1
|
Yang Y, Lu Y, Gao C, Nie Y, Wang H, Huang Y, Dong H, Sun Q. Effects of housing conditions on health and gut microbiome of female cynomolgus monkeys and improvement of welfare by checking menstruation under socially housed condition. Heliyon 2025; 11:e41912. [PMID: 39897812 PMCID: PMC11786677 DOI: 10.1016/j.heliyon.2025.e41912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Laboratory non-human primates (NHPs) are commonly subjected to social deprivation in various scientific researches. However, the impact of social deprivation on gut microbiome remains largely unknown. We examined the health status and gut microbiota of female cynomolgus monkeys housed in isolation or social conditions and found that social deprivation brought adverse effects to monkeys by inhibiting their growth, remodeling the immune status, and decreasing the level of beneficial biochemical parameters. 16S rRNA gene sequencing revealed that the gut microbial composition and function differed between grouped and isolated monkeys. Specifically, grouping the single-caged young monkeys to socially housed condition could decrease the relative abundance of Firmicutes and increase the relative abundance of Bacteroidetes, while separating the socially housed middle-aged monkeys into single cages showed the opposite trend. Besides, training female monkeys to detect menstruation under socially-housed condition could increase their body weight change and adjusting their immune status, thus attenuating the adverse effects of separating them to single cages. Our results verified the significant role of grouping in mitigating adverse health and microbiota alterations caused by isolation in female cynomolgus monkeys and emphasized the importance of training NHPs to cooperate with experimental procedures under socially housed condition, which could not only improve the welfare of cynomolgus monkeys but also enhance the accuracy and reliability of scientific results.
Collapse
Affiliation(s)
- Yunpeng Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201600, China
| | - Yong Lu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Changshan Gao
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanhong Nie
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201600, China
| | - Hongfei Wang
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yufei Huang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Haiyan Dong
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201600, China
| |
Collapse
|
2
|
Mu X, Shi S, Hu X, Gan X, Han Q, Yu Q, Qu J, Li H. Gut microbiome and antibiotic resistance genes in plateau model animal (Ochotona curzoniae) exhibit a relative stability under cold stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135472. [PMID: 39137548 DOI: 10.1016/j.jhazmat.2024.135472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Antibiotic resistance genes (ARGs) carried by gut pathogens may pose a threat to the host and ecological environment. However, few studies focus on the effects of cold stress on intestinal bacteria and ARGs in plateau animals. Here, we used 16S rRNA gene sequencing and gene chip technique to explore the difference of gut microbes and ARGs in plateau pika under 4 °C and 25 °C. The results showed that tetracycline and aminoglycoside resistance genes were the dominant ARGs in pika intestine. Seven kinds of high-risk ARGs (aadA-01, aadA-02, ermB, floR, mphA-01, mphA-02, tetM-02) existed in pika's intestine, and cold had no significant effect on the composition and structure of pika's intestinal ARGs. The dominant phyla in pika intestine were Bacteroidetes and Firmicutes. Cold influenced 0.47 % of pika intestinal bacteria in OTU level, while most other bacteria had no significant change. The diversity and community assembly of intestinal bacteria in pika remained relatively stable under cold conditions, while low temperature decreased gut microbial network complexity. In addition, low temperature led to the enrichment of glycine biosynthesis and metabolism-related pathways. Moreover, the correlation analysis showed that eight opportunistic pathogens (such as Clostridium, Staphylococcus, Streptococcus, etc.) detected in pika intestine might be potential hosts of ARGs.
Collapse
Affiliation(s)
- Xianxian Mu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shunqin Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueqian Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueying Gan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Liu J, Jiang G, Zhang H, Zhang H, Jia X, Gan Z, Yu H. Effects of Hibernation on Colonic Epithelial Tissue and Gut Microbiota in Wild Chipmunks ( Tamias sibiricus). Animals (Basel) 2024; 14:1498. [PMID: 38791715 PMCID: PMC11117362 DOI: 10.3390/ani14101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The gut microbiota plays a crucial role in the host's metabolic processes. Many studies have shown significant changes in the gut microbiota of mammals during hibernation to adapt to the changes in the external environment, but there is limited research on the colonic epithelial tissue and gut microbiota of the wild chipmunks during hibernation. This study analyzed the diversity, composition, and function of the gut microbiota of the wild chipmunk during hibernation using 16S rRNA gene high-throughput sequencing technology, and further conducted histological analysis of the colon. Histological analysis of the colon showed an increase in goblet cells in the hibernation group, which was an adaptive change to long-term fasting during hibernation. The dominant gut microbial phyla were Bacteroidetes, Firmicutes, and Proteobacteria, and the relative abundance of them changed significantly. The analysis of gut microbiota structural differences indicated that the relative abundance of Helicobacter typhlonius and Mucispirillum schaedleri increased significantly, while unclassified Prevotella-9, unclassified Prevotellaceae-UCG-001, unclassified Prevotellaceae-UCG-003 and other species of Prevotella decreased significantly at the species level. Alpha diversity analysis showed that hibernation increased the diversity and richness of the gut microbiota. Beta diversity analysis revealed significant differences in gut microbiota diversity between the hibernation group and the control group. PICRUSt2 functional prediction analysis of the gut microbiota showed that 15 pathways, such as lipid metabolism, xenobiotics biodegradation and metabolism, amino acid metabolism, environmental adaptation, and neurodegenerative diseases, were significantly enriched in the hibernation group, while 12 pathways, including carbohydrate metabolism, replication and repair, translation, and transcription, were significantly enriched in the control group. It can be seen that during hibernation, the gut microbiota of the wild chipmunk changes towards taxa that are beneficial for reducing carbohydrate consumption, increasing fat consumption, and adapting more strongly to environmental changes in order to better provide energy for the body and ensure normal life activities during hibernation.
