1
|
Jana S, Shang J, Hong JY, Fenwick MK, Puri R, Lu X, Melnick AM, Li M, Lin H. A Mitochondria-Targeting SIRT3 Inhibitor with Activity against Diffuse Large B Cell Lymphoma. J Med Chem 2024; 67:15428-15437. [PMID: 39191393 PMCID: PMC11403614 DOI: 10.1021/acs.jmedchem.4c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Diffuse large B-cell lymphomas (DLBCLs) are heterogeneous cancers that still require better and less toxic treatments. SIRT3, a member of the sirtuin family of NAD+-dependent protein deacylase, is critical for DLBCL growth and survival. A mitochondria-targeted SIRT3 small-molecule inhibitor, YC8-02, exhibits promising activity against DLBCL. However, YC8-02 has several limitations including poor solubility. Here, we report our medicinal chemistry efforts that led to an improved mitochondria-targeted SIRT3 inhibitor, SJ-106C, achieved by using a triethylammonium group, which helps to increase both solubility and SIRT3 inhibition potency. SJ-106C, while still inhibiting SIRT1 and SIRT2, is enriched in the mitochondria to help with SIRT3 inhibition. It is more active against DLBCL than other solid tumor cells and effectively inhibits DLBCL xenograft tumor growth. The findings provide useful insights for the development of SIRT3 inhibitors and mitochondrial targeting agents and further support the notion that SIRT3 is a promising druggable target for DLBCL.
Collapse
Affiliation(s)
- Sadhan Jana
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Jialin Shang
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Jun Young Hong
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Michael K. Fenwick
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Rishi Puri
- College
of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Xuan Lu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Ari M. Melnick
- Department
of Medicine, Division of Hematology &
Medical Oncology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Meng Li
- Department
of Medicine, Division of Hematology &
Medical Oncology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Howard
Hughes Medical Institute; Department of Chemistry and Chemical Biology;
Department of Molecular Biology and Genetics Cornell University Ithaca New York 14853 United States
| |
Collapse
|
2
|
Pujalte‐Martin M, Belaïd A, Bost S, Kahi M, Peraldi P, Rouleau M, Mazure NM, Bost F. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Mol Oncol 2024; 18:1719-1738. [PMID: 38214418 PMCID: PMC11223609 DOI: 10.1002/1878-0261.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.
Collapse
Affiliation(s)
- Marc Pujalte‐Martin
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Amine Belaïd
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Simon Bost
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Michel Kahi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Pascal Peraldi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Matthieu Rouleau
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
- CNRS UMR7370, LP2MNiceFrance
| | - Nathalie M. Mazure
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Frédéric Bost
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| |
Collapse
|
3
|
Lu W, Deng H, Chen W, Zhou Y, Wu L, Shu H, Zhang P, Ye X. Analysis of early response to chemotherapy for non-Hodgkin's lymphoma by quantitative contrast-enhanced ultrasound: A prospective case-control crossectional study. Eur J Radiol 2024; 176:111525. [PMID: 38796885 DOI: 10.1016/j.ejrad.2024.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE To investigate the value of quantitative contrast-enhanced ultrasonography (CEUS) in assessing and predicting early therapy response of non-Hodgkin's lymphoma (NHL). METHODS Fifty-six cases of NHL were studied using CEUS before and after three cycles of R-CHOP / CHOP. Quantitative parameters such as arrival time (ATM), time to peak (TTP), △T = TTP-ATM, area under the gamma curve (Area), curve gradient (Grad), wash-out time (WT), base intensity (BI), peak intensity (PI) and ΔI = PI-BI were compared between the lymphoma and normal lymph nodes before and at mid-treatment, respectively. Changes in quantitative CEUS parameters were also compared between complete response (CR) and incomplete response(non-CR) groups. Besides, the correlation analysis was performed between pretreatment PI and changes in quantitative parameters. RESULTS After three cycles of R-CHOP/CHOP, S/L (P < 0.001), PI (P = 0.002), ΔI (P < 0.001), Grad (P < 0.001), and Area (P < 0.001) of NHL were significantly decreased. The CR group and non-CR group only differed in ATM before treatment. In contrast, there was no statistical difference in any of the parameters between the two groups at mid-treatment. Finally, a significant correlation was observed between pre-treatment PI and PI△% (r = 0.736, P < 0.001). CONCLUSIONS CEUS is promising for the assessment of response of NHL to R-CHOP/CHOP. Intra-lesion perfusion changes take precedence over morphological changes suggesting treatment efficacy. Pre-treatment ATM values may help to suggest efficacy outcomes and pre-treatment PI values may be a valid predictor of lymphoma perfusion response.
Collapse
Affiliation(s)
- Wenjuan Lu
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyan Deng
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Wenqin Chen
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yasu Zhou
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Liuxi Wu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Hua Shu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Pingyang Zhang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xinhua Ye
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
4
|
Krug A, Mhaidly R, Tosolini M, Mondragon L, Tari G, Turtos AM, Paul-Bellon R, Asnafi V, Marchetti S, Di Mascio L, Travert M, Bost F, Bachy E, Argüello RJ, Fournié JJ, Gaulard P, Lemonnier F, Ricci JE, Verhoeyen E. Dependence on mitochondrial respiration of malignant T cells reveals a new therapeutic target for angioimmunoblastic T-cell lymphoma. Cell Death Discov 2024; 10:292. [PMID: 38897995 PMCID: PMC11187159 DOI: 10.1038/s41420-024-02061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer metabolic reprogramming has been recognized as one of the cancer hallmarks that promote cell proliferation, survival, as well as therapeutic resistance. Up-to-date regulation of metabolism in T-cell lymphoma is poorly understood. In particular, for human angioimmunoblastic T-cell lymphoma (AITL) the metabolic profile is not known. Metabolic intervention could help identify new treatment options for this cancer with very poor outcomes and no effective medication. Transcriptomic analysis of AITL tumor cells, identified that these cells use preferentially mitochondrial metabolism. By using our preclinical AITL mouse model, mimicking closely human AITL features, we confirmed that T follicular helper (Tfh) tumor cells exhibit a strong enrichment of mitochondrial metabolic signatures. Consistent with these results, disruption of mitochondrial metabolism using metformin or a mitochondrial complex I inhibitor such as IACS improved the survival of AITL lymphoma-bearing mice. Additionally, we confirmed a selective elimination of the malignant human AITL T cells in patient biopsies upon mitochondrial respiration inhibition. Moreover, we confirmed that diabetic patients suffering from T-cell lymphoma, treated with metformin survived longer as compared to patients receiving alternative treatments. Taking together, our findings suggest that targeting the mitochondrial metabolic pathway could be a clinically efficient approach to inhibit aggressive cancers such as peripheral T-cell lymphoma.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Rana Mhaidly
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Marie Tosolini
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Laura Mondragon
- T cell lymphoma group, Josep Carreras Leukaemia Research Institute (IJC), Josep Carreras Building, Ctra de Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Spain
| | - Gamze Tari
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - Adriana Martinez Turtos
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Rachel Paul-Bellon
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Institut Necker Enfants-Malades, Université Paris-Cité and INSERM U1151, Paris, France
| | - Sandrine Marchetti
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Léa Di Mascio
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Marion Travert
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - Frédéric Bost
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
| | - Emmanuel Bachy
- Hospices Civils de Lyon and Claude Bernard Lyon 1 University, Lyon, France
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Labex TOUCAN, Toulouse, France
| | - Jean-Jacques Fournié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Labex TOUCAN, Toulouse, France
| | - Philippe Gaulard
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, département de pathologie, F-94010, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoides, F-94010, Créteil, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France.
- CIRI, Université de Lyon; INSERM U1111; ENS de Lyon; University Lyon1; CNRS, UMR5308, 69007, Lyon, France.
| |
Collapse
|
5
|
Wang R, Hussain A, Guo QQ, Jin XW, Wang MM. Oxygen and Iron Availability Shapes Metabolic Adaptations of Cancer Cells. World J Oncol 2024; 15:28-37. [PMID: 38274726 PMCID: PMC10807922 DOI: 10.14740/wjon1739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/23/2023] [Indexed: 01/27/2024] Open
Abstract
The dynamic changes between glycolysis and oxidative phosphorylation (OXPHOS) for adenosine triphosphate (ATP) output, along with glucose, glutamine, and fatty acid utilization, etc., lead to the maintenance and selection of growth advantageous to tumor cell subgroups in an environment of iron starvation and hypoxia. Iron plays an important role in the three major biochemical reactions in nature: photosynthesis, nitrogen fixation, and oxidative respiration, which all require the participation of iron-sulfur proteins, such as ferredoxin, cytochrome b, and the complex I, II, III in the electron transport chain, respectively. Abnormal iron-sulfur cluster synthesis process or hypoxia will directly affect the function of mitochondrial electron transfer and mitochondrial OXPHOS. More research results have indicated that iron metabolism, oxygen availability and hypoxia-inducible factor mutually regulate the shift between glycolysis and OXPHOS. In this article, we make a perspective review to provide novel opinions of the regulation of glycolysis and OXPHOS in tumor cells.
Collapse
Affiliation(s)
- Rui Wang
- Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, Suqian City, China
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Su Zhou City, China
| | - Aashiq Hussain
- Cancer Science Institute of Singapore, National University of Singapore, 119077 Singapore
| | - Quan Quan Guo
- Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, Suqian City, China
- Department of Radiology, the Second Affiliated Hospital of Soochow University, Su Zhou City, China
| | - Xiao Wei Jin
- Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, Suqian City, China
| | - Miao Miao Wang
- Department of General Surgery, Suqian Affiliated Hospital of Xuzhou Medical University, Suqian City, China
| |
Collapse
|
6
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
7
|
Gaspar RS, Delafiori J, Zuccoli G, Carregari VC, Prado TP, Morari J, Sidarta-Oliveira D, Solon CS, Catharino RR, Araujo EP, Martins-de-Souza D, Velloso LA. Exogenous succinate impacts mouse brown adipose tissue mitochondrial proteome and potentiates body mass reduction induced by liraglutide. Am J Physiol Endocrinol Metab 2023; 324:E226-E240. [PMID: 36724126 DOI: 10.1152/ajpendo.00231.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Obesity is one of the leading noncommunicable diseases in the world. Despite intense efforts to develop strategies to prevent and treat obesity, its prevalence continues to rise worldwide. A recent study has shown that the tricarboxylic acid intermediate succinate increases body energy expenditure by promoting brown adipose tissue thermogenesis through the activation of uncoupling protein-1; this has generated interest surrounding its potential usefulness as an approach to treat obesity. It is currently unknown how succinate impacts brown adipose tissue protein expression, and how exogenous succinate impacts body mass reduction promoted by a drug approved to treat human obesity, the glucagon-like-1 receptor agonist, liraglutide. In the first part of this study, we used bottom-up shotgun proteomics to determine the acute impact of exogenous succinate on the brown adipose tissue. We show that succinate rapidly affects the expression of 177 brown adipose tissue proteins, which are mostly associated with mitochondrial structure and function. In the second part of this study, we performed a short-term preclinical pharmacological intervention, treating diet-induced obese mice with a combination of exogenous succinate and liraglutide. We show that the combination was more efficient than liraglutide alone in promoting body mass reduction, food energy efficiency reduction, food intake reduction, and an increase in body temperature. Using serum metabolomics analysis, we showed that succinate, but not liraglutide, promoted a significant increase in the blood levels of several medium and long-chain fatty acids. In conclusion, exogenous succinate promotes rapid changes in brown adipose tissue mitochondrial proteins, and when used in association with liraglutide, increases body mass reduction.NEW & NOTEWORTHY Exogenous succinate induces major changes in brown adipose tissue protein expression affecting particularly mitochondrial respiration and structural proteins. When given exogenously in drinking water, succinate mitigates body mass gain in a rodent model of diet-induced obesity; in addition, when given in association with the glucagon-like peptide-1 receptor agonist, liraglutide, succinate increases body mass reduction promoted by liraglutide alone.
