1
|
Xiang M, Guo Q, Liu Y, Zhang G, Liao C, Xiao L, Xiang M, Long S, Long Q, Guan X, Liu J. Low-intensity pulsed ultrasound enhances the osteogenic potential of PDLSCs-derived extracellular vesicles through COMP/PI3K/AKT. FASEB J 2025; 39:e70299. [PMID: 39792132 DOI: 10.1096/fj.202402463r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/23/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
The therapeutic potential of extracellular vesicles (EVs) in bone regeneration is noteworthy; however, their clinical application is impeded by low yield and limited efficacy. This study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on the therapeutic efficacy of EVs derived from periodontal ligament stem cells (PDLSCs) and preliminarily explored its mechanism. PDLSCs were cultured with osteogenic media and stimulated with or without LIPUS, and then EVs and LIPUS-stimulated EVs (L-EVs) were isolated separately. We investigated the biological characteristics and effects of these two EVs on cell proliferation, migration, osteogenic differentiation, and bone regeneration in vivo and in vitro, and explored the potential mechanism by analyzing protein profiles. LIPUS significantly stimulated the secretion of PDLSCs-EVs, and L-EVs exhibited stronger efficacy in promoting cell proliferation, migration, and osteogenic differentiation, thereby enhancing new bone formation. LIPUS stimulation affected the protein profile of PDLSCs-EVs, and 42 proteins were upregulated and 4 proteins downregulated in L-EVs when compared with EVs. LIPUS significantly upregulated the level of cartilage oligomeric matrix protein (COMP) in EVs, which enhanced EVs' osteogenic ability via the PI3K/AKT pathway. This study proposes that LIPUS has potential as an optimization method for enhancing the therapeutic effects of EVs in tissue regeneration.
Collapse
Affiliation(s)
- Mingli Xiang
- GuiZhou University Medical College, Guiyang, China
| | - Qiushuang Guo
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Yulin Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Gengchao Zhang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Meiling Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Sicen Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- GuiZhou University Medical College, Guiyang, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Liu X, Yao Z, Zhang L, Shyh-Chang N. Muscle-Derived Bioactive Factors: MyoEVs and Myokines. Cell Prolif 2024:e13801. [PMID: 39737773 DOI: 10.1111/cpr.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
Overview of the functions and applications of myokines and MyoEVs.
Collapse
Affiliation(s)
- Xupeng Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ziyue Yao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liping Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
3
|
Wang J, Zhang Y, Wang S, Wang X, Jing Y, Su J. Bone aging and extracellular vesicles. Sci Bull (Beijing) 2024; 69:3978-3999. [PMID: 39455324 DOI: 10.1016/j.scib.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Bone aging, a major global health concern, is the natural decline in bone mass and strength. Concurrently, extracellular vesicles (EVs), tiny membrane-bound particles produced by cells, have gained recognition for their roles in various physiological processes and age-related diseases. The interaction between EVs and bone aging is of growing interest, particularly their effects on bone metabolism, which become increasingly critical with advancing age. In this review, we explored the biology, types, and functions of EVs and emphasized their regulatory roles in bone aging. We examined the effects of EVs on bone metabolism and highlighted their potential as biomarkers for monitoring bone aging progression. Furthermore, we discussed the therapeutic applications of EVs, including targeted drug delivery and bone regeneration, and addressed the challenges associated with EV-based therapies, including the technical complexities and regulatory issues. We summarized the current research and clinical trials investigating the role of EVs in bone aging and suggested future research directions. These include the potential for personalized medicine using EVs and the integration of EV research with advanced technologies to enhance the management of age-related bone health. This analysis emphasized the transformative potential of EVs in understanding and managing bone aging, thereby marking a significant advancement in skeletal health research.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Liu C, Feng N, Wang Z, Zheng K, Xie Y, Wang H, Long H, Peng S. Foxk1 promotes bone formation through inducing aerobic glycolysis. Cell Death Differ 2024; 31:1650-1663. [PMID: 39232134 PMCID: PMC11618307 DOI: 10.1038/s41418-024-01371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Transcription factor Foxk1 can regulate cell proliferation, differentiation, metabolism, and promote skeletal muscle regeneration and cardiogenesis. However, the roles of Foxk1 in bone formation is unknown. Here, we found that Foxk1 expression decreased in the bone tissue of aged mice and osteoporosis patients. Knockdown of Foxk1 in primary murine calvarial osteoblasts suppressed osteoblast differentiation and proliferation. Conditional knockout of Foxk1 in preosteoblasts and mature osteoblasts in mice exhibited decreased bone mass and mechanical strength due to reduced bone formation. Mechanistically, we identified Foxk1 targeted the promoter region of many genes of glycolytic enzyme by CUT&Tag analysis. Lacking of Foxk1 in primary murine calvarial osteoblasts resulted in reducing aerobic glycolysis. Inhibition of glycolysis by 2DG hindered osteoblast differentiation and proliferation induced by Foxk1 overexpression. Finally, specific overexpression of Foxk1 in preosteoblasts, driven by a preosteoblast specific osterix promoter, increased bone mass and bone mechanical strength of aged mice, which could be suppressed by inhibiting glycolysis. In summary, these findings reveal that Foxk1 plays a vital role in the osteoblast metabolism regulation and bone formation stimulation, offering a promising approach for preventing age-related bone loss.
