1
|
Wu Y, Yang L, Jiang W, Zhang X, Yao Z. Glycolytic dysregulation in Alzheimer's disease: unveiling new avenues for understanding pathogenesis and improving therapy. Neural Regen Res 2025; 20:2264-2278. [PMID: 39101629 DOI: 10.4103/nrr.nrr-d-24-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments. The current therapeutic strategies, primarily based on cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, offer limited symptomatic relief without halting disease progression, highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease. Recent studies have provided insights into the critical role of glycolysis, a fundamental energy metabolism pathway in the brain, in the pathogenesis of Alzheimer's disease. Alterations in glycolytic processes within neurons and glial cells, including microglia, astrocytes, and oligodendrocytes, have been identified as significant contributors to the pathological landscape of Alzheimer's disease. Glycolytic changes impact neuronal health and function, thus offering promising targets for therapeutic intervention. The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression. Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments, emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.
Collapse
Affiliation(s)
- You Wu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | | | | | | | | |
Collapse
|
2
|
Qin Q, Wang D, Qu Y, Li J, An K, Mao Z, Li J, Xiong Y, Min Z, Xue Z. Enhanced glycolysis-derived lactate promotes microglial activation in Parkinson's disease via histone lactylation. NPJ Parkinsons Dis 2025; 11:3. [PMID: 39753581 PMCID: PMC11698869 DOI: 10.1038/s41531-024-00858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
The switch from oxidative phosphorylation to glycolysis is crucial for microglial activation. Recent studies highlight that histone lactylation promotes macrophage homeostatic gene expression via transcriptional regulation, but its role in microglia activation in Parkinson's disease (PD) remains unclear. Here, we demonstrated that inhibiting glycolysis with 2-deoxy-D-glucose alleviates microgliosis, neuroinflammation and dopaminergic neurons damage by reducing lactate accumulation in PD mice. Notably, we observed a marked increase in histone lactylation, particularly H3K9 lactylation, in microglia in the substantia nigra of PD mice. Mechanistically, CUT&Tag and Chip-qPCR analyses revealed that H3K9 lactylation enriched at the SLC7A11promoter and activated its expression. Importantly, inhibiting SLC7A11 by sulfasalazine mitigated microglia-mediated neuroinflammation and improved motor function in PD mice. Moreover, we found that lactate-induce histone lactylation is dependent on P300/CBP. Collectively, our findings demonstrate that glycolysis-derived lactate promotes microglial activation via histone lactylation and provide a potential therapeutic strategy for PD.
Collapse
Affiliation(s)
- Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke An
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Yang H, Mo N, Tong L, Dong J, Fan Z, Jia M, Yue J, Wang Y. Microglia lactylation in relation to central nervous system diseases. Neural Regen Res 2025; 20:29-40. [PMID: 38767474 PMCID: PMC11246148 DOI: 10.4103/nrr.nrr-d-23-00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 05/22/2024] Open
Abstract
The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis. Microglia, as innate immune cells, play important roles in the maintenance of central nervous system homeostasis, injury response, and neurodegenerative diseases. Lactate has been considered a metabolic waste product, but recent studies are revealing ever more of the physiological functions of lactate. Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions, macrophage polarization, neuromodulation, and angiogenesis and has also been implicated in the development of various diseases. This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation, histone versus non-histone lactylation, and therapeutic approaches targeting lactate. Finally, we summarize the current research on microglia lactylation in central nervous system diseases. A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Hui Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Nan Mo
- Department of Clinical Laboratory, The Fourth Clinical Medical College of Zhejiang University of Traditional Chinese Medicine (Hangzhou First People’s Hospital), Hangzhou, Zhejiang Province, China
| | - Le Tong
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jianhong Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Juanqing Yue
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Charisis S, Yannakoulia M, Scarmeas N. Diets to promote healthy brain ageing. Nat Rev Neurol 2025; 21:5-16. [PMID: 39572782 DOI: 10.1038/s41582-024-01036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Diet is a modifiable lifestyle factor with a proven role in cardiovascular disease risk reduction that might also play an important part in cognitive health. Evidence from observational studies has linked certain healthy dietary patterns to cognitive benefits. However, clinical trials of diet interventions have demonstrated either null or, at best, small effects on cognitive outcomes. In this Review, we summarize the currently available evidence from observational epidemiology and clinical trials regarding the potential role of diet in the prevention of cognitive decline and dementia. We further discuss possible methodological limitations that might have hindered the ability of previous diet intervention trials to capture potential neuroprotective effects. Considering the overwhelming and continuously expanding societal, economic and health-care burden of Alzheimer disease and other dementias, future nutritional research must address past methodological challenges to accurately and reliably inform clinical practice guidelines and public health policies. Within this scope, we provide a roadmap for future diet intervention trials for dementia prevention. We discuss study designs involving both intensive personalized interventions - to evaluate pharmacokinetic and pharmacodynamic properties, establish neuroprotective thresholds, and test hypothesized biological mechanisms and effects on brain health and cognition through sensitive and precise biomarker measures - and large-scale, pragmatic public health interventions to study population-level benefits.
Collapse
Affiliation(s)
- Sokratis Charisis
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Yang Y, Shi J, Yu J, Zhao X, Zhu K, Wang S, Zhang X, Zhang X, Wei G, Cao W. New Posttranslational Modification Lactylation Brings New Inspiration for the Treatment of Rheumatoid Arthritis. J Inflamm Res 2024; 17:11845-11860. [PMID: 39758940 PMCID: PMC11697653 DOI: 10.2147/jir.s497240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
Lactic acid (LA) is an essential glycolytic metabolite and energy source in the body, which is present in high levels in the synovial fluid of patients with rheumatoid arthritis (RA) and is a reliable indicator for identifying inflammatory arthritis. LA not only acts as an inflammatory amplifier in RA, recent studies have found that novel posttranslational modification (PTM) lactylation mediated by LA may also play a key role in RA. Single-cell sequencing showed that the RA lactylation score of patients with RA was significantly increased, and core lactylation-promoting genes, including NDUFB3, NGLY1, and other genes, were found to be potential biomarkers of RA. More studies have shown that lactylation can regulate genes in various cells, such as fibroblast-like synoviocytes (FLSs) and macrophages, thus playing a special role in the development and occurrence of autoimmune diseases, neurological diseases, and cancer diseases. In this paper, we review the research on lactylation in RA-related cells and mechanisms and bring new insights into the pathogenesis, diagnosis, and treatment of RA.
Collapse
Affiliation(s)
- Yue Yang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jinjie Shi
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiming Yu
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xin Zhao
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Ke Zhu
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Shen Wang
- Orthopedics Department, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, People’s Republic of China
| | - Xinwen Zhang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xieyu Zhang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Guangcheng Wei
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Cao
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Zhang X, Liu Y, Rekowski MJ, Wang N. Lactylation of tau in human Alzheimer's disease brains. Alzheimers Dement 2024. [PMID: 39740133 DOI: 10.1002/alz.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Aggregation of hyperphosphorylated tau (tauopathy) is associated with cognitive impairment in patients with Alzheimer's disease (AD). In AD, a metabolic shift due to the Warburg effect results in increased lactate production. Lactate can induce a post-translational modification (PTM) on proteins that conjugates lactyl groups to lysine (K) residues, which is known as lactylation. METHODS We analyzed lactylation of tau in control and AD brain tissue and conducted cell-based assays. In addition, we used in vitro assays to determine whether p300 catalyzed tau lactylation. RESULTS Quantitative proteomics detected that tau lactylation was elevated in AD brains, with K residue at position 331 (K331) being a prominent site. Lactate induced tau lactylation, which increased tau phosphorylation and cleavage and reduced ubiquitination. Inhibition of lactate production lowered tau lactylation; p300 catalyzed tau lactylation. DISCUSSION Our findings suggest that tau lactylation links metabolic dysregulation with tauopathy and could serve as a novel diagnostic and therapeutic target. HIGHLIGHTS Elevated tau lactylation, particularly at K331, is evident in in human AD brain samples. Lactate induces tau lactylation, enhancing phosphorylation and cleavage while inhibiting ubiquitination. The acetyl-transferase p300 catalyzes tau lactylation, with K331 being the most prominent site.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yan Liu
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michaella J Rekowski
- Mass Spectrometry/Proteomics Core Laboratory, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ning Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, USA
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, USA
| |
Collapse
|
7
|
Si WY, Yang CL, Wei SL, Du T, Li LK, Dong J, Zhou Y, Li H, Zhang P, Liu QJ, Duan RS, Duan RN. Therapeutic potential of microglial SMEK1 in regulating H3K9 lactylation in cerebral ischemia-reperfusion. Commun Biol 2024; 7:1701. [PMID: 39725685 DOI: 10.1038/s42003-024-07425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Acute ischemic stroke (AIS) triggers immune responses and neuroinflammation, contributing to brain injury. Histone lactylation, a metabolic stress-related histone modification, plays a critical role in various diseases, but its involvement in cerebral ischemia remains unclear. This study utilized a transient middle cerebral artery occlusion/reperfusion (MCAO/R) model and an oxygen-glucose deprivation/reoxygenation (OGD/R) model to investigate the role of microglial histone lactylation in ischemia-reperfusion injury. Lactate overload post-AIS increased histone lactylation, while reduced SMEK1 expression in microglia correlated with elevated lactate and neuroinflammation. Microglia-specific SMEK1 deficiency enhanced lactate production by inhibiting the pyruvate dehydrogenase kinase 3-pyruvate dehydrogenase (PDK3-PDH) pathway, increasing H3 lysine 9 lactylation (H3K9la), activating Ldha and Hif-1α transcription, and promoting glycolysis. SMEK1 overexpression improved neurological recovery in ischemic mice. This study highlights SMEK1 as a novel regulator of histone lactylation and a potential therapeutic target for mitigating neuroinflammation and enhancing recovery after AIS.
Collapse
Affiliation(s)
- Wei-Yue Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
- Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, People's Republic of China
| | - Shu-Li Wei
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
- Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, People's Republic of China
| | - Liang-Kang Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jing Dong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
| | - Yang Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
- Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, People's Republic of China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
- Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, People's Republic of China
| | - Qi-Ji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
- Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, People's Republic of China
| | - Ruo-Nan Duan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Zuo J, Wu D, Zhang Y, Luo H, Jing G, Yuan M, Fang Q, Yang C, Wang X, Wu X, Song X. VCPIP1 negatively regulates NF-κB signaling pathways by deubiquitinating and stabilizing Erbin in MDP-stimulated macrophages. Int Immunopharmacol 2024; 143:113622. [PMID: 39550842 DOI: 10.1016/j.intimp.2024.113622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Macrophages are present in all tissues and body compartments under homeostatic physiological conditions. Importantly, they play a key role in pathological inflammatory processes when disturbed. They can quickly produce large amounts of inflammatory cytokines in response to danger signals. Macrophages can recognize muramyl dipeptide (MDP) through nucleotide-binding oligomerization domain (NOD)-like receptors, subsequently activating the NF-κB signaling pathway and producing proinflammatory cytokines. Erbin can bind to NOD2 and inhibit MDP-induced NF-κB activation, thus participating in the regulation of inflammatory response. Stabilizing or enhancing Erbin expression is essential for suppressing inflammatory responses. In this study, we used a deubiquitination enzyme plasmid library to screen for a key deubiquitinase, VCPIP1, which interacts with Erbin and influences its stability through deubiquitination modification. We investigated whether VCPIP1 affects inflammation using MDP-stimulated RAW 264.7 and BMDMs cells. The results showed that VCPIP1 deficiency reduced Erbin expression and increased NF-κB phosphorylation. Additionally, VCPIP1 deficiency promoted the release of inflammatory factors (IL-1β, IL-6, and TNF-α) in RAW 264.7 cells and BMDMs. This study further expands the role of deubiquitinases (DUBs) in inflammation, providing new insights for the prevention and treatment of sepsis, tumors, immune diseases, and other inflammatory reactions.