Collapse
Affiliation(s)
- Juntao Liu
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Guangyu Jiang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Hongrui Zhang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Haiying Zhang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
| | - Xiaoyan Jia
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
| | - Zhenwei Gan
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Huimei Yu
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
| |
Collapse
|
4
|
Tearle JLE, Tang A, Vasanthakumar A, James KR. Role reversals: non-canonical roles for immune and non-immune cells in the gut. Mucosal Immunol 2024; 17:137-146. [PMID: 37967720 DOI: 10.1016/j.mucimm.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The intestine is home to an intertwined network of epithelial, immune, and neuronal cells as well as the microbiome, with implications for immunity, systemic metabolism, and behavior. While the complexity of this microenvironment has long since been acknowledged, recent technological advances have propelled our understanding to an unprecedented level. Notably, the microbiota and non-immune or structural cells have emerged as important conductors of intestinal immunity, and by contrast, cells of both the innate and adaptive immune systems have demonstrated non-canonical roles in tissue repair and metabolism. This review highlights recent works in the following two streams: non-immune cells of the intestine performing immunological functions; and traditional immune cells exhibiting non-immune functions in the gut.
Collapse
Affiliation(s)
- Jacqueline L E Tearle
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Biomedical Sciences, University of New South Wales, Australia
| | - Adelynn Tang
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Ajithkumar Vasanthakumar
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.
| | - Kylie R James
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Biomedical Sciences, University of New South Wales, Australia.
| |
Collapse
|
5
|
Wang P, Wu PF, Wang HJ, Liao F, Wang F, Chen JG. Gut microbiome-derived ammonia modulates stress vulnerability in the host. Nat Metab 2023; 5:1986-2001. [PMID: 37872351 DOI: 10.1038/s42255-023-00909-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Ammonia has been long recognized as a metabolic waste product with well-known neurotoxic effects. However, little is known about the beneficial function of endogenous ammonia. Here, we show that gut ammonia links microbe nitrogen metabolism to host stress vulnerability by maintaining brain glutamine availability in male mice. Chronic stress decreases blood ammonia levels by altering gut urease-positive microbiota. A representative urease-producing strain, Streptococcus thermophilus, can reverse depression-like behaviours induced by gut microbiota that was altered by stress, whereas pharmacological inhibition of gut ammonia production increases stress vulnerability. Notably, abnormally low blood ammonia levels limit the brain's availability of glutamine, a key metabolite produced by astrocytes that is required for presynaptic γ-aminobutyric acid (GABA) replenishment and confers stress vulnerability through cortical GABAergic dysfunction. Of therapeutic interest, ammonium chloride (NH4Cl), a commonly used expectorant in the clinic, can rescue behavioural abnormalities and GABAergic deficits in mouse models of depression. In sum, ammonia produced by the gut microbiome can help buffer stress in the host, providing a gut-brain signalling basis for emotional behaviour.
Collapse
Affiliation(s)
- Pei Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Fei Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Hua-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Liao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| | - Jian-Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| |
Collapse
|
6
|
Li S, Zheng J, He J, Liu H, Huang Y, Huang L, Wang K, Zhao X, Feng B, Che L, Fang Z, Li J, Xu S, Lin Y, Jiang X, Hua L, Zhuo Y, Wu D. Dietary fiber during gestation improves lactational feed intake of sows by modulating gut microbiota. J Anim Sci Biotechnol 2023; 14:65. [PMID: 37143119 PMCID: PMC10161572 DOI: 10.1186/s40104-023-00870-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/14/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The feed intake of sows during lactation is often lower than their needs. High-fiber feed is usually used during gestation to increase the voluntary feed intake of sows during lactation. However, the mechanism underlying the effect of bulky diets on the appetites of sows during lactation have not been fully clarified. The current study was conducted to determine whether a high-fiber diet during gestation improves lactational feed intake (LFI) of sows by modulating gut microbiota. METHODS We selected an appropriate high-fiber diet during gestation and utilized the fecal microbial transplantation (FMT) method to conduct research on the role of the gut microbiota in feed intake regulation of sows during lactation, as follows: high-fiber (HF) diet during gestation (n = 23), low-fiber (LF) diet during gestation (n = 23), and low-fiber diet + HF-FMT (LFM) during gestation (n = 23). RESULTS Compared with the LF, sows in the HF and LFM groups had a higher LFI, while the sows also had higher peptide tyrosine tyrosine and glucagon-like peptide 1 on d 110 of gestation (G110 d). The litter weight gain of piglets during lactation and weaning weight of piglets from LFM group were higher than LF group. Sows given a HF diet had lower Proteobacteria, especially Escherichia-Shigella, on G110 d and higher Lactobacillus, especially Lactobacillus_mucosae_LM1 and Lactobacillus_amylovorus, on d 7 of lactation (L7 d). The abundance of Escherichia-Shigella was reduced by HF-FMT in numerically compared with the LF. In addition, HF and HF-FMT both decreased the perinatal concentrations of proinflammatory factors, such as endotoxin (ET), lipocalin-2 (LCN-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). The concentration of ET and LCN-2 and the abundance of Proteobacteria and Escherichia-Shigella were negatively correlated with the LFI of sows. CONCLUSION The high abundance of Proteobacteria, especially Escherichia-Shigella of LF sows in late gestation, led to increased endotoxin levels, which result in inflammatory responses and adverse effects on the LFI of sows. Adding HF during gestation reverses this process by increasing the abundance of Lactobacillus, especially Lactobacillus_mucosae_LM1 and Lactobacillus_amylovorus.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jie Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Hao Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yingyan Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Liansu Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Ke Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Lun Hua
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China.
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Yang Y, Yu P, Lu Y, Gao C, Sun Q. Disturbed rhythmicity of intestinal hydrogen peroxide alters gut microbial oscillations in BMAL1-deficient monkeys. Cell Rep 2023; 42:112183. [PMID: 36857177 DOI: 10.1016/j.celrep.2023.112183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Circadian oscillation of gut microbiota exerts significant influence on host physiology, but the host factors that sustain microbial oscillations are rarely reported. We compared the gut microbiome and metabolome of wild-type and BMAL1-deficient cynomolgus monkeys during a diurnal cycle by performing 16S rRNA sequencing and untargeted fecal metabolomics and uncovered the influence of intestinal H2O2 on microbial compositions. Ablation of BMAL1 induced expansion of Bacteroidota at midnight and altered microbial oscillations. Some important fecal metabolites changed significantly, and we investigated their correlations with microbes. Further analyses revealed that disturbed rhythmicity of NOX1-derived intestinal H2O2 was responsible for the altered microbial oscillations in BMAL1-deficient monkeys. Mechanistic studies showed that BMAL1 transactivated NOX1 via binding to the E1-E2 site in its promoter. Notably, BMAL1-dependent activation of NOX1 was conserved in cynomolgus monkeys and humans. Our study demonstrates the importance of intestine clock-controlled H2O2 rhythmicity on the rhythmic oscillation of gut microbiota.
