1
|
Guo J, Sun D, Li K, Dai Q, Geng S, Yang Y, Mo M, Zhu Z, Shao C, Wang W, Song J, Yang C, Zhang H. Metabolic Labeling and Digital Microfluidic Single-Cell Sequencing for Single Bacterial Genotypic-Phenotypic Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402177. [PMID: 39077951 DOI: 10.1002/smll.202402177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/23/2024] [Indexed: 07/31/2024]
Abstract
Accurate assessment of phenotypic and genotypic characteristics of bacteria can facilitate comprehensive cataloguing of all the resistance factors for better understanding of antibiotic resistance. However, current methods primarily focus on individual phenotypic or genotypic profiles across different colonies. Here, a Digital microfluidic-based automated assay for whole-genome sequencing of single-antibiotic-resistant bacteria is reported, enabling Genotypic and Phenotypic Analysis of antibiotic-resistant strains (Digital-GPA). Digital-GPA can efficiently isolate and sequence antibiotic-resistant bacteria illuminated by fluorescent D-amino acid (FDAA)-labeling, producing high-quality single-cell amplified genomes (SAGs). This enables identifications of both minor and major mutations, pinpointing substrains with distinctive resistance mechanisms. Digital-GPA can directly process clinical samples to detect and sequence resistant pathogens without bacterial culture, subsequently provide genetic profiles of antibiotic susceptibility, promising to expedite the analysis of hard-to-culture or slow-growing bacteria. Overall, Digital-GPA opens a new avenue for antibiotic resistance analysis by providing accurate and comprehensive molecular profiles of antibiotic resistance at single-cell resolution.
Collapse
Affiliation(s)
- Junnan Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Di Sun
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Kunjie Li
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Qi Dai
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Shichen Geng
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Yuanyuan Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Mengwu Mo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Chen Shao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jia Song
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chaoyong Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huimin Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Liborio MP, Harris PNA, Ravi C, Irwin AD. Getting Up to Speed: Rapid Pathogen and Antimicrobial Resistance Diagnostics in Sepsis. Microorganisms 2024; 12:1824. [PMID: 39338498 PMCID: PMC11434042 DOI: 10.3390/microorganisms12091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Time to receive effective therapy is a primary determinant of mortality in patients with sepsis. Blood culture is the reference standard for the microbiological diagnosis of bloodstream infections, despite its low sensitivity and prolonged time to receive a pathogen detection. In recent years, rapid tests for pathogen identification, antimicrobial susceptibility, and sepsis identification have emerged, both culture-based and culture-independent methods. This rapid narrative review presents currently commercially available approved diagnostic molecular technologies in bloodstream infections, including their clinical performance and impact on patient outcome, when available. Peer-reviewed publications relevant to the topic were searched through PubMed, and manufacturer websites of commercially available assays identified were also consulted as further sources of information. We have reviewed data about the following technologies for pathogen identification: fluorescence in situ hybridization with peptide nucleic acid probes (Accelerate PhenoTM), microarray-based assay (Verigene®), multiplex polymerase chain reaction (cobas® eplex, BioFire® FilmArray®, Molecular Mouse, Unyvero BCU SystemTM), matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (Rapid MBT Sepsityper®), T2 magnetic resonance (T2Bacteria Panel), and metagenomics-based assays (Karius©, DISQVER®, Day Zero Diagnostics). Technologies for antimicrobial susceptibility testing included the following: Alfed 60 ASTTM, VITEK® REVEALTM, dRASTTM, ASTar®, Fastinov®, QuickMIC®, ResistellTM, and LifeScale. Characteristics, microbiological performance, and issues of each method are described, as well as their clinical performance, when available.
Collapse
Affiliation(s)
- Mariana P. Liborio
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
| | - Patrick N. A. Harris
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
- Herston Infectious Disease Institute, Metro North, QLD Health, Herston, QLD 4029, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4006, Australia
| | - Chitra Ravi
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
| | - Adam D. Irwin
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia
| |
Collapse
|
3
|
Adam S, Fries F, von Tesmar A, Rasheed S, Deckarm S, Sousa CF, Reberšek R, Risch T, Mancini S, Herrmann J, Koehnke J, Kalinina OV, Müller R. The Peptide Antibiotic Corramycin Adopts a β-Hairpin-like Structure and Is Inactivated by the Kinase ComG. J Am Chem Soc 2024; 146:8981-8990. [PMID: 38513269 PMCID: PMC10996006 DOI: 10.1021/jacs.3c13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
The rapid development of antibiotic resistance, especially among difficult-to-treat Gram-negative bacteria, is recognized as a serious and urgent threat to public health. The detection and characterization of novel resistance mechanisms are essential to better predict the spread and evolution of antibiotic resistance. Corramycin is a novel and modified peptidic antibiotic with activity against several Gram-negative pathogens. We demonstrate that the kinase ComG, part of the corramycin biosynthetic gene cluster, phosphorylates and thereby inactivates corramycin, leading to the resistance of the host. Remarkably, we found that the closest structural homologues of ComG are aminoglycoside phosphotransferases; however, ComG shows no activity toward this class of antibiotics. The crystal structure of ComG in complex with corramycin reveals that corramycin adopts a β-hairpin-like structure and allowed us to define the changes leading to a switch in substrate from sugar to peptide. Bioinformatic analyses suggest a limited occurrence of ComG-like proteins, which along with the absence of cross-resistance to clinically used drugs positions corramycin as an attractive antibiotic for further development.
