z, Ge W, Zhu Y, Yang N, Li Q, Pu J, Chen G, Ye C, Wang H, Zhao X, Liu Z, Zhu S. Inhibition of Syk promotes chemical reprogramming of fibroblasts via metabolic rewiring and H 2 S production. EMBO J 2021; 40:e106771. [PMID: 33909912 DOI: 10.15252/embj.2020106771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
Chemical compounds have recently been introduced as alternative and non-integrating inducers of pluripotent stem cell fate. However, chemical reprogramming is hampered by low efficiency and the molecular mechanisms remain poorly characterized. Here, we show that inhibition of spleen tyrosine kinase (Syk) by R406 significantly promotes mouse chemical reprogramming. Mechanistically, R406 alleviates Syk / calcineurin (Cn) / nuclear factor of activated T cells (NFAT) signaling-mediated suppression of glycine, serine, and threonine metabolic genes and dependent metabolites. Syk inhibition upregulates glycine level and downstream transsulfuration cysteine biosynthesis, promoting cysteine metabolism and cellular hydrogen sulfide (H2 S) production. This metabolic rewiring decreased oxidative phosphorylation and ROS levels, enhancing chemical reprogramming. In sum, our study identifies Syk-Cn-NFAT signaling axis as a new barrier of chemical reprogramming and suggests metabolic rewiring and redox homeostasis as important opportunities for controlling cell fates.
Collapse
Affiliation(s)
- Weiyun Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunkun Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Juanjuan Qu
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xiaojie Ma
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Deng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhensheng Hu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yan Jin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ziyu Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wenyan Ge
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yibing Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Nannan Yang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, China
| | - Qin Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiaqi Pu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guo Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, China.,Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiqiang Liu
- College of Life Science, Shanxi University, Taiyuan, China
| | - Saiyong Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Xie L, Ding N, Zhang H, Liu K, Xiong J, Ma S, Yang A, Zhang H, Jiang Y. SNF5 promotes IL-1β expression via H3K4me1 in atherosclerosis induced by homocysteine. Int J Biochem Cell Biol 2021; 135:105974. [PMID: 33831591 DOI: 10.1016/j.biocel.2021.105974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Homocysteine (Hcy) is a strong and independent risk factor of atherosclerosis. It can accelerate atherosclerosis through increased production of inflammatory factors, especially interleukin-1 β (IL-1β), while the precise mechanisms remain to be well elucidated. In this study, we investigated the role of the tumor suppressor gene SNF5 related to switch/sucrose non-fermentable complex (SWI/SNF) in the occurrence and development of atherosclerosis induced by Hcy. Using Hyperhomocysteinemia (HHcy) atherosclerotic model with apolipoprotein E knockout (ApoE-/-) mice fed with high-methionine diet, we showed that Hcy aggravates inflammation in macrophages during the atherosclerotic plaque formation. Further analysis showed that SNF5 promotes IL-1β expression and secretion. In addition, due to the existence of H3K4 methylation signals in the vicinity of IL-1β, we found that Hcy significantly promotes the expression of H3K4me1, and lysine-specific histone demethylase 1A (KDM1A) acts as a transcriptional repressor to regulate the expression of H3K4me1 by demethylating H3K4me1. In summary, our results demonstrated that Hcy up-regulates the expression of SNF5 through KDM1A, resulting in an increased level of H3K4me1 modification and IL-1β in macrophages, which in turn promotes the formation of atherosclerosis. Our study will provide more evidence for further revealing the specific mechanism of Hcy-induced inflammation and the diagnosis, prevention, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Lin Xie
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Ning Ding
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Honghong Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Kun Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China; Department of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiantuan Xiong
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Shengchao Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Anning Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China; Prenatal Diagnosis Center of General Hospital, Ningxia Medical University, Yinchuan, 750004, China.