Collapse
Affiliation(s)
- Yunpeng Yang
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, P.R. China.
| | - Peijun Yu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yong Lu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Changshan Gao
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Qiang Sun
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China.
| |
Collapse
|
8
|
Ousey J, Boktor JC, Mazmanian SK. Gut microbiota suppress feeding induced by palatable foods. Curr Biol 2023; 33:147-157.e7. [PMID: 36450285 PMCID: PMC9839363 DOI: 10.1016/j.cub.2022.10.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/30/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
Feeding behaviors depend on intrinsic and extrinsic factors including genetics, food palatability, and the environment.1,2,3,4,5 The gut microbiota is a major environmental contributor to host physiology and impacts feeding behavior.6,7,8,9,10,11,12 Here, we explored the hypothesis that gut bacteria influence behavioral responses to palatable foods and reveal that antibiotic depletion (ABX) of the gut microbiota in mice results in overconsumption of several palatable foods with conserved effects on feeding dynamics. Gut microbiota restoration via fecal transplant into ABX mice is sufficient to rescue overconsumption of high-sucrose pellets. Operant conditioning tests found that ABX mice exhibit intensified motivation to pursue high-sucrose rewards. Accordingly, neuronal activity in mesolimbic brain regions, which have been linked with motivation and reward-seeking behavior,3 was elevated in ABX mice after consumption of high-sucrose pellets. Differential antibiotic treatment and functional microbiota transplants identified specific gut bacterial taxa from the family S24-7 and the genus Lactobacillus whose abundances associate with suppression of high-sucrose pellet consumption. Indeed, colonization of mice with S24-7 and Lactobacillus johnsonii was sufficient to reduce overconsumption of high-sucrose pellets in an antibiotic-induced model of binge eating. These results demonstrate that extrinsic influences from the gut microbiota can suppress the behavioral response toward palatable foods in mice.
Collapse
Affiliation(s)
- James Ousey
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Joseph C Boktor
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
9
|
Cheng L, Wu H, Chen Z, Hao H, Zheng X. Gut microbiome at the crossroad of genetic variants and behavior disorders. Gut Microbes 2023; 15:2201156. [PMID: 37089016 PMCID: PMC10128504 DOI: 10.1080/19490976.2023.2201156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Genetic variants are traditionally known to shape the susceptibility to neuropsychiatric disorders. An increasing number of studies indicate that remodeling of the gut microbiome by genetic variance serves as a versatile regulator of gut-brain crosstalk and behavior. Evidence also emerges that certain behavioral symptoms are specifically attributed to gut microbial remodeling and gut-to-brain signals, which necessitates rethinking of neuropsychiatric disease etiology and treatment from a systems perspective of reciprocal gene-microbe interactions. Here, we present an emerging picture of how gut microbes and host genetics interactively shape complex psychiatric phenotypes. We illustrate the growing understanding of how the gut microbiome is shaped by genetic changes and its connection to behavioral outcome. We also discuss working strategies and open questions in translating associative gene-microbiome-behavior findings into causal links and novel targets for neurobehavioral disorders. Dual targeting of the genetic and microbial factors may expand the space of drug discovery for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Lingsha Cheng
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Haoqian Wu
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhuo Chen
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Metzger R, Winter L, Bouznad N, Garzetti D, von Armansperg B, Rokavec M, Lutz K, Schäfer Y, Krebs S, Winheim E, Friedrich V, Matzek D, Öllinger R, Rad R, Stecher B, Hermeking H, Brocker T, Krug AB. CCL17 Promotes Colitis-Associated Tumorigenesis Dependent on the Microbiota. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2227-2238. [PMID: 36426975 DOI: 10.4049/jimmunol.2100867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/19/2022] [Indexed: 01/04/2023]
Abstract
Colorectal cancer is one of the most common cancers and a major cause of mortality. Proinflammatory and antitumor immune responses play critical roles in colitis-associated colon cancer. CCL17, a chemokine of the C-C family and ligand for CCR4, is expressed by intestinal dendritic cells in the steady state and is upregulated during colitis in mouse models and inflammatory bowel disease patients. In this study, we investigated the expression pattern and functional relevance of CCL17 for colitis-associated colon tumor development using CCL17-enhanced GFP-knockin mice. CCL17 was highly expressed by dendritic cells but also upregulated in macrophages and intermediary monocytes in colon tumors induced by exposure to azoxymethane and dextran sodium sulfate. Despite a similar degree of inflammation in the colon, CCL17-deficient mice developed fewer tumors than did CCL17-competent mice. This protective effect was abrogated by cohousing, indicating a dependency on the microbiota. Changes in microbiota diversity and composition were detected in separately housed CCL17-deficient mice, and these mice were more susceptible to azoxymethane-induced early apoptosis in the colon affecting tumor initiation. Immune cell infiltration in colitis-induced colon tumors was not affected by the lack of CCL17. Taken together, our results indicate that CCL17 promotes colitis-associated tumorigenesis by influencing the composition of the intestinal microbiome and reducing apoptosis during tumor initiation.