Collapse
Affiliation(s)
- Sebastian Adam
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Franziska Fries
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Alexander von Tesmar
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Sari Rasheed
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Selina Deckarm
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Carla F. Sousa
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Roman Reberšek
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Timo Risch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Stefano Mancini
- Institute
of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Jennifer Herrmann
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jesko Koehnke
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Institute
of Food Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Olga V. Kalinina
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Faculty of
Medicine, Saarland University, 66421 Homburg , Germany
- Center for
Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
4
|
Ilyas F, James A, Khan S, Haider S, Ullah S, Darwish G, Taqvi SAHR, Ali R, Younas Q, Rehman A. Multidrug-Resistant Pathogens in Wound Infections: A Systematic Review. Cureus 2024; 16:e58760. [PMID: 38779271 PMCID: PMC11111159 DOI: 10.7759/cureus.58760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
This systematic review aimed to explore the antimicrobial activity of a silver-containing gelling fiber dressing against multidrug-resistant organisms (MDROs) in wound infections. It particularly focuses on burn wounds and evaluates its potential clinical significance in combating antimicrobial resistance. A comprehensive literature search was conducted across multiple databases over the past ten years. It is used to identify relevant studies addressing MDRO infections in wound care and exploring novel antimicrobial approaches. The included studies underwent rigorous methodological assessment. Additionally, the data were synthesized to evaluate the efficacy of silver-containing dressings in inhibiting MDRO growth and eradicating biofilm-associated bacteria. Moreover, this review revealed that silver-containing dressings have constant in vitro antimicrobial activity against 10 MDROs over seven days in simulated wound fluid. However, inhibitory and bactericidal effects were consistently observed against free-living and biofilm phenotypes. The findings suggest potential clinical significance in managing MDRO infections in wounds. This highlights its role in mitigating treatment failure and antimicrobial resistance. Despite the promising implications for wound management practices, this study acknowledges some limitations. In vitro models and the absence of direct clinical validation have also been included. However, the review explains the importance of new approaches. Nanotechnology has been used to address antimicrobial resistance in wound care. Thus, further research and innovation are needed to improve patient outcomes and combat antimicrobial resistance.
Collapse
Affiliation(s)
- Faheem Ilyas
- Emergency Department, Medcare International Hospital, Gujranwala, PAK
- Medicine, Abbottabad International Medical College, Khyber Medical University, Abbottabad, PAK
| | | | | | - Soban Haider
- Medical Education and Simulation, Islamic International Medical College, Riphah International University, Rawalpindi, PAK
| | | | - Ghassan Darwish
- Oral and Maxillofacial Surgery, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | | | - Rabia Ali
- General Physician, SHED Hospital, Karachi, PAK
| | - Qadees Younas
- Public Health, Health Services Academy, Islamabad, PAK
- Plastic Surgery, Royal College of Surgeons of Edinburgh, Edinburgh, GBR
| | - Abdul Rehman
- General Practice, Bolan Medical Complex Hospital, Quetta, PAK
| |
Collapse
|
5
|
Li P, Zhang S, Wang J, Al-Shamiri MM, Luo K, Liu S, Mi P, Wu X, Liu H, Tian H, Han B, Lei J, Han S, Han L. The role of type VI secretion system genes in antibiotic resistance and virulence in Acinetobacter baumannii clinical isolates. Front Cell Infect Microbiol 2024; 14:1297818. [PMID: 38384301 PMCID: PMC10879597 DOI: 10.3389/fcimb.2024.1297818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The type VI secretion system (T6SS) is a crucial virulence factor in the nosocomial pathogen Acinetobacter baumannii. However, its association with drug resistance is less well known. Notably, the roles that different T6SS components play in the process of antimicrobial resistance, as well as in virulence, have not been systematically revealed. Methods The importance of three representative T6SS core genes involved in the drug resistance and virulence of A. baumannii, namely, tssB, tssD (hcp), and tssM was elucidated. Results A higher ratio of the three core genes was detected in drug-resistant strains than in susceptible strains among our 114 A. baumannii clinical isolates. Upon deletion of tssB in AB795639, increased antimicrobial resistance to cefuroxime and ceftriaxone was observed, alongside reduced resistance to gentamicin. The ΔtssD mutant showed decreased resistance to ciprofloxacin, norfloxacin, ofloxacin, tetracycline, and doxycycline, but increased resistance to tobramycin and streptomycin. The tssM-lacking mutant showed an increased sensitivity to ofloxacin, polymyxin B, and furazolidone. In addition, a significant reduction in biofilm formation was observed only with the ΔtssM mutant. Moreover, the ΔtssM strain, followed by the ΔtssD mutant, showed decreased survival in human serum, with attenuated competition with Escherichia coli and impaired lethality in Galleria mellonella. Discussion The above results suggest that T6SS plays an important role, participating in the antibiotic resistance of A. baumannii, especially in terms of intrinsic resistance. Meanwhile, tssM and tssD contribute to bacterial virulence to a greater degree, with tssM being associated with greater importance.