Collapse
Affiliation(s)
- Chungeng Liu
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Naibo Feng
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zhenmin Wang
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Kangyan Zheng
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Yongheng Xie
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Hongyu Wang
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| | - Houqing Long
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China.
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China.
| | - Songlin Peng
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China.
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
5
|
Bayazit MB, Henderson D, Nguyen KT, Reátegui E, Tawil R, Flanigan KM, Harper SQ, Saad NY. Identification of disease-specific extracellular vesicle-associated plasma protein biomarkers for Duchenne Muscular Dystrophy and Facioscapulohumeral Muscular Dystrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.29.24317861. [PMID: 39649602 PMCID: PMC11623727 DOI: 10.1101/2024.11.29.24317861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Objective Reliable, circulating biomarkers for Duchenne, Becker and facioscapulohumeral muscular dystrophies (DBMD and FSHD) remain unvalidated. Here, we investigated the plasma extracellular vesicle (EV) proteome to identify disease-specific biomarkers that could accelerate therapy approvals. Methods We extracted EVs from the plasma of DBMD and FSHD patients and healthy controls using size-exclusion chromatography, conducted mass spectrometry on the extracted EV proteins, and performed comparative analysis to identify disease-specific biomarkers. We correlated the levels of these biomarkers with clinical outcome measures and confounding factors. Results The muscle-associated proteins PYGM, MYOM3, FLNC, MYH2 and TTN were exclusively present in DBMD EVs. PYGM, MYOM3, and TTN negatively correlated with age. PYGM and MYOM3 levels were elevated in patients without cardiomyopathy, and PYGM levels were specifically elevated in ambulatory DMD patients. On the other hand, female FSHD patients displayed significantly higher MBL2 and lower GPLD1 levels. However, male FSHD patients exhibited higher C9 and lower C4BPB levels. Additionally, desmosome proteins JUP and DSP were uniquely found in FSHD males. MBL2 positively correlated with age and C4BPB negatively correlated with FSHD severity in male patients. Interpretation Our findings underscore the sensitivity of analyzing circulating EV content to identify disease-specific protein biomarkers for DBMD and FSHD. Our results also emphasize the potential of EV-based biomarker discovery as a promising approach to monitor disease progression as well as effectiveness of therapies in muscular dystrophy, potentially contributing to their approval. Further research with larger cohorts is needed to validate these biomarkers and explore their clinical implications.