Collapse
Affiliation(s)
- Rebecca Metzger
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lis Winter
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Debora Garzetti
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Benedikt von Armansperg
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Ludwig Maximilian University of Munich, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Konstantin Lutz
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yvonne Schäfer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sabrina Krebs
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elena Winheim
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Verena Friedrich
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dana Matzek
- Core Facility Animal Models, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Munich, Germany; and.,German Cancer Research Center, Heidelberg, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Ludwig Maximilian University of Munich, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Munich, Germany; and.,German Cancer Research Center, Heidelberg, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
11
|
Zhao H, Zhang W, Cheng D, You L, Huang Y, Lu Y. Investigating dysbiosis and microbial treatment strategies in inflammatory bowel disease based on two modified Koch's postulates. Front Med (Lausanne) 2022; 9:1023896. [PMID: 36438062 PMCID: PMC9684636 DOI: 10.3389/fmed.2022.1023896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/28/2022] [Indexed: 12/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease that occurs in the intestinal tract. It is mainly divided into two subtypes, i.e., the Crohn's disease (CD) and ulcerative colitis (UC). At present, its pathogenesis has not been fully elucidated, but it has been generally believed that the environment, immune disorders, genetic susceptibility, and intestinal microbes are the main factors for the disease pathogenesis. With the development of the sequencing technology, microbial factors have received more and more attention. The gut microbiota is in a state of precise balance with the host, in which the host immune system is tolerant to immunogenic antigens produced by gut commensal microbes. In IBD patients, changes in the balance between pathogenic microorganisms and commensal microbes lead to changes in the composition and diversity of gut microbes, and the balance between microorganisms and the host would be disrupted. This new state is defined as dysbiosis. It has been confirmed, in both clinical and experimental settings, that dysbiosis plays an important role in the occurrence and development of IBD, but the causal relationship between dysbiosis and inflammation has not been elucidated. On the other hand, as a classic research method for pathogen identification, the Koch's postulates sets the standard for verifying the role of pathogens in disease. With the further acknowledgment of the disease pathogenesis, it is realized that the traditional Koch's postulates is not applicable to the etiology research (determination) of infectious diseases. Thus, many researchers have carried out more comprehensive and complex elaboration of Koch's postulates to help people better understand and explain disease pathogenesis through the improved Koch's postulates. Therefore, focusing on the new perspective of the improved Koch's postulates is of great significance for deeply understanding the relationship between dysbiosis and IBD. This article has reviewed the studies on dysbiosis in IBD, the use of microbial agents in the treatment of IBD, and their relationship to the modified Koch's postulates.
Collapse
Affiliation(s)
- HanZheng Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - WenHui Zhang
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Die Cheng
- Cancer Research Laboratory, Chengde Medical College, Chengde, China
| | - LiuPing You
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - YueNan Huang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - YanJie Lu
- Cancer Research Laboratory, Chengde Medical College, Chengde, China
| |
Collapse
|
12
|
Sharma P, Silva C, Pfreundschuh S, Ye H, Sampath H. Metabolic protection by the dietary flavonoid 7,8-dihydroxyflavone requires an intact gut microbiome. Front Nutr 2022; 9:987956. [PMID: 36061902 PMCID: PMC9428675 DOI: 10.3389/fnut.2022.987956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background 7,8-dihydroxyflavone (DHF) is a naturally occurring flavonoid found in Godmania, Tridax, and Primula species that confers protection against high-fat diet (HFD) induced metabolic pathologies selectively in female mice. We have previously reported that this metabolic protection is associated with early and stable remodeling of the intestinal microbiome, evident in female but not male DHF-supplemented mice. Early changes in the gut microbiome in female DHF-fed mice were highly predictive of subsequent metabolic protection, suggesting a causative association between the gut microbiome and the metabolic effects of DHF. Objective To investigate a causal association between the gut microbiome and the metabolic effects of DHF using a model of antibiotic-induced gut microbiome ablation. Materials and methods Age-matched male and female C57Bl6/J mice were given ad libitum access to HFD and drinking water containing vehicle or DHF for 12 weeks. For antibiotic (Abx) treatment, female mice were given drinking water containing a cocktail of antibiotics for 2 weeks prior to HFD feeding and throughout the feeding period. Metabolic phenotyping consisted of longitudinal assessments of body weights, body composition, food, and water intake, as well as measurement of energy expenditure, glucose tolerance, and plasma and hepatic lipids. Protein markers mediating the cellular effects of DHF were assessed in brown adipose tissue (BAT) and skeletal muscle. Results Metabolic protection conferred by DHF in female HFD-fed mice was only apparent in the presence of an intact gut microbiome. Abx-treated mice were not protected from HFD-induced obesity by DHF administration. Further, tissue activation of the tropomyosin-related kinase receptor B (TrkB) receptor, which has been attributed to the biological activity of DHF, was lost upon gut microbiome ablation, indicating a requirement for microbial “activation” of DHF for its systemic effects. In addition, we report for the first time that DHF supplementation significantly activates TrkB in BAT of female, but not male, mice uncovering a novel target tissue of DHF. DHF supplementation also increased uncoupling protein 1 (UCP1) and AMP-activated protein kinase (AMPK) protein in BAT, consistent with protection from diet-induced obesity. Conclusion These results establish for the first time a requirement for the gut microbiome in mediating the metabolic effects of DHF in female mice and uncover a novel target tissue that may mediate these sexually-dimorphic protective effects.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
| | - Camila Silva
- Department of Biotechnology, Rutgers University, New Brunswick, NJ, United States
| | - Sarah Pfreundschuh
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Hong Ye
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- *Correspondence: Harini Sampath,
| |
Collapse
|
13
|
Divella R, Gadaleta Caldarola G, Mazzocca A. Chronic Inflammation in Obesity and Cancer Cachexia. J Clin Med 2022; 11:2191. [PMID: 35456284 PMCID: PMC9027625 DOI: 10.3390/jcm11082191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation has long been linked to obesity and related conditions such as type 2 diabetes and metabolic syndrome. According to current research, the increased risk of cancer in people with certain metabolic diseases may be due to chronic inflammation. Adipocytokines, which are pro-inflammatory cytokines secreted in excess, are elevated in many chronic metabolic diseases. Cytokines and inflammatory mediators, which are not directly linked to DNA, are important in tumorigenesis. Cachexia, a type of metabolic syndrome linked to the disease, is associated with a dysregulation of metabolic pathways. Obesity and cachexia have distinct metabolic characteristics, such as insulin resistance, increased lipolysis, elevated free fatty acids (FFA), and ceramide levels, which are discussed in this section. The goal of this research project is to create a framework for bringing together our knowledge of inflammation-mediated insulin resistance.