Collapse
Affiliation(s)
- Rodrigo S Gaspar
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Jeany Delafiori
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Giuliana Zuccoli
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Thais P Prado
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Carina S Solon
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Rodrigo R Catharino
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Eliana P Araujo
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- National Institute of Biomarkers in Neuropsychiatry, National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Wen Q, Xu ZL, Wang Y, Lv M, Song Y, Lyv ZS, Xing T, Xu LP, Zhang XH, Huang XJ, Kong Y. Glucocorticoid and glycolysis inhibitors cooperatively abrogate acute graft-versus-host disease. SCIENCE CHINA. LIFE SCIENCES 2023; 66:528-544. [PMID: 36166182 DOI: 10.1007/s11427-022-2170-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022]
Abstract
Although glucorticosteroids (GCs) are the standard first-line therapy for acute graft-versus-host disease (aGvHD), nearly 50% of aGvHD patients have no response to GCs. The role of T cell metabolism in murine aGvHD was recently reported. However, whether GCs and metabolism regulators could cooperatively suppress T cell alloreactivity and ameliorate aGvHD remains to be elucidated. Increased glycolysis, characterized by elevated 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), and higher rates of glucose consumption and lactate production were found in T cells from aGvHD patients. Genetic upregulation of PFKFB3 induced T cell proliferation and differentiation into proinflammatory cells. In a humanized mouse model, PFKFB3-overexpressing or PFKFB3-silenced T cells aggravated or prevented aGvHD, respectively. Importantly, our integrated data from patient samples in vitro, in a humanized xenogeneic murine model of aGvHD and graft-versus-leukaemia (GVL) demonstrate that GCs combined with a glycolysis inhibitor could cooperatively reduce the alloreactivity of T cells and ameliorate aGvHD without loss of GVL effects. Together, the current study indicated that glycolysis is critical for T cell activation and induction of human aGvHD. Therefore, the regulation of glycolysis offers a potential pathogenesis-oriented therapeutic strategy for aGvHD patients. GCs combined with glycolysis inhibitors promises to be a novel first-line combination therapy for aGvHD patients.
Collapse
Affiliation(s)
- Qi Wen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yang Song
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Zhong-Shi Lyv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China.
| |
Collapse
|
9
|
Alfaifi A, Refai MY, Alsaadi M, Bahashwan S, Malhan H, Al-Kahiry W, Dammag E, Ageel A, Mahzary A, Albiheyri R, Almehdar H, Qadri I. Metabolomics: A New Era in the Diagnosis or Prognosis of B-Cell Non-Hodgkin's Lymphoma. Diagnostics (Basel) 2023; 13:diagnostics13050861. [PMID: 36900005 PMCID: PMC10000528 DOI: 10.3390/diagnostics13050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
A wide range of histological as well as clinical properties are exhibited by B-cell non-Hodgkin's lymphomas. These properties could make the diagnostics process complicated. The diagnosis of lymphomas at an initial stage is essential because early remedial actions taken against destructive subtypes are commonly deliberated as successful and restorative. Therefore, better protective action is needed to improve the condition of those patients who are extensively affected by cancer when diagnosed for the first time. The development of new and efficient methods for early detection of cancer has become crucial nowadays. Biomarkers are urgently needed for diagnosing B-cell non-Hodgkin's lymphoma and assessing the severity of the disease and its prognosis. New possibilities are now open for diagnosing cancer with the help of metabolomics. The study of all the metabolites synthesised in the human body is called "metabolomics." A patient's phenotype is directly linked with metabolomics, which can help in providing some clinically beneficial biomarkers and is applied in the diagnostics of B-cell non-Hodgkin's lymphoma. In cancer research, it can analyse the cancerous metabolome to identify the metabolic biomarkers. This review provides an understanding of B-cell non-Hodgkin's lymphoma metabolism and its applications in medical diagnostics. A description of the workflow based on metabolomics is also provided, along with the benefits and drawbacks of various techniques. The use of predictive metabolic biomarkers for the diagnosis and prognosis of B-cell non-Hodgkin's lymphoma is also explored. Thus, we can say that abnormalities related to metabolic processes can occur in a vast range of B-cell non-Hodgkin's lymphomas. The metabolic biomarkers could only be discovered and identified as innovative therapeutic objects if we explored and researched them. In the near future, the innovations involving metabolomics could prove fruitful for predicting outcomes and bringing out novel remedial approaches.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Waiel Al-Kahiry
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Enas Dammag
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ageel Ageel
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Amjed Mahzary
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
10
|
Tannoury M, Garnier D, Susin SA, Bauvois B. Current Status of Novel Agents for the Treatment of B Cell Malignancies: What's Coming Next? Cancers (Basel) 2022; 14:6026. [PMID: 36551511 PMCID: PMC9775488 DOI: 10.3390/cancers14246026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Resistance to death is one of the hallmarks of human B cell malignancies and often contributes to the lack of a lasting response to today's commonly used treatments. Drug discovery approaches designed to activate the death machinery have generated a large number of inhibitors of anti-apoptotic proteins from the B-cell lymphoma/leukemia 2 family and the B-cell receptor (BCR) signaling pathway. Orally administered small-molecule inhibitors of Bcl-2 protein and BCR partners (e.g., Bruton's tyrosine kinase and phosphatidylinositol-3 kinase) have already been included (as monotherapies or combination therapies) in the standard of care for selected B cell malignancies. Agonistic monoclonal antibodies and their derivatives (antibody-drug conjugates, antibody-radioisotope conjugates, bispecific T cell engagers, and chimeric antigen receptor-modified T cells) targeting tumor-associated antigens (TAAs, such as CD19, CD20, CD22, and CD38) are indicated for treatment (as monotherapies or combination therapies) of patients with B cell tumors. However, given that some patients are either refractory to current therapies or relapse after treatment, novel therapeutic strategies are needed. Here, we review current strategies for managing B cell malignancies, with a focus on the ongoing clinical development of more effective, selective drugs targeting these molecules, as well as other TAAs and signaling proteins. The observed impact of metabolic reprogramming on B cell pathophysiology highlights the promise of targeting metabolic checkpoints in the treatment of these disorders.
Collapse
Affiliation(s)
| | | | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| |
Collapse
|
11
|
Advances in Understanding of Metabolism of B-Cell Lymphoma: Implications for Therapy. Cancers (Basel) 2022; 14:cancers14225552. [PMID: 36428647 PMCID: PMC9688663 DOI: 10.3390/cancers14225552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
There have been significant recent advances in the understanding of the role of metabolism in normal and malignant B-cell biology. Previous research has focused on the role of MYC and mammalian target of rapamycin (mTOR) and how these interact with B-cell receptor signaling and hypoxia to regulate glycolysis, glutaminolysis, oxidative phosphorylation (OXPHOS) and related metabolic pathways in germinal centers. Many of the commonest forms of lymphoma arise from germinal center B-cells, reflecting the physiological attenuation of normal DNA damage checkpoints to facilitate somatic hypermutation of the immunoglobulin genes. As a result, these lymphomas can inherit the metabolic state of their cell-of-origin. There is increasing interest in the potential of targeting metabolic pathways for anti-cancer therapy. Some metabolic inhibitors such as methotrexate have been used to treat lymphoma for decades, with several new agents being recently licensed such as inhibitors of phosphoinositide-3-kinase. Several other inhibitors are in development including those blocking mTOR, glutaminase, OXPHOS and monocarboxylate transporters. In addition, recent work has highlighted the importance of the interaction between diet and cancer, with particular focus on dietary modifications that restrict carbohydrates and specific amino acids. This article will review the current state of this field and discuss future developments.
Collapse
|
12
|
SUMOylation targeting mitophagy in cardiovascular diseases. J Mol Med (Berl) 2022; 100:1511-1538. [PMID: 36163375 DOI: 10.1007/s00109-022-02258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Small ubiquitin-like modifier (SUMO) plays a key regulatory role in cardiovascular diseases, such as cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. As a multifunctional posttranslational modification molecule in eukaryotic cells, SUMOylation is essentially associated with the regulation of mitochondrial dynamics, especially mitophagy, which is involved in the progression and development of cardiovascular diseases. SUMOylation targeting mitochondrial-associated proteins is admittedly considered to regulate mitophagy activation and mitochondrial functions and dynamics, including mitochondrial fusion and fission. SUMOylation triggers mitochondrial fusion to promote mitochondrial dysfunction by modifying Fis1, OPA1, MFN1/2, and DRP1. The interaction between SUMO and DRP1 induces SUMOylation and inhibits lysosomal degradation of DRP1, which is further involved in the regulation of mitochondrial fission. Both SUMOylation and deSUMOylation contribute to the initiation and activation of mitophagy by regulating the conjugation of MFN1/2 SERCA2a, HIF1α, and PINK1. SUMOylation mediated by the SUMO molecule has attracted much attention due to its dual roles in the development of cardiovascular diseases. In this review, we systemically summarize the current understanding underlying the expression, regulation, and structure of SUMO molecules; explore the biochemical functions of SUMOylation in the initiation and activation of mitophagy; discuss the biological roles and mechanisms of SUMOylation in cardiovascular diseases; and further provide a wider explanation of SUMOylation and deSUMOylation research to provide a possible therapeutic strategy for cardiovascular diseases. Considering the precise functions and exact mechanisms of SUMOylation in mitochondrial dysfunction and mitophagy will provide evidence for future experimental research and may serve as an effective approach in the development of novel therapeutic strategies for cardiovascular diseases. Regulation and effect of SUMOylation in cardiovascular diseases via mitophagy. SUMOylation is involved in multiple cardiovascular diseases, including cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. Since it is expressed in multiple cells associated with cardiovascular disease, SUMOylation can be regulated by numerous ligases, including the SENP family proteins PIAS1, PIASy/4, UBC9, and MAPL. SUMOylation regulates the activation and degradation of PINK1, SERCA2a, PPARγ, ERK5, and DRP1 to mediate mitochondrial dynamics, especially mitophagy activation. Mitophagy activation regulated by SUMOylation further promotes or inhibits ventricular diastolic dysfunction, perfusion injury, ventricular remodelling and ventricular noncompaction, which contribute to the development of cardiovascular diseases.