Collapse
Affiliation(s)
- Jing Zuo
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Die Wu
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Ying Zhang
- Department of Anesthesiology, Dong Feng Hospital of Hubei Medical University, Shiyan 442000, Zhangwan, 16 Daling Road, Hubei Province, China
| | - Huan Luo
- Department of Anesthesiology, Cancer Hospital of Chongqing University, Chongqing 400030, Shapingba, 181 Hanyu Road, Chongqing Municipality, China
| | - Guoqing Jing
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Wuchang, 238 Liberation Road, Hubei Province, China
| | - Qing Fang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Cheng Yang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Xing Wang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Wuchang, 238 Liberation Road, Hubei Province, China.
| | - Xuemin Song
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China.
| |
Collapse
|
9
|
Ma C, Zhang W, Xing L. Differences in protein lactylation between pale, soft and exudative and red, firm and non-exudative pork. Meat Sci 2024; 221:109736. [PMID: 39740368 DOI: 10.1016/j.meatsci.2024.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
This study aimed to understand the development of pale, soft, and exudative (PSE) pork from a new perspective by comparing the differences of lactate-induced protein lactylation and its potential regulators including E1A binding protein p300 (p300) and cAMP response element binding protein (CBP) between PSE and red, firm, and non-exudative (RFN) pork at 1 h postmortem. Results demonstrated that PSE pork presented lower glycogen contents and higher lactate levels than RFN pork (P < 0.05). Meanwhile, p300/CBP and protein lactylation levels in PSE pork were higher (P < 0.05). Besides, the immunofluorescence results showed that p300/CBP and lactylated proteins were predominantly localized around the nucleus and sarcolemma membrane with small amounts in the cytoplasm, and these distribution signals were intensified in PSE pork. Importantly, a high degree of co-localization of p300/CBP and lactylated proteins was also observed in postmortem myocytes, confirming that p300/CBP were the critical regulators of lactylation modification in postmortem muscle. This work for the first time demonstrates that protein lactylation levels between PSE and RFN pork were notably diverse, which may potentially be involved in the regulation of various postmortem muscle biochemical metabolism.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lujuan Xing
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Niu K, Chen Z, Li M, Ma G, Deng Y, Zhang J, Wei D, Wang J, Zhao Y. NSUN2 lactylation drives cancer cell resistance to ferroptosis through enhancing GCLC-dependent glutathione synthesis. Redox Biol 2024; 79:103479. [PMID: 39742570 DOI: 10.1016/j.redox.2024.103479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025] Open
Abstract
Lactate-mediated lactylation on target proteins is recently identified as the novel posttranslational modification with profound biological functions. RNA 5-methylcytosine (m5C) modification possesses dynamic and reversible nature, suggesting that activity of its methyltransferase NSUN2 is actively regulated. However, how NSUN2 activity is response to acidic condition in tumor microenvironment and then regulates cancer cell survival remain to be clarified. Here, we demonstrate that NSUN2 activity is enhanced by lactate-mediated lactylation at lysine 508, which then targets glutamate-cysteine ligase catalytic subunit (GCLC) mRNA to facilitates GCLC m5C formation and mRNA stabilization. The activated GCLC induces higher level of intracellular GSH accompanied by decreased lipid peroxidation and resistant phenotype to ferroptosis induction by doxorubicin (Dox) in gastric cancer cells. Specifically, the effect of NSUN2 lactylation-GCLC-GSH pathway is nearly lost when NSUN2 K508R or GCLC C-A mutant (five cytosine sites) was introduced into the cancer cells. We further identify the catalytic subunit N-α-acetyltransferase 10 (NAA10) as the lactytransferase of NSUN2, and lactate treatment substantially enhances their association and consequent NSUN2 activation. Taken together, our findings convincingly elucidate the signaling axis of NAA10-NSUN2-GCLC that potently antagonizes the ferroptosis under acidic condition, and therefore, targeting NSUN2 lactylation might be an effective strategy in improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Kaifeng Niu
- China National Center for Bioinformation, Beijing, 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zixiang Chen
- China National Center for Bioinformation, Beijing, 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengge Li
- China National Center for Bioinformation, Beijing, 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guannan Ma
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, 310030, China
| | - Yuchun Deng
- China National Center for Bioinformation, Beijing, 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji Zhang
- China National Center for Bioinformation, Beijing, 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Wei
- China National Center for Bioinformation, Beijing, 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiaqi Wang
- China National Center for Bioinformation, Beijing, 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongliang Zhao
- China National Center for Bioinformation, Beijing, 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Zhang L, Liu J, Miao Z, Zhou R, Wang H, Li X, Liu J, Zhang J, Yan J, Xie Z, Jiang H. The Association of Fructose Metabolism With Anesthesia/Surgery-Induced Lactate Production. Anesth Analg 2024:00000539-990000000-01075. [PMID: 39689012 DOI: 10.1213/ane.0000000000007350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND In elderly individuals, excessive lactate levels in the brain may be associated with the development of cognitive impairment after surgery, including delayed neurocognitive recovery (dNCR). Since the origin of this increased lactate is unknown, here we assessed associations between metabolic pathways and postoperative dNCR. METHODS This study included 43 patients (≥60 years old) who had surgery under general anesthesia. We also used a mouse model in which 20-month-old mice were exposed to sevoflurane to induce postoperative dNCR, while control mice were exposed to 40% oxygen. Mice in the control group and anesthesia/surgery group were injected with fructose or glucose intracerebroventricularly, or fructose metabolism inhibitor intraperitoneally. Barnes maze test and Y maze were used to measure cognitive function in mice. Metabolomics was used to measure metabolites in the serum of patients and the brains of mice after anesthesia/surgery. Isotope labeling and metabolic flux were used to analyze flow and distribution of specific metabolites in metabolic pathways. RESULTS Among 43 patients, 17 developed dNCR. Metabolomics showed significantly decreased postoperative serum fructose 1-phosphate levels in dNCR compared to nondNCR patients (mean difference [×104] = -0.164 ± 0.070; P = .024). Similar results were found in the brains of mice (mean difference = -1.669 ± 0.555; *P = .014). Isotope labeling and metabolic flux experiments in mice showed fructose but not glucose entered glycolysis, increasing lactate levels in the brain after anesthesia/surgery (P < .05). Administration of intraperitoneal fructose inhibitors to mice effectively inhibited increased lactate levels in the brain (mean difference =96.0 ± 4.36, P = .0237) and cognitive dysfunction after anesthesia/surgery (mean difference =69.0 ± 3.94, P = .0237). In a small subsample, we also found anesthesia/surgery increased interleukin-6 (IL-6) levels in the brains of mice (mean difference =88.3 ± 3.44, P = .0237) and that IL-6 may function upstream in fructose activation. CONCLUSIONS These results suggest that anesthesia/surgery activates fructose metabolism, producing excessive lactate in the brain that is associated with postoperative cognitive impairment. Fructose metabolism is thus a potential therapeutic target for dNCR.
Collapse
Affiliation(s)
- Lei Zhang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Shandong Provincial Key Medical and Health Laboratory of Anesthesia and Brain Function, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jianhui Liu
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengjie Miao
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Zhou
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Jiehui Liu
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingya Zhang
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Yan
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Hong Jiang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
He P, Zhang B, Jiang W, Zhu F, Liang Z, Gao L, Zhang Y, Wang Y, Wu C, Tang C. PKM2 is a key factor to regulate neurogenesis and cognition by controlling lactate homeostasis. Stem Cell Reports 2024:102381. [PMID: 39706177 DOI: 10.1016/j.stemcr.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN), the process of generating new neurons from adult neural stem/progenitor cells (NSPCs), is crucial for cognitive functions and is influenced by numerous factors, including metabolic processes. Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme in glycolysis, catalyzes the production of pyruvate, which undergoes either oxidative phosphorylation or anaerobic oxidation. We observed that PKM2 is highly expressed in NSPCs, but its significance remains unclear for AHN and cognition. Using knockdown or knockout strategies, we discovered that PKM2 deficiency led to reduced AHN and impaired cognitive functions. Furthermore, we observed that knockout of PKM2 resulted in lower L-lactate levels, and supplementing L-lactate in PKM2 knockout mice improved AHN and cognitive functions. Mechanistically, L-lactate restored neurogenesis via monocarboxylate transporter 2 (MCT2), but not hydroxycarboxylic acid receptor 1. In summary, our findings demonstrate that PKM2 is essential for AHN, and lactate supplementation can restore neurogenesis in an MCT2-dependent manner.
Collapse
Affiliation(s)
- Pengyan He
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Bingjun Zhang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Gao
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhong Zhang
- The Affiliated Brain Hospital, Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Caixia Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
13
|
Tsukihara S, Akiyama Y, Shimada S, Hatano M, Igarashi Y, Taniai T, Tanji Y, Kodera K, Yasukawa K, Umeura K, Kamachi A, Nara A, Okuno K, Tokunaga M, Katoh H, Ishikawa S, Ikegami T, Kinugasa Y, Eto K, Tanaka S. Delactylase effects of SIRT1 on a positive feedback loop involving the H19-glycolysis-histone lactylation in gastric cancer. Oncogene 2024:10.1038/s41388-024-03243-6. [PMID: 39658647 DOI: 10.1038/s41388-024-03243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Histone lactylation, a novel epigenetic modification, is regulated by the lactate produced by glycolysis. Glycolysis is activated in various cancers, including gastric cancer (GC). However, the molecular mechanism and clinical impact of histone lactylation in GC remain poorly understood. Here, we demonstrate that histone H3K18 lactylation (H3K18la) is elevated in GC, correlating with a worse prognosis. SIRT1 overexpression decreases H3K18la levels, whereas SIRT1 knockdown increases H3K18la levels in GC cells. RNA-seq analysis demonstrates that lncRNA H19 is markedly downregulated in GC cells with SIRT1 overexpression and those grown under glucose free condition, which confirmed decreased H3K18la levels at its promoter region. H19 knockdown decreased the expression levels of LDHA and H3K18la, and LDHA knockdown impaired H19 and H3K18la expression, suggesting an H19/glycolysis/H3K18la-positive feedback loop. Combined treatment with low doses of the SIRT1-specific activator SRT2104 and the LDHA inhibitor oxamate exerted significant antitumor effects on GC cells, with limited adverse effects on normal gastric cells. The SIRT1-weak/H3K18la-strong signature was found to be an independent prognostic factor in patients with GC. Therefore, SIRT1 acts as a histone delactylase for H3K18, and loss of SIRT1 triggers a positive feedback loop involving H19/glycolysis/H3K18la. Targeting this pathway serves as a novel therapeutic strategy for GC treatment.
