1
|
Jiang X, Wang J, Lin L, Du L, Ding Y, Zheng F, Xie H, Wang Y, Hu M, Liu B, Xu M, Zhai J, Wang X, Ye J, Cao W, Feng C, Feng J, Hou Z, Meng M, Qiu J, Li Q, Shi Y, Wang Y. Macrophages promote pre-metastatic niche formation of breast cancer through aryl hydrocarbon receptor activity. Signal Transduct Target Ther 2024; 9:352. [PMID: 39690159 DOI: 10.1038/s41392-024-02042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024] Open
Abstract
Macrophages that acquire an immunosuppressive phenotype play a crucial role in establishing the pre-metastatic niche (PMN), which is essential for facilitating breast cancer metastasis to distant organs. Our study showed that increased activity of the aryl hydrocarbon receptor (AHR) in lung macrophages plays a crucial role in establishing the immunosuppressive PMN in breast cancer. Specifically, AHR activation led to high expression of PD-L1 on macrophages by directly binding to the promoter of Pdl1. This upregulation of PD-L1 promoted the differentiation of regulatory T cells (Tregs) within the PMN, further enhancing immunosuppressive conditions. Mice with Ahr conditional deletion in macrophages had reduced lung metastasis of breast cancer. The elevated AHR levels in PMN macrophages were induced by GM-CSF, which was secreted by breast cancer cells. Mechanistically, the activated STAT5 signaling pathway induced by GM-CSF prevented AHR from being ubiquitinated, thereby sustaining its activity in macrophages. In breast cancer patients, the expression of AHR and PD-L1 was correlated with increased Treg cell infiltration, and higher levels of AHR were associated with a poor prognosis. These findings reveal that the crosstalk of breast cancer cells, lung macrophages, and Treg cells via the GM-CSF-STAT5-AHR-PD-L1 cascade modulates the lung pre-metastatic niche during breast cancer progression.
Collapse
Affiliation(s)
- Xu Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Jiaqi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yayun Ding
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Fanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongzhen Xie
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Benming Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Muhan Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingjie Zhai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Cao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Jingyi Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, China
| | - Mingyao Meng
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Yin C, Huang CX, Pan L, Jin KJ, Wang Y, Cao MY, Lin H, Gao P, Li N, Gong H, Zou YZ. A Novel Method for Mitochondrial Membrane Potential Detection in Heart Tissue Following Ischemia-reperfusion in Mice. Curr Med Sci 2024; 44:1091-1096. [PMID: 39627477 DOI: 10.1007/s11596-024-2956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/18/2024] [Indexed: 12/11/2024]
Abstract
OBJECTIVE Myocardial ischemia-reperfusion (I/R) injury is associated with a significant reduction in the mitochondrial membrane potential (MMP, ΔΨm). Fluorescence-based assays are effective for labelling active mitochondria in living cells; their application in heart tissue, however, represents a challenge because of a low yield of viable cardiomyocytes after cardiac perfusion. This study aimed to examine a novel method for detecting the changes in the MMP of mouse heart tissue following I/R injury. METHODS The I/R model was established, which was characterized by distinct ischemic area and apoptosis in heart tissue. The MMP was detected via a confocal microscope after the ascending aorta was clamped and the mitochondrial probe solution (containing Mito-Tracker Deep Red FM) was perfused from the apex via a peristaltic pump. RESULTS This method enabled the distribution of the probe solution throughout the cardiac tissue via the coronary circulation. Fluorescence detection revealed that the MMP was profoundly reduced in both ischemic area and border area following I/R when compared with that in the sham group. There was no obvious difference in the MMP of the remote area between the I/R group and the sham group. CONCLUSION This study presents a novel method for detecting the MMP in heart tissue, and this method will facilitate the evaluation of changes in the MMP in different regions following I/R.
Collapse
Affiliation(s)
- Chao Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen-Xing Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Le Pan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ke-Jia Jin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Meng-Ying Cao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hong Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Pan Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Na Li
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Immunotherapy Translational Research Center of Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yun-Zeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Hao T, Zhang X, Liu Q, Zhan R, Tang Y, Bu X, Li W, Du J, Li Y, Mai K, Ai Q. Phosphatidylethanolamine exerts anti-inflammatory action by regulating mitochondrial function in macrophages of large yellow croaker (Larimichthys crocea). FASEB J 2024; 38:e70180. [PMID: 39570029 DOI: 10.1096/fj.202401279rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Phosphatidylethanolamine (PE) is a ubiquitous bioactive lipid in cells, which participates in regulating many metabolic processes. Exogenous PE has been reported to play a positive regulatory role in macrophage inflammatory responses. However, the molecular mechanisms of PE in regulating macrophage inflammation are not completely understood. In the present study, transcriptomic analysis of PE-stimulated macrophages of large yellow croaker revealed that differentially expressed genes were mainly active in cellular components of the mitochondrial respiratory chain, which corresponded to the significant enrichment of the oxidative phosphorylation pathway. Consistent with this result, PE significantly increased ATP content and protein expression of NDUFB3 (mitochondrial respiratory chain complex I subunit) in macrophages. Meanwhile, transcriptomic data showed that PE treatment downregulated the transcript levels of nlrp3 and upregulated the transcript levels of suppressor of cytokine signaling 3 (socs3), suggesting that PE may alleviate macrophage inflammation by interfering with the activation of NLRP3 inflammasome. Further analysis showed that PE significantly attenuated dietary PA-mediated macrophage inflammation via NLRP3-Caspase-1 in vitro and in vivo. Given that PE abundance is strongly correlated with mitochondrial function, the present study hypothesized that PE-mediated inflammatory modulation may be attributed to the positive effects on mitochondrial function. As expected, PE significantly ameliorated PA-induced mitochondrial dysfunction and reduced intracellular reactive oxygen species production and malondialdehyde content in macrophages, indicating that the improvement of mitochondrial function is an important mechanism involved in the positive effect of PE on PA-induced inflammation. In conclusion, this study elucidates the critical role of mitochondrial function in PE-mediated regulation of inflammation in macrophages, which expands the understanding of the regulatory mechanisms of phospholipid metabolism on dietary fatty acid-induced inflammation. This study may provide new intervention targets and nutritional regulation strategies for improving chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Xinwen Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Rui Zhan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Xianyong Bu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Weijia Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
4
|
Zheng D, Bhuvan T, Payne NL, Pang SHM, Mendonca S, Hutchinson MR, McKinnirey F, Morgan C, Vesey G, Meagher L, Heng TSP. Subcutaneous delivery of mesenchymal stromal cells induces immunoregulatory effects in the lymph node prior to their apoptosis. Stem Cell Res Ther 2024; 15:432. [PMID: 39551813 PMCID: PMC11572146 DOI: 10.1186/s13287-024-04060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) therapy commonly involves systemic infusion of MSCs, which undergo apoptosis in the lung and induce immunoregulatory macrophages that reduce disease. The relevance of this mode of action, however, is yet to be determined for MSCs administered via other routes. Here, we administered MSCs via subcutaneous (SC) injection into inflamed tissue and investigated the immunomodulatory effects on the local lymph node (LN), which is a major site for the initiation and regulation of immune responses. METHODS A mouse model of localised skin inflammation was established with low-dose lipopolysaccharide (LPS) to in vivo prime adipose-derived MSCs delivered via SC injection. We then analysed the immunomodulatory changes in the LN draining the inflamed tissue, as well as the neutrophil TNF response to LPS re-exposure. RESULTS When administered directly into the inflamed skin tissue, SC MSC injection induced an expansion of IL-10-producing MerTK+ subcapsular sinus macrophages and T cell zone macrophages, as well as activated CD44+ regulatory T cells (Tregs), in the draining LN, which was not observed in the non-draining LN. SC injection of viable, but not apoptotic, MSCs dampened TNF production by inflammatory cells in the draining LN when re-exposed to the inflammatory stimulus. SC injection of MSCs remote to the site of inflammation also did not attenuate the LN response to subsequent inflammatory challenge. CONCLUSIONS MSCs delivered directly into inflamed skin activated immunoregulatory cells in the local LN and inhibited LN responsiveness to subsequent inflammatory challenge. The immunoregulatory effects of SC-injected MSCs in the LN require priming by inflammatory cytokines in the local milieu. Furthermore, SC-injected MSCs exert anti-inflammatory effects in the draining LN prior to their apoptosis, in contrast to intravenously delivered MSCs, where anti-inflammatory effects are linked to their apoptosis.
Collapse
Affiliation(s)
- Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Natalie L Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Swee H M Pang
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Senora Mendonca
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Mark R Hutchinson
- School of Biomedicine, University of Adelaide, Adelaide, SA, 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Flyn McKinnirey
- Regeneus Ltd, 2 Paddington Street, Paddington, NSW, 2021, Australia
| | - Charlotte Morgan
- Regeneus Ltd, 2 Paddington Street, Paddington, NSW, 2021, Australia
| | - Graham Vesey
- Regeneus Ltd, 2 Paddington Street, Paddington, NSW, 2021, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
5
|
Zheng L, Zhou J, Zhu L, Xu X, Luo S, Xie X, Li H, Lin S, Luo J, Wu S. Associations of air pollutants and related metabolites with preterm birth during pregnancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175542. [PMID: 39151621 DOI: 10.1016/j.scitotenv.2024.175542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE This study aimed to investigate the influence of exposure to ambient fine particulate matter (PM2.5) and its components during pregnancy on the prevalence of preterm birth (PTB). Additionally, we sought to identify the susceptible exposure window. Furthermore, we explored the potential mediating role of blood analysis and a comprehensive metabolic panel in the association between pollutant exposure and PTB incidence. METHODS This birth cohort study recruited 139 participants with PTB outcomes and 1713 controls from Fujian Maternal and Child Health Hospital between January 2021 and June 2023. Sociodemographic characteristics and clinical treatment data during participants' first pregnancies were collected. The exposure levels to pollutants during pregnancy were estimated via a combined geographic-statistical model utilising satellite remote sensing data. The distributional lag nonlinear modelling was employed to assess associations between pollutant exposure during pregnancy and the prevalence of PTB. Weighted quantile regression was used to identify key components associated with PM2.5 and PTB during pregnancy. Additionally, a mediating effect analysis was conducted to evaluate the role of blood analysis. The metabolic profile was used to screen for differentially abundant metabolites associated with PTB and explore their relative expression in relation to air pollutants and PTB incidence. RESULTS Following the adjustment for potential confounding variables, the mean weekly susceptibility windows for PM2.5 were identified as 7-10, 16-19, and 22-28 weeks; 8-10, and 15-19 weeks for inorganic sulfate; 6-10, and 15-28 weeks for nitrate; 6-12, and 15-28 weeks for ammonium (NH4+); and 7-9, 18-20, and 22-36 weeks for organic matter. During mixed exposure to PM2.5 components, the key component is NH4+. In the mixed exposure to PM2.5 components, NH4+ emerged as a key contributor. The results of the mediation analysis revealed that haemoglobin played a mediating role, accounting for 21.53 % of the association between exposure to environmental pollutants and the prevalence of PTB. It is noteworthy that, no mediating effects were observed for the other variables. Furthermore, non-targeted metabolomics identified 17 metabolites associated with PTB. Among these factors, hydrogen phosphate may impact metabolic pathways such as oxidative phosphorylation, influencing the risk of PTB. The interplay between environmental pollutants and metabolites, particularly through oxidative phosphorylation pathways, may contribute to PTB incidence. CONCLUSIONS The evidence indicates that exposure to PM2.5 and its components during pregnancy were a significant risk factor for PTB. Notably, specific weekly exposure windows were identified for pollutants during pregnancy. Among the PM2.5 components, NH4+ exhibited the most substantial weight in the association analysis between exposure to the mixture of components and PTB. Furthermore, our mediation analysis revealed that haemoglobin serves as a partial mediator in the relationship between exposure to pollutants during pregnancy and the prevalence of PTB. Additionally, maternal serum metabolic profiles differed between the preterm and control groups. Notably, a combined effect involving hydrogen phosphate and mixed exposure to PM2.5 fractions further contributed to the development of PTB. Oxidative phosphorylation pathways may play pivotal roles in this intricate association.