Collapse
|
13
|
Karlstaedt A, Taegtmeyer H. Cardio-Onco-Metabolism - Metabolic vulnerabilities in cancer and the heart. J Mol Cell Cardiol 2022; 171:71-80. [PMID: 35777454 PMCID: PMC10193535 DOI: 10.1016/j.yjmcc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 02/05/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Cancer and cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic remodeling is a hallmark of both cancer and the failing heart. Tumors reprogram metabolism to optimize nutrient utilization and meet increased demands for energy provision, biosynthetic pathways, and proliferation. Shared risk factors for cancer and CVDs suggest intersecting mechanisms for disease pathogenesis and progression. In this review, we aim to highlight the role of metabolic remodeling in cancer and its potential to impair cardiac function. Understanding these mechanisms will help us develop biomarkers, better therapies, and identify patients at risk of developing heart disease after surviving cancer.
Collapse
Affiliation(s)
- Anja Karlstaedt
- Smidt Heart Institute, Department of Cardiology, Cedars Sinai Medical Center, Los Angeles, California, USA.
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
14
|
Wei P, Bott AJ, Cluntun AA, Morgan JT, Cunningham CN, Schell JC, Ouyang Y, Ficarro SB, Marto JA, Danial NN, DeBerardinis RJ, Rutter J. Mitochondrial pyruvate supports lymphoma proliferation by fueling a glutamate pyruvate transaminase 2-dependent glutaminolysis pathway. SCIENCE ADVANCES 2022; 8:eabq0117. [PMID: 36179030 PMCID: PMC9524954 DOI: 10.1126/sciadv.abq0117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/04/2022] [Indexed: 06/14/2023]
Abstract
The fate of pyruvate is a defining feature in many cell types. One major fate is mitochondrial entry via the mitochondrial pyruvate carrier (MPC). We found that diffuse large B cell lymphomas (DLBCLs) consume mitochondrial pyruvate via glutamate-pyruvate transaminase 2 to enable α-ketoglutarate production as part of glutaminolysis. This led us to discover that glutamine exceeds pyruvate as a carbon source for the tricarboxylic acid cycle in DLBCLs. As a result, MPC inhibition led to decreased glutaminolysis in DLBCLs, opposite to previous observations in other cell types. We also found that MPC inhibition or genetic depletion decreased DLBCL proliferation in an extracellular matrix (ECM)-like environment and xenografts, but not in a suspension environment. Moreover, the metabolic profile of DLBCL cells in ECM is markedly different from cells in a suspension environment. Thus, we conclude that the synergistic consumption and assimilation of glutamine and pyruvate enables DLBCL proliferation in an extracellular environment-dependent manner.
Collapse
Affiliation(s)
- Peng Wei
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Alex J. Bott
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ahmad A. Cluntun
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jeffrey T. Morgan
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Corey N. Cunningham
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John C. Schell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yeyun Ouyang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Scott B. Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jarrod A. Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nika N. Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Grima-Reyes M, Vandenberghe A, Nemazanyy I, Meola P, Paul R, Reverso-Meinietti J, Martinez-Turtos A, Nottet N, Chan WK, Lorenzi PL, Marchetti S, Ricci JE, Chiche J. Tumoral microenvironment prevents de novo asparagine biosynthesis in B cell lymphoma, regardless of ASNS expression. SCIENCE ADVANCES 2022; 8:eabn6491. [PMID: 35857457 PMCID: PMC9258813 DOI: 10.1126/sciadv.abn6491] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Depletion of circulating asparagine with l-asparaginase (ASNase) is a mainstay of leukemia treatment and is under investigation in many cancers. Expression levels of asparagine synthetase (ASNS), which catalyzes asparagine synthesis, were considered predictive of cancer cell sensitivity to ASNase treatment, a notion recently challenged. Using [U-13C5]-l-glutamine in vitro and in vivo in a mouse model of B cell lymphomas (BCLs), we demonstrated that supraphysiological or physiological concentrations of asparagine prevent de novo asparagine biosynthesis, regardless of ASNS expression levels. Overexpressing ASNS in ASNase-sensitive BCL was insufficient to confer resistance to ASNase treatment in vivo. Moreover, we showed that ASNase's glutaminase activity enables its maximal anticancer effect. Together, our results indicate that baseline ASNS expression (low or high) cannot dictate BCL dependence on de novo asparagine biosynthesis and predict BCL sensitivity to dual ASNase activity. Thus, except for ASNS-deficient cancer cells, ASNase's glutaminase activity should be considered in the clinic.
Collapse
Affiliation(s)
- Manuel Grima-Reyes
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Ashaina Vandenberghe
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Ivan Nemazanyy
- Plateforme d’étude du métabolisme SFR-Necker, Inserm US 24–CNRS UAR, 3633 Paris, France
| | - Pauline Meola
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rachel Paul
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Julie Reverso-Meinietti
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Adriana Martinez-Turtos
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | | | - Wai-Kin Chan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sandrine Marchetti
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Jean-Ehrland Ricci
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Johanna Chiche
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
16
|
Keeping Cell Death Alive: An Introduction into the French Cell Death Research Network. Biomolecules 2022; 12:biom12070901. [PMID: 35883457 PMCID: PMC9313292 DOI: 10.3390/biom12070901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.
Collapse
|
17
|
Fei F, Zheng M, Xu Z, Sun R, Chen X, Cao B, Li J. Plasma Metabolites Forecast Occurrence and Prognosis for Patients With Diffuse Large B-Cell Lymphoma. Front Oncol 2022; 12:894891. [PMID: 35734601 PMCID: PMC9207198 DOI: 10.3389/fonc.2022.894891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin’s lymphoma with considerable heterogeneity and different clinical prognosis. However, plasma metabomics used to forecast occurrence and prognosis of DLBCL are rarely addressed. Method A total of 65 volunteers including 22 healthy controls (Ctrl), 25 DLBCL patients newly diagnosed (ND), and 18 DLBCL patients achieving complete remission (CR) were enrolled. A gas chromatography mass spectrometry-based untargeted plasma metabolomics analysis was performed. Results Multivariate statistical analysis displayed distinct metabolic features among Crtl, ND, and CR groups. Surprisingly, metabolic profiles of newly diagnosed DLBCL patients undergoing different prognosis showed clear and distinctive clustering. Based on the candidate metabolic biomarkers (glucose and aspartate) and clinical indicators (lymphocyte, red blood count, and hemoglobin), a distinct diagnostic equation was established showing improved diagnostic performance with an area under curve of 0.936. The enrichment of citric acid cycle, deficiency of branched chain amino acid, methionine, and cysteine in newly diagnosed DLBCL patients was closely associated with poor prognosis. In addition, we found that malate and 2-hydroxy-2-methylbutyric acid were positively correlated with the baseline tumor metabolic parameters (metabolically active tumor volume and total lesion glycolysis), and the higher abundance of plasma malate, the poorer survival. Conclusion Our preliminary data suggested plasma metabolomics study was informative to characterize the metabolic phenotypes and forecast occurrence and prognosis of DLBCL. Malate was identified as an unfavorable metabolic biomarker for prognosis-prediction of DLBCL, which provided a new insight on risk-stratification and therapeutic targets of DLBCL. More studies to confirm these associations and investigate potential mechanisms are in the process.
Collapse
Affiliation(s)
- Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Meihong Zheng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenzhen Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bei Cao
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
18
|
Anderson R, Miller LD, Isom S, Chou JW, Pladna KM, Schramm NJ, Ellis LR, Howard DS, Bhave RR, Manuel M, Dralle S, Lyerly S, Powell BL, Pardee TS. Phase II trial of cytarabine and mitoxantrone with devimistat in acute myeloid leukemia. Nat Commun 2022; 13:1673. [PMID: 35354808 PMCID: PMC8967916 DOI: 10.1038/s41467-022-29039-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Devimistat is a TCA cycle inhibitor. A previously completed phase I study of devimistat in combination with cytarabine and mitoxantrone in patients with relapsed or refractory AML showed promising response rates. Here we report the results of a single arm phase II study (NCT02484391). The primary outcome of feasibility of maintenance devimistat following induction and consolidation with devimistat in combination with high dose cytarabine and mitoxantrone was not met, as maintenance devimistat was only administered in 2 of 21 responders. The secondary outcomes of response (CR + CRi) and median survival were 44% (21/48) and 5.9 months respectively. There were no unexpected toxicities observed. An unplanned, post-hoc analysis of the phase I and II datasets suggests a trend of a dose response in older but not younger patients. RNA sequencing data from patient samples reveals an age-related decline in mitochondrial gene sets. Devimistat impairs ATP synthesis and we find a correlation between mitochondrial membrane potential and sensitivity to chemotherapy. Devimistat also induces mitochondrial reactive oxygen species and turnover consistent with mitophagy. We find that pharmacological or genetic inhibition of mitochondrial fission or autophagy sensitizes cells to devimistat. These findings suggest that an age related decline in mitochondrial quality and autophagy may be associated with response to devimistat however this needs to be confirmed in larger cohorts with proper trial design. Combining cytarabine and mitoxantrone with the tricarboxylic acid cycle inhibitor devimistat has been reported in a phase I clinical trial with relapsed or refractory acute myeloid leukaemia (AML). Here, the authors report the outcomes of a phase II study, analyse samples from both phases and perform preclinical analyses that show mitochondrial fission or autophagy inhibition sensitizes AML cells to devimistat.
Collapse
Affiliation(s)
- Rebecca Anderson
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Lance D Miller
- Department of Cancer Biology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Scott Isom
- Department of Biostatistics and Data Science, Wake Forest Public Health Sciences, Winston-Salem, NC, USA
| | - Jeff W Chou
- Department of Biostatistics and Data Science, Wake Forest Public Health Sciences, Winston-Salem, NC, USA
| | - Kristin M Pladna
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Nathaniel J Schramm
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Leslie R Ellis
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Dianna S Howard
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Rupali R Bhave
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Megan Manuel
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Sarah Dralle
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Susan Lyerly
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Bayard L Powell
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Timothy S Pardee
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA. .,Department of Cancer Biology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA. .,Rafael Pharmaceuticals Inc, Cranbury, NJ, USA.
| |
Collapse
|
19
|
Single-cell transcriptomics links malignant T cells to the tumor immune landscape in cutaneous T cell lymphoma. Nat Commun 2022; 13:1158. [PMID: 35241665 PMCID: PMC8894386 DOI: 10.1038/s41467-022-28799-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cutaneous T cell lymphoma (CTCL) represents a heterogeneous group of non-Hodgkin lymphoma distinguished by the presence of clonal malignant T cells. The heterogeneity of malignant T cells and the complex tumor microenvironment remain poorly characterized. With single-cell RNA analysis and bulk whole-exome sequencing on 19 skin lesions from 15 CTCL patients, we decipher the intra-tumor and inter-lesion diversity of CTCL patients and propose a multi-step tumor evolution model. We further establish a subtyping scheme based on the molecular features of malignant T cells and their pro-tumorigenic microenvironments: the TCyEM group, demonstrating a cytotoxic effector memory T cell phenotype, shows more M2 macrophages infiltration, while the TCM group, featured by a central memory T cell phenotype and adverse patient outcome, is infiltrated by highly exhausted CD8+ reactive T cells, B cells and Tregs with suppressive activities. Our results establish a solid basis for understanding the nature of CTCL and pave the way for future precision medicine for CTCL patients.