Collapse
Affiliation(s)
- Rosa Divella
- ASD Nordic Walking Apulia Lifestyle, Corso Giuseppe Di Vittorio 14, 70024 Gravina in Puglia, Italy
| | | | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
14
|
Geng J, Ni Q, Sun W, Li L, Feng X. The links between gut microbiota and obesity and obesity related diseases. Biomed Pharmacother 2022; 147:112678. [DOI: 10.1016/j.biopha.2022.112678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 02/09/2023] Open
|
15
|
Hong PP, Zhu XX, Yuan WJ, Niu GJ, Wang JX. Nitric Oxide Synthase Regulates Gut Microbiota Homeostasis by ERK-NF-κB Pathway in Shrimp. Front Immunol 2021; 12:778098. [PMID: 34925352 PMCID: PMC8678275 DOI: 10.3389/fimmu.2021.778098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/12/2021] [Indexed: 01/09/2023] Open
Abstract
The gut microbiota is a complex group of microorganisms that is not only closely related to intestinal immunity but also affects the whole immune system of the body. Antimicrobial peptides and reactive oxygen species participate in the regulation of gut microbiota homeostasis in invertebrates. However, it is unclear whether nitric oxide, as a key mediator of immunity that plays important roles in antipathogen activity and immune regulation, participates in the regulation of gut microbiota homeostasis. In this study, we identified a nitric oxide synthase responsible for NO production in the shrimp Marsupenaeus japonicus. The expression of Nos and the NO concentration in the gastrointestinal tract were increased significantly in shrimp orally infected with Vibrio anguillarum. After RNA interference of Nos or treatment with an inhibitor of NOS, L-NMMA, NO production decreased and the gut bacterial load increased significantly in shrimp. Treatment with the NO donor, sodium nitroprusside, increased the NO level and reduced the bacterial load significantly in the shrimp gastrointestinal tract. Mechanistically, V. anguillarum infection increased NO level via upregulation of NOS and induced phosphorylation of ERK. The activated ERK phosphorylated the NF-κB-like transcription factor, dorsal, and caused nuclear translocation of dorsal to increase expression of antimicrobial peptides (AMPs) responsible for bacterial clearance. In summary, as a signaling molecule, NOS-produced NO regulates intestinal microbiota homeostasis by promoting AMP expression against infected pathogens via the ERK-dorsal pathway in shrimp.
Collapse
Affiliation(s)
- Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Xu Zhu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Wen-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
16
|
Han H, Yi B, Zhong R, Wang M, Zhang S, Ma J, Yin Y, Yin J, Chen L, Zhang H. From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. MICROBIOME 2021; 9:162. [PMID: 34284827 PMCID: PMC8293578 DOI: 10.1186/s40168-021-01093-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 05/25/2023]
Abstract
Feelings of hunger and satiety are the key determinants for maintaining the life of humans and animals. Disturbed appetite control may disrupt the metabolic health of the host and cause various metabolic disorders. A variety of factors have been implicated in appetite control, including gut microbiota, which develop the intricate interactions to manipulate the metabolic requirements and hedonic feelings. Gut microbial metabolites and components act as appetite-related signaling molecules to regulate appetite-related hormone secretion and the immune system, or act directly on hypothalamic neurons. Herein, we summarize the effects of gut microbiota on host appetite and consider the potential molecular mechanisms. Furthermore, we propose that the manipulation of gut microbiota represents a clinical therapeutic potential for lessening the development and consequence of appetite-related disorders. Video abstract.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, 5030, Gembloux, Belgium
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
17
|
The Mechanism of Oral Melatonin Ameliorates Intestinal and Adipose Lipid Dysmetabolism Through Reducing Escherichia Coli-Derived Lipopolysaccharide. Cell Mol Gastroenterol Hepatol 2021; 12:1643-1667. [PMID: 34242820 PMCID: PMC8536535 DOI: 10.1016/j.jcmgh.2021.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Gut microbiota have been reported to be sensitive to circadian rhythms and host lipometabolism, respectively. Although melatonin-mediated beneficial efforts on many physiological sites have been revealed, the regulatory actions of oral melatonin on the communication between gut microbiota and host are still not clear. Angiopoietin-like 4 (ANGPTL4) has been shown to be strongly responsible for the regulation of systemic lipid metabolism. Herein, we identified that oral melatonin improved lipid dysmetabolism in ileum and epididymal white adipose tissue (eWAT) via gut microbiota and ileac ANGPTL4. METHODS Analyses of jet-lag (JL) mice, JL mice with oral melatonin administration (JL+MT), and the control for mRNA and protein expression regarding lipid uptake and accumulation in ileum and eWAT were made. Gut microbiome sequencing and experimental validation of target strains were included. Functional analysis of key factors/pathways in the various rodent models, including the depletion of gut microbiota, mono-colonization of Escherichia coli, and other genetic intervention was made. Analyses of transcriptional regulation and effects of melatonin on E coli-derived lipopolysaccharide (LPS) in vitro were made. RESULTS JL mice have a higher level of ileal lipid uptake, fat accumulation in eWAT, and lower level of circulating ANGPTL4 in comparison with the control mice. JL mice also showed a significantly higher abundance of E coli and LPS than the control mice. Conversely, oral melatonin supplementation remarkably reversed these phenotypes. The test of depletion of gut microbiota further demonstrated that oral melatonin-mediated improvements on lipometabolism in JL mice were dependent on the presence of gut microbiota. By mono-colonization of E coli, LPS has been determined to trigger these changes similar to JL. Furthermore, we found that LPS served as a pivotal link that contributed to activating toll-like receptor 4 (TLR4)/signal transducer and activator of transcription 3 (STAT3_/REV-ERBα) signaling to up-regulate nuclear factor interleukin-3-regulated protein (NFIL3) expression, resulting in increased lipid uptake in ileum. In MODE-K cells, the activation of NFIL3 has further been shown to inhibit ANGPTL4 transcription, which is closely associated with lipid uptake and transport in peripheral tissues. Finally, we confirmed that melatonin inhibited LPS via repressing the expression of LpxC in E coli. CONCLUSIONS Overall, oral melatonin decreased the quantity of E coli-generated LPS, which alleviated NFIL3-induced transcriptional inhibition of ANGPTL4 through TLR4/IL-22/STAT3 signaling in ileum, thereby resulting in the amelioration of ileal lipid intake and lower fat accumulation in eWAT. These results address a novel regulation of oral melatonin originating from gut microbiota to host distal tissues, suggesting that microbe-generated metabolites are potential therapies for melatonin-mediated improvement of circadian rhythm disruption and related metabolic syndrome.