Collapse
Affiliation(s)
- Liuyan Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian 350000, China
| | - Jungu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian 350000, China
| | - Li Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian 350000, China
| | - Xingyan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian 350000, China
| | - Suping Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian 350000, China
| | - Xiaoxu Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian 350000, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fujian 350000, China.
| | - Shaowei Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian 350000, China.
| | - Jinying Luo
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China.
| | - Siying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian 350000, China.
| |
Collapse
|
6
|
Ge Z, Qiu C, Zhou J, Yang Z, Jiang T, Yuan W, Yu L, Li J. Proteomic analysis of human Wharton's jelly mesenchymal stem/stromal cells and human amniotic epithelial stem cells: a comparison of therapeutic potential. Sci Rep 2024; 14:28061. [PMID: 39543366 PMCID: PMC11564572 DOI: 10.1038/s41598-024-79063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Perinatal stem cells have prominent applications in cell therapy and regenerative medicine. Among them, human Wharton's jelly mesenchymal stem/stromal cells (hWJMSCs) and human amniotic epithelial stem cells (hAESCs) have been widely used. However, the distinction in the therapeutic potential of hWJMSCs and hAESCs is poorly understood. In this study, we reported the phenotypic differences between these two distinct cell types and provided the first systematic comparison of their therapeutic potential in terms of immunomodulation, extracellular matrix (ECM) remodelling, angiogenesis and antioxidative stress using proteomics. The results revealed that the two cell types presented different protein expression profiles and were both promising candidates for cell therapy. Both types of cells demonstrated angiogenic and antifibrotic potential, whereas hAESCs presented superior immunological tolerance and antioxidant properties, which were supported by a series of relevant in vitro assays. Our study provides clues for the selection of appropriate cell types for diverse indications in cell therapy, which contributes to the advancement of their clinical translation and application.
Collapse
Affiliation(s)
- Zhen Ge
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Chen Qiu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Jiayi Zhou
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Zhuoheng Yang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Tuoying Jiang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Weixin Yuan
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Luyang Yu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China.
| | - Jinying Li
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China.
| |
Collapse
|
7
|
Yan H, Wang Z, Teng D, Chen X, Zhu Z, Chen H, Wang W, Wei Z, Wu Z, Chai Q, Zhang F, Wang Y, Shu K, Li S, Shi G, Zhu M, Piao HL, Shen X, Bu P. Hexokinase 2 senses fructose in tumor-associated macrophages to promote colorectal cancer growth. Cell Metab 2024; 36:2449-2467.e6. [PMID: 39471815 DOI: 10.1016/j.cmet.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/14/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Fructose is associated with colorectal cancer tumorigenesis and metastasis through ketohexokinase-mediated metabolism in the colorectal epithelium, yet its role in the tumor immune microenvironment remains largely unknown. Here, we show that a modest amount of fructose, without affecting obesity and associated complications, promotes colorectal cancer tumorigenesis and growth by suppressing the polarization of M1-like macrophages. Fructose inhibits M1-like macrophage polarization independently of fructose-mediated metabolism. Instead, it serves as a signal molecule to promote the interaction between hexokinase 2 and inositol 1,4,5-trisphophate receptor type 3, the predominant Ca2+ channel on the endoplasmic reticulum. The interaction reduces Ca2+ levels in cytosol and mitochondria, thereby suppressing the activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 1 (STAT1) as well as NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Consequently, this impedes M1-like macrophage polarization. Our study highlights the critical role of fructose as a signaling molecule that impairs the polarization of M1-like macrophages for tumor growth.
Collapse
Affiliation(s)
- Huiwen Yan
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Da Teng
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China
| | - Xiaodong Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zijing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ziyuan Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenzhen Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaile Shu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaotang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guizhi Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhao Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xian Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Yuan T, Liu W, Wang T, Ye F, Zhang J, Gu Z, Xu J, Li Y. Natural Polyphenol Delivered Methylprednisolone Achieve Targeted Enrichment for Acute Spinal Cord Injury Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404815. [PMID: 39105462 DOI: 10.1002/smll.202404815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Indexed: 08/07/2024]
Abstract
The strong anti-inflammatory effect of methylprednisolone (MP) is a necessary treatment for various severe cases including acute spinal cord injury (SCI). However, concerns have been raised regarding adverse effects from MP, which also severely limits its clinical application. Natural polyphenols, due to their rich phenolic hydroxyl chemical properties, can form dynamic structures without additional modification, achieving targeted enrichment and drug release at the disease lesion, making them a highly promising carrier. Considering the clinical application challenges of MP, a natural polyphenolic platform is employed for targeted and efficient delivery of MP, reducing its systemic side effects. Both in vitro and SCI models demonstrated polyphenols have multiple advantages as carriers for delivering MP: (1) Achieved maximum enrichment at the injured site in 2 h post-administration, which met the desires of early treatment for diseases; (2) Traceless release of MP; (3) Reducing its side effects; (4) Endowed treatment system with new antioxidative properties, which is also an aspect that needs to be addressed for diseases treatment. This study highlighted a promising prospect of the robust delivery system based on natural polyphenols can successfully overcome the barrier of MP treatment, providing the possibility for its widespread clinical application.
Collapse
Affiliation(s)
- Taoyang Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weijie Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Feng Ye
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
9
|
Liu B, Dong K, Chen X, Dong H, Zhao Y, Wang X, Sun Z, Xie F, Qian L. Inhibition of Glycolysis Alleviates Chronic Unpredictable Mild Stress Induced Neuroinflammation and Depression-like Behavior. Brain Sci 2024; 14:1098. [PMID: 39595861 PMCID: PMC11591872 DOI: 10.3390/brainsci14111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Growing evidence suggests that glucose metabolism plays a crucial role in activated immune cells, significantly contributing to the occurrence and development of neuroinflammation and depression-like behaviors. Chronic stress has been reported to induce microglia activation and disturbances in glucose metabolism in the hippocampus. AIMS This study aims to investigate how chronic stress-mediated glycolysis promotes neuroinflammation and to assess the therapeutic potential of the glycolysis inhibitor, 2-deoxy-D-glucose (2-DG), in a model of chronic stress-induced neuroinflammation and depression-like behavior. METHODS In in vitro studies, we first explored the effects of 2-DG on the inflammatory response of microglia cells. The results showed that corticosterone (Cort) induced reactive oxygen species (ROS) production, increased glycolysis, and promoted the release of inflammatory mediators. However, these effects were reversed by intervention with 2-DG. Subsequently, we examined changes in depression-like behavior and hippocampal glycolysis in mice during chronic stress. The results indicated that chronic stress led to prolonged escape latency in the Morris water maze, increased platform-crossing frequency, reduced sucrose preference index, and extended immobility time in the forced swim test, all of which are indicative of depression-like behavior in mice. Additionally, we found that the expression of the key glycolytic enzyme hexokinase 2 (HK2) was upregulated in the hippocampus of stressed mice, along with an increased release of inflammatory factors. Further in vivo experiments investigated the effects of 2-DG on glycolysis and pro-inflammatory mediator production, as well as the therapeutic effects of 2-DG on chronic stress-induced depression-like behavior in mice. The results showed that 2-DG alleviated chronic stress-induced depression-like behaviors, such as improving escape latency and platform-crossing frequency in the Morris water maze, and increasing the time spent in the center of the open field. Additionally, 2-DG intervention reduced the level of glycolysis in the hippocampus and decreased the release of pro-inflammatory mediators. CONCLUSIONS These findings suggest that 2-DG can mitigate neuroinflammation and depressive behaviors by inhibiting glycolysis and inflammatory responses. Overall, our results highlight the potential of 2-DG as a therapeutic agent for alleviating chronic stress-induced neuroinflammation through the regulation of glycolysis.
Collapse
Affiliation(s)
- Bing Liu
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Ke Dong
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
- School of Medicine, South China University of Technology, Guangzhou 511442, China
| | - Xiaobing Chen
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Huafeng Dong
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Yun Zhao
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Xue Wang
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Zhaowei Sun
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Fang Xie
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| | - Lingjia Qian
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing 100039, China; (B.L.); (K.D.); (X.C.); (H.D.); (Y.Z.); (X.W.); (Z.S.); (F.X.)
| |
Collapse
|
10
|
Qing J, Li C, Zhi H, Zhang L, Wu J, Li Y. Exploring macrophage heterogeneity in IgA nephropathy: Mechanisms of renal impairment and current therapeutic targets. Int Immunopharmacol 2024; 140:112748. [PMID: 39106714 DOI: 10.1016/j.intimp.2024.112748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
The lack of understanding of the mechanism of renal injury in IgA nephropathy (IgAN) hinders the development of personalized treatment plans and targeted therapies. Improved insight into the cause of renal dysfunction in IgAN is necessary to enhance the effectiveness of strategies for slowing the progression of the disease. This study examined single cell RNA sequencing (scRNA seq) and bulk-RNA seq data and found that the gene expression of renal intrinsic cells (RIC) was significantly changed in patients with renal impairment, with a primary focus on energy metabolism. We discovered a clear metabolic reprogramming of RIC during renal function impairment (RF) using the 'scMetabolism' package, which manifested as a weakening of oxidative phosphorylation, alterations in fatty acid metabolism, and changes in glycolysis. Cellular communication analysis revealed that communication between macrophages (Ma) and RIC became more active and impacted cell function through the ligand-receptor-transcription factor (L-R-TF) axis in patients with RF. Our studies showed a notable upsurge in the expression of gene CLU and the infiltration of CLU+ Ma in patients with RF. CLU is a multifunctional protein, extensively involved in processes such as cell apoptosis and immune responses. Data obtained from the Nephroseq V5 database and multiplex immunohistochemistry (mIHC) were used to validate the findings, which were found to be robustly correlated with estimated glomerular filtration rate (eGFR) of the IgAN patients, as demonstrated by linear regression (LR). This study provides new insights into the cellular and molecular changes that occur in IgAN during renal impairment, revealing that elevated expression of CLU and CLU+ Ma percolation are common features in patients with RF. These findings offer potential targets and strategies for personalized management and targeted therapy of IgAN.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Changqun Li
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Huiwen Zhi
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Lijuan Zhang
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Junnan Wu
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China; Academy of Microbial Ecology, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Hejin Municipal People's Hospital, Yuncheng 043300, China.
| |
Collapse
|
11
|
Chen Q, Shao B, Xu YN, Li X, Ren SH, Wang HD, Zhang JY, Sun CL, Liu T, Xiao YY, Zhao PY, Yang GM, Liu X, Wang H. IGF2 contributes to the immunomodulatory effects of exosomes from endometrial regenerative cells on experimental colitis. Int Immunopharmacol 2024; 140:112825. [PMID: 39079347 DOI: 10.1016/j.intimp.2024.112825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Exosomes derived from endometrial regenerative cells (ERC-Exos) can inherit the immunomodulatory function from ERCs, however, whether ERC-Exos exhibit such effect on inflammatory bowel diseases with mucosal immune dysregulation has not been explored. Insulin-like growth factor-Ⅱ (IGF2) is considered to possess the potential to induce an anti-inflammatory phenotype in immune cells. In this study, the contribution of IGF2 in mediating the protective efficacy of ERC-Exos on colitis was investigated. METHODS Lentiviral transfection was employed to obtain IGF2-specific knockout ERC-Exos (IGF2-/--ERC-Exos). Experimental colitis mice induced by dextran sulfate sodium (DSS) were divided into the phosphate-buffered saline (untreated), ERC-Exos-treated and IGF2-/--ERC-Exos-treated groups. Colonic histopathological analysis and intestinal barrier function were explored. The infiltration of CD4+ T cells and dendritic cells (DCs) were analyzed by immunofluorescence staining and flow cytometry. The maturation and function of bone marrow-derived dendritic cells (BMDCs) in different exosome administrations were evaluated by flow cytometry, ELISA and the coculture system, respectively. RESULTS Compared with the untreated group, ERC-Exos treatment significantly attenuated DSS-induced weight loss, bloody stools, shortened colon length, pathological damage, as well as repaired the weakened intestinal mucosal barrier, including promoting the goblet cells retention, restoring the intestinal barrier integrity and enhancing the expression of tight junction proteins, while the protective effect of exosomes was impaired with the knockout of IGF2 in ERC-Exos. Additionally, IGF2-expressing ERC-Exos decreased the proportions of Th1 and Th17, increased the proportions of Treg, as well as attenuated DC infiltration and maturation in mesenteric lymph nodes and lamina propria of the colitis mice. ERC-Exos were also observed to be phagocytosed by BMDCs and IGF2 is responsible for the modulating effect of ERC-Exos on BMDCs in vitro. CONCLUSIONS Exosomes derived from ERCs can exert a therapeutic effect on experimental colitis with remarkable alleviation of the intestinal barrier damage and the abnormal mucosal immune responses. We emphasized that IGF2 plays a critical role for ERC-Exos mediated immunomodulatory function and protection against colitis.