Collapse
|
20
|
Gill JG, Leef SN, Ramesh V, Martin-Sandoval MS, Rao AD, West L, Muh S, Gu W, Zhao Z, Hosler GA, Vandergriff TW, Durham AB, Mathews TP, Aurora AB. A short isoform of spermatogenic enzyme GAPDHS functions as a metabolic switch and limits metastasis in melanoma. Cancer Res 2022; 82:1251-1266. [PMID: 35149585 DOI: 10.1158/0008-5472.can-21-2062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Despite being the leading cause of cancer deaths, metastasis remains a poorly understood process. To identify novel regulators of metastasis in melanoma, we performed a large-scale RNA-sequencing screen of 48 samples from patient-derived xenograft (PDX) subcutaneous melanomas and their associated metastases. In comparison to primary tumors, expression of glycolytic genes was frequently decreased in metastases while expression of some TCA cycle genes was increased in metastases. Consistent with these transcriptional changes, melanoma metastases underwent a metabolic switch characterized by decreased levels of glycolytic metabolites and increased abundance of TCA cycle metabolites. A short isoform of glyceraldehye-3-phosphate dehydrogenase, spermatogenic (GAPDHS) lacking the N-terminal domain suppressed metastasis and regulated this metabolic switch. GAPDHS was downregulated in metastatic nodules from PDX models as well as in human patients. Overexpression of GAPDHS was sufficient to block melanoma metastasis, while its inhibition promoted metastasis, decreased glycolysis, and increased levels of certain TCA cycle metabolites and their derivatives including citrate, fumarate, malate, and aspartate. Isotope tracing studies indicated that GADPHS mediates this shift through changes in pyruvate carboxylase activity and aspartate synthesis, both metabolic pathways critical for cancer survival and metastasis. Together these data identify a short isoform of GAPDHS that limits melanoma metastasis and regulates central carbon metabolism.
Collapse
Affiliation(s)
- Jennifer G Gill
- University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Samantha N Leef
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vijayashree Ramesh
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Misty S Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aparna D Rao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
- Molecular Oncology Laboratory, Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lindsey West
- University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas
| | - Sarah Muh
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gregory A Hosler
- University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas
- ProPath Dermatopathology, Dallas, Texas
| | - Travis W Vandergriff
- University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas
| | - Alison B Durham
- University of Michigan, Department of Dermatology, Ann Arbor, Michigan
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Arin B Aurora
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
21
|
Bertho G, Lordello L, Chen X, Lucas-Torres C, Oumezziane IE, Caradeuc C, Baudin M, Nuan-Aliman S, Thieblemont C, Baud V, Giraud N. Ultrahigh-Resolution NMR with Water Signal Suppression for a Deeper Understanding of the Action of Antimetabolic Drugs on Diffuse Large B-Cell Lymphoma. J Proteome Res 2022; 21:1041-1051. [PMID: 35119866 DOI: 10.1021/acs.jproteome.1c00914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ultrahigh-resolution NMR has recently attracted considerable attention in the field of complex samples analysis. Indeed, the implementation of broadband homonuclear decoupling techniques has allowed us to greatly simplify crowded 1H spectra, yielding singlets for almost every proton site from the analyzed molecules. Pure shift methods have notably shown to be particularly suitable for deciphering mixtures of metabolites in biological samples. Here, we have successfully implemented a new pure shift pulse sequence based on the PSYCHE method, which incorporates a block for solvent suppression that is suitable for metabolomics analysis. The resulting experiment allows us to record ultrahigh-resolution 1D NOESY 1H spectra of biofluids with suppression of the water signal, which is a crucial step for highlighting metabolite mixtures in an aqueous phase. We have successfully recorded pure shift spectra on extracellular media of diffuse large B-cell lymphoma (DLBCL) cells. Despite a lower sensitivity, the resolution of pure shift data was found to be better than that of the standard approach, which provides a more detailed vision of the exo-metabolome. The statistical analyses carried out on the resulting metabolic profiles allow us to successfully highlight several metabolic pathways affected by these drugs. Notably, we show that Kidrolase plays a major role in the metabolic pathways of this DLBCL cell line.
Collapse
Affiliation(s)
- Gildas Bertho
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| | - Leonardo Lordello
- NF-κB, Différenciation et Cancer, Université de Paris, F-75006 Paris, France
| | - Xi Chen
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| | - Covadonga Lucas-Torres
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| | - Imed Eddine Oumezziane
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| | - Cédric Caradeuc
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| | - Mathieu Baudin
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France.,Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | | | - Catherine Thieblemont
- NF-κB, Différenciation et Cancer, Université de Paris, F-75006 Paris, France.,AP-HP, Hôpital Saint-Louis, Service Hémato-Oncologie, F-75010 Paris, France
| | - Véronique Baud
- NF-κB, Différenciation et Cancer, Université de Paris, F-75006 Paris, France
| | - Nicolas Giraud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| |
Collapse
|
22
|
Serganova I, Chakraborty S, Yamshon S, Isshiki Y, Bucktrout R, Melnick A, Béguelin W, Zappasodi R. Epigenetic, Metabolic, and Immune Crosstalk in Germinal-Center-Derived B-Cell Lymphomas: Unveiling New Vulnerabilities for Rational Combination Therapies. Front Cell Dev Biol 2022; 9:805195. [PMID: 35071240 PMCID: PMC8777078 DOI: 10.3389/fcell.2021.805195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) are highly heterogenous by genetic, phenotypic, and clinical appearance. Next-generation sequencing technologies and multi-dimensional data analyses have further refined the way these diseases can be more precisely classified by specific genomic, epigenomic, and transcriptomic characteristics. The molecular and genetic heterogeneity of B-NHLs may contribute to the poor outcome of some of these diseases, suggesting that more personalized precision-medicine approaches are needed for improved therapeutic efficacy. The germinal center (GC) B-cell like diffuse large B-cell lymphomas (GCB-DLBCLs) and follicular lymphomas (FLs) share specific epigenetic programs. These diseases often remain difficult to treat and surprisingly do not respond advanced immunotherapies, despite arising in secondary lymphoid organs at sites of antigen recognition. Epigenetic dysregulation is a hallmark of GCB-DLBCLs and FLs, with gain-of-function (GOF) mutations in the histone methyltransferase EZH2, loss-of-function (LOF) mutations in histone acetyl transferases CREBBP and EP300, and the histone methyltransferase KMT2D representing the most prevalent genetic lesions driving these diseases. These mutations have the common effect to disrupt the interactions between lymphoma cells and the immune microenvironment, via decreased antigen presentation and responsiveness to IFN-γ and CD40 signaling pathways. This indicates that immune evasion is a key step in GC B-cell lymphomagenesis. EZH2 inhibitors are now approved for the treatment of FL and selective HDAC3 inhibitors counteracting the effects of CREBBP LOF mutations are under development. These treatments can help restore the immune control of GCB lymphomas, and may represent optimal candidate agents for more effective combination with immunotherapies. Here, we review recent progress in understanding the impact of mutant chromatin modifiers on immune evasion in GCB lymphomas. We provide new insights on how the epigenetic program of these diseases may be regulated at the level of metabolism, discussing the role of metabolic intermediates as cofactors of epigenetic enzymes. In addition, lymphoma metabolic adaptation can negatively influence the immune microenvironment, further contributing to the development of immune cold tumors, poorly infiltrated by effector immune cells. Based on these findings, we discuss relevant candidate epigenetic/metabolic/immune targets for rational combination therapies to investigate as more effective precision-medicine approaches for GCB lymphomas.
Collapse
Affiliation(s)
- Inna Serganova
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sanjukta Chakraborty
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Samuel Yamshon
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Yusuke Isshiki
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ryan Bucktrout
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
23
|
de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 2022; 36:1-12. [PMID: 34561557 PMCID: PMC8727299 DOI: 10.1038/s41375-021-01416-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
While the understanding of the genomic aberrations that underpin chronic and acute myeloid leukaemia (CML and AML) has allowed the development of therapies for these diseases, limitations remain. These become apparent when looking at the frequency of treatment resistance leading to disease relapse in leukaemia patients. Key questions regarding the fundamental biology of the leukaemic cells, such as their metabolic dependencies, are still unresolved. Even though a majority of leukaemic cells are killed during initial treatment, persistent leukaemic stem cells (LSCs) and therapy-resistant cells are still not eradicated with current treatments, due to various mechanisms that may contribute to therapy resistance, including cellular metabolic adaptations. In fact, recent studies have shown that LSCs and treatment-resistant cells are dependent on mitochondrial metabolism, hence rendering them sensitive to inhibition of mitochondrial oxidative phosphorylation (OXPHOS). As a result, rewired energy metabolism in leukaemic cells is now considered an attractive therapeutic target and the significance of this process is increasingly being recognised in various haematological malignancies. Therefore, identifying and targeting aberrant metabolism in drug-resistant leukaemic cells is an imperative and a relevant strategy for the development of new therapeutic options in leukaemia. In this review, we present a detailed overview of the most recent studies that present experimental evidence on how leukaemic cells can metabolically rewire, more specifically the importance of OXPHOS in LSCs and treatment-resistant cells, and the current drugs available to target this process. We highlight that uncovering specific energy metabolism dependencies will guide the identification of new and more targeted therapeutic strategies for myeloid leukaemia.