| | - Yideng Jiang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
28
|
Rottenberg H, Hoek JB. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells 2021; 10:cells10010079. [PMID: 33418876 PMCID: PMC7825081 DOI: 10.3390/cells10010079] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
The activity of the mitochondrial permeability transition pore, mPTP, a highly regulated multi-component mega-channel, is enhanced in aging and in aging-driven degenerative diseases. mPTP activity accelerates aging by releasing large amounts of cell-damaging reactive oxygen species, Ca2+ and NAD+. The various pathways that control the channel activity, directly or indirectly, can therefore either inhibit or accelerate aging or retard or enhance the progression of aging-driven degenerative diseases and determine lifespan and healthspan. Autophagy, a catabolic process that removes and digests damaged proteins and organelles, protects the cell against aging and disease. However, the protective effect of autophagy depends on mTORC2/SKG1 inhibition of mPTP. Autophagy is inhibited in aging cells. Mitophagy, a specialized form of autophagy, which retards aging by removing mitochondrial fragments with activated mPTP, is also inhibited in aging cells, and this inhibition leads to increased mPTP activation, which is a major contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The increased activity of mPTP in aging turns autophagy/mitophagy into a destructive process leading to cell aging and death. Several drugs and lifestyle modifications that enhance healthspan and lifespan enhance autophagy and inhibit the activation of mPTP. Therefore, elucidating the intricate connections between pathways that activate and inhibit mPTP, in the context of aging and degenerative diseases, could enhance the discovery of new drugs and lifestyle modifications that slow aging and degenerative disease.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge street, New Hope, PA 18938, USA
- Correspondence: ; Tel.: +1-267-614-5588
| | - Jan B. Hoek
- MitoCare Center, Department of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
29
|
Urbani A, Prosdocimi E, Carrer A, Checchetto V, Szabò I. Mitochondrial Ion Channels of the Inner Membrane and Their Regulation in Cell Death Signaling. Front Cell Dev Biol 2021; 8:620081. [PMID: 33585458 PMCID: PMC7874202 DOI: 10.3389/fcell.2020.620081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are bioenergetic organelles with a plethora of fundamental functions ranging from metabolism and ATP production to modulation of signaling events leading to cell survival or cell death. Ion channels located in the outer and inner mitochondrial membranes critically control mitochondrial function and, as a consequence, also cell fate. Opening or closure of mitochondrial ion channels allow the fine-tuning of mitochondrial membrane potential, ROS production, and function of the respiratory chain complexes. In this review, we critically discuss the intracellular regulatory factors that affect channel activity in the inner membrane of mitochondria and, indirectly, contribute to cell death. These factors include various ligands, kinases, second messengers, and lipids. Comprehension of mitochondrial ion channels regulation in cell death pathways might reveal new therapeutic targets in mitochondria-linked pathologies like cancer, ischemia, reperfusion injury, and neurological disorders.
Collapse
Affiliation(s)
- Andrea Urbani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| | | | - Andrea Carrer
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| | | | - Ildikò Szabò
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
30
|
A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165992. [PMID: 33091565 DOI: 10.1016/j.bbadis.2020.165992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) opening is involved in the pathophysiology of multiple cardiac diseases, such as ischemia/reperfusion injury and heart failure. A growing number of evidence provided by proteomic screening techniques has demonstrated the role of post-translational modifications (PTMs) in several key components of the pore in response to changes in the extra/intracellular environment and bioenergetic demand. This could lead to a fine, complex regulatory mechanism that, under pathological conditions, can shift the state of mitochondrial functions and, thus, the cell's fate. Understanding the complex relationship between these PTMs is still under investigation and can provide new, promising therapeutic targets and treatment approaches. This review, using a systematic review of the literature, presents the current knowledge on PTMs of the mPTP and their role in health and cardiac disease.
Collapse
|
31
|
Yang Z, Jiang H. A chromatin perspective on metabolic and genotoxic impacts on hematopoietic stem and progenitor cells. Cell Mol Life Sci 2020; 77:4031-4047. [PMID: 32318759 PMCID: PMC7541408 DOI: 10.1007/s00018-020-03522-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Fate determination in self-renewal and differentiation of hematopoietic stem and progenitor cells (HSCs and HPCs) is ultimately controlled by gene expression, which is profoundly influenced by the global and local chromatin state. Cellular metabolism directly influences the chromatin state through the dynamic regulation of the enzymatic activities that modify DNA and histones, but also generates genotoxic metabolites that can damage DNA and thus pose threat to the genome integrity. On the other hand, mechanisms modulating the chromatin state impact metabolism by regulating the expression and activities of key metabolic enzymes. Moreover, through regulating either DNA damage response directly or expression of genes involved in this process, chromatin modulators play active and crucial roles in guarding the genome integrity, breaching of which results in defective HSPC function. Therefore, HSPC function is regulated by the dynamic and two-way interactions between metabolism and chromatin. Here, we review recent advances that provide a chromatin perspective on the major impacts the metabolic and genotoxic factors can have on HSPC function and fate determination.