Collapse
Affiliation(s)
- Qiang Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yi-Ni Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jing-Yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yi-Yi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Peng-Yu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Guang-Mei Yang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Xu Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China.
| |
Collapse
|
12
|
Liu S, Hou P, Zhang W, Zuo M, Liu Z, Wang T, Zhou Y, Chen W, Feng C, Hu B, Fang J. Species variations in muscle stem cell-mediated immunosuppression on T cells. Sci Rep 2024; 14:23410. [PMID: 39379408 PMCID: PMC11461908 DOI: 10.1038/s41598-024-73684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Muscle stem cells (MuSCs) are effective in treating inflammatory diseases driven by overactive innate immune responses, such as colitis and acute lung injury, due to their immunomodulatory properties. However, their potential in treating diseases driven by adaptive immune responses is still uncertain. When primed with inflammatory cytokines, MuSCs strongly suppressed T cell activation and proliferation in vitro in co-culture with activated splenocytes or peripheral blood mononuclear cells. Systemic administration of MuSCs from both mice and humans alleviated pathologies in mice with concanavalin A-induced acute liver injury, characterized by hyperactivated T lymphocytes. Importantly, MuSCs showed significant species-specific differences in their immunoregulatory functions. In mouse MuSCs (mMuSCs), deletion or inhibition of inducible nitric oxide synthase (iNOS) reduced their immunosuppressive activity, and absence of iNOS negated their therapeutic effects in liver injury. Conversely, in human MuSCs (hMuSCs), knockdown or inhibition of indoleamine 2,3-dioxygenase (IDO) eliminated their immunosuppressive effects, and loss of IDO function rendered hMuSCs ineffective in treating liver injury in mice. These results reveal significant species-specific differences in the mechanisms by which MuSCs mediate T cell immunosuppression. Mouse MuSCs rely on iNOS, while human MuSCs depend on IDO expression. This highlights the need to consider species-specific responses when evaluating MuSCs' therapeutic potential in immune-related disorders.
Collapse
Affiliation(s)
- Shisong Liu
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Pengbo Hou
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Weijia Zhang
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Muqiu Zuo
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhanhong Liu
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Tingting Wang
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yipeng Zhou
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Wangwang Chen
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chao Feng
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Bo Hu
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Jiankai Fang
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
13
|
Yang L, Hu C, Chen X, Zhang J, Feng Z, Xiao Y, He W, Cui T, Zhang X, Yang Y, Zhang Y, Yan Y. Upregulated expression of ubiquitin ligase TRIM21 promotes PKM2 nuclear translocation and astrocyte activation in experimental autoimmune encephalomyelitis. eLife 2024; 13:RP98181. [PMID: 39264698 PMCID: PMC11392529 DOI: 10.7554/elife.98181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Reactive astrocytes play critical roles in the occurrence of various neurological diseases such as multiple sclerosis. Activation of astrocytes is often accompanied by a glycolysis-dominant metabolic switch. However, the role and molecular mechanism of metabolic reprogramming in activation of astrocytes have not been clarified. Here, we found that PKM2, a rate-limiting enzyme of glycolysis, displayed nuclear translocation in astrocytes of EAE (experimental autoimmune encephalomyelitis) mice, an animal model of multiple sclerosis. Prevention of PKM2 nuclear import by DASA-58 significantly reduced the activation of mice primary astrocytes, which was observed by decreased proliferation, glycolysis and secretion of inflammatory cytokines. Most importantly, we identified the ubiquitination-mediated regulation of PKM2 nuclear import by ubiquitin ligase TRIM21. TRIM21 interacted with PKM2, promoted its nuclear translocation and stimulated its nuclear activity to phosphorylate STAT3, NF-κB and interact with c-myc. Further single-cell RNA sequencing and immunofluorescence staining demonstrated that TRIM21 expression was upregulated in astrocytes of EAE. TRIM21 overexpressing in mice primary astrocytes enhanced PKM2-dependent glycolysis and proliferation, which could be reversed by DASA-58. Moreover, intracerebroventricular injection of a lentiviral vector to knockdown TRIM21 in astrocytes or intraperitoneal injection of TEPP-46, which inhibit the nuclear translocation of PKM2, effectively decreased disease severity, CNS inflammation and demyelination in EAE. Collectively, our study provides novel insights into the pathological function of nuclear glycolytic enzyme PKM2 and ubiquitination-mediated regulatory mechanism that are involved in astrocyte activation. Targeting this axis may be a potential therapeutic strategy for the treatment of astrocyte-involved neurological disease.
Collapse
Affiliation(s)
- Luting Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Chunqing Hu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Xiaowen Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Jie Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Zhe Feng
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Yanxin Xiao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Weitai He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Tingting Cui
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Xin Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Yang Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Yaling Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| |
Collapse
|
14
|
Wang X, Cao L, Liu S, Zhou Y, Zhou J, Zhao W, Gao S, Liu R, Shi Y, Shao C, Fang J. The critical roles of IGFs in immune modulation and inflammation. Cytokine 2024; 183:156750. [PMID: 39243567 DOI: 10.1016/j.cyto.2024.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Insulin-like growth factors (IGFs) are crucial for embryonic and postnatal growth and development, influencing cell survival, metabolism, myogenesis, and cancer progression. Many studies have demonstrated that IGFs also play prominent roles in the modulation of both innate and adaptive immune systems during inflammation. Strikingly, IGFs dictate the phenotype and functional properties of macrophages and T cells. Furthermore, the interplay between IGFs and inflammatory cytokines may generate tissue-protective properties during inflammation. Herein, we review the recent advances on the dialogue between immune cells and IGFs, especially zooming in on the significance of immunomodulatory properties in inflammatory conditions, cancer and autoimmune diseases. The investigation of IGFs may have broad clinical implications.
Collapse
Affiliation(s)
- Xin Wang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lijuan Cao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiarui Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenxuan Zhao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengqi Gao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changshun Shao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jiankai Fang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Wang Y, Yuan Y, Wang R, Wang T, Guo F, Bian Y, Wang T, Ma Q, Yuan H, Du Y, Jin J, Jiang H, Han F, Jiang J, Pan Y, Wang L, Wu F. Injectable Thermosensitive Gel CH-BPNs-NBP for Effective Periodontitis Treatment through ROS-Scavenging and Jaw Vascular Unit Protection. Adv Healthc Mater 2024; 13:e2400533. [PMID: 38722018 DOI: 10.1002/adhm.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Periodontitis, a prevalent inflammatory condition in the oral cavity, is closely associated with oxidative stress-induced tissue damage mediated by excessive reactive oxygen species (ROS) production. The jaw vascular unit (JVU), encompassing both vascular and lymphatic vessels, plays a crucial role in maintaining tissue fluid homeostasis and contributes to the pathological process in inflammatory diseases of the jaw. This study presents a novel approach for treating periodontitis through the development of an injectable thermosensitive gel (CH-BPNs-NBP). The gel formulation incorporates black phosphorus nanosheets (BPNs), which are notable for their ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator that promotes lymphatic vessel function within the JVU. These results demonstrate that the designed thermosensitive gel serve as a controlled release system, delivering BPNs and NBP to the site of inflammation. CH-BPNs-NBP not only protects macrophages and human lymphatic endothelial cells from ROS attack but also promotes M2 polarization and lymphatic function. In in vivo studies, this work observes a significant reduction in inflammation and tissue damage, accompanied by a notable promotion of alveolar bone regeneration. This research introduces a promising therapeutic strategy for periodontitis, leveraging the unique properties of BPNs and NBP within an injectable thermosensitive gel.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuqing Yuan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tianyao Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qian Ma
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, School of Basic Medical Sciences, Key Laboratory for Aging & Disease, School of Biomedical Engineering and informatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
16
|
Sevim Bayrak C, Forst CV, Jones DR, Gresham DJ, Pushalkar S, Wu S, Vogel C, Mahal LK, Ghedin E, Ross T, García-Sastre A, Zhang B. Patient subtyping analysis of baseline multi-omic data reveals distinct pre-immune states associated with antibody response to seasonal influenza vaccination. Clin Immunol 2024; 266:110333. [PMID: 39089348 PMCID: PMC11340208 DOI: 10.1016/j.clim.2024.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
Understanding the molecular mechanisms underpinning diverse vaccination responses is critical for developing efficient vaccines. Molecular subtyping can offer insights into heterogeneous nature of responses and aid in vaccine design. We analyzed multi-omic data from 62 haemagglutinin seasonal influenza vaccine recipients (2019-2020), including transcriptomics, proteomics, glycomics, and metabolomics data collected pre-vaccination. We performed a subtyping analysis on the integrated data revealing five subtypes with distinct molecular signatures. These subtypes differed in the expression of pre-existing adaptive or innate immunity signatures, which were linked to significant variation in baseline immunoglobulin A (IgA) and hemagglutination inhibition (HAI) titer levels. It is worth noting that these differences persisted through day 28 post-vaccination, indicating the effect of initial immune state on vaccination response. These findings highlight the significance of interpersonal variation in baseline immune status as a crucial factor in determining the effectiveness of seasonal vaccines. Ultimately, incorporating molecular profiling could enable personalized vaccine optimization.
Collapse
Affiliation(s)
- Cigdem Sevim Bayrak
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt Sinai, New York, NY, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Christian V Forst
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt Sinai, New York, NY, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Microbiology, Icahn School of Medicine at Mt Sinai, New York, NY, USA
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, NY, New York, USA
| | - David J Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Smruti Pushalkar
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Shaohuan Wu
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Ted Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt Sinai, New York, NY, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Guo Q, Qian ZM. Macrophage based drug delivery: Key challenges and strategies. Bioact Mater 2024; 38:55-72. [PMID: 38699242 PMCID: PMC11061709 DOI: 10.1016/j.bioactmat.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
As a natural immune cell and antigen presenting cell, macrophages have been studied and engineered to treat human diseases. Macrophages are well-suited for use as drug carriers because of their biological characteristics, such as excellent biocompatibility, long circulation, intrinsic inflammatory homing and phagocytosis. Meanwhile, macrophages' uniquely high plasticity and easy re-education polarization facilitates their use as part of efficacious therapeutics for the treatment of inflammatory diseases or tumors. Although recent studies have demonstrated promising advances in macrophage-based drug delivery, several challenges currently hinder further improvement of therapeutic effect and clinical application. This article focuses on the main challenges of utilizing macrophage-based drug delivery, from the selection of macrophage sources, drug loading, and maintenance of macrophage phenotypes, to drug migration and release at target sites. In addition, corresponding strategies and insights related to these challenges are described. Finally, we also provide perspective on shortcomings on the road to clinical translation and production.
Collapse
Affiliation(s)
- Qian Guo
- Laboratory of Drug Delivery, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226019, China
- National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China
| |
Collapse
|
18
|
Romero-Gavilán F, Arias-Mainer C, Cerqueira A, Peñarrocha-Oltra D, Bernabeu-Mira JC, García-Arnáez I, Elortza F, Muriach M, Gurruchaga M, Goñi I, Suay J. Roughness affects the response of human fibroblasts and macrophages to sandblasted abutments. Biomed Eng Online 2024; 23:68. [PMID: 39020369 PMCID: PMC11253364 DOI: 10.1186/s12938-024-01264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND A strong seal of soft-tissue around dental implants is essential to block pathogens from entering the peri-implant interface and prevent infections. Therefore, the integration of soft-tissue poses a challenge in implant-prosthetic procedures, prompting a focus on the interface between peri-implant soft-tissues and the transmucosal component. The aim of this study was to analyse the effects of sandblasted roughness levels on in vitro soft-tissue healing around dental implant abutments. In parallel, proteomic techniques were applied to study the interaction of these surfaces with human serum proteins to evaluate their potential to promote soft-tissue regeneration. RESULTS Grade-5 machined titanium discs (MC) underwent sandblasting with alumina particles of two sizes (4 and 8 μm), resulting in two different surface types: MC04 and MC08. Surface morphology and roughness were characterised employing scanning electron microscopy and optical profilometry. Cell adhesion and collagen synthesis, as well as immune responses, were assessed using human gingival fibroblasts (hGF) and macrophages (THP-1), respectively. The profiles of protein adsorption to the surfaces were characterised using proteomics; samples were incubated with human serum, and the adsorbed proteins analysed employing nLC-MS/MS. hGFs exposed to MC04 showed decreased cell area compared to MC, while no differences were found for MC08. hGF collagen synthesis increased after 7 days for MC08. THP-1 macrophages cultured on MC04 and MC08 showed a reduced TNF-α and increased IL-4 secretion. Thus, the sandblasted topography led a reduction in the immune/inflammatory response. One hundred seventy-six distinct proteins adsorbed on the surfaces were identified. Differentially adsorbed proteins were associated with immune response, blood coagulation, angiogenesis, fibrinolysis and tissue regeneration. CONCLUSIONS Increased roughness through MC08 treatment resulted in increased collagen synthesis in hGF and resulted in a reduction in the surface immune response in human macrophages. These results correlate with the changes in protein adsorption on the surfaces observed through proteomics.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| | - Carlos Arias-Mainer
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - David Peñarrocha-Oltra
- Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, C/Gascó Oliag 1, Valencia, Spain
| | - Juan Carlos Bernabeu-Mira
- Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, C/Gascó Oliag 1, Valencia, Spain
| | - Iñaki García-Arnáez
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - María Muriach
- Unidad Pre-Departmental de Medicina, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Mariló Gurruchaga
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Isabel Goñi
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| |
Collapse
|
19
|
Wang H, Wang L, Gong G, Lin X, Luo J, Liu C, Mor G, Liao A. Interleukin-10: a novel metabolic inducer of macrophage differentiation and subsequently contributing to improved pregnancy outcomes of mice by orchestrating oxidative phosphorylation metabolism†. Biol Reprod 2024; 111:76-91. [PMID: 38501817 PMCID: PMC11466864 DOI: 10.1093/biolre/ioae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Metabolism regulates the phenotype and function of macrophages. After recruitment to local tissues, monocytes are influenced by the local microenvironment and differentiate into various macrophages depending on different metabolic pathways. However, the metabolic mechanisms underlying decidual macrophage differentiation remain unknown. Interleukin-10 (IL-10) is an important decidual macrophage inducer and promotes oxidative phosphorylation (OXPHOS) of bone marrow-derived macrophages. In this study, we mainly investigate the metabolic changes involved in IL-10-generated macrophages from monocytes using in vitro models. We demonstrate that exposure of monocytes (either peripheral or THP-1) to IL-10 altered the phenotype and function of resultant macrophages that are linked with OXPHOS changes. Interleukin-10 enhanced the mitochondrial complex I and III activity of THP-1 cell-differentiated macrophages and increased the mitochondrial membrane potential, intracellular adenosine triphosphate, and reactive oxygen species levels. Oxidative phosphorylation blockage with oligomycin changed the cell morphology of IL-10-generated macrophages and the expression levels of cytokines, such as transforming growth factor beta, tumor necrosis factor-alpha, interferon gamma, and IL-10, apart from changes in the expression level of the surface markers CD206, CD209, and CD163. Moreover, in vivo IL-10 administration reduced the lipopolysaccharide (LPS)-induced embryo resorption rate, and this effect was diminished when OXPHOS was inhibited, demonstrating that OXPHOS is important for the improved pregnancy outcomes of IL-10 in LPS-induced abortion-prone mice. Our findings provide deep insights into the roles of IL-10 in macrophage biology and pregnancy maintenance. Nevertheless, the direct evidence that OXPHOS is involved in decidual macrophage differentiation needs further investigations.