Collapse
Affiliation(s)
- Lucie de Beauchamp
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ekaterini Himonas
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
24
|
Jain S, Hu C, Kluza J, Ke W, Tian G, Giurgiu M, Bleilevens A, Campos AR, Charbono A, Stickeler E, Maurer J, Holinski-Feder E, Vaisburg A, Bureik M, Luo G, Marchetti P, Cheng Y, Wolf DA. Metabolic targeting of cancer by a ubiquinone uncompetitive inhibitor of mitochondrial complex I. Cell Chem Biol 2021; 29:436-450.e15. [PMID: 34852219 DOI: 10.1016/j.chembiol.2021.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/12/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
SMIP004-7 is a small molecule inhibitor of mitochondrial respiration with selective in vivo anti-cancer activity through an as-yet unknown molecular target. We demonstrate here that SMIP004-7 targets drug-resistant cancer cells with stem-like features by inhibiting mitochondrial respiration complex I (NADH:ubiquinone oxidoreductase, complex I [CI]). Instead of affecting the quinone-binding site targeted by most CI inhibitors, SMIP004-7 and its cytochrome P450-dependent activated metabolite(s) have an uncompetitive mechanism of inhibition involving a distinct N-terminal region of catalytic subunit NDUFS2 that leads to rapid disassembly of CI. SMIP004-7 and an improved chemical analog selectively engage NDUFS2 in vivo to inhibit the growth of triple-negative breast cancer transplants, a response mediated at least in part by boosting CD4+ and CD8+ T cell-mediated immune surveillance. Thus, SMIP004-7 defines an emerging class of ubiquinone uncompetitive CI inhibitors for cell autonomous and microenvironmental metabolic targeting of mitochondrial respiration in cancer.
Collapse
Affiliation(s)
- Shashi Jain
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92024, USA
| | - Cheng Hu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'An South Road, Xiamen, China
| | - Jerome Kluza
- Université de Lille, CNRS, Inserm, CHU Lille, Institut pour la Recherche sur le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Wei Ke
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'An South Road, Xiamen, China
| | - Guiyou Tian
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'An South Road, Xiamen, China
| | | | - Andreas Bleilevens
- Department of Obstetrics and Gynecology, University of Aachen, Aachen, Germany
| | | | - Adriana Charbono
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92024, USA
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University of Aachen, Aachen, Germany
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University of Aachen, Aachen, Germany
| | - Elke Holinski-Feder
- MGZ Medical Genetics Center Munich, 80335 Munich, Germany; Department of Medicine IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany
| | - Arkadii Vaisburg
- Crocus Laboratories Inc., Montreal, QC, Canada; NuChem Sciences Inc., Montreal, QC, Canada
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Guangcheng Luo
- Department of Urology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Philippe Marchetti
- Université de Lille, CNRS, Inserm, CHU Lille, Institut pour la Recherche sur le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; Centre de Bio-Pathologie, Banque de Tissus, CHU of Lille, Lille, France
| | - Yabin Cheng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'An South Road, Xiamen, China.
| | - Dieter A Wolf
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'An South Road, Xiamen, China; MGZ Medical Genetics Center Munich, 80335 Munich, Germany; Department of Internal Medicine II, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany.
| |
Collapse
|
25
|
Donati G, Ravà M, Filipuzzi M, Nicoli P, Cassina L, Verrecchia A, Doni M, Rodighiero S, Parodi F, Boletta A, Vellano CP, Marszalek JR, Draetta GF, Amati B. Targeting mitochondrial respiration and the BCL2 family in high-grade MYC-associated B-cell lymphoma. Mol Oncol 2021; 16:1132-1152. [PMID: 34632715 PMCID: PMC8895457 DOI: 10.1002/1878-0261.13115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 01/02/2023] Open
Abstract
Multiple molecular features, such as activation of specific oncogenes (e.g., MYC, BCL2) or a variety of gene expression signatures, have been associated with disease course in diffuse large B‐cell lymphoma (DLBCL), although their relationships and implications for targeted therapy remain to be fully unraveled. We report that MYC activity is closely correlated with—and most likely a driver of—gene signatures related to oxidative phosphorylation (OxPhos) in DLBCL, pointing to OxPhos enzymes, in particular mitochondrial electron transport chain (ETC) complexes, as possible therapeutic targets in high‐grade MYC‐associated lymphomas. In our experiments, indeed, MYC sensitized B cells to the ETC complex I inhibitor IACS‐010759. Mechanistically, IACS‐010759 triggered the integrated stress response (ISR) pathway, driven by the transcription factors ATF4 and CHOP, which engaged the intrinsic apoptosis pathway and lowered the apoptotic threshold in MYC‐overexpressing cells. In line with these findings, the BCL2‐inhibitory compound venetoclax synergized with IACS‐010759 against double‐hit lymphoma (DHL), a high‐grade malignancy with concurrent activation of MYC and BCL2. In BCL2‐negative lymphoma cells, instead, killing by IACS‐010759 was potentiated by the Mcl‐1 inhibitor S63845. Thus, combining an OxPhos inhibitor with select BH3‐mimetic drugs provides a novel therapeutic principle against aggressive, MYC‐associated DLBCL variants.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Micol Ravà
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | - Paola Nicoli
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Laura Cassina
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Mirko Doni
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | | | | | - Christopher P Vellano
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), Houston, TX, USA
| | - Giulio F Draetta
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bruno Amati
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| |
Collapse
|
26
|
Luna Yolba R, Visentin V, Hervé C, Chiche J, Ricci J, Méneyrol J, Paillasse MR, Alet N. EVT-701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent anti-tumor activity in models of solid cancers. Pharmacol Res Perspect 2021; 9:e00854. [PMID: 34478236 PMCID: PMC8415080 DOI: 10.1002/prp2.854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
Targeting the first protein complex of the mitochondrial electron transport chain (MC1) in cancer has become an attractive therapeutic approach in the recent years, given the metabolic vulnerabilities of cancer cells. The anticancer effect exerted by the pleiotropic drug metformin and the associated reduction in hypoxia-inducible factor 1α (HIF-1α) levels putatively mediated by MC1 inhibition led to the development of HIF-1α inhibitors, such as BAY87-2243, with a more specific MC1 targeting. However, the development of BAY87-2243 was stopped early in phase 1 due to dose-independent emesis and thus there is still no clinical proof of concept for the approach. Given the importance of mitochondrial metabolism during cancer progression, there is still a strong therapeutic need to develop specific and safe MC1 inhibitors. We recently reported the synthesis of compounds with a novel chemotype and potent action on HIF-1α degradation and MC1 inhibition. We describe here the selectivity, safety profile and anti-cancer activity in solid tumors of lead compound EVT-701. In addition, using murine models of lung cancer and of Non-Hodgkin's B cell lymphoma we demonstrated that EVT-701 reduced tumor growth and lymph node invasion when used as a single agent therapy. LKB1 deficiency in lung cancer was identified as a potential indicator of accrued sensitivity to EVT-701, allowing stratification and selection of patients in clinical trials. Altogether these results support further evaluation of EVT-701 alone or in combination in preclinical models and eventually in patients.
Collapse
Affiliation(s)
| | | | | | - Johanna Chiche
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | - Jean‐Ehrland Ricci
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | | | | | | |
Collapse
|
27
|
Bagaloni I, Visani A, Biagiotti S, Ruzzo A, Navari M, Etebari M, Mundo L, Granai M, Lazzi S, Isidori A, Loscocco F, Li J, Leoncini L, Visani G, Magnani M, Piccaluga PP. Metabolic Switch and Cytotoxic Effect of Metformin on Burkitt Lymphoma. Front Oncol 2021; 11:661102. [PMID: 34557403 PMCID: PMC8454268 DOI: 10.3389/fonc.2021.661102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Altered cellular energetic metabolism has recently emerged as important feature of neoplastic cells. Indeed, interfering with cancer cell metabolism might represent a suitable therapeutic strategy. In this study, we aimed to assess glucose metabolism activation in human lymphomas and evaluate how metformin can exert its action on lymphoma cells. We studied a large series of human lymphomas (N = 252) and an in vitro model of Burkitt lymphoma (BL) cells. We combined molecular biology techniques, including global gene expression profiling (GEP) analysis, quantitative PCR (qPCR) and Western blotting, and biochemical assays, aimed to assess pentose phosphate pathway, tricarboxylic acid (TCA) cycle, and aerobic glycolysis rates. We found that glucose metabolism is overall enhanced in most lymphoma subtypes, based on gene expression profiling (GEP), with general shift to aerobic glycolysis. By contrast, normal B cells only showed an overall increase in glucose usage during germinal center transition. Interestingly, not only highly proliferating aggressive lymphomas but also indolent ones, like marginal zone lymphomas, showed the phenomenon. Consistently, genes involved in glycolysis were confirmed to be overexpressed in BL cells by qPCR. Biochemical assays showed that while aerobic glycolysis is increased, TCA cycle is reduced. Finally, we showed that metformin can induce cell death in BL cells by stressing cellular metabolism through the induction of GLUT1, PKM2, and LDHA. In conclusion, we unveiled glucose metabolism abnormalities in human lymphomas and characterized the mechanism of action of metformin in Burkitt lymphoma model.
Collapse
Affiliation(s)
- Irene Bagaloni
- Department of Biomolecular Sciences (DISB), University of Urbino, Urbino, Italy
| | - Axel Visani
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University School of Medicine, Bologna, Italy
| | - Sara Biagiotti
- Department of Biomolecular Sciences (DISB), University of Urbino, Urbino, Italy
| | - Annamaria Ruzzo
- Department of Biomolecular Sciences (DISB), University of Urbino, Urbino, Italy
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Etebari
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University School of Medicine, Bologna, Italy.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lucia Mundo
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Massimo Granai
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy.,Department of Pathology, Tubingen University, Tubingen, Germany
| | - Stefano Lazzi
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | | | | | - Jiejin Li
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Giuseppe Visani
- Hematology and Transplant Center, AORMN Marche Nord, Pesaro, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences (DISB), University of Urbino, Urbino, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University School of Medicine, Bologna, Italy.,School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,School of Health, Department of Pathology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
28
|
Amoedo ND, Sarlak S, Obre E, Esteves P, Bégueret H, Kieffer Y, Rousseau B, Dupis A, Izotte J, Bellance N, Dard L, Redonnet-Vernhet I, Punzi G, Rodrigues MF, Dumon E, Mafhouf W, Guyonnet-Dupérat V, Gales L, Palama T, Bellvert F, Dugot-Senan N, Claverol S, Baste JM, Lacombe D, Rezvani HR, Pierri CL, Mechta-Grigoriou F, Thumerel M, Rossignol R. Targeting the mitochondrial trifunctional protein restrains tumor growth in oxidative lung carcinomas. J Clin Invest 2021; 131:133081. [PMID: 33393495 DOI: 10.1172/jci133081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX-) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.