Collapse
Affiliation(s)
- Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kai Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shuyan Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Peng Mi
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaokang Wu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haiping Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Xi’an Daxing Hospital, Xi’an, China
| | - Huohuan Tian
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jin’e Lei
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Abbasi P, Fahimi H, Khaleghi S. Novel Chimeric Endolysin Conjugated Chitosan Nanocomplex as a Potential Inhibitor Against Gram-Positive and Gram-Negative Bacteria. Appl Biochem Biotechnol 2024; 196:478-490. [PMID: 37140784 DOI: 10.1007/s12010-023-04484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Resistance to antimicrobial agents has created potential problems in finding efficient treatments against bacteria. Thus, using new therapeutics, such as recombinant chimeric endolysin, would be more beneficial for eliminating resistant bacteria. The treatment ability of these therapeutics can be further improved if they are used with biocompatible nanoparticles like chitosan (CS). In this work, covalently conjugated chimeric endolysin to CS nanoparticles (C) and non-covalently entrapped endolysin in CS nanoparticles (NC) were effectively developed and, consequently, qualified and quantified using analytical devices, including FT-IR, dynamic light scattering, and TEM. Eighty to 150 nm and 100 nm to 200 nm in diameter were measured for CS-endolysin (NC) and CS-endolysin (C) using a TEM, respectively. The lytic activity, synergistic interaction, and biofilm reduction potency of nano-complexes were investigated on Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) strains. The outputs revealed a good lytic activity of nano-complexes after 24 h and 48 h of treatment, especially in P. aeruginosa (approximately 40% cell viability after 48 h of treatment with 8 ng/mL), and potential biofilm reduction performance was attained in E. coli strains (about 70% reduction after treatment with 8 ng/mL). The synergistic interaction between nano-complexes and vancomycin was exhibited in E. coli, P. aeruginosa, and S. aureus strains at 8 ng/mL concentrations, while the synergistic effects of pure endolysin and vancomycin were not remarkable in E. coli strains. These nano-complexes would be more beneficial in suppressing the bacteria with a high level of antibiotic resistance.
Collapse
Affiliation(s)
- Paria Abbasi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.
| |
Collapse
|
7
|
Chang Q, Chen H, Li Y, Li H, Yang Z, Zeng J, Zhang P, Ge J, Gao M. The Synergistic Activity of Rhamnolipid Combined with Linezolid against Linezolid-Resistant Enterococcus faecium. Molecules 2023; 28:7630. [PMID: 38005351 PMCID: PMC10674639 DOI: 10.3390/molecules28227630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Enterococci resistance is increasing sharply, which poses a serious threat to public health. Rhamnolipids are a kind of amphiphilic compound used for its bioactivities, while the combination of nontraditional drugs to restore linezolid activity is an attractive strategy to treat infections caused by these pathogens. This study aimed to investigate the activity of linezolid in combination with the rhamnolipids against Enterococcus faecium. Here, we determined that the rhamnolipids could enhance the efficacy of linezolid against enterococci infections by a checkerboard MIC assay, a time-kill assay, a combined disk test, an anti-biofilm assay, molecular simulation dynamics, and mouse infection models. We identified that the combination of rhamnolipids and linezolid restored the linezolid sensitivity. Anti-biofilm experiments show that our new scheme can effectively inhibit biofilm generation. The mouse infection model demonstrated that the combination therapy significantly reduced the bacterial load in the feces, colons, and kidneys following subcutaneous administration. This study showed that rhamnolipids could play a synergistic role with linezolid against Enterococcus. Our combined agents could be appealing candidates for developing new combinatorial agents to restore antibiotic efficacy in the treatment of linezolid-resistant Enterococcus infections.