Collapse
Affiliation(s)
- Huan Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Liling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Guangshun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xinxiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Chunyan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
20
|
Jang HJ, Min HY, Kang YP, Boo HJ, Kim J, Ahn JH, Oh SH, Jung JH, Park CS, Park JS, Kim SY, Lee HY. Tobacco-induced hyperglycemia promotes lung cancer progression via cancer cell-macrophage interaction through paracrine IGF2/IR/NPM1-driven PD-L1 expression. Nat Commun 2024; 15:4909. [PMID: 38851766 PMCID: PMC11162468 DOI: 10.1038/s41467-024-49199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
Tobacco smoking (TS) is implicated in lung cancer (LC) progression through the development of metabolic syndrome. However, direct evidence linking metabolic syndrome to TS-mediated LC progression remains to be established. Our findings demonstrate that 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (NNK and BaP; NB), components of tobacco smoke, induce metabolic syndrome characteristics, particularly hyperglycemia, promoting lung cancer progression in male C57BL/6 J mice. NB enhances glucose uptake in tumor-associated macrophages by increasing the expression and surface localization of glucose transporter (GLUT) 1 and 3, thereby leading to transcriptional upregulation of insulin-like growth factor 2 (IGF2), which subsequently activates insulin receptor (IR) in LC cells in a paracrine manner, promoting its nuclear import. Nuclear IR binds to nucleophosmin (NPM1), resulting in IR/NPM1-mediated activation of the CD274 promoter and expression of programmed death ligand-1 (PD-L1). Restricting glycolysis, depleting macrophages, or blocking PD-L1 inhibits NB-mediated LC progression. Analysis of patient tissues and public databases reveals elevated levels of IGF2 and GLUT1 in tumor-associated macrophages, as well as tumoral PD-L1 and phosphorylated insulin-like growth factor 1 receptor/insulin receptor (pIGF-1R/IR) expression, suggesting potential poor prognostic biomarkers for LC patients. Our data indicate that paracrine IGF2/IR/NPM1/PD-L1 signaling, facilitated by NB-induced dysregulation of glucose levels and metabolic reprogramming of macrophages, contributes to TS-mediated LC progression.
Collapse
Affiliation(s)
- Hyun-Ji Jang
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Young Min
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Jin Boo
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Histology, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jisung Kim
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jee Hwan Ahn
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Ho Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Hwa Jung
- PET core, Convergence Medicine Research Center, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, 14584, Republic of Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, 14584, Republic of Korea
| | - Seog-Young Kim
- PET core, Convergence Medicine Research Center, Asan Medical Center, Seoul, 05505, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
21
|
Sun Y, Zhang X, Nie X, Yang R, Zhao X, Cui C, Liu W. Dough-Kneading-Inspired Design of an Adhesive Cardiac Patch to Attenuate Cardiac Fibrosis and Improve Cardiac Function via Regulating Glycometabolism. Adv Healthc Mater 2024; 13:e2303685. [PMID: 38386972 DOI: 10.1002/adhm.202303685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recently, hydrogel adhesive patches have been explored for treating myocardial infarction. However, achieving secure adhesion onto the wet beating heart and local regulation of pathological microenvironment remains challenging. Herein, a dough-kneading-inspired design of hydrogel adhesive cardiac patch is reported, aiming to improve the strength of prevalent powder-formed patch and retain wet adhesion. In mimicking the polysaccharide and protein components of natural flour, methacrylated polyglutamic acid (PGAMA) is electrostatically interacted with hydroxypropyl chitosan (HPCS) to form PGAMA/HPCS coacervate hydrogel. The PGAMA/HPCS hydrogel is freeze-dried and ground into powders, which are further rehydrated with two aqueous solutions of functional drug, 3-acrylamido phenylboronic acid (APBA)/rutin (Rt) complexes for protecting the myocardium from advanced glycation end product (AGEs) injury by reactive oxygen species (ROS) -responsive Rt release, and hypoxanthine-loaded methacrylated hyaluronic acid (HAMA) nanogels for enhancing macrophage targeting ability to regulate glycometabolism for combating inflammation. The rehydrated powders bearing APBA/Rt complexes and HAMA-hypoxanthine nanogels are repeatedly kneaded into a dough-like gel, which is further subjected to thermal-initiated crosslinking to form a stabilized and sticky patch. This biofunctional patch is applied onto the rats' infarcted myocardium, and the outcomes at 28 days post-surgery indicate efficient restoration of cardiac functions and attenuation of cardiac fibrosis.
Collapse
Affiliation(s)
- Yage Sun
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xiaoping Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xiongfeng Nie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Rong Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xinrui Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
22
|
Elfstrum AK, Rumahorbo AH, Reese LE, Nelson EV, McCluskey BM, Schwertfeger KL. LYVE-1-expressing Macrophages Modulate the Hyaluronan-containing Extracellular Matrix in the Mammary Stroma and Contribute to Mammary Tumor Growth. CANCER RESEARCH COMMUNICATIONS 2024; 4:1380-1397. [PMID: 38717149 PMCID: PMC11141485 DOI: 10.1158/2767-9764.crc-24-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Macrophages represent a heterogeneous myeloid population with diverse functions in normal tissues and tumors. While macrophages expressing the cell surface marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) have been identified in stromal regions of the normal mammary gland and in the peritumoral stroma, their functions within these regions are not well understood. Using a genetic mouse model of LYVE-1+ macrophage depletion, we demonstrate that loss of LYVE-1+ macrophages is associated with altered extracellular matrix remodeling in the normal mammary gland and reduced mammary tumor growth in vivo. In further studies focused on investigating the functions of LYVE-1+ macrophages in the tumor microenvironment, we demonstrate that LYVE-1 expression correlates with an increased ability of macrophages to bind, internalize, and degrade hyaluronan. Consistent with this, we show that depletion of LYVE-1+ macrophages correlates with increased hyaluronan accumulation in both the normal mammary gland and in mammary tumors. Analysis of single-cell RNA sequencing of macrophages isolated from these tumors reveals that depletion of LYVE-1+ macrophages in tumors drives a shift in the majority of the remaining macrophages toward a proinflammatory phenotype, as well as an increase in CD8+ T-cell infiltration. Together, these findings indicate that LYVE-1+ macrophages represent a tumor-promoting anti-inflammatory subset of macrophages that contributes to hyaluronan remodeling in the tumor microenvironment. SIGNIFICANCE We have identified a macrophage subset in mouse mammary tumors associated with tumor structural components. When this macrophage subset is absent in tumors, we report a delay in tumor growth and an increase in antitumor immune cells. Understanding the functions of distinct macrophage subsets may allow for improved therapeutic strategies for patients with breast cancer.
Collapse
Affiliation(s)
- Alexis K. Elfstrum
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota
| | - Annisa H. Rumahorbo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Lyndsay E. Reese
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Emma V. Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Braedan M. McCluskey
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L. Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
23
|
Mancarella C, Morrione A, Scotlandi K. Extracellular Interactors of the IGF System: Impact on Cancer Hallmarks and Therapeutic Approaches. Int J Mol Sci 2024; 25:5915. [PMID: 38892104 PMCID: PMC11172729 DOI: 10.3390/ijms25115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Dysregulation of the insulin-like growth factor (IGF) system determines the onset of various pathological conditions, including cancer. Accordingly, therapeutic strategies have been developed to block this system in tumor cells, but the results of clinical trials have been disappointing. After decades of research in the field, it is safe to say that one of the major reasons underlying the poor efficacy of anti-IGF-targeting agents is derived from an underestimation of the molecular complexity of this axis. Genetic, transcriptional, post-transcriptional and functional interactors interfere with the activity of canonical components of this axis, supporting the need for combinatorial approaches to effectively block this system. In addition, cancer cells interface with a multiplicity of factors from the extracellular compartment, which strongly affect cell destiny. In this review, we will cover novel extracellular mechanisms contributing to IGF system dysregulation and the implications of such dangerous liaisons for cancer hallmarks and responses to known and new anti-IGF drugs. A deeper understanding of both the intracellular and extracellular microenvironments might provide new impetus to better decipher the complexity of the IGF axis in cancer and provide new clues for designing novel therapeutic approaches.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
24
|
Fang Q, Wu W, Xiao Z, Zeng D, Liang R, Wang J, Yuan J, Su W, Xu X, Zheng Y, Lai T, Sun J, Fu Q, Zheng SG. Gingival-derived mesenchymal stem cells alleviate allergic asthma inflammation via HGF in animal models. iScience 2024; 27:109818. [PMID: 38766356 PMCID: PMC11099335 DOI: 10.1016/j.isci.2024.109818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Allergic asthma is a chronic non-communicable disease characterized by lung tissue inflammation. Current treatments can alleviate the clinical symptoms to some extent, but there is still no cure. Recently, the transplantation of mesenchymal stem cells (MSCs) has emerged as a potential approach for treating allergic asthma. Gingival-derived mesenchymal stem cells (GMSCs), a type of MSC recently studied, have shown significant therapeutic effects in various experimental models of autoimmune diseases. However, their application in allergic diseases has yet to be fully elucidated. In this study, using an OVA-induced allergic asthma model, we demonstrated that GMSCs decrease CD11b+CD11c+ proinflammatory dendritic cells (DCs), reduce Th2 cells differentiation, and thus effectively diminish eosinophils infiltration. We also identified that the core functional factor, hepatocyte growth factor (HGF) secreted by GMSCs, mediated its effects in relieving airway inflammation. Taken together, our findings indicate GMSCs as a potential therapy for allergic asthma and other related diseases.
Collapse
Affiliation(s)
- Qiannan Fang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Wenbin Wu
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zexiu Xiao
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Donglan Zeng
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rongzhen Liang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| | - Julie Wang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Jia Yuan
- Division of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Zheng
- Department of Dermatology Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianwen Lai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jianbo Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qingling Fu
- Otorhinolaryngology Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| |
Collapse
|
25
|
Farzamfar S, Garcia LM, Rahmani M, Bolduc S. Navigating the Immunological Crossroads: Mesenchymal Stem/Stromal Cells as Architects of Inflammatory Harmony in Tissue-Engineered Constructs. Bioengineering (Basel) 2024; 11:494. [PMID: 38790361 PMCID: PMC11118848 DOI: 10.3390/bioengineering11050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In the dynamic landscape of tissue engineering, the integration of tissue-engineered constructs (TECs) faces a dual challenge-initiating beneficial inflammation for regeneration while avoiding the perils of prolonged immune activation. As TECs encounter the immediate reaction of the immune system upon implantation, the unique immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) emerge as key navigators. Harnessing the paracrine effects of MSCs, researchers aim to craft a localized microenvironment that not only enhances TEC integration but also holds therapeutic promise for inflammatory-driven pathologies. This review unravels the latest advancements, applications, obstacles, and future prospects surrounding the strategic alliance between MSCs and TECs, shedding light on the immunological symphony that guides the course of regenerative medicine.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
| | - Luciana Melo Garcia
- Department of Medicine, Université Laval, Québec, QC G1V 0A6, Canada;
- Hematology-Oncology Service, CHU de Québec—Université Laval, Québec, QC G1V 0A6, Canada
| | - Mahya Rahmani
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
| | - Stephane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
26
|
Wang T, Tang Y, Xia Y, Zhang Q, Cao S, Bie M, Kang F. IGF2 promotes alveolar bone regeneration in murine periodontitis via inhibiting cGAS/STING-mediated M1 macrophage polarization. Int Immunopharmacol 2024; 132:111984. [PMID: 38565043 DOI: 10.1016/j.intimp.2024.111984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Periodontitis is a chronic inflammatory disease with the destruction of supporting periodontal tissue. This study evaluated the role of insulin-like growth factor 2 (IGF2) in periodontitis by inhibiting the polarization of M1 macrophages via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. IGF2 was enriched in the gingival tissue of murine periodontitis model identified by RNA sequencing. IGF2 application alleviated the expression of pro-inflammatory factors and promoted osteogenesis and the expression of related genes and proteins in a dose-dependent manner in periodontitis. The result of micro-CT verified this finding. Both in vivo and in vitro results revealed that IGF2 decreased the polarization of M1 macrophages and pro-inflammatory factors by immunofluorescence staining, flow cytometry, western blotting and RT-PCR. IGF2 application promoted the osteogenic ability of periodontal ligament fibroblasts (PDLFs) indirectly via its inhibition of M1 polarization evaluated by alkaline phosphatase and alizarin red staining. Then, the cGAS/STING pathway was upregulated in periodontitis and macrophages challenged by LPS, the inhibition of which led to downregulation of M1 polarization. Furthermore, IGF2 could downregulate cGAS, STING and the phosphorylation of P65. Collectively, our study indicates IGF2 can regulate the polarization of M1 macrophages via the cGAS/STING pathway and highlights the promising future of IGF2 as a therapeutic treatment for periodontitis.