Collapse
Grants
- JP19cm0106540, JP24fk0210136, JP24fk0210102, JP24fk0210106, 24fk0210149 Japan Agency for Medical Research and Development (AMED)
- A, JP19H01055; B, JP23H02979, JP23K27670; Exploratory, JP20K21627, and JP22K19554 MEXT | Japan Society for the Promotion of Science (JSPS)
- B, JP24K02320 MEXT | Japan Society for the Promotion of Science (JSPS)
Collapse
Affiliation(s)
- Shu Tsukihara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Megumi Hatano
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Igarashi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Taniai
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshiaki Tanji
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Keita Kodera
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Koya Yasukawa
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kentaro Umeura
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsushi Kamachi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsushi Nara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Okuno
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Ikegami
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Eto
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
14
|
Bao C, Ma Q, Ying X, Wang F, Hou Y, Wang D, Zhu L, Huang J, He C. Histone lactylation in macrophage biology and disease: from plasticity regulation to therapeutic implications. EBioMedicine 2024; 111:105502. [PMID: 39662177 PMCID: PMC11697715 DOI: 10.1016/j.ebiom.2024.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Epigenetic modifications have been identified as critical molecular determinants influencing macrophage plasticity and heterogeneity. Among these, histone lactylation is a recently discovered epigenetic modification. Research examining the effects of histone lactylation on macrophage activation and polarization has grown substantially in recent years. Evidence increasingly suggests that lactate-mediated changes in histone lactylation levels within macrophages can modulate gene transcription, thereby contributing to the pathogenesis of various diseases. This review provides a comprehensive analysis of the role of histone lactylation in macrophage activation, exploring its discovery, effects, and association with macrophage diversity and phenotypic variability. Moreover, it highlights the impact of alterations in macrophage histone lactylation in diverse pathological contexts, such as inflammation, tumorigenesis, neurological disorders, and other complex conditions, and demonstrates the therapeutic potential of drugs targeting these epigenetic modifications. This mechanistic understanding provides insights into the underlying disease mechanisms and opens new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xihong Ying
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Fengsheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Yue Hou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dun Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Linsen Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
15
|
Zhai G, Niu Z, Jiang Z, Zhao F, Wang S, Chen C, Zheng W, Wang A, Zang Y, Han Y, Zhang K. DPF2 reads histone lactylation to drive transcription and tumorigenesis. Proc Natl Acad Sci U S A 2024; 121:e2421496121. [PMID: 39636855 DOI: 10.1073/pnas.2421496121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Lysine lactylation (Kla) is a new type of histone mark implicated in the regulation of various functional processes such as transcription. However, how this histone mark acts in cancers remains unexplored due in part to a lack of knowledge about its reader proteins. Here, we observe that cervical cancer (CC) cells undergo metabolic reprogram by which lactate accumulation and thereby boosts histone lactylation, particularly H3K14la. Utilizing a multivalent photoaffinity probe in combination with quantitative proteomics approach, we identify DPF2 as a candidate target of H3K14la. Biochemical studies as well as CUT&Tag analysis reveal that DPF2 is capable of binding to H3K14la and colocalizes with it on promoters of oncogenic genes. Notably, disrupting the DPF2-H3K14la interaction through structure-guided mutation blunts those cancer-related gene expression along with cell survival. Together, our findings reveal DPF2 as a bona fide H3K14la effector that couples histone lactylation to gene transcription and cell survival, offering insight into how histone Kla engages in transcription and tumorigenesis.
Collapse
Affiliation(s)
- Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Ziping Niu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zixin Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Fei Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Siyu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Chen Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Zheng
- Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong Province 264000, China
| | - Aiyuan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yong Zang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yanpu Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300070, China
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin 300070, China
| |
Collapse
|
16
|
Liao Z, Chen B, Yang T, Zhang W, Mei Z. Lactylation modification in cardio-cerebral diseases: A state-of-the-art review. Ageing Res Rev 2024; 104:102631. [PMID: 39647583 DOI: 10.1016/j.arr.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Cardio-cerebral diseases (CCDs), encompassing conditions such as coronary heart disease, myocardial infarction, stroke, Alzheimer's disease, et al., represent a significant threat to human health and well-being. These diseases are often characterized by metabolic abnormalities and remodeling in the process of pathology. Glycolysis and hypoxia-induced lactate accumulation play critical roles in cellular energy dynamics and metabolic imbalances in CCDs. Lactylation, a post-translational modification driven by excessive lactate accumulation, occurs in both histone and non-histone proteins. It has been implicated in regulating protein function across various pathological processes in CCDs, including inflammation, angiogenesis, lipid metabolism dysregulation, and fibrosis. Targeting key proteins involved in lactylation, as well as the enzymes regulating this modification, holds promise as a therapeutic strategy to modulate disease progression by addressing these pathological mechanisms. This review provides a holistic picture of the types of lactylation and the associated modifying enzymes, highlights the roles of lactylation in different pathological processes, and synthesizes the latest clinical evidence and preclinical studies in a comprehensive view. We aim to emphasize the potential of lactylation as an innovative therapeutic target for preventing and treating CCD-related conditions.
Collapse
Affiliation(s)
- Zi Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Bei Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
17
|
Wu H, Li Z, Yang L, He L, Liu H, Yang S, Xu Q, Li Y, Li W, Li Y, Gong Z, Shen Y, Yang X, Huang J, Yu F, Li L, Zhu J, Sun L, Fu Y, Kong W. ANK Deficiency-Mediated Cytosolic Citrate Accumulation Promotes Aortic Aneurysm. Circ Res 2024; 135:1175-1192. [PMID: 39513269 DOI: 10.1161/circresaha.124.325152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Disturbed metabolism and transport of citrate play significant roles in various pathologies. However, vascular citrate regulation and its potential role in aortic aneurysm (AA) development remain poorly understood. METHODS Untargeted metabolomics by mass spectrometry was applied to identify upregulated metabolites of the tricarboxylic acid cycle in AA tissues of mice. To investigate the role of citrate and its transporter ANK (progressive ankylosis protein) in AA development, vascular smooth muscle cell (VSMC)-specific Ank-knockout mice were used in both Ang II (angiotensin II)- and CaPO4-induced AA models. RESULTS Citrate was abnormally increased in both human and murine aneurysmal tissues, which was associated with downregulation of ANK, a citrate membrane transporter, in VSMCs. The knockout of Ank in VSMCs promoted AA formation in both Ang II- and CaPO4-induced AA models, while its overexpression inhibited the development of aneurysms. Mechanistically, ANK deficiency in VSMCs caused abnormal cytosolic accumulation of citrate, which was cleaved into acetyl coenzyme A and thus intensified histone acetylation at H3K23, H3K27, and H4K5. Cleavage under target and tagmentation analysis further identified that ANK deficiency-induced histone acetylation activated the transcription of inflammatory genes in VSMCs and thus promoted a citrate-related proinflammatory VSMC phenotype during aneurysm diseases. Accordingly, suppressing citrate cleavage to acetyl coenzyme A downregulated inflammatory gene expression in VSMCs and restricted ANK deficiency-aggravated AA formation. CONCLUSIONS Our studies define the pathogenic role of ANK deficiency-induced cytosolic citrate accumulation in AA pathogenesis and an undescribed citrate-related proinflammatory VSMC phenotype. Targeting ANK-mediated citrate transport may emerge as a novel diagnostic and therapeutic strategy in AA.
Collapse
MESH Headings
- Animals
- Mice
- Citric Acid/metabolism
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Knockout
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/genetics
- Aortic Aneurysm/pathology
- Aortic Aneurysm/etiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Inbred C57BL
- Cytosol/metabolism
- Male
- Cells, Cultured
- Acetylation
- Acetyl Coenzyme A/metabolism
- Disease Models, Animal
- Histones/metabolism
Collapse
Affiliation(s)
- Hao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China (L.Y.)
| | - Lin He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, China (H.L., Q.X., J.Z.)
| | - Shiyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinfeng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanjie Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenqiang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yiran Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
- Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo, China (Z.G.)
| | - Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Li
- Department of Pathology, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (L.L.)
| | - Junming Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Luyang Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | | |
Collapse
|
18
|
Wang X, Hu J, Xie S, Li W, Zhang H, Huang L, Qian Z, Zhao C, Zhang L. Hidden role of microglia during neurodegenerative disorders and neurocritical care: A mitochondrial perspective. Int Immunopharmacol 2024; 142:113024. [PMID: 39217875 DOI: 10.1016/j.intimp.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The incidence of aging-related neurodegenerative disorders and neurocritical care diseases is increasing worldwide. Microglia, the main inflammatory cells in the brain, could be potential viable therapeutic targets for treating neurological diseases. Interestingly, mitochondrial functions, including energy metabolism, mitophagy and transfer, fission and fusion, and mitochondrial DNA expression, also change in activated microglia. Notably, mitochondria play an active and important role in the pathophysiology of neurodegenerative disorders and neurocritical care diseases. This review briefly summarizes the current knowledge on mitochondrial dysfunction in microglia in neurodegenerative disorders and neurocritical care diseases and comprehensively discusses the prospects of the application of neurological injury prevention and treatment targets by mitochondria.
Collapse
Affiliation(s)
- Xinrun Wang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jiyun Hu
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Wenchao Li
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Haisong Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Li Huang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
19
|
Mi J, Zhao L, Shen Y, Mo S, Kuang Y. PFKP Lactylation Promotes the Ovarian Cancer Progression Through Targeting PTEN. Biochem Genet 2024:10.1007/s10528-024-10990-4. [PMID: 39638933 DOI: 10.1007/s10528-024-10990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Ovarian cancer (OC) ranks among the most prevalent malignancies affecting females globally and is a leading cause of cancer-related mortality in women. This study sought to elucidate the influence of phosphofructokinase P (PFKP) on the progression of OC. A cohort of sixty OC patients was enrolled. OC cells were exposed to both normoxic and hypoxic conditions. Expression levels of PFKP and phosphatase and tensin homolog (PTEN) were quantified using real time quantitative polymerase chain reaction (RT-qPCR) and Western blot analyses. Immunofluorescence confirmed these protein expression patterns. Glycolysis-related parameters, encompassing glucose uptake, extracellular lactate levels, extracellular acidification rates, and oxygen consumption rates, were assessed using commercially available kits. Lactylation status of PFKP was evaluated via immunoprecipitation followed by Western blot analysis. An OC xenograft mouse model was also established. Findings indicated elevated PFKP expression in OC tissues and cells. Additionally, PFKP knockdown attenuated glycolysis and counteracted the hypoxia-induced enhancement of glycolytic activity in OC cells. Mutation of the lysine (K) residue at position 392 diminished PFKP lactylation. Further investigations revealed that PFKP depletion upregulated PTEN expression in hypoxia-treated OC cells. Besides, PTEN suppression increased the glycolysis in hypoxia-treated OC cells. Animal study results demonstrated that PFKP inhibition curtailed OC tumor growth by modulating PTEN expression. Collectively, these results suggested that lactylation of PFKP at the K392 residue promoted glycolysis in OC cells by regulating PTEN, thereby facilitating the disease's progression.