Collapse
Affiliation(s)
- Qingru Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huinan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hai Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiankai Zeng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ping Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| |
Collapse
|
8
|
Mourenza A, Ganesan R, Camarero JA. Resistance is futile: targeting multidrug-resistant bacteria with de novo Cys-rich cyclic polypeptides. RSC Chem Biol 2023; 4:722-735. [PMID: 37799576 PMCID: PMC10549238 DOI: 10.1039/d3cb00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 10/07/2023] Open
Abstract
The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to rapid drug resistance development to current antibiotic therapeutics. The use of disulfide-rich head-to-tail cyclized polypeptides as molecular frameworks for designing a new type of peptide antibiotics is gaining increasing attention among the scientific community and the pharmaceutical industry. The use of macrocyclic peptides, further constrained by the presence of several disulfide bonds, makes these peptide frameworks remarkably more stable to thermal, biological, and chemical degradation showing better activities when compared to their linear analogs. Many of these novel peptide scaffolds have been shown to have a high tolerance to sequence variability in those residues not involved in disulfide bonds, able to cross biological membranes, and efficiently target complex biomolecular interactions. Hence, these unique properties make the use of these scaffolds ideal for many biotechnological applications, including the design of novel peptide antibiotics. This article provides an overview of the new developments in the use of several disulfide-rich cyclic polypeptides, including cyclotides, θ-defensins, and sunflower trypsin inhibitor peptides, among others, in the development of novel antimicrobial peptides against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alvaro Mourenza
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Rajasekaran Ganesan
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California Los Angeles CA90033 USA
| |
Collapse
|
9
|
Li P, Zhang S, Wang J, Al-Shamiri MM, Han B, Chen Y, Han S, Han L. Uncovering the Secretion Systems of Acinetobacter baumannii: Structures and Functions in Pathogenicity and Antibiotic Resistance. Antibiotics (Basel) 2023; 12:antibiotics12020195. [PMID: 36830106 PMCID: PMC9952577 DOI: 10.3390/antibiotics12020195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Infections led by Acinetobacter baumannii strains are of great concern in healthcare environments due to the strong ability of the bacteria to spread through different apparatuses and develop drug resistance. Severe diseases can be caused by A. baumannii in critically ill patients, but its biological process and mechanism are not well understood. Secretion systems have recently been demonstrated to be involved in the pathogenic process, and five types of secretion systems out of the currently known six from Gram-negative bacteria have been found in A. baumannii. They can promote the fitness and pathogenesis of the bacteria by releasing a variety of effectors. Additionally, antibiotic resistance is found to be related to some types of secretion systems. In this review, we describe the genetic and structural compositions of the five secretion systems that exist in Acinetobacter. In addition, the function and molecular mechanism of each secretion system are summarized to explain how they enable these critical pathogens to overcome eukaryotic hosts and prokaryotic competitors to cause diseases.