Collapse
Affiliation(s)
- Tairan Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yi Tang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuxing Xia
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qian Zhang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shaokang Cao
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Miaomiao Bie
- Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feiwu Kang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
27
|
Robb KP, Galipeau J, Shi Y, Schuster M, Martin I, Viswanathan S. Failure to launch commercially-approved mesenchymal stromal cell therapies: what's the path forward? Proceedings of the International Society for Cell & Gene Therapy (ISCT) Annual Meeting Roundtable held in May 2023, Palais des Congrès de Paris, Organized by the ISCT MSC Scientific Committee. Cytotherapy 2024; 26:413-417. [PMID: 37804284 DOI: 10.1016/j.jcyt.2023.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 10/09/2023]
Abstract
Mesenchymal stromal cells (MSCs) are promising cell therapy candidates, but their debated efficacy in clinical trials still limits successful adoption. Here, we discuss proceedings from a roundtable session titled "Failure to Launch Mesenchymal Stromal Cells 10 Years Later: What's on the Horizon?" held at the International Society for Cell & Gene Therapy 2023 Annual Meeting. Panelists discussed recent progress toward developing patient-stratification approaches for MSC treatments, highlighting the role of baseline levels of inflammation in mediating MSC treatment efficacy. In addition, MSC critical quality attributes (CQAs) are beginning to be elucidated and applied to investigational MSC products, including immunomodulatory functional assays and other potency markers that will help to ensure product consistency and quality. Lastly, next-generation MSC products, such as culture-priming strategies, were discussed as a promising strategy to augment MSC basal fitness and therapeutic potency. Key variables that will need to be considered alongside investigations of patient stratification approaches, CQAs and next-generation MSC products include the specific disease target being evaluated, route of administration of the cells and cell manufacturing parameters; these factors will have to be matched with postulated mechanisms of action towards treatment efficacy. Taken together, patient stratification metrics paired with the selection of therapeutically potent MSCs (using rigorous CQAs and/or engineered MSC products) represent a path forward to improve clinical successes and regulatory endorsements.
Collapse
Affiliation(s)
- Kevin P Robb
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jacques Galipeau
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin in Madison, Madison, Wisconsin, USA; University of Wisconsin Carbone Comprehensive Cancer, University of Wisconsin in Madison, Madison, Wisconsin, USA
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; The Third Affiliated Hospital of Soochow University, The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou Jiangsu, China
| | | | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Tang H, Lu K, Wang Y, Shi Y, Ma W, Chen X, Li B, Shao Y. Analyses of lncRNA and mRNA profiles in recurrent atrial fibrillation after catheter ablation. Eur J Med Res 2024; 29:244. [PMID: 38643140 PMCID: PMC11031869 DOI: 10.1186/s40001-024-01799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide. Catheter ablation has become a crucial treatment for AF. However, there is a possibility of atrial fibrillation recurrence after catheter ablation. Our study sought to elucidate the role of lncRNA‒mRNA regulatory networks in late AF recurrence after catheter ablation. METHODS We conducted RNA sequencing to profile the transcriptomes of 5 samples from the presence of recurrence after AF ablation (P-RAF) and 5 samples from the absence of recurrence after AF ablation (A-RAF). Differentially expressed genes (DEGs) and long noncoding RNAs (DE-lncRNAs) were analyzed using the DESeq2 R package. The functional correlations of the DEGs were assessed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein‒protein interaction (PPI) network was constructed using STRING and Cytoscape. We also established a lncRNA‒mRNA regulatory network between DE-lncRNAs and DEGs using BEDTools v2.1.2 software and the Pearson correlation coefficient method. To validate the high-throughput sequencing results of the hub genes, we conducted quantitative real-time polymerase chain reaction (qRT‒PCR) experiments. RESULTS A total of 28,528 mRNAs and 42,333 lncRNAs were detected. A total of 96 DEGs and 203 DE-lncRNAs were identified between the two groups. GO analysis revealed that the DEGs were enriched in the biological processes (BPs) of "regulation of immune response" and "regulation of immune system process", the cellular components (CCs) of "extracellular matrix" and "cell‒cell junction", and the molecular functions (MFs) of "signaling adaptor activity" and "protein-macromolecule adaptor activity". According to the KEGG analysis, the DEGs were associated with the "PI3K-Akt signaling pathway" and "MAPK signaling pathway." Nine hub genes (MMP9, IGF2, FGFR1, HSPG2, GZMB, PEG10, GNLY, COL6A1, and KCNE3) were identified through the PPI network. lncRNA-TMEM51-AS1-201 was identified as a core regulator in the lncRNA‒mRNA regulatory network, suggesting its potential impact on the recurrence of AF after catheter ablation through the regulation of COL6A1, FGFR1, HSPG2, and IGF2. CONCLUSIONS The recurrence of atrial fibrillation after catheter ablation may be associated with immune responses and fibrosis, with the extracellular matrix playing a crucial role. TMEM51-AS1-201 has been identified as a potential key target for AF recurrence after catheter ablation.
Collapse
Affiliation(s)
- Huaiguang Tang
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao University, No. 5, Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Kongmiao Lu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, No. 5, Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Yan Wang
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, No. 5, Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Yue Shi
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, No. 5, Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Wansheng Ma
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, No. 5, Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Xiaomeng Chen
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, No. 5, Donghai Middle Road, Qingdao, 266071, Shandong, China.
| | - Bingong Li
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, No. 5, Donghai Middle Road, Qingdao, 266071, Shandong, China.
| | - Yibing Shao
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, No. 5, Donghai Middle Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
29
|
Lai H, Yip HC, Gong Y, Chan KF, Leung KKC, Chan MS, Xia X, Chiu PWY. MFGE8 in exosomes derived from mesenchymal stem cells prevents esophageal stricture after endoscopic submucosal dissection in pigs. J Nanobiotechnology 2024; 22:143. [PMID: 38561800 PMCID: PMC10986023 DOI: 10.1186/s12951-024-02429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Endoscopic submucosal dissection (ESD) is the current standard treatment for early-stage esophageal neoplasms. However, the postoperative esophageal stricture after extensive mucosal dissection remains a severe challenge with limited effective treatments available. In this study, we introduced a chitosan/gelatin (ChGel) sponge encapsulating the adipose mesenchymal stem cells (ADMSCs)-derived exosomes (ChGelMSC-Exo) for the prevention of esophageal stenosis after ESD in a porcine model. RESULTS Pigs were randomly assigned into (1) ChGelMSC-Exo treatment group, (2) ChGelPBS group, and (3) the controls. Exosome treatments were applied immediately on the day after ESD as well as on day 7. Exosome components crucial for wound healing were investigated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and small RNA sequencing. ChGelMSC-Exo treatment significantly reduced mucosal contraction on day 21, with less fiber accumulation and inflammatory infiltration, and enhanced angiogenesis when compared with the control and ChGelPBS groups. The anti-fibrotic effects following MSC-Exo treatment were further found to be associated with the anti-inflammatory M2 polarization of the resident macrophages, especially within the M2b subset characterized by the reduced TGFβ1 secretion, which sufficiently inhibited inflammation and prevented the activation of myofibroblast with less collagen production at the early stage after ESD. Moreover, the abundant expression of exosomal MFGE8 was identified to be involved in the transition of the M2b-macrophage subset through the activation of MFGE8/STAT3/Arg1 axis. CONCLUSIONS Our study demonstrates that exosomal MFGE8 significantly promotes the polarization of the M2b-macrophage subset, consequently reducing collagen deposition. These findings suggest a promising potential for MSC-Exo therapy in preventing the development of esophageal stricture after near-circumferential ESD.
Collapse
Affiliation(s)
- Huasheng Lai
- Department of Gastroenterology and Hepatology, Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People's Republic of China
- Department of Surgery and State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China
| | - Hon-Chi Yip
- Department of Surgery and State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China
| | - Yu Gong
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Kai-Fung Chan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China
| | - Kevin Kai-Chung Leung
- Department of Surgery and State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China
| | - Melissa Shannon Chan
- Department of Surgery and State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China
| | - Xianfeng Xia
- Department of Surgery and State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China.
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China.
| | - Philip Wai-Yan Chiu
- Department of Surgery and State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China.
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China.
| |
Collapse
|
30
|
Li Y, Li P, Tao Q, Abuqeis IJA, Xiyang Y. Role and limitation of cell therapy in treating neurological diseases. IBRAIN 2024; 10:93-105. [PMID: 38682022 PMCID: PMC11045202 DOI: 10.1002/ibra.12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
The central role of the brain in governing systemic functions within human physiology underscores its paramount significance as the focal point of physiological regulation. The brain, a highly sophisticated organ, orchestrates a diverse array of physiological processes encompassing motor control, sensory perception, cognition, emotion, and the regulation of vital functions, such as heartbeat, respiration, and hormonal equilibrium. A notable attribute of neurological diseases manifests as the depletion of neurons and the occurrence of tissue necrosis subsequent to injury. The transplantation of neural stem cells (NSCs) into the brain exhibits the potential for the replacement of lost neurons and the reconstruction of neural circuits. Furthermore, the transplantation of other types of cells in alternative locations can secrete nutritional factors that indirectly contribute to the restoration of nervous system equilibrium and the mitigation of neural inflammation. This review summarized a comprehensive investigation into the role of NSCs, hematopoietic stem cells, mesenchymal stem cells, and support cells like astrocytes and microglia in alleviating neurological deficits after cell infusion. Moreover, a thorough assessment was undertaken to discuss extant constraints in cellular transplantation therapies, concurrently delineating indispensable model-based methodologies, specifically on organoids, which were essential for guiding prospective research initiatives in this specialized field.
Collapse
Affiliation(s)
- Yu‐Qi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Peng‐Fei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Qian Tao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | | | - Yan‐Bin Xiyang
- School of Basic MedicineKunming Medical UniversityKunmingChina
- Department of Pharmacology and Toxicology, College of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
31
|
Li Y, Wu C, Lee J, Ning Q, Lim J, Eoh H, Wang S, Hurrell BP, Akbari O, Ou JHJ. Hepatitis B virus e antigen induces atypical metabolism and differentially regulates programmed cell deaths of macrophages. PLoS Pathog 2024; 20:e1012079. [PMID: 38466743 PMCID: PMC10957081 DOI: 10.1371/journal.ppat.1012079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Macrophages can undergo M1-like proinflammatory polarization with low oxidative phosphorylation (OXPHOS) and high glycolytic activities or M2-like anti-inflammatory polarization with the opposite metabolic activities. Here we show that M1-like macrophages induced by hepatitis B virus (HBV) display high OXPHOS and low glycolytic activities. This atypical metabolism induced by HBV attenuates the antiviral response of M1-like macrophages and is mediated by HBV e antigen (HBeAg), which induces death receptor 5 (DR5) via toll-like receptor 4 (TLR4) to induce death-associated protein 3 (DAP3). DAP3 then induces the expression of mitochondrial genes to promote OXPHOS. HBeAg also enhances the expression of glutaminases and increases the level of glutamate, which is converted to α-ketoglutarate, an important metabolic intermediate of the tricarboxylic acid cycle, to promote OXPHOS. The induction of DR5 by HBeAg leads to apoptosis of M1-like and M2-like macrophages, although HBeAg also induces pyroptosis of the former. These findings reveal novel activities of HBeAg, which can reprogram mitochondrial metabolism and trigger different programmed cell death responses of macrophages depending on their phenotypes to promote HBV persistence.