Collapse
Affiliation(s)
- Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
32
|
Zhao Q, Liu J, Deng H, Ma R, Liao JY, Liang H, Hu J, Li J, Guo Z, Cai J, Xu X, Gao Z, Su S. Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output. Cell 2020; 183:76-93.e22. [PMID: 32931733 DOI: 10.1016/j.cell.2020.08.009] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria, which play central roles in immunometabolic diseases, have their own genome. However, the functions of mitochondria-located noncoding RNAs are largely unknown due to the absence of a specific delivery system. By circular RNA (circRNA) expression profile analysis of liver fibroblasts from patients with nonalcoholic steatohepatitis (NASH), we observe that mitochondrial circRNAs account for a considerable fraction of downregulated circRNAs in NASH fibroblasts. By constructing mitochondria-targeting nanoparticles, we observe that Steatohepatitis-associated circRNA ATP5B Regulator (SCAR), which is located in mitochondria, inhibits mitochondrial ROS (mROS) output and fibroblast activation. circRNA SCAR, mediated by PGC-1α, binds to ATP5B and shuts down mPTP by blocking CypD-mPTP interaction. Lipid overload inhibits PGC-1α by endoplasmic reticulum (ER) stress-induced CHOP. In vivo, targeting circRNA SCAR alleviates high fat diet-induced cirrhosis and insulin resistance. Clinically, circRNA SCAR is associated with steatosis-to-NASH progression. Collectively, we identify a mitochondrial circRNA that drives metaflammation and serves as a therapeutic target for NASH.
Collapse
Affiliation(s)
- Qiyi Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Jiayu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hong Deng
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ruiying Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Huixin Liang
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jingxiong Hu
- Department of Hepatobiliary Surgery, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhiyong Guo
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Junchao Cai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Zhiliang Gao
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China.
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
33
|
Roles of Reactive Oxygen Species in Cardiac Differentiation, Reprogramming, and Regenerative Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2102841. [PMID: 32908625 PMCID: PMC7475763 DOI: 10.1155/2020/2102841] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in mechanisms of heart development and regenerative therapies such as the use of pluripotent stem cells. The roles of ROS mediating cell fate are dependent on the intensity of stimuli, cellular context, and metabolic status. ROS mainly act through several targets (such as kinases and transcription factors) and have diverse roles in different stages of cardiac differentiation, proliferation, and maturation. Therefore, further detailed investigation and characterization of redox signaling will help the understanding of the molecular mechanisms of ROS during different cellular processes and enable the design of targeted strategies to foster cardiac regeneration and functional recovery. In this review, we focus on the roles of ROS in cardiac differentiation as well as transdifferentiation (direct reprogramming). The potential mechanisms are discussed in regard to ROS generation pathways and regulation of downstream targets. Further methodological optimization is required for translational research in order to robustly enhance the generation efficiency of cardiac myocytes through metabolic modulations. Additionally, we highlight the deleterious effect of the host's ROS on graft (donor) cells in a paracrine manner during stem cell-based implantation. This knowledge is important for the development of antioxidant strategies to enhance cell survival and engraftment of tissue engineering-based technologies. Thus, proper timing and level of ROS generation after a myocardial injury need to be tailored to ensure the maximal efficacy of regenerative therapies and avoid undesired damage.
Collapse
|
34
|
Co-targeting Mitochondrial Ca 2+ Homeostasis and Autophagy Enhances Cancer Cells' Chemosensitivity. iScience 2020; 23:101263. [PMID: 32585596 PMCID: PMC7322071 DOI: 10.1016/j.isci.2020.101263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are important cell death checkpoints, and mitochondrial Ca2+ overload is considered as a potent apoptotic intrinsic pathway inducer. Here, we report that this Ca2+ apoptosis link is largely ineffective in inducing cell-death just by itself and required a concomitant inhibition of autophagy to counteract its pro-survival action. In such condition, an acute mitochondrial stress revealed by a DRP1-mediated mitochondrial dynamic remodeling is observed concomitantly with mitochondrial depolarization, release of cytochrome c, and efficient apoptosis induction. We also uncover that mitochondrial Ca2+ status modulates the function of autophagy as a sensitizer for chemotherapies. This priming mediated by mitochondrial Ca2+ overload and inhibition of autophagy sensitizes many cancer cells types to different chemotherapies with independent mechanisms of action. Collectively, our results redefine an important cell signaling pathway, uncovering new combined therapies for the treatment of diseases associated with mitochondrial Ca2+ homeostasis disorders such as cancer.