Collapse
Affiliation(s)
- Nivea Dias Amoedo
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Saharnaz Sarlak
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Emilie Obre
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Pauline Esteves
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Hugues Bégueret
- Bordeaux University, Bordeaux, France.,Pathology Department, Haut-Lévèque Hospital, CHU Bordeaux, Bordeaux, France
| | - Yann Kieffer
- Stress and Cancer Laboratory, Curie Institute - INSERM U830, Paris, France
| | - Benoît Rousseau
- INSERM U1211, Bordeaux, France.,Transgenic Animal Facility A2, University of Bordeaux, Bordeaux, France
| | - Alexis Dupis
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Julien Izotte
- INSERM U1211, Bordeaux, France.,Transgenic Animal Facility A2, University of Bordeaux, Bordeaux, France
| | - Nadège Bellance
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Laetitia Dard
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Isabelle Redonnet-Vernhet
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Biochemistry Department, Pellegrin Hospital, CHU Bordeaux, Bordeaux, France
| | - Giuseppe Punzi
- Laboratory of Biochemistry and Molecular Biology, University of Bari,Bari, Italy
| | | | - Elodie Dumon
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Walid Mafhouf
- Bordeaux University, Bordeaux, France.,INSERM U1035, Bordeaux, France
| | | | - Lara Gales
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National des Sciences Appliquées (INSA)/CNRS 5504 - UMR INSA/Institut National de la Recherche Agronomique (INRA) 792, Toulouse, France
| | - Tony Palama
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National des Sciences Appliquées (INSA)/CNRS 5504 - UMR INSA/Institut National de la Recherche Agronomique (INRA) 792, Toulouse, France
| | - Floriant Bellvert
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National des Sciences Appliquées (INSA)/CNRS 5504 - UMR INSA/Institut National de la Recherche Agronomique (INRA) 792, Toulouse, France
| | | | - Stéphane Claverol
- Bordeaux University, Bordeaux, France.,Functional Genomics Center (CGFB), Proteomics Facility, Bordeaux, France
| | - Jean-Marc Baste
- Thoracic Surgery, Haut-Lévèque Hospital, CHU Bordeaux, Bordeaux, France
| | - Didier Lacombe
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | | | - Ciro Leonardo Pierri
- Laboratory of Biochemistry and Molecular Biology, University of Bari,Bari, Italy
| | | | - Matthieu Thumerel
- Thoracic Surgery, Haut-Lévèque Hospital, CHU Bordeaux, Bordeaux, France
| | - Rodrigue Rossignol
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| |
Collapse
|
29
|
Enhanced Sensitivity of Nonsmall Cell Lung Cancer with Acquired Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors to Phenformin: The Roles of a Metabolic Shift to Oxidative Phosphorylation and Redox Balance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5428364. [PMID: 34367462 PMCID: PMC8342158 DOI: 10.1155/2021/5428364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Background Although the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR- TKI) therapy has been proven in non-small cell lung cancer (NSCLC) patients, acquired resistance to EGFR-TKIs presents a serious clinical problem. Hence, the identification of new therapeutic strategy is needed to treat EGFR-TKI-resistant NSCLC. Methods Acquired EGFR-TKI-resistant lung cancer cell lines (HCC827, H1993, and H292 cells with acquired resistance to gefitinib or erlotinib) were used for cell-based studies. IncuCyte live cell analysis system and XFp analyzer were used for the determination of cell proliferation and energy metabolism, respectively. In vivo anticancer effect of phenformin was assessed in xenografts implanting HCC827 and gefitinib-resistant HCC827 (HCC827 GR) cells. Results HCC827 GR and erlotinib-resistant H1993 (H1993 ER) cells exhibited different metabolic properties compared with their respective parental cells, HCC827, and H1993. In EGFR-TKI-resistant NSCLC cells, glycolysis markers including the glucose consumption rate, intracellular lactate level, and extracellular acidification rate were decreased; however, mitochondrial oxidative phosphorylation (OXPHOS) markers including mitochondria-driven ATP production, mitochondrial membrane potential, and maximal OXPHOS capacity were increased. Cell proliferation and tumor growth were strongly inhibited by biguanide phenformin via targeting of mitochondrial OXPHOS complex 1 in EGFR-TKI-resistant NSCLC cells. Inhibition of OXPHOS resulted in a reduced NAD+/NADH ratio and intracellular aspartate levels. Recovery of glycolysis by hexokinase 2 overexpression in erlotinib-resistant H292 (H292 ER) cells significantly reduced the anticancer effects of phenformin. Conclusion Long-term treatment with EGFR-TKIs causes reactivation of mitochondrial metabolism, resulting in vulnerability to OXPHOS inhibitor such as phenformin. We propose a new therapeutic option for NSCLC with acquired EGFR-TKI resistance that focuses on cancer metabolism.
Collapse
|
30
|
Jiang D, Mo Q, Sun X, Wang X, Dong M, Zhang G, Chen F, Zhao Q. Pyruvate dehydrogenase kinase 4-mediated metabolic reprogramming is involved in rituximab resistance in diffuse large B-cell lymphoma by affecting the expression of MS4A1/CD20. Cancer Sci 2021; 112:3585-3597. [PMID: 34252986 PMCID: PMC8409406 DOI: 10.1111/cas.15055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/18/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) heterogeneity promotes recurrence and anti‐CD20‐based therapeutic resistance. Previous studies have shown that downregulation of MS4A1/CD20 expression after chemoimmunotherapy with rituximab leads to rituximab resistance. However, the mechanisms of CD20 loss remain unknown. We identified that pyruvate dehydrogenase kinase 4 (PDK4) is markedly elevated in DLBCL cells derived from both patients and cell lines with R‐CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) resistance. We found that overexpression of PDK4 in DLBCL cells resulted in cell proliferation and resistance to rituximab in vitro and in vivo. Furthermore, loss of PDK4 expression or treatment with the PDK4 inhibitor dichloroacetate was able to significantly increase rituximab‐induced cell apoptosis in DLBCL cells. Further studies suggested PDK4 mediates a metabolic shift, in that the main energy source was changed from oxidative phosphorylation to glycolysis, and the metabolic changes could play an important role in rituximab resistance. Importantly, by knocking down or overexpressing PDK4 in DLBCL cells, we showed that PDK4 has a negative regulation effect on MS4A1/CD20 expression. Collectively, this is the first study showing that targeting PDK4 has the potential to overcome rituximab resistance in DLBCL.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiuyu Mo
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaoying Sun
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, China
| | - Xiaotao Wang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Min Dong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guozhen Zhang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Fangping Chen
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, China.,Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Mayer KA, Smole U, Zhu C, Derdak S, Minervina AA, Salnikova M, Witzeneder N, Christamentl A, Boucheron N, Waidhofer-Söllner P, Trauner M, Hoermann G, Schmetterer KG, Mamedov IZ, Bilban M, Ellmeier W, Pickl WF, Gualdoni GA, Zlabinger GJ. The energy sensor AMPK orchestrates metabolic and translational adaptation in expanding T helper cells. FASEB J 2021; 35:e21217. [PMID: 33715236 PMCID: PMC8252394 DOI: 10.1096/fj.202001763rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
The importance of cellular metabolic adaptation in inducing robust T cell responses is well established. However, the mechanism by which T cells link information regarding nutrient supply to clonal expansion and effector function is still enigmatic. Herein, we report that the metabolic sensor adenosine monophosphate-activated protein kinase (AMPK) is a critical link between cellular energy demand and translational activity and, thus, orchestrates optimal expansion of T cells in vivo. AMPK deficiency did not affect T cell fate decision, activation, or T effector cell generation; however, the magnitude of T cell responses in murine in vivo models of T cell activation was markedly reduced. This impairment was global, as all T helper cell subsets were similarly sensitive to loss of AMPK which resulted in reduced T cell accumulation in peripheral organs and reduced disease severity in pathophysiologically as diverse models as T cell transfer colitis and allergic airway inflammation. T cell receptor repertoire analysis confirmed similar clonotype frequencies in different lymphoid organs, thereby supporting the concept of a quantitative impairment in clonal expansion rather than a skewed qualitative immune response. In line with these findings, in-depth metabolic analysis revealed a decrease in T cell oxidative metabolism, and gene set enrichment analysis indicated a major reduction in ribosomal biogenesis and mRNA translation in AMPK-deficient T cells. We, thus, provide evidence that through its interference with these delicate processes, AMPK orchestrates the quantitative, but not the qualitative, manifestation of primary T cell responses in vivo.
Collapse
Affiliation(s)
- Katharina A Mayer
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ursula Smole
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ci Zhu
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Anastasia A Minervina
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria Salnikova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna Christamentl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,MLL Munich Leukemia Laboratory, Munich, Germany
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ilgar Z Mamedov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Bilban
- Core Facilities, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Guido A Gualdoni
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Zhao H, Swanson KD, Zheng B. Therapeutic Repurposing of Biguanides in Cancer. Trends Cancer 2021; 7:714-730. [PMID: 33865798 DOI: 10.1016/j.trecan.2021.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Biguanides are a class of antidiabetic drugs that includes phenformin and metformin; however, the former was withdrawn from approval in many countries due to its toxicity. Findings from retrospective epidemiological studies in diabetic populations and preclinical laboratory models have demonstrated that biguanides possess antitumor activities that suggest their repurposing for cancer prevention and treatment. However, a better understanding of how these biguanides behave as antitumor agents is needed to guide their improved applications in cancer therapy, spurring increased interest in their pharmacology. Here, we present evidence for proposed mechanisms of action related to their antitumor activity, including their effects on central carbon metabolism in cancer cells and immune-modulating activity, and then review progress on biguanide repurposing in cancer therapeutics and the possible re-evaluation of phenformin as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Hongyun Zhao
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kenneth D Swanson
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
33
|
Sadras T, Chan LN, Xiao G, Müschen M. Metabolic Gatekeepers of Pathological B Cell Activation. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:323-349. [DOI: 10.1146/annurev-pathol-061020-050135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unlike other cell types, B cells undergo multiple rounds of V(D)J recombination and hypermutation to evolve high-affinity antibodies. Reflecting high frequencies of DNA double-strand breaks, adaptive immune protection by B cells comes with an increased risk of malignant transformation. In addition, the vast majority of newly generated B cells express an autoreactive B cell receptor (BCR). Thus, B cells are under intense selective pressure to remove autoreactive and premalignant clones. Despite stringent negative selection, B cells frequently give rise to autoimmune disease and B cell malignancies. In this review, we discuss mechanisms that we term metabolic gatekeepers to eliminate pathogenic B cell clones on the basis of energy depletion. Chronic activation signals from autoreactive BCRs or transforming oncogenes increase energy demands in autoreactive and premalignant B cells. Thus, metabolic gatekeepers limit energy supply to levels that are insufficient to fuel either a transforming oncogene or hyperactive signaling from an autoreactive BCR.