Collapse
Affiliation(s)
- Yumei Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Christine Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jiyoung Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Qiqi Ning
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Juhyeon Lim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sean Wang
- Michael Amini Transfusion Medicine Center, City of Hope, Duarte, California, United States of America
| | - Benjamin P. Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jing-hsiung James Ou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
32
|
Gao M, Guo H, Dong X, Wang Z, Yang Z, Shang Q, Wang Q. Regulation of inflammation during wound healing: the function of mesenchymal stem cells and strategies for therapeutic enhancement. Front Pharmacol 2024; 15:1345779. [PMID: 38425646 PMCID: PMC10901993 DOI: 10.3389/fphar.2024.1345779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
A wound takes a long time to heal and involves several steps. Following tissue injury, inflammation is the primary cause of tissue regeneration and repair processes. As a result, the pathophysiological processes involving skin damage, healing, and remodeling depend critically on the control of inflammation. The fact that it is a feasible target for improving the prognosis of wound healing has lately become clear. Mesenchymal stem cells (MSCs) are an innovative and effective therapeutic option for wound healing due to their immunomodulatory and paracrine properties. By controlling the inflammatory milieu of wounds through immunomodulation, transplanted MSCs have been shown to speed up the healing process. In addition to other immunomodulatory mechanisms, including handling neutrophil activity and modifying macrophage polarization, there may be modifications to the activation of T cells, natural killer (NK) cells, and dendritic cells (DCs). Furthermore, several studies have shown that pretreating MSCs improves their ability to modulate immunity. In this review, we summarize the existing knowledge about how MSCs influence local inflammation in wounds by influencing immunity to facilitate the healing process. We also provide an overview of MSCs optimizing techniques when used to treat wounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiying Wang
- Department of Plastic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Cui Y, Wu S, Liu K, Zhao H, Ma B, Gong L, Zhou Q, Li X. Extra villous trophoblast-derived PDL1 can ameliorate macrophage inflammation and promote immune adaptation associated with preeclampsia. J Reprod Immunol 2024; 161:104186. [PMID: 38134680 DOI: 10.1016/j.jri.2023.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Severe preeclampsia (sPE) is a systemic syndrome that may originate from chronic inflammation. Maintaining maternal-fetal hemostasis by the co-inhibitory molecule programmed death ligand 1 (PDL1) can be favorable for ameliorating inflammation from immune cells. Apart from programmed death 1 (PD1) expression, decidual macrophages (dMs) produce inflammatory cytokines, in response to cells which express PDL1. However, strong evidence is lacking regarding whether the PDL1/PD1 interaction between trophoblasts and decidual macrophages affects inflammation during sPE development. METHODS To determine whether the trophoblast-macrophage crosstalk via the PDL1/PD1 axis modulates the inflammatory response in sPE-like conditions, at first, maternal-fetal tissues from sPE and normal patients were collected, and the PDL1/PD1 distribution was analyzed by Western blot, immunohistochemistry/ immunofluorescence and flow cytometry. Next, a coculture system was established and flow cytometry was used to identify how PDL1 was involved in macrophage-related inflammation under hypoxic stress. Transcriptional analysis was performed to clarify the inflammation-associated pathway induced by the PDL1/PD1 interaction. Finally, the Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) mouse model was used to examine the effect of PDL1 on macrophage-related inflammation by measuring PE-like symptoms. RESULTS In maternal-fetal tissue from sPE patients, placental extravillous trophoblasts (EVTs) and dMs had a surprisingly increase of PDL1 and PD1 expression, respectively, accompanied by a higher percentage of CD68 +CD86 + dMs. In vitro experiments showed that trophoblast-derived PDL1 under hypoxia interacted with PD1 on CD14 +CD80 +macrophages, leading to suppression of inflammation through the TNFα-p38/NFκB pathway. Accordingly, the PE-like mouse model showed a reversal of PE-like symptoms and a reduced F4/80 + CD86 + macrophage percentage in the uterus in response to recombinant PDL1 protein administration, indicating the protective effect of PDL1. DISCUSSION Our results initially explained an immunological adaptation of trophoblasts under placental hypoxia, although this protection was insufficient. Our findings suggest the possible capacity of modulating PDL1 expression as a potential therapeutic strategy to target the inflammatory response in sPE.
Collapse
Affiliation(s)
- Yutong Cui
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Suwen Wu
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Ketong Liu
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Huanqiang Zhao
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Bo Ma
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Lili Gong
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Qiongjie Zhou
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| | - Xiaotian Li
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China; Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
34
|
Sun L, Wang X, Guan S, Chi L, Liang M, Lu X, Luo T. Inhibition of voltage-gated Hv1 alleviates LPS-induced neuroinflammation via regulation of microglial metabolic reprogramming. Int Immunopharmacol 2024; 127:111361. [PMID: 38145600 DOI: 10.1016/j.intimp.2023.111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
A growing body of evidence highlights the crucial role of metabolic reprogramming in activated immune cells, significantly contributing to both the initiation and progression of neuroinflammation and neurodegenerative diseases. The voltage-gated H channel (Hv1) has been reported to be involved in microglial activation and acts as a key driver of neuroinflammation. This study aimed to explore how Hv1-mediated metabolic reprogramming contributes to neuroinflammation and to assess the therapeutic potential of the Hv1 inhibitor 2-GBI in a model of lipopolysaccharide (LPS)-induced neuroinflammation. We investigated the influence of 2-GBI on the generation of ROS, metabolic reprogramming, and pro-inflammatory mediator production in vitro and examined the therapeutic effect of 2-GBI on microglial activation and hippocampal neuroinflammation in vivo. The results indicated that 2-GBI attenuated the LPS-induced pro-inflammatory response and aerobic glycolysis in microglia, specifically mitigating HIF1α-mediated upregulation of glycolysis. 2-GBI exerted a protective effect against LPS-induced neuroinflammation through HIF1α pathway-regulated aerobic glycolysis. Using a transwell coculture system, we demonstrated that 2-GBI reversed PC12 cell death caused by BV2-mediated neuroinflammation. In vivo experiments further suggested that 2-GBI mitigated neuroinflammatory processes and cognitive dysfunction via microglial metabolic reprogramming. Collectively, our results highlight the potential of Hv1 inhibition as a therapeutic strategy for alleviating LPS-induced neuroinflammation by modulating microglial metabolic reprogramming.
Collapse
Affiliation(s)
- Lingbin Sun
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Xihua Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Shuyuan Guan
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Laiting Chi
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Mingjin Liang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Xiao Lu
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
35
|
Jiang W, Lin Y, Qian L, Lu S, Shen H, Ge X, Miao L. Mulberry Leaf Polysaccharides Attenuate Oxidative Stress Injury in Peripheral Blood Leukocytes by Regulating Endoplasmic Reticulum Stress. Antioxidants (Basel) 2024; 13:136. [PMID: 38397734 PMCID: PMC10886326 DOI: 10.3390/antiox13020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
The present study assessed the protective effects and underlying mechanisms of mulberry leaf polysaccharides (MLPs) against hydrogen peroxide (H2O2)-induced oxidative stress injury in the peripheral blood leukocytes (PBLs) of Megalobrama amblycephala. Five treatment groups were established in vitro: the NC group (PBLs incubated in an RPMI-1640 complete medium for 4 h), the HP group (PBLs incubated in an RPMI-1640 complete medium for 3 h, and then stimulated with 100 μM of H2O2 for 1 h), and the 50/100/200-MLP pre-treatment groups (PBLs were pre-treated with MLPs (50, 100, and 200 μg/mL) for 3 h, and then stimulated with 100 μM of H2O2 for 1 h). The results showed that MLP pre-treatment dose-dependently enhanced PBLs' antioxidant capacities. The 200 μg/mL MLP pre-treatment effectively protected the antioxidant system of PBLs from H2O2-induced oxidative damage by reducing the malondialdehyde content and lactic dehydrogenase cytotoxicity, and increasing catalase and superoxide dismutase activities (p < 0.05). The over-production of reactive oxygen species, depletion of nicotinamide adenine dinucleotide phosphate, and collapse of the mitochondrial membrane potential were significantly inhibited in the 200-MLP pre-treatment group (p < 0.05). The expressions of endoplasmic reticulum stress-related genes (forkhead box O1α (foxO1α), binding immunoglobulin protein (bip), activating transcription factor 6 (atf6), and C/EBP-homologous protein (chop)), Ca2+ transport-related genes (voltage-dependent anion-selective channel 1 (vdac1), mitofusin 2 (mfn2), and mitochondrial Ca2+ uniporter (mcu)), and interleukin 6 (il-6) and bcl2-associated x (bax) were significantly lower in the 200-MLP pre-treatment group than in the HP group (p < 0.05), which rebounded to normal levels in the NC group (p > 0.05). These results indicated that MLP pre-treatment attenuated H2O2-induced PBL oxidative damage in the M. amblycephala by inhibiting endoplasmic reticulum stress and maintaining mitochondrial function. These findings also support the possibility that MLPs can be exploited as a natural dietary supplement for M. amblycephala, as they protect against oxidative damage.
Collapse
Affiliation(s)
- Wenqiang Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Linjie Qian
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
| | - Siyue Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Huaishun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Linghong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| |
Collapse
|
36
|
Bayrak CS, Forst C, Jones DR, Gresham D, Pushalkar S, Wu S, Vogel C, Mahal L, Ghedin E, Ross T, García-Sastre A, Zhang B. Patient Subtyping Analysis of Baseline Multi-omic Data Reveals Distinct Pre-immune States Predictive of Vaccination Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576213. [PMID: 38328256 PMCID: PMC10849502 DOI: 10.1101/2024.01.18.576213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Understanding the molecular mechanisms that underpin diverse vaccination responses is a critical step toward developing efficient vaccines. Molecular subtyping approaches can offer valuable insights into the heterogeneous nature of responses and aid in the design of more effective vaccines. In order to explore the molecular signatures associated with the vaccine response, we analyzed baseline transcriptomics data from paired samples of whole blood, proteomics and glycomics data from serum, and metabolomics data from urine, obtained from influenza vaccine recipients (2019-2020 season) prior to vaccination. After integrating the data using a network-based model, we performed a subtyping analysis. The integration of multiple data modalities from 62 samples resulted in five baseline molecular subtypes with distinct molecular signatures. These baseline subtypes differed in the expression of pre-existing adaptive or innate immunity signatures, which were linked to significant variation across subtypes in baseline immunoglobulin A (IgA) and hemagglutination inhibition (HAI) titer levels. It is worth noting that these significant differences persisted through day 28 post-vaccination, indicating the effect of initial immune state on vaccination response. These findings highlight the significance of interpersonal variation in baseline immune status as a crucial factor in determining vaccine response and efficacy. Ultimately, incorporating molecular profiling could enable personalized vaccine optimization.
Collapse
|
37
|
Hoang TX, Kim JY. Regulatory macrophages in solid organ xenotransplantation. KOREAN JOURNAL OF TRANSPLANTATION 2023; 37:229-240. [PMID: 38115165 PMCID: PMC10772277 DOI: 10.4285/kjt.23.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023] Open
Abstract
Due to a critical organ shortage, pig organs are being explored for use in transplantation. Differences between species, particularly in cell surface glycans, can trigger elevated immune responses in xenotransplantation. To mitigate the risk of hyperacute rejection, genetically modified pigs have been developed that lack certain glycans and express human complement inhibitors. Nevertheless, organs from these pigs may still provoke stronger inflammatory and innate immune reactions than allotransplants. Dysregulation of coagulation and persistent inflammation remain obstacles in the transplantation of pig organs into primates. Regulatory macrophages (Mregs), known for their anti-inflammatory properties, could offer a potential solution. Mregs secrete interleukin 10 and transforming growth factor beta, thereby suppressing immune responses and promoting the development of regulatory T cells. These Mregs are typically induced via the stimulation of monocytes or macrophages with macrophage colony-stimulating factor and interferon gamma, and they conspicuously express the stable marker dehydrogenase/reductase 9. Consequently, understanding the precise mechanisms governing Mreg generation, stability, and immunomodulation could pave the way for the therapeutic use of Mregs generated in vitro. This approach has the potential to reduce the required dosages and durations of anti-inflammatory and immunosuppressive medications in preclinical and clinical settings.