Collapse
|
6
|
Luo J, Pu Q, Wu X. Recent Advances of Exosomes Derived from Skeletal Muscle and Crosstalk with Other Tissues. Int J Mol Sci 2024; 25:10877. [PMID: 39456658 PMCID: PMC11507631 DOI: 10.3390/ijms252010877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Skeletal muscle plays a crucial role in movement, metabolism, and energy homeostasis. As the most metabolically active endocrine organ in the body, it has recently attracted widespread attention. Skeletal muscle possesses the ability to release adipocytokines, bioactive peptides, small molecular metabolites, nucleotides, and other myogenic cell factors; some of which have been shown to be encapsulated within small vesicles, particularly exosomes. These skeletal muscle exosomes (SKM-Exos) are released into the bloodstream and subsequently interact with receptor cell membranes to modulate the physiological and pathological characteristics of various tissues. Therefore, SKM-Exos may facilitate diverse interactions between skeletal muscle and other tissues while also serving as biomarkers that reflect the physiological and pathological states of muscle function. This review delves into the pivotal role and intricate molecular mechanisms of SKM-Exos and its derived miRNAs in the maturation and rejuvenation of skeletal muscle, along with their intercellular signaling dynamics and physiological significance in interfacing with other tissues.
Collapse
Affiliation(s)
- Jia Luo
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Qiang Pu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xiaoqian Wu
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Chen M, Li Y, Zhang M, Ge S, Feng T, Chen R, Shen J, Li R, Wang Z, Xie Y, Wang D, Liu J, Lin Y, Chang F, Chen J, Sun X, Cheng D, Huang X, Wu F, Zhang Q, Cai P, Yin P, Zhang L, Tang P. Histone deacetylase inhibition enhances extracellular vesicles from muscle to promote osteogenesis via miR-873-3p. Signal Transduct Target Ther 2024; 9:256. [PMID: 39343927 PMCID: PMC11439940 DOI: 10.1038/s41392-024-01976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Regular physical activity is widely recognized for reducing the risk of various disorders, with skeletal muscles playing a key role by releasing biomolecules that benefit multiple organs and tissues. However, many individuals, particularly the elderly and those with clinical conditions, are unable to engage in physical exercise, necessitating alternative strategies to stimulate muscle cells to secrete beneficial biomolecules. Histone acetylation and deacetylation significantly influence exercise-induced gene expression, suggesting that targeting histone deacetylases (HDACs) could mimic some exercise responses. In this study, we explored the effects of the HDAC inhibitor Trichostatin A (TSA) on human skeletal muscle myoblasts (HSMMs). Our findings showed that TSA-induced hyperacetylation enhanced myotube fusion and increased the secretion of extracellular vesicles (EVs) enriched with miR-873-3p. These TSA-EVs promoted osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs) by targeting H2 calponin (CNN2). In vivo, systemic administration of TSA-EVs to osteoporosis mice resulted in significant improvements in bone mass. Moreover, TSA-EVs mimicked the osteogenic benefits of exercise-induced EVs, suggesting that HDAC inhibition can replicate exercise-induced bone health benefits. These results demonstrate the potential of TSA-induced muscle-derived EVs as a therapeutic strategy to enhance bone formation and prevent osteoporosis, particularly for individuals unable to exercise. Given the FDA-approved status of various HDAC inhibitors, this approach holds significant promise for rapid clinical translation in osteoporosis treatment.
Collapse
Affiliation(s)
- Ming Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Mingming Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Siliang Ge
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Taojin Feng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ruijing Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Junmin Shen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ran Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Zhongqi Wang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yong Xie
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Duanyang Wang
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiang Liu
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Lin
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feifan Chang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Junyu Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xinyu Sun
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Dongliang Cheng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Fanfeng Wu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Qinxiang Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pingqiang Cai
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pengbin Yin
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
8
|
Suh J, Lee YS. The multifaceted roles of mitochondria in osteoblasts: from energy production to mitochondrial-derived vesicle secretion. J Bone Miner Res 2024; 39:1205-1214. [PMID: 38907370 PMCID: PMC11371665 DOI: 10.1093/jbmr/zjae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Indexed: 06/24/2024]
Abstract