Collapse
Affiliation(s)
- Teresa Sadras
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| | - Lai N. Chan
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| | - Gang Xiao
- Current affiliation: Department of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
34
|
Tumor Cells and Cancer-Associated Fibroblasts: An Updated Metabolic Perspective. Cancers (Basel) 2021; 13:cancers13030399. [PMID: 33499022 PMCID: PMC7865797 DOI: 10.3390/cancers13030399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tumors are a complex ecosystem including not only cancer cells, but also many distinct cell types of the tumor micro-environment. While the Warburg effect assessing high glucose uptake in tumors was recognized a long time ago, metabolic heterogeneity within tumors has only recently been demonstrated. Indeed, several recent studies have highlighted other sources of carbon than glucose, including amino acids, fatty acids and lactate. These newly identified metabolic trajectories modulate key cancer cell features, such as invasion capacities. In addition, cancer metabolic heterogeneity is not restricted to cancer cells. Here, we also describe heterogeneity of Cancer-Associated Fibroblast (CAF) subpopulations and their complex metabolic crosstalk with cancer cells. Abstract During the past decades, metabolism and redox imbalance have gained considerable attention in the cancer field. In addition to the well-known Warburg effect occurring in tumor cells, numerous other metabolic deregulations have now been reported. Indeed, metabolic reprograming in cancer is much more heterogeneous than initially thought. In particular, a high diversity of carbon sources used by tumor cells has now been shown to contribute to this metabolic heterogeneity in cancer. Moreover, the molecular mechanisms newly highlighted are multiple and shed light on novel actors. Furthermore, the impact of this metabolic heterogeneity on tumor microenvironment has also been an intense subject of research recently. Here, we will describe the new metabolic pathways newly uncovered in tumor cells. We will also have a particular focus on Cancer-Associated Fibroblasts (CAF), whose identity, function and metabolism have been recently under profound investigation. In that sense, we will discuss about the metabolic crosstalk between tumor cells and CAF.
Collapse
|
35
|
Barbato A, Scandura G, Puglisi F, Cambria D, La Spina E, Palumbo GA, Lazzarino G, Tibullo D, Di Raimondo F, Giallongo C, Romano A. Mitochondrial Bioenergetics at the Onset of Drug Resistance in Hematological Malignancies: An Overview. Front Oncol 2020; 10:604143. [PMID: 33409153 PMCID: PMC7779674 DOI: 10.3389/fonc.2020.604143] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The combined derangements in mitochondria network, function and dynamics can affect metabolism and ATP production, redox homeostasis and apoptosis triggering, contributing to cancer development in many different complex ways. In hematological malignancies, there is a strong relationship between cellular metabolism, mitochondrial bioenergetics, interconnections with supportive microenvironment and drug resistance. Lymphoma and chronic lymphocytic leukemia cells, e.g., adapt to intrinsic oxidative stress by increasing mitochondrial biogenesis. In other hematological disorders such as myeloma, on the contrary, bioenergetics changes, associated to increased mitochondrial fitness, derive from the adaptive response to drug-induced stress. In the bone marrow niche, a reverse Warburg effect has been recently described, consisting in metabolic changes occurring in stromal cells in the attempt to metabolically support adjacent cancer cells. Moreover, a physiological dynamic, based on mitochondria transfer, between tumor cells and their supporting stromal microenvironment has been described to sustain oxidative stress associated to proteostasis maintenance in multiple myeloma and leukemia. Increased mitochondrial biogenesis of tumor cells associated to acquisition of new mitochondria transferred by mesenchymal stromal cells results in augmented ATP production through increased oxidative phosphorylation (OX-PHOS), higher drug resistance, and resurgence after treatment. Accordingly, targeting mitochondrial biogenesis, electron transfer, mitochondrial DNA replication, or mitochondrial fatty acid transport increases therapy efficacy. In this review, we summarize selected examples of the mitochondrial derangements in hematological malignancies, which provide metabolic adaptation and apoptosis resistance, also supported by the crosstalk with tumor microenvironment. This field promises a rational design to improve target-therapy including the metabolic phenotype.
Collapse
Affiliation(s)
- Alessandro Barbato
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Fabrizio Puglisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Giacomo Lazzarino
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Daniele Tibullo
- Department of Biotechnological and Biomedical Sciences, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
36
|
Böttcher M, Baur R, Stoll A, Mackensen A, Mougiakakos D. Linking Immunoevasion and Metabolic Reprogramming in B-Cell-Derived Lymphomas. Front Oncol 2020; 10:594782. [PMID: 33251150 PMCID: PMC7674840 DOI: 10.3389/fonc.2020.594782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Lymphomas represent a diverse group of malignancies that emerge from lymphocytes. Despite improvements in diagnosis and treatment of lymphomas of B-cell origin, relapsed and refractory disease represents an unmet clinical need. Therefore, it is of utmost importance to better understand the lymphomas’ intrinsic features as well as the interactions with their cellular microenvironment for developing novel therapeutic strategies. In fact, the role of immune-based approaches is steadily increasing and involves amongst others the use of monoclonal antibodies against tumor antigens, inhibitors of immunological checkpoints, and even genetically modified T-cells. Metabolic reprogramming and immune escape both represent well established cancer hallmarks. Tumor metabolism as introduced by Otto Warburg in the early 20th century promotes survival, proliferation, and therapeutic resistance. Simultaneously, malignant cells employ a plethora of mechanisms to evade immune surveillance. Increasing evidence suggests that metabolic reprogramming does not only confer cell intrinsic growth and survival advantages to tumor cells but also impacts local as well as systemic anti-tumor immunity. Tumor and immune cells compete over nutrients such as carbohydrates or amino acids that are critical for the immune cell function. Moreover, skewed metabolic pathways in malignant cells can result in abundant production and release of bioactive metabolites such as lactic acid, kynurenine or reactive oxygen species (ROS) that affect immune cell fitness and function. This “metabolic re-modeling” of the tumor microenvironment shifts anti-tumor immune reactivity toward tolerance. Here, we will review molecular events leading to metabolic alterations in B-cell lymphomas and their impact on anti-tumor immunity.
Collapse
Affiliation(s)
- Martin Böttcher
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Rebecca Baur
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Andrej Stoll
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
37
|
Khan H, Anshu A, Prasad A, Roy S, Jeffery J, Kittipongdaja W, Yang DT, Schieke SM. Metabolic Rewiring in Response to Biguanides Is Mediated by mROS/HIF-1a in Malignant Lymphocytes. Cell Rep 2020; 29:3009-3018.e4. [PMID: 31801069 DOI: 10.1016/j.celrep.2019.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolic flexibility allows cells to adapt to various environments and limits the efficacy of metabolic drugs. Therapeutic targeting of cancer metabolism relies on defining limiting requirements and vulnerabilities in the highly dynamic metabolic network. Here, we characterize the metabolic reprogramming and identify cancer-specific metabolic vulnerabilities in response to the pharmacological inhibition of mitochondrial complex I. Our work reveals the adaptation mechanism in malignant lymphocytes providing resistance against the biguanides phenformin and metformin by transcriptionally reprogramming glucose metabolism. Metabolic adaptation to complex I inhibition is mediated by mitochondrial reactive oxygen species (mROS) serving as a mitochondrial stress signal activating hypoxia-inducible factor-1a (HIF-1a). Inhibition of the mROS/HIF-1a axis through antioxidants or direct suppression of HIF-1a selectively disrupts metabolic adaptation and survival during complex I dysfunction in malignant lymphocytes. Our results identify HIF-1a signaling as a critical factor in resistance against biguanide-induced mitochondrial dysfunction, allowing selective targeting of metabolic pathways in leukemia and lymphoma.
Collapse
Affiliation(s)
- Hamidullah Khan
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ashish Anshu
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aman Prasad
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sushmita Roy
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Justin Jeffery
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - David T Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stefan M Schieke
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
38
|
Petővári G, Dankó T, Tőkés AM, Vetlényi E, Krencz I, Raffay R, Hajdu M, Sztankovics D, Németh K, Vellai-Takács K, Jeney A, Kulka J, Sebestyén A. In Situ Metabolic Characterisation of Breast Cancer and Its Potential Impact on Therapy. Cancers (Basel) 2020; 12:cancers12092492. [PMID: 32899149 PMCID: PMC7563878 DOI: 10.3390/cancers12092492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
In spite of tremendous developments in breast cancer treatment, the relatively high incidence of relapsing cases indicates a great need to find new therapeutic strategies in recurrent, metastatic and advanced cases. The bioenergetic needs of growing tumours at the primary site or in metastases-accumulating genomic alterations and further heterogeneity-are supported by metabolic rewiring, an important hallmark of cancer. Adaptation mechanisms as well as altered anabolic and catabolic processes balance according to available nutrients, energy, oxygen demand and overgrowth or therapeutic resistance. Mammalian target of rapamycin (mTOR) hyperactivity may contribute to this metabolic plasticity and progression in breast carcinomas. We set out to assess the metabolic complexity in breast cancer cell lines and primary breast cancer cases. Cellular metabolism and mTOR-related protein expression were characterised in ten cell lines, along with their sensitivity to specific mTOR and other metabolic inhibitors. Selected immunohistochemical reactions were performed on ~100 surgically removed breast cancer specimens. The obtained protein expression scores were correlated with survival and other clinicopathological data. Metabolic and mTOR inhibitor mono-treatments had moderate antiproliferative effects in the studied cell lines in a subtype-independent manner, revealing their high adaptive capacity and survival/growth potential. Immunohistochemical analysis of p-S6, Rictor, lactate dehydrogenase A, glutaminase, fatty acid synthase and carnitine palmitoyltransferase 1A in human samples identified high mTOR activity and potential metabolic plasticity as negative prognostic factors for breast cancer patients, even in subtypes generally considered as low-risk. According to our results, breast cancer is characterised by considerable metabolic diversity, which can be targeted by combining antimetabolic treatments and recent therapies. Alterations in these pathways may provide novel targets for future drug development in breast cancer. We also propose a set of immunostainings for scoring metabolic heterogeneity in individual cases in order to select patients who may benefit from more accurate follow-up and specific therapies.
Collapse
Affiliation(s)
- Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Anna-Mária Tőkés
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary; (A.-M.T.); (J.K.)
| | - Enikő Vetlényi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Regina Raffay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Melinda Hajdu
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Dániel Sztankovics
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Krisztina Németh
- MS Metabolomics Laboratory, Core Facility, Research Centre for Natural Sciences, Magyar Tudósok Blvd 2, H-1117 Budapest, Hungary;
| | - Krisztina Vellai-Takács
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary;
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary; (A.-M.T.); (J.K.)