Collapse
Affiliation(s)
- Jianfeng Mi
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, No.6 Shaungyong Road, Nanning, 532200, China
| | - Ling Zhao
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, No.6 Shaungyong Road, Nanning, 532200, China
| | - Yonglong Shen
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, No.6 Shaungyong Road, Nanning, 532200, China
| | - Shien Mo
- Department of Gynecology, The Sec People's Hospital of Qinzhou, Qinzhou, China
| | - Yan Kuang
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, No.6 Shaungyong Road, Nanning, 532200, China.
| |
Collapse
|
20
|
Liu R, Ren X, Park YE, Feng H, Sheng X, Song X, AminiTabrizi R, Shah H, Li L, Zhang Y, Abdullah KG, Dubois-Coyne S, Lin H, Cole PA, DeBerardinis RJ, McBrayer SK, Huang H, Zhao Y. Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis. Cell Metab 2024:S1550-4131(24)00451-0. [PMID: 39642882 DOI: 10.1016/j.cmet.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/18/2024] [Accepted: 11/09/2024] [Indexed: 12/09/2024]
Abstract
Histone lysine lactylation is a physiologically and pathologically relevant epigenetic pathway that can be stimulated by the Warburg effect-associated L-lactate. Nevertheless, the mechanism by which cells use L-lactate to generate lactyl-coenzyme A (CoA) and how this process is regulated remains unknown. Here, we report the identification of guanosine triphosphate (GTP)-specific SCS (GTPSCS) as a lactyl-CoA synthetase in the nucleus. The mechanism was elucidated through the crystallographic structure of GTPSCS in complex with L-lactate, followed by mutagenesis experiments. GTPSCS translocates into the nucleus and interacts with p300 to elevate histone lactylation but not succinylation. This process depends on a nuclear localization signal in the GTPSCS G1 subunit and acetylation at G2 subunit residue K73, which mediates the interaction with p300. GTPSCS/p300 collaboration synergistically regulates histone H3K18la and GDF15 expression, promoting glioma proliferation and radioresistance. GTPSCS represents the inaugural enzyme to catalyze lactyl-CoA synthesis for epigenetic histone lactylation and regulate oncogenic gene expression in glioma.
Collapse
Affiliation(s)
- Ruilong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Xuelian Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yae Eun Park
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Huixu Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinlei Sheng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaohan Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Roya AminiTabrizi
- Biological Science Division, Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Hardik Shah
- Biological Science Division, Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Lingting Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Sarah Dubois-Coyne
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Philip A Cole
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ralph J DeBerardinis
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Luo L, Zhuang X, Fu L, Dong Z, Yi S, Wang K, Jiang Y, Zhao J, Yang X, Hei F. The role of the interplay between macrophage glycolytic reprogramming and NLRP3 inflammasome activation in acute lung injury/acute respiratory distress syndrome. Clin Transl Med 2024; 14:e70098. [PMID: 39623879 PMCID: PMC11612265 DOI: 10.1002/ctm2.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a severe respiratory condition associated with elevated morbidity and mortality. Understanding their complex pathophysiological mechanisms is crucial for developing new preventive and therapeutic strategies. Recent studies highlight the significant role of inflammation involved in ALI/ARDS, particularly the hyperactivation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome in macrophages. This activation drives pulmonary inflammation by releasing inflammatory signalling molecules and is linked to metabolic reprogramming, marked by increased glycolysis and reduced oxidative phosphorylation. However, the relationship between NLRP3 inflammasome activation and macrophage glycolytic reprogramming in ALI/ARDS, as well as the molecular mechanisms regulating these processes, remain elusive. This review provides a detailed description of the interactions and potential mechanisms linking NLRP3 inflammasome activation with macrophage glycolytic reprogramming, proposing that glycolytic reprogramming may represent a promising therapeutic target for mitigating inflammatory responses in ALI/ARDS. KEY POINTS: NLRP3 inflammasome activation is pivotal in mediating the excessive inflammatory response in ALI/ARDS. Glycolytic reprogramming regulates NLRP3 inflammasome activation. Therapeutic potential of targeting glycolytic reprogramming to inhibit NLRP3 inflammasome activation in ALI/ARDS.
Collapse
Affiliation(s)
- Lan Luo
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Xiaoli Zhuang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Lin Fu
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Ziyuan Dong
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Shuyuan Yi
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Kan Wang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yu Jiang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Ju Zhao
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Xiaofang Yang
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Feilong Hei
- Department of Extracorporeal Circulation and Mechanical Circulation AssistantsCenter for Cardiac Intensive CareBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
22
|
Li J, Chen Z, Jin M, Gu X, Wang Y, Huang G, Zhao W, Lu C. Histone H4K12 lactylation promotes malignancy progression in triple-negative breast cancer through SLFN5 downregulation. Cell Signal 2024; 124:111468. [PMID: 39395526 DOI: 10.1016/j.cellsig.2024.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Lactylation, a newly identified post-translational modification, is uncertain in its implication in triple-negative breast cancer (TNBC). In this study, we analyzed 60 TNBC samples using immunohistochemical staining and revealed elevated levels of pan-lactylated proteins and specific histone H4K12 lactylation in tumor tissues, correlating with TNBC progression. Lactate exposure in TNBC cell lines significantly induced lysine lactylation at the H4K12 site, leading to alterations in gene profiles and reduced apoptosis. These effects were attenuated by DCA or sodium Oxamate, inhibitors of endogenous lactate production. Gene sequencing showed an increase in Schlafen 5 (SLFN5) expression in TNBC cells treated with Oxamate, contrasting with the effects of lactate exposure. Analysis of TNBC tissues showed a negative correlation between H4K12 lactylation and SLFN5 protein levels. Overexpression of SLFN5 countered the effects of lactate on apoptosis and tumor growth, highlighting its pivotal role in TNBC malignancy. CUT&Tag sequencing indicated that lactylated H4K12 potentially binds to the SLFN5 promoter region. Luciferase reporter assays further verified that lactate-induced suppression of SLFN5 promoter activity is mediated by wild-type H4K12, but not by its R or A mutants, verified by both in vitro and in vivo apoptosis detection in response to lactate and Oxamate stimulation. These results establish that H4K12 lactylation, induced by lactate in TNBC cells, specifically suppresses SLFN5 expression, contributing to TNBC malignancy. Our findings illuminate a critical histone lactylation-dependent carcinogenic pathway in TNBC.
Collapse
Affiliation(s)
- Jingyi Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China; Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Ziyu Chen
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yuhan Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Weiming Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
23
|
Wang S, Wang Y. Mechanism of action of "cistanche deserticola-Polygala" in treating Alzheimer's disease based on network pharmacology methods and molecular docking analysis. IET Syst Biol 2024; 18:271-284. [PMID: 39393018 DOI: 10.1049/syb2.12100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
This article used network pharmacology, molecular docking, GEO analysis, and Gene Set Enrichment Analysis to obtain 38 main chemical components and 66 corresponding targets involved in Alzheimer's disease (AD) treatment in "Cistanche deserticola-Polygala". Through further Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analysis, we obtained AD signalling pathways, calcium signalling pathways, and other signalling pathways related to the treatment of AD with "Cistanche deserticola-Polygala". Molecular docking showed that most of the core chemical components had good binding ability with the core targets. This article aims to reveal the mechanism of "Cistanche deserticola-Polygala" in treating AD and provide a basis for the treatment of AD with "Cistanche deserticola-Polygala".
Collapse
Affiliation(s)
- Shaoqiang Wang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| | - Yifan Wang
- The Seventh Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
24
|
Zhang Y, Chen JC, Zheng JH, Cheng YZ, Weng WP, Zhong RL, Sun SL, Shi YS, Pan XD. Pterosin B improves cognitive dysfunction by promoting microglia M1/M2 polarization through inhibiting Klf5/Parp14 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156152. [PMID: 39413455 DOI: 10.1016/j.phymed.2024.156152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Pterosin B (PB) exhibits strong neuroprotective effects in vitro, but its therapeutic effect and underlying mechanism on Alzheimer's disease (AD) remain elusive. PURPOSE This study aimed to investigate the anti-AD effect and mechanism of PB. STUDY DESIGN The therapeutic effect and mechanism of PB were investigated in APP/PS1 mice and lipopolysaccharide (LPS)-induced BV-2 cells. METHODS After 8 weeks of oral administration of PB or donepezil, the cognitive function was assessed using behavioral tests. Pathological damage was evaluated using histological analysis and immunohistochemical staining. Flow cytometry was applied to detect M1/M2 polarization. The expression levels of glycolysis- and oxidative phosphorylation-related proteins as well as enzyme activities were determined using Western blot and biochemical kits, respectively. The levels of inflammatory cytokines and Kruppel-like factor 5 (Klf5) were measured using enzyme-linked immunosorbent assay. AD biomarkers in serum were analyzed using single-molecular array. RNA sequencing identified the downstream molecules of Klf5, and interaction was evaluated using dual-luciferase reporter assay. RESULTS Our findings demonstrated that PB effectively ameliorated cognitive impairment and reduced pathological damage in APP/PS1 mice. Furthermore, PB facilitated the transition of the phenotype of LPS-induced BV-2 cells from M1 to M2 by modulating metabolic reprogramming. Additionally, Klf5 had high expression levels in the serum of patients with AD, which strongly correlated with cognitive performance and AD biomarkers. PB downregulated Klf5 expression both in vitro and in vivo. Subsequently, poly-ADP ribosyl polymerase 14 (Parp14) was identified as a downstream molecule of Klf5 involved in regulating metabolic reprogramming, and PB regulated microglia M1/M2 polarization by inhibiting the Klf5/Parp14 pathway. CONCLUSION The findings suggested that PB ameliorated cognitive dysfunction in AD by modulating microglia M1/M2 polarization via inhibiting Klf5/Parp14 pathway.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China
| | - Ji-Cong Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Hao Zheng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China
| | - Ying-Zhe Cheng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China
| | - Wei-Pin Weng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China
| | - Rong-Ling Zhong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Sheng-Lu Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yu-Sheng Shi
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China.
| | - Xiao-Dong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China.
| |
Collapse
|
25
|
Huang Z, Zhang H, Huang C, Yi R, Zhang X, Ma K, Huang W, Wu Q, Zhuang Y, Liu J, Liu W, Guo Y, Kang X, Hu X, Bai X, Chen Z. Cytoplasmic Aggregates of Splicing Factor Proline-Glutamine Rich Disrupt Nucleocytoplasmic Transport and Induce Persistent Stress Granules. J Cell Mol Med 2024; 28:e70261. [PMID: 39636149 PMCID: PMC11619156 DOI: 10.1111/jcmm.70261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Splicing factor proline-glutamine rich (SFPQ), a multifunctional RNA-binding protein (RBP), shows cytoplasmic colocalisation with stress granule (SG) markers; however, the causative relationship and mechanism underlying this coalescence of SFPQ aggregates and SGs remain unclear. In this study, we demonstrate that SFPQ lacking its nuclear localisation sequence spontaneously forms cytoplasmic aggregates that abnormally incorporate immature RNA and induce persistent SGs. mRNA profiling showed that SFPQ mislocalisation induced extensive changes in RNA processing, with a subset of alternatively spliced transcripts associated with nucleocytoplasmic transport. Notably, these altered transporters were sequestered into SFPQ aggregates, constituting aberrant protein-RNA complexes. Importantly, suppression of SG nucleation could not block cytoplasmic SFPQ aggregation with immature RNA and nucleocytoplasmic transporters, both of which, however, were moderately ameliorated by the inhibition of alternative splicing or nuclear export. Our results unveil the physiopathological role and mechanism for mislocalised SFPQ in the RNA metabolism, nucleocytoplasmic transport and pathological SGs.