Collapse
|
18
|
Pocheron AL, Le Dréan G, Billard H, Moyon T, Pagniez A, Heberden C, Le Chatelier E, Darmaun D, Michel C, Parnet P. Maternal Microbiota Transfer Programs Offspring Eating Behavior. Front Microbiol 2021; 12:672224. [PMID: 34211445 PMCID: PMC8239415 DOI: 10.3389/fmicb.2021.672224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 01/15/2023] Open
Abstract
Understanding the link between mother's obesity and regulation of the child's appetite is a prerequisite for the design of successful preventive strategies. Beyond the possible contributions of genetic heritage, family culture, and hormonal and metabolic environment during pregnancy, we investigate in the present paper the causal role of the transmission of the maternal microbiotas in obesity as microbiotas differ between lean and obese mothers, maternal microbiotas are the main determinants of a baby's gut colonization, and the intestinal microbiota resulting from the early colonization could impact the feeding behavior of the offspring with short- and long-term consequences on body weight. We thus investigated the potential role of vertical transfers of maternal microbiotas in programming the eating behavior of the offspring. Selectively bred obese-prone (OP)/obese-resistant (OR) Sprague-Dawley dams were used since differences in the cecal microbiota have been evidenced from males of that strain. Microbiota collected from vagina (at the end of gestation), feces, and milk (at postnatal days 1, 5, 10, and 15) of OP/OR dams were orally inoculated to conventional Fischer F344 recipient pups from birth to 15 days of age to create three groups of pups: F-OP, F-OR, and F-Sham group (that received the vehicle). We first checked microbiotal differences between inoculas. We then assessed the impact of transfer (from birth to adulthood) onto the intestinal microbiota of recipients rats, their growth, and their eating behavior by measuring their caloric intake, their anticipatory food reward responses, their preference for sweet and fat tastes in solutions, and the sensations that extend after food ingestion. Finally, we searched for correlation between microbiota composition and food intake parameters. We found that maternal transfer of microbiota differing in composition led to alterations in pups' gut microbiota composition that did not last until adulthood but were associated with specific eating behavior characteristics that were predisposing F-OP rats to higher risk of over consuming at subsequent periods of their life. These findings support the view that neonatal gut microbiotal transfer can program eating behavior, even without a significant long-lasting impact on adulthood microbiota composition.
Collapse
|
19
|
Probiotic Lactobacillus johnsonii BS15 Prevents Memory Dysfunction Induced by Chronic High-Fluorine Intake through Modulating Intestinal Environment and Improving Gut Development. Probiotics Antimicrob Proteins 2021; 12:1420-1438. [PMID: 32166711 DOI: 10.1007/s12602-020-09644-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the influence of chronic fluorosis on the brain has been widely reported. Our study aimed to demonstrate the potential mechanism underlying the impairment of memory function by excessive fluorine intake. We also evaluated whether improvement of intestinal microflora could be a potential therapy to prevent the negative influences from the perspective of gut-brain axis. Male ICR mice were randomly divided into three groups and administered with either phosphate buffered saline (PBS) (Control and F groups) or Lactobacillus johnsonii BS15 (FP group; daily amounts of 1 × 109 CFU/mL), a probiotic strain, by oral gavage throughout a 98-day experimental period. Sodium fluoride (100 mg/L) was added to the drinking water of the F and FP groups. Animals were sacrificed for sampling with or without water avoidance stress (WAS) at two phases of the experiment and behavioral tests including T-maze test and passive avoidance test were also performed. Based on the results of behavioral tests, probiotic reversed the fluorine-induced memory dysfunction. In addition, L. johnsonii BS15 also increased the antioxidant capacities (serum and hippocampal tissue) and hippocampal synaptic plasticity-related mRNA expression after excessive fluoride ingestion. Moreover, the increased colonization of L. johnsonii BS15 also protected the small intestines from the damages of growth performance, visceral indexes, intestinal development, digestive, and secretory functions by changing the structure of the microflora and then improving intestinal permeability and integrity. L. johnsonii BS15 also improved the ability of flourosis mice against psychological stress indicated by the changes in behavioral tasks, hippocampal antioxidant levels, and synaptic plasticity-related mRNA expressions. Lactobacillus johnsonii BS15 intake appears as a promising way to ameliorate fluorine-induced memory dysfunction, especially under psychological stress.
Collapse
|
20
|
Qi M, Tan B, Wang J, Liao S, Deng Y, Ji P, Song T, Zha A, Yin Y. The microbiota-gut-brain axis: A novel nutritional therapeutic target for growth retardation. Crit Rev Food Sci Nutr 2021; 62:4867-4892. [PMID: 33523720 DOI: 10.1080/10408398.2021.1879004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth retardation (GR), which commonly occurs in childhood, is a major health concern globally. However, the specific mechanism remains unclear. It has been increasingly recognized that changes in the gut microbiota may lead to GR through affecting the microbiota-gut-brain axis. Microbiota interacts with multiple factors such as birth to affect the growth of individuals. Microbiota communicates with the nerve system through chemical signaling (direct entry into the circulation system or stimulation of enteroendocrine cells) and nervous signaling (interaction with enteric nerve system and vagus nerve), which modulates appetite and immune response. Besides, they may also influence the function of enteric glial cells or lymphocytes and levels of systemic inflammatory cytokines. Environmental stress may cause leaky gut through perturbing the hypothalamic-pituitary-adrenal axis to further result in GR. Nutritional therapies involving probiotics and pre-/postbiotics are being investigated for helping the patients to overcome GR. In this review, we summarize the role of microbiota in GR with human and animal models. Then, existing and potential regulatory mechanisms are reviewed, especially the effect of microbiota-gut-brain axis. Finally, we propose nutritional therapeutic strategies for GR by the intervention of microbiota-gut-brain axis, which may provide novel perspectives for the treatment of GR in humans and animals.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuankun Deng
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California, USA
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
21
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Barengolts E, Salim M, Akbar A, Salim F. <p>Probiotics for Prosperity: Is There a Role for Probiotics in the Fight Against Obesity? Review of Meta-Analyses of Randomized Controlled Trials</p>. NUTRITION AND DIETARY SUPPLEMENTS 2020. [DOI: 10.2147/nds.s243097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Zhang C, He X, Sheng Y, Yang C, Xu J, Zheng S, Liu J, Xu W, Luo Y, Huang K. Allicin-induced host-gut microbe interactions improves energy homeostasis. FASEB J 2020; 34:10682-10698. [PMID: 32619085 DOI: 10.1096/fj.202001007r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Allicin (diallylthiosulfinate) is a natural food compound with multiple biological and pharmacological functions. However, the mechanism of beneficial role of Allicin on energy homeostasis is not well studied. Gut microbiota (GM) profoundly affects host metabolism via microbiota-host interactions and coevolution. Here, we investigated the interventions of beneficial microbiome induced by Allicin on energy homeostasis, particularly obesity, and related complications. Interestingly, Allicin treatment significantly improved GM composition and induced the most significant alteration enrichment of Bifidobacterium and Lactobacillus. Importantly, transplantation of the Allicin-induced GM to HFD mice (AGMT) played a remarkable role in decreasing adiposity, maintaining glucose homeostasis, and ameliorating hepatic steatosis. Furthermore, AGMT was effective in modulating lipid metabolism, activated brown adipose tissues (BATs), induced browning in sWAT, reduced inflammation, and inhibited the degradation of intestinal villi. Mechanically, AGMT significantly increased Blautia [short-chain fatty acids (SCFAs)-producing microbiota] and Bifidobacterium in HFD mice, also increased the SCFAs in the cecum, which has been proved many beneficial effects on energy homeostasis. Our study highlights that Allicin-induced host-gut microbe interactions plays an important role in regulating energy homeostasis, which provides a promising potential therapy for obesity and metabolic disorders based on host-microbe interactions.