Collapse
Affiliation(s)
- Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam, Korea
| | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam, Korea
| |
Collapse
|
38
|
Yao S, Weng D, Wang Y, Zhang Y, Huang Q, Wu K, Li H, Zhang X, Yin Y, Xu W. The preprogrammed anti-inflammatory phenotypes of CD11c high macrophages by Streptococcus pneumoniae aminopeptidase N safeguard from allergic asthma. J Transl Med 2023; 21:898. [PMID: 38082290 PMCID: PMC10712085 DOI: 10.1186/s12967-023-04768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Early microbial exposure is associate with protective allergic asthma. We have previously demonstrated that Streptococcus pneumoniae aminopeptidase N (PepN), one of the pneumococcal components, inhibits ovalbumin (OVA) -induced airway inflammation in murine models of allergic asthma, but the underlying mechanism was incompletely determined. METHODS BALB/c mice were pretreated with the PepN protein and exposed intranasally to HDM allergen. The anti-inflammatory mechanisms were investigated using depletion and adoptive transfer experiments as well as transcriptome analysis and isolated lung CD11chigh macrophages. RESULTS We found pretreatment of mice with PepN promoted the proliferation of lung-resident F4/80+CD11chigh macrophages in situ but also mobilized bone marrow monocytes to infiltrate lung tissue that were then transformed into CD11high macrophages. PepN pre-programmed the macrophages during maturation to an anti-inflammatory phenotype by shaping the metabolic preference for oxidative phosphorylation (OXPHOS) and also inhibited the inflammatory response of macrophages by activating AMP-activated protein kinase. Furthermore, PepN treated macrophages also exhibited high-level costimulatory signaling molecules which directed the differentiation into Treg. CONCLUSION Our results demonstrated that the expansion of CD11chigh macrophages in lungs and the OXPHOS metabolic bias of macrophages are associated with reduced allergic airway inflammation after PepN exposure, which paves the way for its application in preventing allergic asthma.
Collapse
Affiliation(s)
- Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Honghui Li
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
39
|
Chen L, Zhong XL, Cao WY, Mao ML, Liu DD, Liu WJ, Zu XY, Liu JH. IGF2/IGF2R/Sting signaling as a therapeutic target in DSS-induced ulcerative colitis. Eur J Pharmacol 2023; 960:176122. [PMID: 37863414 DOI: 10.1016/j.ejphar.2023.176122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease with increasing prevalence and incidence. Current treatments for ulcerative colitis are not generally applicative and are often accompanied by side effects. IGF2 is an endogenous protein that plays roles in anti-inflammation and stemness maintenance, but little is known about its mechanism and function in the progression of ulcerative colitis. In this study, mouse recombinant IGF2 was used in a mouse model of ulcerative colitis established by DSS. IGF2 expression was reduced in colon tissues but not plasma of DSS-induced colitis mice. IGF2R expression was also decreased in colitis colons, which was then elevated by recombinant IGF2. Recombinant IGF2 alleviated colon injury in colitis, which was evaluated by colon shortening, body weight loss and DAI score. IGF2 treatment also relieved the inflammatory response in colitis, which was assessed by the spleen weight index, MPO activity and proinflammatory cytokine expression and was also detected in LPS-stimulated RAW264.7 cells in vitro. Moreover, IGF2R was predicted and further verified to interact with the Sting protein, and the cGAS-Sting pathway as a key pathway for stemness regulation, was upregulated in colonic colons, which was blocked by IGF2 treatment. Additionally, IGF2 treatment can maintain colonic stemness and further repair colonic tight junction function in DSS-induced colitis. In conclusion, IGF2/IGF2R downregulated the cGAS-Sting pathway to sustain colonic stemness and barrier integrity to protect against ulcerative colitis induced by DSS.
Collapse
Affiliation(s)
- Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiao-Lin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wen-Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ming-Li Mao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan-Dan Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wen-Jia Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xu-Yu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of Tumor Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
40
|
Tang D, Liu M, Gao S, Sun H, Peng Y, Li Y, Wang Y, Wang X, Chen H. Thermally engineered MSC-derived extracellular vesicles ameliorate colitis in mice by restoring the imbalanced Th17/Treg cell ratio. Int Immunopharmacol 2023; 125:111077. [PMID: 38149575 DOI: 10.1016/j.intimp.2023.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 12/28/2023]
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have garnered extensive interest for their immunomodulatory properties in immune-mediated inflammatory diseases. However, the development of EVs as clinical drugs often faces challenges such as low production yield and suboptimal therapeutic efficacy. In this study, we discovered that thermally engineering was able to enhance the yield of MSC-EVs. Moreover, the PD-L1 expression of EVs released from the thermal engineering MSCs was found to be upregulated significantly, and these EVs ameliorated the symptoms and pathological damages in murine dextran sulfate sodium (DSS)-induced colitis model. The therapeutic effect on DSS-induced colitis was mediated through the regulation of the Th17/Treg cell balance, demonstrating the immunomodulatory properties of the thermally engineering MSC-EVs. Overall, our findings suggest that thermal engineering can be utilized as a promising strategy for enhancing EV production and may provide a potential therapeutic approach for clinical treatment of colitis.
Collapse
Affiliation(s)
- Deqian Tang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Manqing Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Shenghan Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haipeng Sun
- Department of Prosthodontics and Implantology, Shenzhen University Affiliated Shenzhen Stomatology Hospital, Shenzhen 518000, Guangdong Province, China
| | - Yingying Peng
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yi Li
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xiaoxiao Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Department of Prosthodontics and Implantology, Shenzhen University Affiliated Shenzhen Stomatology Hospital, Shenzhen 518000, Guangdong Province, China; Department of Stomatology, Shenzhen Qianhai Taikang Hospital, No.3099, Menghai Avenue, Nanshan District, Shenzhen 518000, China.
| | - Huan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
| |
Collapse
|
41
|
Yu L, Wei Y, Lu T, Li Z, Lai S, Yan Y, Chen C, Wen W. The SMYD3-dependent H3K4me3 status of IGF2 intensifies local Th2 differentiation in CRSwNP via positive feedback. Cell Commun Signal 2023; 21:345. [PMID: 38037054 PMCID: PMC10688075 DOI: 10.1186/s12964-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous and common upper airway disease divided into various inflammatory endotypes. Recent epidemiological findings showed a T helper 2 (Th2)-skewed dominance in CRSwNP patients. Histone modification alterations can regulate transcriptional and translational expression, resulting in abnormal pathogenic changes and the occurrence of diseases. Trimethylation of histone H3 lysine 4 (H3K4me3) is considered an activator of gene expression through modulation of accessibility for transcription, which is closely related to CRSwNP. H3K4me3 levels in the human nasal epithelium may change under Th2-biased inflammatory conditions, resulting in exaggerated local nasal Th2 responses via the regulation of naïve CD4+ T-cell differentiation. Here, we revealed that the level of SET and MYND domain-containing protein 3 (SMYD3)-mediated H3K4me3 was increased in NPs from Th2 CRSwNP patients compared with those from healthy controls. We demonstrated that SMYD3-mediated H3K4me3 is increased in human nasal epithelial cells under Th2-biased inflammatory conditions via S-adenosyl-L-methionine (SAM) production and further found that the H3K4me3high status of insulin-like growth factor 2 (IGF2) produced in primary human nasal epithelial cells could promote naïve CD4+ T-cell differentiation into Th2 cells. Moreover, we found that SAM production was dependent on the c-Myc/methionine adenosyltransferase 2A (MAT2A) axis in the nasal epithelium. Understanding histone modifications in the nasal epithelium has immense potential utility in the development of novel classes of therapeutics targeting Th2 polarization in Th2 CRSwNP. Video Abstract.
Collapse
Affiliation(s)
- Lei Yu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Otorhinolaryngology Institute of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, P.R. China
| | - Tong Lu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zhengqi Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Shimin Lai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Yan Yan
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Changhui Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Weiping Wen
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
- Otorhinolaryngology Institute of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
- Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
42
|
Smith GR, Zhao B, Lindholm ME, Raja A, Viggars M, Pincas H, Gay NR, Sun Y, Ge Y, Nair VD, Sanford JA, Amper MAS, Vasoya M, Smith KS, Montgomery S, Zaslavsky E, Bodine SC, Esser KA, Walsh MJ, Snyder MP. Multi-omic identification of key transcriptional regulatory programs during endurance exercise training. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523450. [PMID: 36711841 PMCID: PMC9882056 DOI: 10.1101/2023.01.10.523450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transcription factors (TFs) play a key role in regulating gene expression and responses to stimuli. We conducted an integrated analysis of chromatin accessibility, DNA methylation, and RNA expression across eight rat tissues following endurance exercise training (EET) to map epigenomic changes to transcriptional changes and determine key TFs involved. We uncovered tissue-specific changes and TF motif enrichment across all omic layers, differentially accessible regions (DARs), differentially methylated regions (DMRs), and differentially expressed genes (DEGs). We discovered distinct routes of EET-induced regulation through either epigenomic alterations providing better access for TFs to affect target genes, or via changes in TF expression or activity enabling target gene response. We identified TF motifs enriched among correlated epigenomic and transcriptomic alterations, DEGs correlated with exercise-related phenotypic changes, and EET-induced activity changes of TFs enriched for DEGs among their gene targets. This analysis elucidates the unique transcriptional regulatory mechanisms mediating diverse organ effects of EET.
Collapse
Affiliation(s)
- Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- These authors contributed equally
| | - Bingqing Zhao
- Department of Genetics, Stanford University, Stanford, CA 94305
- These authors contributed equally
| | - Malene E Lindholm
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Archana Raja
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Mark Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, Florida 32610
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicole R Gay
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - James A Sanford
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Mary Anne S Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kevin S Smith
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Stephen Montgomery
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sue C Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida 32610
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | |
Collapse
|
43
|
Wei X, Cheng X, Luo Y, Li X. Umbilical Cord-Derived Mesenchymal Stem Cells Attenuate S100-Induced Autoimmune Hepatitis via Modulating Th1 and Th17 Cell Responses in Mice. Stem Cells Int 2023; 2023:9992207. [PMID: 37881518 PMCID: PMC10597736 DOI: 10.1155/2023/9992207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Currently, the first-line treatment for autoimmune hepatitis (AIH) is still the combination of glucocorticoids or immunosuppressants. However, hormone and immunosuppressive therapy can cause serious side effects, such as Cushing syndrome and bone marrow suppression. Previous studies reported on the applicability and safety of mesenchymal stem cells (MSCs) to ameliorate liver inflammation and fibrosis. However, the characteristics of MSCs sources directly contribute to the different conclusions on the mechanisms underlying MSC-mediated immunoregulation. Bone marrow-derived MSCs can exert an immunosuppression effect to ameliorate the S100-induced AIH model by inhibiting several proinflammatory cytokines and upregulating of PD-L1 in liver tissue. It is not clear whether human umbilical cord-derived MSCs (hUC-MSCs) could directly inhibit liver inflammation and ultimately alleviate the dysfunction of hepatocytes in the AIH model. First, hUC-MSCs were extracted from umbilical cord tissue, and the basic biological properties and multilineage differentiation potential were examined. Second, 1 × 106 hUC-MSCs were administered intravenously to AIH mice. At the peak of the disease, serum levels of alanine aminotransferase and aspartate aminotransferase and pathologic damage to liver tissue were measured to evaluate liver function and degree of inflammation. We also observed that the infiltration of CD4+ T cells in the liver was significantly reduced. Furthermore, the frequency of the splenic IFNγ- and IL-17A- producing CD4+ T cells were also significantly decreased, while we only observed an increasing trend in Treg cells in liver tissue. Third, an RNA sequencing analysis of liver tissue was performed, which showed that in the UC-MSC-treated group, the transcriptional profiles of inflammation-related signaling pathways were significantly negatively regulated compared to those of phosphate-buffered saline-treated mice. Collectively, these findings indicated the potential of hUC-MSC to suppress immune responses in immune anomaly mediated liver disease, thus offering a potential clinical option to improve AIH.
Collapse
Affiliation(s)
- Xiaofeng Wei
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine, The First Hospital of Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | - Xinhong Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Yang Luo
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine, The First Hospital of Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | - Xun Li
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine, The First Hospital of Lanzhou University, Lanzhou City, Gansu Province 730000, China
| |
Collapse
|
44
|
Fang J, Hou P, Liu S, Zuo M, Liu Z, Chen W, Han Y, Li Y, Wang T, Feng C, Li P, Shao C, Shi Y. NAD + salvage governs the immunosuppressive capacity of mesenchymal stem cells. Cell Mol Immunol 2023; 20:1171-1185. [PMID: 37580400 PMCID: PMC10541442 DOI: 10.1038/s41423-023-01073-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) possess robust immunoregulatory functions and are promising therapeutics for inflammatory disorders. This capacity is not innate but is activated or 'licensed' by inflammatory cytokines. The licensing mechanism remains unclear. Here, we examined whether inflammatory cytokines metabolically reprogrammed MSCs to confer this immunoregulatory capacity. In response to stimulation by inflammatory cytokines, MSCs exhibited a dramatic increase in the consumption of glucose, which was accompanied by an enhanced use of nicotinamide adenine dinucleotide (NAD+) and increased expression of nicotinamide phosphoribosyltransferase (NAMPT), a central enzyme in the salvage pathway for NAD+ production. When NAD+ synthesis was blocked by inhibiting or depleting NAMPT, the immunosuppressive function of MSCs induced by inflammatory cytokines was greatly attenuated. Consequently, when NAD+ metabolism in MSCs was perturbed, their therapeutic benefit was decreased in mice suffering from inflammatory bowel disease and acute liver injury. Further analysis revealed that NAMPT-driven production of NAD+ was critical for the inflammatory cytokine-induced increase in glycolysis in MSCs. Furthermore, the increase in glycolysis led to succinate accumulation in the tricarboxylic acid cycle, which led to hypoxia-inducible factor 1α (HIF-1α) stabilization and subsequently increased the transcription of key glycolytic genes, thereby persistently maintaining glycolytic flux. This study demonstrated that unlike its proinflammatory role in immune cells, NAD+ metabolism governs the anti-inflammatory function of MSCs during inflammation.