Collapse
Affiliation(s)
- Zicong Huang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hanbin Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chuyu Huang
- Department of Obstetrics and Gynecology, Center for Reproductive MedicineNanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Runduan Yi
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaoyuan Zhang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ke Ma
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wei Huang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qingqing Wu
- Department of key Laboratory of Oral Medicine, Guangzhou Institute of Oral DiseaseStomatological Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yuge Zhuang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jinsheng Liu
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wenyuan Liu
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yunhui Guo
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xiao Hu
- Department of Plastic and Burn SurgeryGuangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University)GuangzhouGuangdongChina
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhenguo Chen
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Department of AnesthesiologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), southern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
26
|
Zhang G, Zhao A, Zhang X, Zeng M, Wei H, Yan X, Wang J, Jiang X, Dai Y. Glycolytic reprogramming in microglia: A potential therapeutic target for ischemic stroke. Cell Signal 2024; 124:111466. [PMID: 39419195 DOI: 10.1016/j.cellsig.2024.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Ischemic stroke is currently the second leading cause of mortality worldwide, with limited treatment options available. As resident immune cells, microglia promptly respond to cerebral ischemic injury, influencing neuroinflammatory damage and neurorepair. Studies suggest that microglia undergo metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in response to ischemia, significantly impacting their function during ischemic stroke. Therefore, this study aims to investigate the roles and regulatory mechanisms involved in this process, aiming to identify a new therapeutic target or potential drug candidate.
Collapse
Affiliation(s)
- Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
27
|
Liu J, Zhou F, Tang Y, Li L, Li L. Progress in Lactate Metabolism and Its Regulation via Small Molecule Drugs. Molecules 2024; 29:5656. [PMID: 39683818 DOI: 10.3390/molecules29235656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Lactate, once viewed as a byproduct of glycolysis and a metabolic "waste", is now recognized as an energy-providing substrate and a signaling molecule that modulates cellular functions under pathological conditions. The discovery of histone lactylation in 2019 marked a paradigm shift, with subsequent studies revealing that lactate can undergo lactylation with both histone and non-histone proteins, implicating it in the pathogenesis of various diseases, including cancer, liver fibrosis, sepsis, ischemic stroke, and acute kidney injury. Aberrant lactate metabolism is associated with disease onset, and its levels can predict disease outcomes. Targeting lactate production, transport, and lactylation may offer therapeutic potential for multiple diseases, yet a systematic summary of the small molecules modulating lactate and its metabolism in various diseases is lacking. This review outlines the sources and clearance of lactate, as well as its roles in cancer, liver fibrosis, sepsis, ischemic stroke, myocardial infarction, and acute kidney injury, and summarizes the effects of small molecules on lactate regulation. It aims to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Jin Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feng Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yang Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Linghui Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ling Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
28
|
Wang Y, Li P, Xu Y, Feng L, Fang Y, Song G, Xu L, Zhu Z, Wang W, Mei Q, Xie M. Lactate metabolism and histone lactylation in the central nervous system disorders: impacts and molecular mechanisms. J Neuroinflammation 2024; 21:308. [PMID: 39609834 PMCID: PMC11605911 DOI: 10.1186/s12974-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Brain takes up approximately 20% of the total body oxygen and glucose consumption due to its relatively high energy demand. Glucose is one of the major sources to generate ATP, the process of which can be realized via glycolysis, oxidative phosphorylation, pentose phosphate pathways and others. Lactate serves as a hub molecule amid these metabolic pathways, as it may function as product of glycolysis, substrate of a variety of enzymes and signal molecule. Thus, the roles of lactate in central nervous system (CNS) diseases need to be comprehensively elucidated. Histone lactylation is a novel lactate-dependent epigenetic modification that plays an important role in immune regulation and maintaining homeostasis. However, there's still a lack of studies unveiling the functions of histone lactylation in the CNS. In this review, we first comprehensively reviewed the roles lactate plays in the CNS under both physiological and pathological conditions. Subsequently, we've further discussed the functions of histone lactylation in various neurological diseases. Furthermore, future perspectives regarding histone lactylation and its therapeutic potentials in stroke are also elucidated, which may possess potential clinical applications.
Collapse
Affiliation(s)
- Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ping Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yuan Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Linyu Feng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
29
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
30
|
Hou J, Guo M, Li Y, Liao Y. Lactylated histone H3K18 as a potential biomarker for the diagnosis and prediction of the severity of pancreatic cancer. Clinics (Sao Paulo) 2024; 80:100544. [PMID: 39591911 PMCID: PMC11629241 DOI: 10.1016/j.clinsp.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/26/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Lactylation plays an essential role in pancreatic cancer, but the precise role of lactylated histone in the diagnosis and prognosis of pancreatic cancer remains to be further clarified. METHODS Twenty-one patients diagnosed with pancreatic cancer were enrolled in this study, and the clinicopathologic characteristics were collected. Lactylation levels of total proteins and histone H3 Lysine-18 (H3K18) of tissues were determined by western blotting and laboratory indicators including serum levels of lactate, Cancer Antigen 19-9 (CA19-9), and Carcinoembryogenic Antigen (CEA) were obtained. RESULTS Total protein lactylation was found in both pancreatic cancer tissues and para-carcinoma normal tissues, and was more potent in tumor tissues. H3K18la was also highly expressed tumor tissues. Furthermore, H3K18la protein expression correlated positively with serum lactate (r = 0.774, p < 0.001), CA19-9 (r = 0.744, p < 0.001), and CEA (r = 0.589, p < 0.01). The Area Under the Curve (AUC) of H3K18la for the diagnosis of pancreatic cancer was 0.848 in serum (p < 0.001). CONCLUSION The present findings suggested that H3K18 may be used as a novel potential biomarker for the diagnosis and prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Jinping Hou
- Department of Hepatological Surgery, The Sixth People's Hospital of Chengdu, Chengdu, PR China.
| | - Mingsong Guo
- Department of Hepatological Surgery, The Sixth People's Hospital of Chengdu, Chengdu, PR China
| | - Yongqiong Li
- Department of Emergency, The Second People's Hospital of Chengdu, Chengdu, PR China
| | - Yijin Liao
- Chengdu Qinglong Community Health Service Center, Chengdu, PR China
| |
Collapse
|
31
|
Chen Z, Wan B, Zhang H, Zhang L, Zhang R, Li L, Zhang Y, Hu C. Histone lactylation mediated by Fam172a in POMC neurons regulates energy balance. Nat Commun 2024; 15:10111. [PMID: 39578459 PMCID: PMC11584794 DOI: 10.1038/s41467-024-54488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Glycolysis-derived lactate was identified as substrate for histone lactylation, which has been regarded as a significant role in transcriptional regulation in many tissues. However, the role of histone lactylation in the metabolic center, the hypothalamus, is still unknown. Here, we show that hypothalamic pro-opiomelanocortin (POMC) neuron-specific deletion of family with sequence similarity 172, member A (Fam172a) can increase histone lactylation and protect mice against diet-induced obesity (DIO) and related metabolic disorders. Conversely, overexpression of Fam172a in POMC neurons led to an obesity-like phenotype. Using RNA-seq and CUT&Tag chromatin profiling analyzes, we find that knockdown of Fam172a activates the glycolytic process and increases peptidylglycine α-amidating monooxygenase (PAM), which affects the synthesis of α-MSH, via H4K12la (histone lactylation). In addition, pharmacological inhibition of lactate production clearly abrogates the anti-obesity effect of PFKO (POMC-Cre, Fam172aloxP/loxP, POMC neurons Fam172a knockout). These findings highlight the importance of Fam172a and lactate in the development of obesity and our results mainly concern male mice.
Collapse
Affiliation(s)
- Zhuo Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baocheng Wan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianxi Li
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China.
| |
Collapse
|
32
|
Bao Q, Wan N, He Z, Cao J, Yuan W, Hao H, Ye H. Subcellular Proteomic Mapping of Lysine Lactylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39569522 DOI: 10.1021/jasms.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Protein lactylation is a novel post-translational modification (PTM) involved in many important physiological processes such as macrophage polarization, immune regulation, and tumor cell growth. However, traditional methodologies for studying lactylation have predominantly relied on peptide enrichment from whole-cell lysates, which tend to favor the detection of high-abundance peptides, thus limiting the identification of low-abundance lactylated peptides. To address this limitation, here, we employed subcellular fractionation to separate proteins and map lactylated peptides from each isolated subcellular fraction using a model cell line. In brief, we identified 1,217 lysine lactylation (Kla) sites on 553 proteins across four subcellular fractions. Subsequent pathway enrichment analysis revealed that Kla proteins participate in distinct pathways depending on the subcellular contexts. In addition, this subcellular fractionation method enabled the discovery of 36 previously unreported Kla proteins and 223 novel Kla sites, many of which are present in low abundance. Notably, several proteins contain multiple newly identified Kla sites, exemplified by the transcriptional regulator ATRX. Furthermore, our results indicate the possibility of PTM crosstalk between Kla and other PTMs such as ubiquitination and sumoylation. In conclusion, subcellular fractionation facilitates the identification of Kla proteins that have been previously uncovered and could be overlooked by affinity enrichment of whole-cell lysates.