Collapse
Affiliation(s)
- Chuanhai Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Cui Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Jia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Shujuan Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Junyu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| |
Collapse
|
24
|
Basolo A, Hohenadel M, Ang QY, Piaggi P, Heinitz S, Walter M, Walter P, Parrington S, Trinidad DD, von Schwartzenberg RJ, Turnbaugh PJ, Krakoff J. Effects of underfeeding and oral vancomycin on gut microbiome and nutrient absorption in humans. Nat Med 2020; 26:589-598. [PMID: 32235930 DOI: 10.1038/s41591-020-0801-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Direct evidence in humans for the impact of the microbiome on nutrient absorption is lacking. We conducted an extended inpatient study using two interventions that we hypothesized would alter the gut microbiome and nutrient absorption. In each, stool calorie loss, a direct proxy of nutrient absorption, was measured. The first phase was a randomized cross-over dietary intervention in which all participants underwent in random order 3 d of over- and underfeeding. The second was a randomized, double-blind, placebo-controlled pharmacologic intervention using oral vancomycin or matching placebo (NCT02037295). Twenty-seven volunteers (17 men and 10 women, age 35.1 ± 7.3, BMI 32.3 ± 8.0), who were healthy other than having impaired glucose tolerance and obesity, were enrolled and 25 completed the entire trial. The primary endpoints were the effects of dietary and pharmacological intervention on stool calorie loss. We hypothesized that stool calories expressed as percentage of caloric intake would increase with underfeeding compared with overfeeding and increase during oral vancomycin treatment. Both primary endpoints were met. Greater stool calorie loss was observed during underfeeding relative to overfeeding and during vancomycin treatment compared with placebo. Key secondary endpoints were to evaluate the changes in gut microbial community structure as evidenced by amplicon sequencing and metagenomics. We observed only a modest perturbation of gut microbial community structure with under- versus overfeeding but a more widespread change in community structure with reduced diversity with oral vancomycin. Increase in Akkermansia muciniphila was common to both interventions that resulted in greater stool calorie loss. These results indicate that nutrient absorption is sensitive to environmental perturbations and support the translational relevance of preclinical models demonstrating a possible causal role for the gut microbiome in dietary energy harvest.
Collapse
Affiliation(s)
- Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ, USA.
| | - Maximilian Hohenadel
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ, USA
| | - Qi Yan Ang
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ, USA
| | - Sascha Heinitz
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ, USA.,Department of Medicine, Division of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany.,Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Mary Walter
- Clinical Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter Walter
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Shannon Parrington
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ, USA
| | - Donovan D Trinidad
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | | | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ, USA.
| |
Collapse
|
25
|
Han L, Zhao LH, Zhang ML, Li HT, Gao ZZ, Zheng XJ, Wang XM, Wu HR, Zheng YJ, Jiang XT, Ding QY, Yang HY, Jia WP, Tong XL. A Novel Antidiabetic Monomers Combination Alleviates Insulin Resistance Through Bacteria-Cometabolism-Inflammation Responses. Front Microbiol 2020; 11:173. [PMID: 32132984 PMCID: PMC7040028 DOI: 10.3389/fmicb.2020.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
The present study sought to examine the therapeutic effect of a novel antidiabetic monomer combination (AMC) in treating type 2 diabetes mellitus (T2DM); while also elucidating the potential functional mechanism. Male C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to establish T2DM. The AMC group showed significant reduction in weight, fasting blood glucose (FBG), serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C), and experienced reduced insulin resistance based on oral glucose tolerance testing (OGTT) and hyperinsulinemic-euglycemic clamp testing (“gold standard” for determining in vivo insulin sensitivity). Further, AMC restored the altered intestinal flora by increasing the abundance of the beneficial bacteria Akkermansia, and decreasing the number of harmful bacteria, including Bacteroides, Odoribacter, Prevotella 9, Alistipes, and Parabacteroides. Components of the host-microbial metabolome were also significantly changed in the AMC group compared to the HFD group, including hydroxyphenyllactic acid, palmitoleic acid, dodecanoic acid, linoleic acid, and erucic acid. Furthermore, AMC was found to inhibit inflammation and suppress signaling pathways related to insulin resistance. Lastly, spearman correlation analysis revealed relationships between altered microbial community and co-metabolite levels, co-metabolites and inflammatory cytokines. Hence, the potential mechanism responsible for AMC-mediated alleviation of insulin resistance was suggested to be involved in modulation of bacteria-cometabolism-inflammation responses.