Mitochondria in osteoblasts have been demonstrated to play multiple crucial functions in bone formation from intracellular adenosine triphosphate production to extracellular secretion of mitochondrial components. The present review explores the current knowledge about mitochondrial biology in osteoblasts, including mitochondrial biogenesis, bioenergetics, oxidative stress generation, and dynamic changes in morphology. Special attention is given to recent findings, including mitochondrial donut formation in osteoblasts, which actively generates mitochondrial-derived vesicles (MDVs), followed by extracellular secretion of small mitochondria and MDVs. We also discuss the therapeutic effects of targeting osteoblast mitochondria, highlighting their potential applications in improving bone health.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Xiang M, Liu Y, Guo Q, Liao C, Xiao L, Xiang M, Guan X, Liu J. Metformin enhances the therapeutic effects of extracellular vesicles derived from human periodontal ligament stem cells on periodontitis. Sci Rep 2024; 14:19940. [PMID: 39198490 PMCID: PMC11358454 DOI: 10.1038/s41598-024-70688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Metformin has shown outstanding anti-inflammatory and osteogenic abilities. Mesenchymal stem cell-derived extracellular vesicles (EVs) reveal promising therapeutic potency by carrying various biomolecules. This study explored the effects of metformin on the therapeutic potential of EVs derived from human periodontal ligament stem cells (PDLSCs) for periodontitis. PDLSCs were cultured in osteogenic medium with or without metformin, and the supernatant was then collected separately to extract EVs and metformin-treated EVs (M-EVs). After identifying the characteristics, we evaluated the anti-inflammatory and osteogenic effects of EVs and M-EVs in vivo and in vitro. Osteogenic differentiation of PDLSCs was markedly enhanced after metformin treatment, and the effect was dramatically inhibited by GW4896, an inhibitor of EVs' secretion. Metformin significantly increased EVs' yields and improved their effects on cell proliferation, migration, and osteogenic differentiation. Moreover, metformin significantly enhanced the osteogenic ability of EVs on inflammatory PDLSCs. Animal experiments revealed that alveolar bone resorption was dramatically reduced in the EVs and M-EVs groups when compared to the periodontitis group, while the M-EVs group showed the lowest levels of alveolar bone loss. Metformin promoted the osteogenic differentiation of PDLSCs partly through EVs pathway and significantly enhanced the secretion of PDLSCs-EVs with superior pro-osteogenic and anti-inflammatory potential, thus improving EVs' therapeutic potential on periodontitis.
Collapse
Affiliation(s)
- Mingli Xiang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Yulin Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Qiushuang Guo
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Meiling Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Jianguo Liu
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China.
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
10
|
Kumar S, Beck BR, Nery L, Byth K, Elhindi J, Wood C, Fuller OK, Clifton-Bligh RJ, Girgis CM. Study protocol for the ROLEX-DUO randomised placebo-controlled trial: ROmosozumab Loaded with EXercise - DUal effects on bone and muscle in postmenopausal Osteoporosis and Osteopenia. BMJ Open 2024; 14:e086708. [PMID: 39181562 PMCID: PMC11344515 DOI: 10.1136/bmjopen-2024-086708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
INTRODUCTION Novel strategies are needed to address the rising burden of osteoporosis and fragility fractures. High-intensity resistance and impact (HiRIT) exercise has shown benefit in improving bone density in postmenopausal women with osteoporosis/osteopenia. Whether HiRIT can enhance the therapeutic effects of osteoporosis pharmacotherapy has not been established. ROLEX-DUO is a randomised controlled trial designed to assess the efficacy of romosozumab on various bone and muscle outcomes in combination with different exercise interventions in women with postmenopausal osteoporosis/osteopenia. METHODS AND ANALYSIS ROLEX-DUO is an 8-month randomised placebo-controlled trial conducted at two tertiary referral centres for patients with osteoporosis/osteopenia in Sydney, New South Wales, Australia. The study is implementing the combination of romosozumab or placebo with different forms of exercise in postmenopausal women with osteoporosis/osteopenia without recent fragility fracture (n=102). Eligible women will be randomised 1:1:1 into one of three groups: (1) romosozumab with supervised HiRIT, (2) romosozumab with unsupervised low-intensity exercise or (3) placebo with unsupervised low-intensity exercise. Co-primary outcomes are the mean percentage change in lumbar spine bone mineral density (BMD), and mean change in five times sit-to-stand test performance (seconds) at 8 months. Secondary/exploratory outcomes include BMD changes at the femoral neck, total hip and distal radius, three-dimensional dual-energy X-ray absorptiometry (DXA) hip outcomes, DXA-derived lean and fat mass, serum markers of bone turnover (procollagen type 1 peptide, C-telopeptide of type 1 collagen) and bone biomarkers (dickkopf-1), serum extracellular vesicle analyses, 36-Item Short Form Survey (SF-36) quality-of-life scores, Menopause-Specific Quality Of Life (MENQOL) Questionnaire menopause symptom burden scores, number of falls and fractures. Mixed-effects models will be performed to compare longitudinal outcome results between groups using intention-to-treat analysis. ETHICS AND DISSEMINATION The trial was approved by the Northern Sydney Local Health District Human Research Ethics Committee (2022/ETH01794, protocol V.8, dated 03 July 2024). Participants will provide written informed consent prior to inclusion. Findings will be disseminated via peer-reviewed journals, scientific conferences and summary reports to funding bodies. TRIAL REGISTRATION NUMBER ACTRN12623000867695.