Collapse
Affiliation(s)
- Qiuyu Bao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Ning Wan
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Zimeng He
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Ji Cao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Wenjie Yuan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| |
Collapse
|
33
|
Shah S, Jain H. Microglia-Associated Neuroinflammation in Alzheimer’s Disease and Its Therapeutic Potential. NEUROGLIA 2024; 5:452-466. [DOI: 10.3390/neuroglia5040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Background: Neuroinflammation has long been implicated in the progression of amyloid beta (Aβ) accumulation and the decline of cognitive function in Alzheimer’s disease (AD). The phenotype balance between A1 (toxic) and A2 (safe) microglial phenotypes to toxic illness in AD has become a hot research topic at present. Currently, many transcription factors, downstream signaling pathways, and molecular mechanisms that regulate the polarization of microglia are being explored. Furthermore, microglia may also exert a complex role in AD through the transformation of Aβ plaques or debris clearance, reflected in Aβ phagocytosis. One of the mediators of neuroinflammation in AD is the activated microglia. Therefore, the regulation of microglial function may be the key to successfully treating AD. Methods: This paper is a review article. PubMed, Embase, Scopus, and research meeting abstracts were searched up to 2024 for studies of microglia and neuroinflammation in Alzheimer’s Disease. Systematic information retrieval was performed, and appropriate studies were isolated based on important information available in the studies. The information from each of the articles was understood and extracted to form a database. Results: The similar neuropathological results between several animals and AD cases show the possibility of implementing microglia-related changes as an earlier diagnostic marker for AD in humans. The gene sets identified in various transcriptomic studies further foster this avenue of research by offering potential targets for therapeutic development. Substantial evidence, both in vitro and in vivo, has suggested that the loss of the normal A2 phenotype and the activation of toxic A1 microglia contribute to neurodegeneration in AD. Conclusions: Promoting or restoring the polarization of microglia towards the A2 phenotype may thus represent an effective therapeutic strategy for ameliorating neuroinflammation and progressive neurocognitive impairments. Multiple studies suggest that microglia-associated neuroinflammation at a special stage could also be protective, and, therefore, intervention should be delicate so that a beneficial response is retained.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciencies, Jodhpur 342005, India
| |
Collapse
|
34
|
Wang L, Li W, Wu W, Liu Q, You M, Liu X, Ye C, Chen J, Tan Q, Liu G, Du Y. Effects of electroacupuncture on microglia phenotype and epigenetic modulation of C/EBPβ in SAMP8 mice. Brain Res 2024; 1849:149339. [PMID: 39577714 DOI: 10.1016/j.brainres.2024.149339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), an age-progressive neurodegenerative disease, is featured by a relentless deterioration of cognitive abilities. In parallel with the hypotheses of Aβ and tau, microglia-mediated neuroinflammation is a core pathological hallmark of AD. Promoting the transition of microglia from M1 to M2 phenotype and inhibition of neuroinflammatory response provide new insights into the treatment of AD. And substantial studies have confirmed that overexpression of C/EBPβ accelerates the progression of AD pathology. Acupuncture is renowned for its unique advantages including safety and effectiveness, which has gained wide application in geriatric diseases, and thoroughly exploring the mechanism for its treatment of AD will provide scientific basis for its clinical application. METHODS In this study, SAMP8 mice were employed and EA therapy was performed as the main intervention. The combination of behavioural experiments (including water maze and novel objective recognition), Immunofluorescence, Western blot, and Chip-qPCR assay were performed to compare between different groups. RESULTS EA therapy facilitates the polarization of microglia from M1 to M2 phenotype, reduces pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and promotes the expression of anti-inflammatory factors (IL-4 and IL-10), as well as attenuates neuroinflammation. Simultaneously, EA also inhibits the enrichment of H3K9ac at C/EBPβ promoter region and expression of C/EBPβ. Thus, it was evident that EA had a favorable effect on ameliorating cognitive decline in SAMP8 mice. CONCLUSION EA therapy may ameliorate cognitive deficits in AD via facilitating microglia shift from M1 to M2 phenotype and epigenetically regulating C/EBPβ. And further studies are required to better understand how the mechanism between microglia and epigenetic modulation of C/EBPβ are effective in reversing AD.
Collapse
Affiliation(s)
- Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China; Hubei Shizhen Laboratory, Wuhan, Hubei, China.
| | - Weixian Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wenhui Wu
- Department of Rehabilitation Medicine, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Qing Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Min You
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xinyuan Liu
- Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng Ye
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jiangmin Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Qian Tan
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Guangya Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yanjun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China; Hubei Shizhen Laboratory, Wuhan, Hubei, China; Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, Hubei, China.
| |
Collapse
|
35
|
He K, Li Y, Xiong W, Xing Y, Gao W, Du Y, Kong W, Chen L, Yang X, Dai Z. Sevoflurane exposure accelerates the onset of cognitive impairment via promoting p-Drp1 S616-mediated mitochondrial fission in a mouse model of Alzheimer's disease. Free Radic Biol Med 2024; 225:699-710. [PMID: 39490772 DOI: 10.1016/j.freeradbiomed.2024.10.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Sevoflurane is an inhalational anesthetic widely used in clinical settings. Accumulating evidence has shown that sevoflurane exposure may impair cognitive function, potentially contributing to Alzheimer's disease (AD)-related changes. However, the underlying mechanism remains poorly understood. In the present study, 4-month-old 5xFAD mice were used to investigate the effect of sevoflurane exposure on cognitive decline by Y-maze test and novel object recognition test. We found that sevoflurane exposure promoted the appearance of cognitive impairment of 5xFAD mice, accompanied with the deterioration of Aβ accumulation, synaptic defects, and neuroinflammation. Additionally, sevoflurane was also found to aggravate mitochondrial fission of 5xFAD mice, as indicated by the further upregulated expression of p-Drp1S616. Moreover, sevoflurane significantly increased mitochondrial damage and dysfunction of AD models both in vitro and in vivo experiments. Seahorse XF analysis further indicated that sevoflurane exposure facilitated a metabolic shift from oxidative phosphorylation to glycolysis. Further rescue experiments revealed that a key mechanism underlying sevoflurane-induced cognitive impairment was the excessive mitochondrial fission, as supported by the result that the mitochondrial fission inhibitor Mdivi-1 counteracted the sevoflurane-mediated deteriorative effects in 5xFAD mice. These findings provided evidence for a new mechanism of sevoflurane exposure accelerating AD-related cognitive decline.
Collapse
Affiliation(s)
- Kaiwu He
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Youzhi Li
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Wei Xiong
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Yanmei Xing
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Wenli Gao
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Yuting Du
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Wei Kong
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Zhongliang Dai
- Department of Anesthesiology, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.
| |
Collapse
|
36
|
Wu Y, Wang Y, Dong Y, Sun LV, Zheng Y. Lactate promotes H3K18 lactylation in human neuroectoderm differentiation. Cell Mol Life Sci 2024; 81:459. [PMID: 39562370 DOI: 10.1007/s00018-024-05510-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
In mammals, early embryonic gastrulation process is high energy demanding. Previous studies showed that, unlike endoderm and mesoderm cells, neuroectoderm differentiated from human embryonic stem cells relied on aerobic glycolysis as the major energy metabolic process, which generates lactate as the final product. Here we explored the function of intracellular lactate during neuroectoderm differentiation. Our results revealed that the intracellular lactate level was elevated in neuroectoderm and exogenous lactate could further promote hESCs differentiation towards neuroectoderm. Changing intracellular lactate levels by sodium lactate or LDHA inhibitors had no obvious effect on BMP or WNT/β-catenin signaling during neuroectoderm differentiation. Notably, histone lactylation, especially H3K18 lactylation was significant upregulated during this process. We further performed CUT&Tag experiments and the results showed that H3K18la is highly enriched at gene promoter regions. By analyzing data from CUT&Tag and RNA-seq experiments, we further identified that four genes, including PAX6, were transcriptionally upregulated by lactate during neuroectoderm differentiation. A H3K18la modification site at PAX6 promoter was verified and exogenous lactate could also rescue the level of PAX6 after shPAX6 inhibition.
Collapse
Affiliation(s)
- Yu Wu
- Obstetrics and Gynecology Hospital, Institute of Developmental Biology & Molecular Medicine, Department of Cellular & Developmental Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yumeng Wang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuhao Dong
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, 119077, Singapore
| | - Ling V Sun
- Obstetrics and Gynecology Hospital, Institute of Developmental Biology & Molecular Medicine, Department of Cellular & Developmental Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, Institute of Developmental Biology & Molecular Medicine, Department of Cellular & Developmental Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
37
|
Cheng J, Zhao H. NEK7 induces lactylation in Alzheimer's disease to promote pyroptosis in BV-2 cells. Mol Brain 2024; 17:81. [PMID: 39563448 DOI: 10.1186/s13041-024-01156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disorder, is characterized by irreversible brain tissue degeneration. The amyloid-β (Aβ) cascade hypothesis stands as the predominant paradigm explaining AD pathogenesis. This study aimed to elucidate the mechanisms underlying Aβ-induced pyroptosis in AD. AD models were established using amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice and Aβ-treated BV-2 cells (5 µM, 24 h). NEK7 expression was evaluated in vitro and in vivo. Cell pyroptosis was assessed before and after NEK7 expression was inhibited in BV-2 cells. Adeno-associated virus (AAV) vectors carrying short hairpin RNA (shRNA) against NEK7 (AAV-sh-NEK7) were administered to mice to knockdown NEK7 in vivo. Spatial learning and memory abilities were evaluated using the Morris water maze test. The interaction between NEK7 and histone H4 lysine 12 lactylation (H4K12la) were then investigated. The results suggested that NEK7 expression was markedly elevated in both in vitro and in vivo AD models. Treatment with Aβ significantly reduced cell viability and enhanced pyroptosis in BV-2 cells; these effects were reversed by inhibiting NEK7. Furthermore, AD mice with NEK7 knockdown exhibited shorter escape latencies and increased time spent in the target quadrant, suggesting that NEK7 inhibition improved cognitive function and memory retention. Mechanistically, Aβ treatment induced histone lactylation in BV-2 cells, and suppression of lactylation attenuated NEK7 transcriptional activity and mRNA levels. In summary, elevated NEK7 expression promoted histone lactylation in BV-2 cells, thereby facilitating pyroptosis. Inhibition of NEK7 conferred protection against Aβ-induced cellular damage and enhanced cognitive performance and memory retention in AD model mice. Collectively, targeting NEK7 represents a potential therapeutic strategy for alleviating AD symptoms.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Geriatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Hui Zhao
- Department of Geriatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| |
Collapse
|
38
|
Sadeghdoust M, Das A, Kaushik DK. Fueling neurodegeneration: metabolic insights into microglia functions. J Neuroinflammation 2024; 21:300. [PMID: 39551788 PMCID: PMC11571669 DOI: 10.1186/s12974-024-03296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, emerge in the brain during early embryonic development and persist throughout life. They play essential roles in brain homeostasis, and their dysfunction contributes to neuroinflammation and the progression of neurodegenerative diseases. Recent studies have uncovered an intricate relationship between microglia functions and metabolic processes, offering fresh perspectives on disease mechanisms and possible treatments. Despite these advancements, there are still significant gaps in our understanding of how metabolic dysregulation affects microglial phenotypes in these disorders. This review aims to address these gaps, laying the groundwork for future research on the topic. We specifically examine how metabolic shifts in microglia, such as the transition from oxidative phosphorylation and mitochondrial metabolism to heightened glycolysis during proinflammatory states, impact the disease progression in Alzheimer's disease, multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Additionally, we explore the role of iron, fatty and amino acid metabolism in microglial homeostasis and repair. Identifying both distinct and shared metabolic adaptations in microglia across neurodegenerative diseases could reveal common therapeutic targets and provide a deeper understanding of disease-specific mechanisms underlying multiple CNS disorders.