Collapse
Affiliation(s)
- Lin Han
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin-Hua Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Laboratory of Molecular and Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming-Liang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hua-Ting Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ze-Zheng Gao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Jiao Zheng
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin-Miao Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao-Ran Wu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Jiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Tian Jiang
- Department of Endocrinology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Qi-You Ding
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Hao-Yu Yang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao-Lin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Xiong H, Wang J, Ran Q, Lou G, Peng C, Gan Q, Hu J, Sun J, Yao R, Huang Q. Hesperidin: A Therapeutic Agent For Obesity. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3855-3866. [PMID: 32009777 PMCID: PMC6859214 DOI: 10.2147/dddt.s227499] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
Obesity is a chronic metabolic disease caused by multiple factors and is considered to be a risk factor for type 2 diabetes, cardiovascular disease, hypertension, stroke and various cancers. Hesperidin, a flavanone glycoside, is a natural phenolic compound with a wide range of biological effects. Mounting evidence has demonstrated that hesperidin possesses inhibitory effect against obesity diseases. Our review discusses mechanisms of hesperidin in the treatment of obesity. Hesperidin regulates lipid metabolism and glucose metabolism by mediating AMPK and PPAR signaling pathways, directly regulates antioxidant index and anti-apoptosis, and indirectly mediates NF-κB signaling pathway to regulate inflammation to play a role in the treatment of obesity. In addition, hesperidin-enriched dietary supplements can significantly improve symptoms such as postprandial hyperglycemia and hyperlipidemia. Further clinical trials are also required for confirming lipid-lowering efficacy of this natural flavonoid and evaluating its safety profile.
Collapse
Affiliation(s)
- Haijun Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Jin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Qian Ran
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Guanhua Lou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chengyi Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Qingxia Gan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Ju Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Jilin Sun
- Sichuan Fuzheng Pharmaceutical Co. Ltd, Sichuan, People's Republic of China
| | - Renchuan Yao
- Sichuan Fermentation Traditional Chinese Medicine Engineering Research Center, Chengdu, People's Republic of China
| | - Qinwan Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
27
|
Zhang Z, Tang H, Chen P, Xie H, Tao Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther 2019; 4:41. [PMID: 31637019 PMCID: PMC6799818 DOI: 10.1038/s41392-019-0074-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
The trillions of microorganisms in the gut microbiome have attracted much attention recently owing to their sophisticated and widespread impacts on numerous aspects of host pathophysiology. Remarkable progress in large-scale sequencing and mass spectrometry has increased our understanding of the influence of the microbiome and/or its metabolites on the onset and progression of extraintestinal cancers and the efficacy of cancer immunotherapy. Given the plasticity in microbial composition and function, microbial-based therapeutic interventions, including dietary modulation, prebiotics, and probiotics, as well as fecal microbial transplantation, potentially permit the development of novel strategies for cancer therapy to improve clinical outcomes. Herein, we summarize the latest evidence on the involvement of the gut microbiome in host immunity and metabolism, the effects of the microbiome on extraintestinal cancers and the immune response, and strategies to modulate the gut microbiome, and we discuss ongoing studies and future areas of research that deserve focused research efforts.
Collapse
Affiliation(s)
- Ziying Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
- Department of Oncology, Third Xiangya Hospital, Central South University, 410013 Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Peng Chen
- Department of Urology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Hui Xie
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| |
Collapse
|
28
|
Subramaniam A, Landstrom M, Hayes KC. Genetic Permissiveness and Dietary Glycemic Load Interact to Predict Type-II Diabetes in the Nile rat ( Arvicanthis niloticus). Nutrients 2019; 11:nu11071538. [PMID: 31284621 PMCID: PMC6683243 DOI: 10.3390/nu11071538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/16/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022] Open
Abstract
Objective: The Nile rat (Arvicanthis niloticus) is a superior model for Type-II Diabetes Mellitus (T2DM) induced by diets with a high glycemic index (GI) and glycemic load (GLoad). To better define the age and gender attributes of diabetes in early stages of progression, weanling rats were fed a high carbohydrate (hiCHO) diet for between 2 to 10 weeks. Methods: Data from four experiments compared two diabetogenic semipurified diets (Diet 133 (60:20:20, as % energy from CHO, fat, protein with a high glycemic load (GLoad) of 224 per 2000 kcal) versus Diets 73 MBS or 73 MB (70:10:20 with or without sucrose and higher GLoads of 259 or 295, respectively). An epidemiological technique was used to stratify the diabetes into quintiles of blood glucose (Q1 to Q5), after 2–10 weeks of dietary induction in 654 rats. The related metagenetic physiological growth and metabolic outcomes were related to the degree of diabetes based on fasting blood glucose (FBG), random blood glucose (RBG), and oral glucose tolerance test (OGTT) at 30 min and 60 min. Results: Experiment 1 (Diet 73MBS) demonstrated that the diabetes begins aggressively in weanlings during the first 2 weeks of a hiCHO challenge, linking genetic permissiveness to diabetes susceptibility or resistance from an early age. In Experiment 2, ninety male Nile rats fed Diet 133 (60:20:20) for 10 weeks identified two quintiles of resistant rats (Q1,Q2) that lowered their RBG between 6 weeks and 10 weeks on diet, whereas Q3–Q5 became progressively more diabetic, suggesting an ongoing struggle for control over glucose metabolism, which either stabilized or not, depending on genetic permissiveness. Experiment 3 (32 males fed 70:10:20) and Experiment 4 (30 females fed 60:20:20) lasted 8 weeks and 3 weeks respectively, for gender and time comparisons. The most telling link between a quintile rank and diabetes risk was telegraphed by energy intake (kcal/day) that established the cumulative GLoad per rat for the entire trial, which was apparent from the first week of feeding. This genetic permissiveness associated with hyperphagia across quintiles was maintained throughout the study and was mirrored in body weight gain without appreciable differences in feed efficiency. This suggests that appetite and greater growth rate linked to a fiber-free high GLoad diet were the dominant factors driving the diabetes. Male rats fed the highest GLoad diet (Diet 73MB 70:10:20, GLoad 295 per 2000 kcal for 8 weeks in Experiment 3], ate more calories and developed diabetes even more aggressively, again emphasizing the Cumulative GLoad as a primary stressor for expressing the genetic permissiveness underlying the diabetes. Conclusion: Thus, the Nile rat model, unlike other rodents but similar to humans, represents a superior model for high GLoad, low-fiber diets that induce diabetes from an early age in a manner similar to the dietary paradigm underlying T2DM in humans, most likely originating in childhood.
Collapse
Affiliation(s)
| | | | - K C Hayes
- Biology Department, Brandeis University, Waltham, MA, 02453, USA.
| |
Collapse
|