Collapse
Affiliation(s)
- Shejil Kumar
- Royal North Shore Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| | | | - Liza Nery
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Karen Byth
- Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - James Elhindi
- Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Cameron Wood
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | | | - Roderick J Clifton-Bligh
- Royal North Shore Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Christian M Girgis
- The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Jank L, Kesharwani A, Ryu T, Joshi D, Ladakis DC, Smith MD, Singh S, Arab T, Witwer KW, Calabresi PA, Na CH, Bhargava P. Characterization of spinal cord tissue-derived extracellular vesicles in neuroinflammation. J Neuroinflammation 2024; 21:154. [PMID: 38851724 PMCID: PMC11162576 DOI: 10.1186/s12974-024-03147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Extracellular vesicles (EVs) are released by all cells, can cross the blood-brain barrier, and have been shown to play an important role in cellular communication, substance shuttling, and immune modulation. In recent years EVs have shifted into focus in multiple sclerosis (MS) research as potential plasma biomarkers and therapeutic vehicles. Yet little is known about the disease-associated changes in EVs in the central nervous system (CNS). To address this gap, we characterized the physical and proteomic changes of mouse spinal cord-derived EVs before and at 16 and 25 days after the induction of experimental autoimmune encephalomyelitis (EAE), a neuroinflammatory model of MS. Using various bioinformatic tools, we found changes in inflammatory, glial, and synaptic proteins and pathways, as well as a shift in the predicted contribution of immune and glial cell types over time. These results show that EVs provide snapshots of crucial disease processes such as CNS-compartmentalized inflammation, re/de-myelination, and synaptic pathology, and might also mediate these processes. Additionally, inflammatory plasma EV biomarkers previously identified in people with MS were also altered in EAE spinal cord EVs, suggesting commonalities of EV-related pathological processes during EAE and MS and overlap of EV proteomic changes between CNS and circulating EVs.
Collapse
Affiliation(s)
- Larissa Jank
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajay Kesharwani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taekyung Ryu
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deepika Joshi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios C Ladakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saumitra Singh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tanina Arab
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Witwer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chan-Hyun Na
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
13
|
Lu P, Peng J, Liu J, Chen L. The role of photobiomodulation in accelerating bone repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:55-67. [PMID: 38493961 DOI: 10.1016/j.pbiomolbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Bone repair is faced with obstacles such as slow repair rates and limited bone regeneration capacity. Delayed healing even nonunion could occur in bone defects, influencing the life quality of patients severely. Photobiomodulation (PBM) utilizes different light sources to derive beneficial therapeutic effects with the advantage of being non-invasive and painless, providing a promising strategy for accelerating bone repair. In this review, we summarize the parameters, mechanisms, and effects of PBM regulating bone repair, and further conclude the current clinical application of PBM devices in bone repair. The wavelength of 635-980 nm, the output power of 40-100 mW, and the energy density of less than 100 J/cm2 are the most commonly used parameters. New technologies, including needle systems and biocompatible and implantable optical fibers, offer references to realize an efficient and safe strategy for bone repair. Further research is required to establish the reliability of outcomes from in vivo and in vitro studies and to standardize clinical trial protocols.
Collapse
Affiliation(s)
- Ping Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jie Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|