Collapse
Affiliation(s)
- Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Pengbo Hou
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Muqiu Zuo
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhanhong Liu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Wangwang Chen
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuyi Han
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yanan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Tingting Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
45
|
Zhu M, Cao L, Melino S, Candi E, Wang Y, Shao C, Melino G, Shi Y, Chen X. Orchestration of Mesenchymal Stem/Stromal Cells and Inflammation During Wound Healing. Stem Cells Transl Med 2023; 12:576-587. [PMID: 37487541 PMCID: PMC10502569 DOI: 10.1093/stcltm/szad043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
Wound healing is a complex process and encompasses a number of overlapping phases, during which coordinated inflammatory responses following tissue injury play dominant roles in triggering evolutionarily highly conserved principals governing tissue repair and regeneration. Among all nonimmune cells involved in the process, mesenchymal stem/stromal cells (MSCs) are most intensely investigated and have been shown to play fundamental roles in orchestrating wound healing and regeneration through interaction with the ordered inflammatory processes. Despite recent progress and encouraging results, an informed view of the scope of this evolutionarily conserved biological process requires a clear understanding of the dynamic interplay between MSCs and the immune systems in the process of wound healing. In this review, we outline current insights into the ways in which MSCs sense and modulate inflammation undergoing the process of wound healing, highlighting the central role of neutrophils, macrophages, and T cells during the interaction. We also draw attention to the specific effects of MSC-based therapy on different pathological wound healing. Finally, we discuss how ongoing scientific advances in MSCs could be efficiently translated into clinical strategies, focusing on the current limitations and gaps that remain to be overcome for achieving preferred functional tissue regeneration.
Collapse
Affiliation(s)
- Mengting Zhu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Sonia Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Shanghai, People’s Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Xiaodong Chen
- Wuxi Sinotide New Drug Discovery Institutes, Huishan Economic and Technological Development Zone, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
46
|
Hu Z, Wang D, Gong J, Li Y, Ma Z, Luo T, Jia X, Shi Y, Song Z. MSCs Deliver Hypoxia-Treated Mitochondria Reprogramming Acinar Metabolism to Alleviate Severe Acute Pancreatitis Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207691. [PMID: 37409821 PMCID: PMC10477874 DOI: 10.1002/advs.202207691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/18/2023] [Indexed: 07/07/2023]
Abstract
Mitochondrial function impairment due to abnormal opening of the mitochondrial permeability transition pore (MPTP) is considered the central event in acute pancreatitis; however, therapeutic choices for this condition remain controversial. Mesenchymal stem cells (MSCs) are a family member of stem cells with immunomodulatory and anti-inflammatory capabilities that can mitigate damage in experimental pancreatitis. Here, it is shown that MSCs deliver hypoxia-treated functional mitochondria to damaged pancreatic acinar cells (PACs) via extracellular vesicles (EVs), which reverse the metabolic function of PACs, maintain ATP supply, and exhibit an excellent injury-inhibiting effect. Mechanistically, hypoxia inhibits superoxide accumulation in the mitochondria of MSCs and upregulates the membrane potential, which is internalized into PACs via EVs, thus, remodeling the metabolic state. In addition, cargocytes constructed via stem cell denucleation as mitochondrial vectors are shown to exert similar therapeutic effects to MSCs. These findings reveal an important mechanism underlying the role of mitochondria in MSC therapy and offer the possibility of applying mitochondrial therapy to patients with severe acute pancreatitis.
Collapse
Affiliation(s)
- Zhengyu Hu
- Department of Hepatopancreatobiliary SurgeryShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230032China
| | - Dongyan Wang
- Department of GastroenterologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Jian Gong
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Yan Li
- Department of GastroenterologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Zhilong Ma
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
| | - Tingyi Luo
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Xuyang Jia
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Yihai Shi
- Department of GastroenterologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Zhenshun Song
- Department of Hepatopancreatobiliary SurgeryShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| |
Collapse
|
47
|
Hao KL, Zhai QC, Gu Y, Chen YQ, Wang YN, Liu R, Yan SP, Wang Y, Shi YF, Lei W, Shen ZY, Xu Y, Hu SJ. Disturbance of suprachiasmatic nucleus function improves cardiac repair after myocardial infarction by IGF2-mediated macrophage transition. Acta Pharmacol Sin 2023; 44:1612-1624. [PMID: 36747104 PMCID: PMC10374569 DOI: 10.1038/s41401-023-01059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Suprachiasmatic nucleus (SCN) in mammals functions as the master circadian pacemaker that coordinates temporal organization of physiological processes with the environmental light/dark cycles. But the causative links between SCN and cardiovascular diseases, specifically the reparative responses after myocardial infarction (MI), remain largely unknown. In this study we disrupted mouse SCN function to investigate the role of SCN in cardiac dysfunction post-MI. Bilateral ablation of the SCN (SCNx) was generated in mice by electrical lesion; myocardial infarction was induced via ligation of the mid-left anterior descending artery (LAD); cardiac function was assessed using echocardiography. We showed that SCN ablation significantly alleviated MI-induced cardiac dysfunction and cardiac fibrosis, and promoted angiogenesis. RNA sequencing revealed differentially expressed genes in the heart of SCNx mice from D0 to D3 post-MI, which were functionally associated with the inflammatory response and cytokine-cytokine receptor interaction. Notably, the expression levels of insulin-like growth factor 2 (Igf2) in the heart and serum IGF2 concentration were significantly elevated in SCNx mice on D3 post-MI. Stimulation of murine peritoneal macrophages in vitro with serum isolated from SCNx mice on D3 post-MI accelerated the transition of anti-inflammatory macrophages, while antibody-mediated neutralization of IGF2 receptor blocked the macrophage transition toward the anti-inflammatory phenotype in vitro as well as the corresponding cardioprotective effects observed in SCNx mice post-MI. In addition, disruption of mouse SCN function by exposure to a desynchronizing condition (constant light) caused similar protective effects accompanied by elevated IGF2 expression on D3 post-MI. Finally, mice deficient in the circadian core clock genes (Ckm-cre; Bmal1f/f mice or Per1/2 double knockout) did not lead to increased serum IGF2 concentration and showed no protective roles in post-MI, suggesting that the cardioprotective effect observed in this study was mediated particularly by the SCN itself, but not by self-sustained molecular clock. Together, we demonstrate that inhibition of SCN function promotes Igf2 expression, which leads to macrophage transition and improves cardiac repair post-MI.
Collapse
Affiliation(s)
- Kai-Li Hao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Qiao-Cheng Zhai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Yue Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Yue-Qiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Ya-Ning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Shi-Ping Yan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Fang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Zhen-Ya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Shi-Jun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
48
|
Li X, Huai Q, Zhu C, Zhang X, Xu W, Dai H, Wang H. GDF15 Ameliorates Liver Fibrosis by Metabolic Reprogramming of Macrophages to Acquire Anti-Inflammatory Properties. Cell Mol Gastroenterol Hepatol 2023; 16:711-734. [PMID: 37499753 PMCID: PMC10520366 DOI: 10.1016/j.jcmgh.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND & AIMS Liver fibrosis/cirrhosis is significant health burden worldwide, resulting in liver failure or cancer and accounting for many deaths each year. The pathogenesis of liver fibrosis is very complex, which makes treatment challenging. Growth differentiation factor 15 (GDF15), a cysteine knot protein belonging to the transforming growth factor β (TGF-β) superfamily, has been shown to play a protective role after tissue injury and to promote a negative energy balance during obesity and diabetes. However, paucity of literature is available about GDF15 function in liver fibrosis. This study aimed to investigate the immunomodulatory role and therapeutic potential of GDF15 in progression of hepatic fibrosis. METHODS GDF15 expression was studied in patients with fibrosis/cirrhosis and in 2 murine models of liver fibrosis, including mice treated with CCl4 or DDC diet. GDF15 involvement in the pathogenesis of liver fibrosis was assessed in Gdf15 knockout mouse using both CCl4 and DDC diet experimental models. We used the CCl4 and/or DDC diet-induced liver fibrosis model to examine the antifibrotic and anti-inflammatory effects of AAV8-mediated GDF15 overexpression in hepatocytes or recombinant mouse GDF15. RESULTS GDF15 expression is decreased in the liver of animal models and patients with liver fibrosis/cirrhosis compared with those without liver disease. In vivo studies showed that GDF15 deficiency aggravated CCl4 and DDC diet-induced liver fibrosis, while GDF15 overexpression mediated by AAV8 or its recombinant protein alleviated CCl4 and/or DDC diet-induced liver fibrosis. In Gdf15 knockout mice, the intrahepatic microenvironment that developed during fibrosis showed relatively more inflammation, as demonstrated by enhanced infiltration of monocytes and neutrophils and increased expression of proinflammatory factors, which could be diminished by AAV8-mediated GDF15 overexpression in hepatocytes. Intriguingly, GDF15 exerts its effects by reprogramming the metabolic pathways of macrophages to acquire an oxidative phosphorylation-dependent anti-inflammatory functional fate. Furthermore, adoptive transfer of GDF15-preprogrammed macrophages to mouse models of liver fibrosis induced by CCl4 attenuated inflammation and alleviated the progression of liver fibrosis. CONCLUSION GDF15 ameliorates liver fibrosis via modulation of liver macrophages. Our data implicate the importance of the liver microenvironment in macrophage programming during liver fibrosis and suggest that GDF15 is a potentially attractive therapeutic target for the treatment of patients with liver fibrosis.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Huai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wentao Xu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hanren Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
49
|
Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y, Han Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cell Mol Immunol 2023; 20:583-599. [PMID: 36823236 PMCID: PMC10229624 DOI: 10.1038/s41423-023-00983-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Hepatic fibrosis/cirrhosis is a significant health burden worldwide, resulting in liver failure or hepatocellular carcinoma (HCC) and accounting for many deaths each year. The pathogenesis of hepatic fibrosis/cirrhosis is very complex, which makes treatment challenging. Endogenous mesenchymal stromal cells (MSCs) have been shown to play pivotal roles in the pathogenesis of hepatic fibrosis. Paradoxically, exogenous MSCs have also been used in clinical trials for liver cirrhosis, and their effectiveness has been observed in most completed clinical trials. There are still many issues to be resolved to promote the use of MSCs in the clinic in the future. In this review, we will examine the controversial role of MSCs in the pathogenesis and treatment of hepatic fibrosis/cirrhosis. We also investigated the clinical trials involving MSCs in liver cirrhosis, summarized the parameters that need to be standardized, and discussed how to promote the use of MSCs from a clinical perspective.
Collapse
Affiliation(s)
- Xue Yang
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China.
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Zhipeng Han
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
50
|
Boo HJ, Min HY, Hwang SJ, Lee HJ, Lee JW, Oh SR, Park CS, Park JS, Lee YM, Lee HY. The tobacco-specific carcinogen NNK induces pulmonary tumorigenesis via nAChR/Src/STAT3-mediated activation of the renin-angiotensin system and IGF-1R signaling. Exp Mol Med 2023; 55:1131-1144. [PMID: 37258578 PMCID: PMC10317988 DOI: 10.1038/s12276-023-00994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/02/2023] Open
Abstract
The renin-angiotensin (RA) system has been implicated in lung tumorigenesis without detailed mechanistic elucidation. Here, we demonstrate that exposure to the representative tobacco-specific carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) promotes lung tumorigenesis through deregulation of the pulmonary RA system. Mechanistically, NNK binding to the nicotinic acetylcholine receptor (nAChR) induces Src-mediated signal transducer and activator of transcription 3 (STAT3) activation, resulting in transcriptional upregulation of angiotensinogen (AGT) and subsequent induction of the angiotensin II (AngII) receptor type 1 (AGTR1) signaling pathway. In parallel, NNK concurrently increases insulin-like growth factor 2 (IGF2) production and activation of IGF-1R/insulin receptor (IR) signaling via a two-step pathway involving transcriptional upregulation of IGF2 through STAT3 activation and enhanced secretion from intracellular storage through AngII/AGTR1/PLC-intervened calcium release. NNK-mediated crosstalk between IGF-1R/IR and AGTR1 signaling promoted tumorigenic activity in lung epithelial and stromal cells. Lung tumorigenesis caused by NNK exposure or alveolar type 2 cell-specific Src activation was suppressed by heterozygous Agt knockout or clinically available inhibitors of the nAChR/Src or AngII/AGTR1 pathways. These results demonstrate that NNK-induced stimulation of the lung RA system leads to IGF2-mediated IGF-1R/IR signaling activation in lung epithelial and stromal cells, resulting in lung tumorigenesis in smokers.
Collapse
Affiliation(s)
- Hye-Jin Boo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Histology, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|