Collapse
Affiliation(s)
- Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada
| | - Aysika Das
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada
| | - Deepak Kumar Kaushik
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
39
|
Yang Y, Luo N, Gong Z, Zhou W, Ku Y, Chen Y. Lactate and lysine lactylation of histone regulate transcription in cancer. Heliyon 2024; 10:e38426. [PMID: 39559217 PMCID: PMC11570253 DOI: 10.1016/j.heliyon.2024.e38426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
Histone lysine modifications were well-established epigenetic markers, with many types identified and extensively studied. The discovery of histone lysine lactylation had revealed a new form of epigenetic modification. The intensification of this modification was associated with glycolysis and elevated intracellular lactate levels, both of which were closely linked to cellular metabolism. Histone lactylation plays a crucial role in multiple cellular homeostasis, including immune regulation and cancer progression, thereby significantly influencing cell fate. Lactylation can modify both histone and non-histone proteins. This paper provided a comprehensive review of the typical epigenetic effects and lactylation on classical transcription-related lysine sites and summarized the known enzymes involved in histone lactylation and delactylation. Additionally, some discoveries of histone lactylation in tumor biology were also discussed, and some prospects for this field were put forward.
Collapse
Affiliation(s)
- Yunhao Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Nanzhi Luo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Zhipeng Gong
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Wenjing Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Yin Ku
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Yaohui Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| |
Collapse
|
40
|
Zhao X, Yang X, Du C, Hao H, Liu S, Liu G, Zhang G, Fan K, Ma J. Up-regulated succinylation modifications induce a senescence phenotype in microglia by altering mitochondrial energy metabolism. J Neuroinflammation 2024; 21:296. [PMID: 39543710 PMCID: PMC11566524 DOI: 10.1186/s12974-024-03284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The aging of the central nervous system(CNS) is a primary contributor to neurodegenerative diseases in older individuals and significantly impacts their quality of life. Neuroinflammation, characterized by activation of microglia(MG) and release of cytokines, is closely associated with the onset of these neurodegenerative diseases. The activated status of MG is modulated by specifically programmed metabolic changes under various conditions. Succinylation, a novel post-translational modification(PTM) mainly involved in regulating mitochondrial energy metabolism pathways, remains unknown in its role in MG activation and aging. In the present study, we found that succinylation levels were significantly increased both during aging and upon lipopolysaccharide-induced(LPS-induced) MG activation undergoing metabolic reprogramming. Up-regulated succinylation induced by sirtuin 5 knockdown(Sirt5 KD) in microglial cell line BV2 resulted in significant up-regulation of aging-related genes, accompanied by impaired mitochondrial adaptability and a shift towards glycolysis as a major metabolic pathway. Furthermore, after LPS treatment, Sirt5 KD BV2 cells exhibited increased generation of reactive oxygen species(ROS), accumulation of lipid droplets, and elevated levels of lipid peroxidation. By employing immunoprecipitation, introducing point mutation to critical succinylation sites, and conducting enzyme activity assays for succinate dehydrogenase(SDH) and trifunctional enzyme subunit alpha(ECHA), we demonstrated that succinylation plays a regulatory role in modulating the activities of these mitochondrial enzymes. Finally, down-regulation the succinylation levels achieved through administration of succinyl phosphonate(SP) led to amelioration of MG senescence in vitro and neuroinflammation in vivo. To our knowledge, our data provide preliminary evidence indicating that up-regulated succinylation modifications elicit a senescence phenotype in MG through alterations in energy metabolism. Moreover, these findings suggest that manipulation of succinylation levels may offer valuable insights into the treatment of aging-related neuroinflammation.
Collapse
Affiliation(s)
- Xinnan Zhao
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaohan Yang
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
- Department of Morphology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Cong Du
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Huimin Hao
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Shuang Liu
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Gang Liu
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Guangyin Zhang
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Kai Fan
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jianmei Ma
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
41
|
Zhang J, Lin F, Xu Y, Sun J, Zhang L, Chen W. Lactylation and Ischemic Stroke: Research Progress and Potential Relationship. Mol Neurobiol 2024:10.1007/s12035-024-04624-4. [PMID: 39541071 DOI: 10.1007/s12035-024-04624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke is caused by interrupted cerebral blood flow and is a leading cause of mortality and disability worldwide. Significant advancements have been achieved in comprehending the pathophysiology of stroke and the fundamental mechanisms responsible for ischemic damage. Lactylation, as a newly discovered post-translational modification, has been reported to participate in several physiological and pathological processes. However, research on lactylation and ischemic stroke is scarce. This review summarized the current function of protein lactylation in other diseases or normal physiological processes and explored their potential link with the pathophysiological process and the reparative mechanism of ischemic stroke. We proposed that neuroinflammation, regulation of metabolism, regulation of messenger RNA translation, angiogenesis, and neurogenesis might be the bridge linking lactylation and ischemic stroke. Our study provided a novel perspective for comprehending the role of protein lactylation in the pathophysiological processes underlying ischemic stroke. Lactylation might be a promising target in drug development of ischemic stroke.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Feng Lin
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Yue Xu
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Jiaxin Sun
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Lei Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| | - Wenli Chen
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| |
Collapse
|
42
|
Suo Z, Xiao T, Qu Y, Zheng Y, Xu W, Zhou B, Yang J, Yu J, Zheng H, Ni C. Aged hippocampal single-cell atlas screening unveils disrupted neuroglial system in postoperative cognitive impairment. Aging Cell 2024:e14406. [PMID: 39540334 DOI: 10.1111/acel.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Glia-neuron interaction is a crucial feature in aged hippocampus during the occurrence of postoperative cognitive impairment. However, the regulatory effects of microglia, astrocytes, and oligodendrocytes in this glia-neuron interaction, the potential mechanisms and gene targets are still to be elucidated. Here, single-cell RNA sequencing was performed to detect the perioperative genomic expression characteristics of neuroglial system in the hippocampus of aged mice, and to investigate the potential cross-cellular mechanisms and valuable treatment options for glia-neuron interaction-related cognitive impairment. We found that postoperative neurons and glia cells exhibited protein dysmetabolism and mitochondrial electron misrouting. Impaired autophagy and circadian rhythm worsened microglia activation/neuroinflammation, and exacerbated these metabolic alterations. Reactive microglia also aggravated astrocyte and oligodendrocyte cytotoxicity through the PGD2/DP and complement pathways, altering glutamate level and synaptic function via the "tripartite synapses" model, and affecting neuronal myelination. Ligand-receptor communication also indicated these synaptic and axonal dysfunctions via enhanced MDK and PTN pathways. Additionally, we found that anesthetic dexmedetomidine hold therapeutic potential within the disrupted neuroglial system. It enhanced neuronal metabolic rebalance (Atf3-related) and reduced neuroinflammation from a multicellular perspective, therefore improving postoperative cognitive impairment. Together, our study proposes an aged hippocampal cell atlas and provides insights into the role of disrupted glia-neuron cycle in postoperative cognitive impairment. Our findings also elucidate the therapeutic potential and mechanism of dexmedetomidine intervention.
Collapse
Affiliation(s)
- Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yuxiang Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jie Yu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Dong Q, Yang X, Wang L, Zhang Q, Zhao N, Nai S, Du X, Chen L. Lactylation of Hdac1 regulated by Ldh prevents the pluripotent-to-2C state conversion. Stem Cell Res Ther 2024; 15:415. [PMID: 39533309 PMCID: PMC11559218 DOI: 10.1186/s13287-024-04027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Cellular metabolism regulates the pluripotency of embryonic stem cells (ESCs). Yet, how metabolism regulates the transition among different pluripotent states remains elusive. It has been shown that protein lactylation, which uses lactate, a metabolic product of glycolysis, as a substrate, plays a critical role in various biological events. Here we focused on that glycolysis regulates the conversion between ESCs and 2-cell-like cells (2CLCs) through protein lactylation. METHODS RNA-seq revealed the activation of 2-cell (2C) genes by suppression of Ldh. Stable isotope labeling by amino acids in cell culture (SILAC) coupled with lactylated peptide enrichment and quantitative mass spectrometric analysis was carried out to investigate the mechanism how protein lactylation regulates the pluripotent-to-2C transition. And we focused on Hdac1. Lactylation of Hdac1 required for silencing 2C genes was proved by quantitative reverse-transcription PCR (qRT-PCR), immunofluorescence (IF), Western blot and chimeric embryos. Chromatin immunoprecipitation coupled with sequencing (ChIP-seq) and in vitro deacetylation assay confirmed lactylation of Hdac1 promoting its binding at 2C genes and enhancing its deacetylase activity, thereby facilitating the removal of H3K27ac and the silencing of 2C genes. RESULTS We found that inhibition or depletion of Ldha, the enzyme converting pyruvate to lactate, leads to the activation of 2C genes, as well as reduced global lactylation in ESCs. To investigate the mechanism how protein lactylation regulates the pluripotent-to-2C transition, quantitative lactylome analysis was performed, and 1716 lactylated proteins were identified. We then focused on Hdac1, a histone deacetylase involved in the silencing of 2C genes. Lactylation of Hdac1 promotes its binding at 2C genes and enhances its deacetylase activity, thus facilitating the removal of H3K27ac and the silencing of 2C genes. CONCLUSIONS In summary, our study reveals a mechanistic link between cellular metabolism and pluripotency regulation through protein lactylation. Our research is the first time to reveal that quantitative lactylome analysis in mouse ESCs. We found that lactylated Hdac1 promotes its binding at 2C genes and enhances its deacetylase activity, thus facilitating the removal of H3K27ac and the silencing of 2C genes.
Collapse
Affiliation(s)
- Qiman Dong
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoqiong Yang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lingling Wang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qingye Zhang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nannan Zhao
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shanshan Nai
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoling Du
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lingyi Chen
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
44
|
Hu XT, Wu XF, Xu JY, Xu X. Lactate-mediated lactylation in human health and diseases: Progress and remaining challenges. J Adv Res 2024:S2090-1232(24)00529-0. [PMID: 39522689 DOI: 10.1016/j.jare.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Lactate was once considered as metabolic waste for a long time. In 2019, Professor Zhao Yingming's team from the University of Chicago found that lactate could also be used as a substrate to induce histone lactylation and regulate gene expression. Since then, researchers have discovered that lactate-mediated lactylation play important regulatory roles in various physiological and pathological processes. AIM OF REVIEW In this review, we aim to discuss the roles and mechanisms of lactylation in human health and diseases, as well as the effects of lactylation on proteins and metabolic modulators targeting lactylation. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we emphasize the crucial regulatory roles of lactylation in the development of numerous physiological and pathological processes. Of relevance, we discuss the current issues and challenges pertaining to lactylation. This review provides directions and a theoretical basis for future research and clinical translation of lactylation.