Collapse
|
35
|
Kozlov AM, Lone A, Betts DH, Cumming RC. Lactate preconditioning promotes a HIF-1α-mediated metabolic shift from OXPHOS to glycolysis in normal human diploid fibroblasts. Sci Rep 2020; 10:8388. [PMID: 32433492 PMCID: PMC7239882 DOI: 10.1038/s41598-020-65193-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has emerged that cancer cells can use various metabolites as fuel sources. Restricting cultured cancer cells to sole metabolite fuel sources can promote metabolic changes leading to enhanced glycolysis or mitochondrial OXPHOS. However, the effect of metabolite-restriction on non-transformed cells remains largely unexplored. Here we examined the effect of restricting media fuel sources, including glucose, pyruvate or lactate, on the metabolic state of cultured human dermal fibroblasts. Fibroblasts cultured in lactate-only medium exhibited reduced PDH phosphorylation, indicative of OXPHOS, and a concurrent elevation of ROS. Lactate exposure primed fibroblasts to switch to glycolysis by increasing transcript abundance of genes encoding glycolytic enzymes and, upon exposure to glucose, increasing glycolytic enzyme levels. Furthermore, lactate treatment stabilized HIF-1α, a master regulator of glycolysis, in a manner attenuated by antioxidant exposure. Our findings indicate that lactate preconditioning primes fibroblasts to switch from OXPHOS to glycolysis metabolism, in part, through ROS-mediated HIF-1α stabilization. Interestingly, we found that lactate preconditioning results in increased transcript abundance of MYC and SNAI1, key facilitators of early somatic cell reprogramming. Defined metabolite treatment may represent a novel approach to increasing somatic cell reprogramming efficiency by amplifying a critical metabolic switch that occurs during iPSC generation.
Collapse
Affiliation(s)
- Alexandra M Kozlov
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Asad Lone
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Dean H Betts
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine and Density, The University of Western Ontario, London, Ontario, N6A 5C1, Canada. .,Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5W9, Canada.
| | - Robert C Cumming
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
36
|
Castelli MA, Whiteley SL, Georges A, Holleley CE. Cellular calcium and redox regulation: the mediator of vertebrate environmental sex determination? Biol Rev Camb Philos Soc 2020; 95:680-695. [DOI: 10.1111/brv.12582] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Meghan A. Castelli
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Sarah L. Whiteley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Arthur Georges
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Clare E. Holleley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| |
Collapse
|
37
|
Liu Y, Ruan Z, Liu Z, Liu X. Organelle remodeling in somatic cell reprogramming. J Mol Cell Biol 2020; 12:747-751. [PMID: 32602889 PMCID: PMC7816689 DOI: 10.1093/jmcb/mjaa032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yang Liu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zifeng Ruan
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zichao Liu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xingguo Liu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
38
|
Wacquier B, Combettes L, Dupont G. Cytoplasmic and Mitochondrial Calcium Signaling: A Two-Way Relationship. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035139. [PMID: 31110132 DOI: 10.1101/cshperspect.a035139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intracellular Ca2+ signals are well organized in all cell types, and trigger a variety of vital physiological processes. The temporal and spatial characteristics of cytosolic Ca2+ increases are mainly governed by the fluxes of this ion across the membrane of the endoplasmic/sarcoplasmic reticulum and the plasma membrane. However, various Ca2+ transporters also allow for Ca2+ exchanges between the cytoplasm and mitochondria. Increases in mitochondrial Ca2+ stimulate the production of ATP, which allows the cells to cope with the increased energy demand created by the stimulus. Less widely appreciated is the fact that Ca2+ handling by mitochondria also shapes cytosolic Ca2+ signals. Indeed, the frequency, amplitude, and duration of cytosolic Ca2+ increases can be altered by modifying the rates of Ca2+ transport into, or from, mitochondria. In this review, we focus on the interplay between mitochondria and Ca2+ signaling, highlighting not only the consequences of cytosolic Ca2+ changes on mitochondrial Ca2+, but also how cytosolic Ca2+ dynamics is controlled by modifications of the Ca2+-handling properties and the metabolism of mitochondria.
Collapse
Affiliation(s)
- Benjamin Wacquier
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) CP231, B1050 Brussels, Belgium
| | | | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) CP231, B1050 Brussels, Belgium
| |
Collapse
|