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
- Correspondence: or
| |
Collapse
|
39
|
Zhou Z, Ma D, Li P, Wang P, Liu P, Wei D, Wang J, Qin Z, Fang Q, Wang J. Sirt1 gene confers Adriamycin resistance in DLBCL via activating the PCG-1α mitochondrial metabolic pathway. Aging (Albany NY) 2020; 12:11364-11385. [PMID: 32570218 PMCID: PMC7343448 DOI: 10.18632/aging.103174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/13/2020] [Indexed: 04/19/2023]
Abstract
Sirt1 is closely related to cells aging, and Sirt1 also plays an important role in diffuse large B-cell lymphoma (DLBCL). However, its mechanism remains unclear. Therefore, we investigated the mechanism of Sirt1 mediated drug-resistance in DLBCL, while the recombinant lentivirus was used to regulate Sirt1 gene expression in DLBCL cell lines. Subsequently, the effect of Sirt1 on DLBCL resistance to Adriamycin was analyzed in vitro. The results show that Sirt1 overexpression confers Adriamycin resistance in DLBCL cell lines. However, inhibition of Sirt1 sensitized DLBCL cell lines to Adriamycin cytotoxicity. Additionally, tumor-bearing mice were used to verify that Sirt1 overexpression confers Adriamycin resistance in vivo after chemotherapy. In addition, we used second-generation sequencing technology and bioinformatics analysis to find that Sirt1 mediated drug-resistance is related to the Peroxisome proliferator-activated receptor (PPAR) signaling pathway, especially to PGC-1α. Interestingly, the mitochondrial energy inhibitor, tigecycline, combined with Adriamycin reversed the cellular resistance caused by Sirt1 overexpression in vivo. Moreover, western blotting and CO-IP assay reconfirmed that Sirt1-mediated drug-resistance is associated with the increased expression of PGC1-α, which induce mitochondrial biogenesis. In summary, this study confirms that Sirt1 is a potential target for DLBCL treatment.
Collapse
MESH Headings
- Acetylation
- Adult
- Aged
- Aged, 80 and over
- Animals
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/genetics
- Metabolic Networks and Pathways/drug effects
- Metabolic Networks and Pathways/genetics
- Mice
- Middle Aged
- Mitochondria/drug effects
- Mitochondria/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- RNA-Seq
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Up-Regulation
- Xenograft Model Antitumor Assays
- Young Adult
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Department of Pharmacy, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
- Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Peifan Li
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Ping Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
- Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
- Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Danna Wei
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
- Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Jun Wang
- Department of Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Zhong Qin
- Department of Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang 550004, China
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
- Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| |
Collapse
|
40
|
Drug Resistance in Non-Hodgkin Lymphomas. Int J Mol Sci 2020; 21:ijms21062081. [PMID: 32197371 PMCID: PMC7139754 DOI: 10.3390/ijms21062081] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
Non-Hodgkin lymphomas (NHL) are lymphoid tumors that arise by a complex process of malignant transformation of mature lymphocytes during various stages of differentiation. The WHO classification of NHL recognizes more than 90 nosological units with peculiar pathophysiology and prognosis. Since the end of the 20th century, our increasing knowledge of the molecular biology of lymphoma subtypes led to the identification of novel druggable targets and subsequent testing and clinical approval of novel anti-lymphoma agents, which translated into significant improvement of patients’ outcome. Despite immense progress, our effort to control or even eradicate malignant lymphoma clones has been frequently hampered by the development of drug resistance with ensuing unmet medical need to cope with relapsed or treatment-refractory disease. A better understanding of the molecular mechanisms that underlie inherent or acquired drug resistance might lead to the design of more effective front-line treatment algorithms based on reliable predictive markers or personalized salvage therapy, tailored to overcome resistant clones, by targeting weak spots of lymphoma cells resistant to previous line(s) of therapy. This review focuses on the history and recent advances in our understanding of molecular mechanisms of resistance to genotoxic and targeted agents used in clinical practice for the therapy of NHL.
Collapse
|
41
|
Wu Y, Chang YM, Polton G, Stell AJ, Szladovits B, Macfarlane M, Peters LM, Priestnall SL, Bacon NJ, Kow K, Stewart S, Sharma E, Goulart MR, Gribben J, Xia D, Garden OA. Gene Expression Profiling of B Cell Lymphoma in Dogs Reveals Dichotomous Metabolic Signatures Distinguished by Oxidative Phosphorylation. Front Oncol 2020; 10:307. [PMID: 32211332 PMCID: PMC7069556 DOI: 10.3389/fonc.2020.00307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/20/2020] [Indexed: 11/13/2022] Open
Abstract
Gene expression profiling has revealed molecular heterogeneity of diffuse large B cell lymphoma (DLBCL) in both humans and dogs. Two DLBCL subtypes based on cell of origin are generally recognized, germinal center B (GCB)-like and activated B cell (ABC)-like. A pilot study to characterize the transcriptomic phenotype of 11 dogs with multicentric BCL yielded two molecular subtypes distinguished on the basis of genes important in oxidative phosphorylation. We propose a metabolic classification of canine BCL that transcends cell of origin and shows parallels to a similar molecular phenotype in human DLBCL. We thus confirm the validity of this classification scheme across widely divergent mammalian taxa and add to the growing body of literature suggesting cellular and molecular similarities between human and canine non-Hodgkin lymphoma. Our data support a One Health approach to the study of DLBCL, including the advancement of novel therapies of relevance to both canine and human health.
Collapse
Affiliation(s)
- Ying Wu
- Royal Veterinary College, London, United Kingdom
| | - Yu-Mei Chang
- Royal Veterinary College, London, United Kingdom
| | - Gerry Polton
- North Downs Specialist Referrals, Bletchingley, United Kingdom
| | | | | | | | | | | | | | - Kelvin Kow
- Fitzpatrick Referrals, Guildford, United Kingdom
| | | | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Dong Xia
- Royal Veterinary College, London, United Kingdom
| | - Oliver A. Garden
- Royal Veterinary College, London, United Kingdom
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
42
|
mTOR Regulation of Metabolism in Hematologic Malignancies. Cells 2020; 9:cells9020404. [PMID: 32053876 PMCID: PMC7072383 DOI: 10.3390/cells9020404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Neoplastic cells rewire their metabolism, acquiring a selective advantage over normal cells and a protection from therapeutic agents. The mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase involved in a variety of cellular activities, including the control of metabolic processes. mTOR is hyperactivated in a large number of tumor types, and among them, in many hematologic malignancies. In this article, we summarized the evidence from the literature that describes a central role for mTOR in the acquisition of new metabolic phenotypes for different hematologic malignancies, in concert with other metabolic modulators (AMPK, HIF1α) and microenvironmental stimuli, and shows how these features can be targeted for therapeutic purposes.
Collapse
|
43
|
Jalali S, Ansell SM. The potential role of glycogen metabolism in diffuse large B-cell lymphoma. Leuk Lymphoma 2019; 61:1028-1036. [PMID: 31845606 DOI: 10.1080/10428194.2019.1702185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive form of non-Hodgkin lymphoma that may become refractory to available standard therapies, resulting in the need for the development of novel therapeutic targets. Increased metabolic activity of DLBCL tumor cells associated with high expression of glycolysis related proteins, such as glucose transporters and hexokinases, have already been described and indicates a pivotal role for glucose and glycogen metabolism in the malignant progression of the disease. Moreover, several enzymes involved in glycolysis and glycogen metabolism, including hexokinases and glycogen synthase kinase-3, are key molecules in mediating cell survival signaling, indicating that glucose/glycogen metabolism is tightly linked to the cell survival and can potentially be targeted for therapeutic purposes in DLBCL. In this review, we provide a summary of glycogen and glucose metabolism and discuss their significance in the metabolic reprograming that leads to cell survival and proliferation in DLBCL.
Collapse
Affiliation(s)
- Shahrzad Jalali
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen M Ansell
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
44
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|
45
|
Shih T, De S, Barnes BJ. RNAi Transfection Optimized in Primary Naïve B Cells for the Targeted Analysis of Human Plasma Cell Differentiation. Front Immunol 2019; 10:1652. [PMID: 31396212 PMCID: PMC6664017 DOI: 10.3389/fimmu.2019.01652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Upon antigen recognition, naïve B cells undergo rapid proliferation followed by differentiation to specialized antibody secreting cells (ASCs), called plasma cells. Increased circulating plasma cells are reported in patients with B cell-associated malignancies, chronic graft-vs.-host disease, and autoimmune disorders. Our aim was to optimize an RNAi-based method that efficiently and reproducibly knocks-down genes of interest in human primary peripheral B cells for the targeted analysis of ASC differentiation. The unique contributions of transcriptional diversity in species-specific regulatory networks and the mechanisms of gene function need to be approached directly in human B cells with tools to hone our basic inferences from animal models to human biology. To date, methods for gene knockdown in human primary B cells, which tend to be more refractory to transfection than immortalized B cell lines, have been limited by losses in cell viability and ineffective penetrance. Our single-step siRNA nucleofector-based approach for human primary naïve B cells demonstrates reproducible knockdown efficiency (~40–60%). We focused on genes already known to play key roles in murine ASC differentiation, such as interferon regulatory factor 4 (IRF4) and AID. This study reports a validated non-viral method of siRNA delivery into human primary B cells that can be applied to study gene regulatory networks that control human ASC differentiation.
Collapse
Affiliation(s)
- Tiffany Shih
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, Northwell Health, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Saurav De
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, Northwell Health, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Graduate School of Biomedical Sciences Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, Northwell Health, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, United States
| |
Collapse
|
46
|
Stuani L, Sabatier M, Sarry JE. Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia. BMC Biol 2019; 17:57. [PMID: 31319822 PMCID: PMC6637566 DOI: 10.1186/s12915-019-0670-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Changes in cell metabolism and metabolic adaptation are hallmark features of many cancers, including leukemia, that support biological processes involved into tumor initiation, growth, and response to therapeutics. The discovery of mutations in key metabolic enzymes has highlighted the importance of metabolism in cancer biology and how these changes might constitute an Achilles heel for cancer treatment. In this Review, we discuss the role of metabolic and mitochondrial pathways dysregulated in acute myeloid leukemia, and the potential of therapeutic intervention targeting these metabolic dependencies on the proliferation, differentiation, stem cell function and cell survival to improve patient stratification and outcomes.
Collapse
Affiliation(s)
- Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| |
Collapse
|
47
|
Majem B, Nadal E, Muñoz-Pinedo C. Exploiting metabolic vulnerabilities of Non small cell lung carcinoma. Semin Cell Dev Biol 2019; 98:54-62. [PMID: 31238096 DOI: 10.1016/j.semcdb.2019.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Abstract
Lung cancer is the main cause of cancer death worldwide. Non-Small Cell Lung Carcinoma (NSCLC) is the most common subtype of lung cancer, and the prognosis of NSCLC patients in advanced stages is still very poor. Given the need for new therapies, the metabolism of NSCLC has been widely studied in the past two decades to identify vulnerabilities that could be translated into novel anti-metabolic therapeutic approaches. A number of studies have highlighted the role of glucose and mitochondrial metabolism in the development of NSCLC. The metabolic properties of lung tumors have been characterized in detail in vivo, and they include high glucose and lactate use and high heterogeneity regarding the use of nutrients and mitochondrial pathways. This heterogeneity has also been observed in patients infused with labeled nutrients. We will summarize here the knowledge about the use of amino acids, fatty acids and carbohydrates in NSCLC that could lead to new combination treatments.
Collapse
Affiliation(s)
- Blanca Majem
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Spain.
| | - Ernest Nadal
- Clinical Research in Solid Tumors (CReST) Group, Oncobell Program, IDIBELL, L'Hospitalet, Spain; Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet, Spain.
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Spain.
| |
Collapse
|