Collapse
Affiliation(s)
- Xue-Ting Hu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiao-Feng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jin-Yi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
45
|
Weng W, He Z, Ma Z, Huang J, Han Y, Feng Q, Qi W, Peng Y, Wang J, Gu J, Wang W, Lin Y, Jiang G, Jiang J, Feng J. Tufm lactylation regulates neuronal apoptosis by modulating mitophagy in traumatic brain injury. Cell Death Differ 2024:10.1038/s41418-024-01408-0. [PMID: 39496783 DOI: 10.1038/s41418-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Lactates accumulation following traumatic brain injury (TBI) is detrimental. However, whether lactylation is triggered and involved in the deterioration of TBI remains unknown. Here, we first report that Tufm lactylation pathway induces neuronal apoptosis in TBI. Lactylation is found significantly increased in brain tissues from patients with TBI and mice with controlled cortical impact (CCI), and in neuronal injury cell models. Tufm, a key factor in mitophagy, is screened and identified to be mostly lactylated. Tufm is detected to be lactylated at K286 and the lactylation inhibits the interaction of Tufm and Tomm40 on mitochondria. The mitochondrial distribution of Tufm is then inhibited. Consequently, Tufm-mediated mitophagy is suppressed while mitochondria-induced neuronal apoptosis is increased. In contrast, the knockin of a lactylation-deficient TufmK286R mutant in mice rescues the mitochondrial distribution of Tufm and Tufm-mediated mitophagy, and improves functional outcome after CCI. Likewise, mild hypothermia, as a critical therapeutic method in neuroprotection, helps in downregulating Tufm lactylation, increasing Tufm-mediated mitophagy, mitigating neuronal apoptosis, and eventually ameliorating the outcome of TBI. A novel molecular mechanism in neuronal apoptosis, TBI-initiated Tufm lactylation suppressing mitophagy, is thus revealed.
Collapse
Affiliation(s)
- Weiji Weng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui He
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Zixuan Ma
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jialin Huang
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Han
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Qiyuan Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenlan Qi
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yidong Peng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiangchang Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiacheng Gu
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenye Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yong Lin
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiyao Jiang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Junfeng Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Head Trauma, Shanghai, China.
| |
Collapse
|
46
|
Huang Y, Luo G, Peng K, Song Y, Wang Y, Zhang H, Li J, Qiu X, Pu M, Liu X, Peng C, Neculai D, Sun Q, Zhou T, Huang P, Liu W. Lactylation stabilizes TFEB to elevate autophagy and lysosomal activity. J Cell Biol 2024; 223:e202308099. [PMID: 39196068 PMCID: PMC11354204 DOI: 10.1083/jcb.202308099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/04/2024] [Accepted: 04/03/2024] [Indexed: 08/29/2024] Open
Abstract
The transcription factor TFEB is a major regulator of lysosomal biogenesis and autophagy. There is growing evidence that posttranslational modifications play a crucial role in regulating TFEB activity. Here, we show that lactate molecules can covalently modify TFEB, leading to its lactylation and stabilization. Mechanically, lactylation at K91 prevents TFEB from interacting with E3 ubiquitin ligase WWP2, thereby inhibiting TFEB ubiquitination and proteasome degradation, resulting in increased TFEB activity and autophagy flux. Using a specific antibody against lactylated K91, enhanced TFEB lactylation was observed in clinical human pancreatic cancer samples. Our results suggest that lactylation is a novel mode of TFEB regulation and that lactylation of TFEB may be associated with high levels of autophagy in rapidly proliferating cells, such as cancer cells.
Collapse
Affiliation(s)
- Yewei Huang
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Gan Luo
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Kesong Peng
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yue Song
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yusha Wang
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Hongtao Zhang
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jin Li
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xiangmin Qiu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Maomao Pu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xinchang Liu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dante Neculai
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qiming Sun
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Tianhua Zhou
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Pintong Huang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
47
|
Ye Y, Fu C, Li Y, Sun J, Li X, Chai S, Li S, Hou M, Cai H, Wang Z, Wu M. Alternate-day fasting improves cognitive and brain energy deficits by promoting ketone metabolism in the 3xTg mouse model of Alzheimer's disease. Exp Neurol 2024; 381:114920. [PMID: 39142368 DOI: 10.1016/j.expneurol.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is characterized by disorders in brain energy. The lack of sufficient energy for nerve function leads to cognitive dysfunction and massive neuronal loss in AD. Ketone bodies are an alternative to glucose as a source of energy in the brain, and alternate-day fasting (ADF) promotes the production of the ketone body β-hydroxybutyric acid (βOHB). In this study, 7-month-old male WT mice and 3xTg mice underwent dietary control for 20 weeks. We found that ADF increased circulating βOHB concentrations in 3xTg mice, improved cognitive function, reduced anxiety-like behaviors, improved hippocampal synaptic plasticity, and reduced neuronal loss, Aβ oligomers and tau hyperphosphorylation. In addition, ADF improved mitochondrial bioenergetic function by promoting brain ketone metabolism and rescued brain energy deficits in 3xTg mice. A safety evaluation showed that ADF improved exercise endurance and liver and kidney function in 3xTg mice without negatively affecting muscle motor and heart functions. This study provides a theoretical basis and strong support for the application of ADF as a non-drug strategy for preventing and treating brain energy defects in the early stage of AD.
Collapse
Affiliation(s)
- Yucai Ye
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Chaojing Fu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Yan Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Junli Sun
- School of Anesthesiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xinru Li
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shifan Chai
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shuo Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Meng Hou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Hongyan Cai
- Department of Microbiology and Immunology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaojun Wang
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| | - Meina Wu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| |
Collapse
|
48
|
Yagi H, Boeck M, Petrishka-Lozenska M, Lundgren P, Kasai T, Cagnone G, Neilsen K, Wang C, Lee J, Tomita Y, Singh SA, Joyal JS, Aikawa M, Negishi K, Fu Z, Hellström A, Smith LEH. Timed topical dexamethasone eye drops improve mitochondrial function to prevent severe retinopathy of prematurity. Angiogenesis 2024; 27:903-917. [PMID: 39287727 PMCID: PMC11564262 DOI: 10.1007/s10456-024-09948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Pathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.1% dexamethasone eye drops administered prior to peak neovessel formation prevented neovascularization in five extremely preterm infants at high risk for ROP and suppressed neovascularization by 30% in mouse oxygen-induced retinopathy (OIR) modeling ROP. In contrast, in OIR, topical dexamethasone treatment before any neovessel formation had limited efficacy in preventing later neovascularization, while treatment after peak neovessel formation had a non-statistically significant trend to exacerbating disease. Optimally timed topical dexamethasone suppression of neovascularization in OIR was associated with increased retinal mitochondrial gene expression and decreased inflammatory marker expression, predominantly found in immune cells. Blocking mitochondrial ATP synthetase reversed the inhibitory effect of dexamethasone on neovascularization in OIR. This study provides new insights into topical steroid effects in retinal neovascularization and into mitochondrial function in phase II ROP, and suggests a simple clinical approach to prevent severe ROP.
Collapse
Affiliation(s)
- Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Mariya Petrishka-Lozenska
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Pia Lundgren
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Taku Kasai
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gael Cagnone
- CHU Sainte-Justine Research Center, Montreal, QC, CA, H3T 1C5, Canada
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, CA, H3T 1C5, Canada
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Chaomei Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Jeff Lee
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean-Sébastien Joyal
- CHU Sainte-Justine Research Center, Montreal, QC, CA, H3T 1C5, Canada
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, CA, H3T 1C5, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, CA, H3T 1J4, Canada
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA.
| |
Collapse
|
49
|
An X, He J, Xie P, Li C, Xia M, Guo D, Bi B, Wu G, Xu J, Yu W, Ren Z. The effect of tau K677 lactylation on ferritinophagy and ferroptosis in Alzheimer's disease. Free Radic Biol Med 2024; 224:685-706. [PMID: 39307193 DOI: 10.1016/j.freeradbiomed.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and the accumulation of amyloid-beta plaques and hyperphosphorylated tau protein. The role of tau lactylation at the K677 site in AD progression is not well understood. This study explores how tau K677 lactylation affects ferritinophagy, ferroptosis, and their functions in an AD mouse model. Results show that mutating the K677 site to R reduces tau lactylation and inhibits ferroptosis by regulating iron metabolism factors like NCOA4 and FTH1.Tau-mutant mice showed improved memory and learning skills compared to wild-type mice. The mutation also reduced neuronal damage and was associated with decreased tau lactylation at the K677 site, regardless of phosphorylated tau levels. Gene set enrichment analysis showed that lactylation at this site was linked to the MAPK pathway, which was important for ferritinophagy in AD mice. In summary, our research indicates that the K677 mutation in tau protein may protect against AD by influencing ferritinophagy and ferroptosis through MAPK signaling pathways. Understanding these modifications in tau could lead to new treatments for AD.
Collapse
Affiliation(s)
- Xiaoqiong An
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Jun He
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China; Guizhou Provincial Center for Clinical Laboratory, Guiyang, 550002, PR China
| | - Peng Xie
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Chengpeng Li
- College of Pharmacy, Guizhou University, Guiyang, 550025, PR China
| | - Mingyan Xia
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Dongfen Guo
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Bin Bi
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Gang Wu
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guian New Area, 561113, PR China; Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guian New Area, 561113, PR China.
| | - Wenfeng Yu
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China; Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| | - Zhenkui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China.
| |
Collapse
|
50
|
Wang MY, Zhou Y, Li WL, Zhu LQ, Liu D. Friend or foe: Lactate in neurodegenerative diseases. Ageing Res Rev 2024; 101:102452. [PMID: 39127445 DOI: 10.1016/j.arr.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Lactate, a byproduct of glycolysis, was considered as a metabolic waste until identified by studies on the Warburg effect. Increasing evidence elucidates that lactate functions as energy fuel, signaling molecule, and donor for protein lactylation. Altered lactate utilization is a common metabolic feature of the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. This review offers an overview of lactate metabolism from the perspective of production, transportation and clearance, and the role of lactate in neurodegenerative progression, as well as a summary of protein lactylation and the signaling function of lactate in neurodegenerative diseases. Besides, this review delves into the dual roles of changed lactate metabolism during neurodegeneration and explores prospective therapeutic methods targeting lactate. We propose that elucidating the correlation between lactate and neurodegeneration is pivotal for exploring innovative therapeutic interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Yu Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wen-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|