Collapse
Affiliation(s)
- Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yanjiong Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence:
| |
Collapse
|
10
|
Garza-González E, Camacho-Ortiz A, Ponce-de-Leon A, Ortiz-Brizuela E, López-Jácome LE, Colin C, Rojas-Larios F, Newton-Sánchez OA, Echaniz-Aviles G, Carnalla-Barajas MN, Soto A, Bocanegra-Ibarias P, Hernández-Dueñas AMDR, Velázquez-Acosta MDC, Avilés-Benítez LK, Mena-Ramirez JP, Romero D, Mora-Jiménez I, Alcaraz-Espejel M, Feliciano-Guzmán JM, López-García M, Rodriguez-Zulueta P, Quevedo-Ramos MA, Padilla-Ibarra C, Couoh-May CA, Rivera-Ferreira MC, Morales-de-la-Peña CT, Zubiate H, Peralta-Catalán R, Cetina-Umaña CM, Rincón-Zuno J, Perez-Ricardez ML, Hernández-Cordova IY, López-Gutiérrez E, Gil M, Aguirre-Burciaga E, Huirache-Villalobos GS, Munoz S, Barlandas-Rendón NRE, Bolado-Martinez E, Quintanilla-Cazares LJ, Gómez-Choel AC, Lopez L, Tinoco JC, Martínez-Gamboa RA, Molina A, Escalante-Armenta SP, Duarte L, Ruiz-Gamboa LA, Cobos-Canul DI, López D, Barroso-Herrera-y-Cairo IE, Rodriguez-Noriega E, Morfin-Otero R. Bacterial incidence and drug resistance from pathogens recovered from blood, cerebrospinal and pleural fluids in 2019-2020. Results of the Invifar network. PeerJ 2023; 11:e14411. [PMID: 36684666 PMCID: PMC9854381 DOI: 10.7717/peerj.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background Antimicrobial resistance is a global concern. Analysis of sterile fluids is essential because microorganisms are defined as significant in most cases. Blood, cerebrospinal, and pleural fluids are frequently received in the microbiology lab because they are associated with considerable rates of morbi-mortality. Knowledge of epidemiology in these samples is needed to choose proper empirical treatments due to the importance of reducing selection pressure. Methods We used retrospective laboratory data of blood, CSF, and pleural fluid collected from patients in Mexico between 2019 and 2020. Each laboratory identified the strains and tested susceptibility using its routine methods. For Streptococcus pneumoniae, a comparative analysis was performed with data from the broth microdilution method. Results Forty-five centers participated in the study, with 30,746 clinical isolates from blood, 2,429 from pleural fluid, and 2,275 from CSF. For blood and CSF, Staphylococcus epidermidis was the most frequent. For blood, among gram negatives, the most frequent was Escherichia coli. Among Enterobacterales, 9.8% of K. pneumoniae were carbapenem-resistant. For S. pneumoniae, similar resistance percentages were observed for levofloxacin, cefotaxime, and vancomycin. For CSF, the most frequent gram-negative was E. coli. In Acinetobacter baumannii, carbapenem resistance was 71.4%. The most frequent species detected for pleural fluid was E. coli; in A. baumannii, carbapenem resistance was 96.3%. Conclusion Gram-negative bacteria, with E. coli most prevalent, are frequently recovered from CSF, blood, and pleural fluid. In S. pneumoniae, the routine, conventional methods showed good agreement in detecting resistance percentages for erythromycin, levofloxacin, and vancomycin.
Collapse
Affiliation(s)
- Elvira Garza-González
- Facultad de Medicina, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Adrian Camacho-Ortiz
- Facultad de Medicina, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Alfredo Ponce-de-Leon
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Edgar Ortiz-Brizuela
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Claudia Colin
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Fabian Rojas-Larios
- Facultad de Medicina, Universidad de Colima and Hospital Regional Universitario de los Servicios de Salud del Estado de Colima, Colima, Mexico
| | - Oscar A. Newton-Sánchez
- Facultad de Medicina, Universidad de Colima and Hospital Regional Universitario de los Servicios de Salud del Estado de Colima, Colima, Mexico
| | | | | | - Araceli Soto
- Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Paola Bocanegra-Ibarias
- Facultad de Medicina, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | | | - Juan Pablo Mena-Ramirez
- Hospital General de Zona No.21 IMSS, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Guadalajara, Mexico
| | - Daniel Romero
- Análisis Bioquímico Clínicos “Louis Pasteur”, Toluca, Mexico
| | | | | | | | | | | | | | | | | | | | | | - Hector Zubiate
- Hospital General Lázaro Cárdenas, ISSSTE, Chihuahua, Mexico
| | | | | | | | | | | | | | - Mariana Gil
- Hospital Regional de Alta Especialidad del Bajío, Leon, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lizbeth Duarte
- Centro Integral de Atención a la Salud Sur ISSSTESON, Hermosillo, Mexico
| | | | | | - Dulce López
- Hospital Lic. Adolfo López Mateos, Ciudad Obregón, Mexico
| | | | - Eduardo Rodriguez-Noriega
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rayo Morfin-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
11
|
Soliman MKY, Salem SS, Abu-Elghait M, Azab MS. Biosynthesis of Silver and Gold Nanoparticles and Their Efficacy Towards Antibacterial, Antibiofilm, Cytotoxicity, and Antioxidant Activities. Appl Biochem Biotechnol 2023; 195:1158-1183. [PMID: 36342621 PMCID: PMC9852169 DOI: 10.1007/s12010-022-04199-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
The World Health Organization (WHO) reports that the emergence of multidrug-resistant and the slow advent of novel and more potent antitumor and antimicrobial chemotherapeutics continue to be of the highest concern for human health. Additionally, the stability, low solubility, and negative effects of existing drugs make them ineffective. Studies into alternative tactics to tackle such tenacious diseases was sparked by anticancer and antibacterial. Silver (Ag) and gold (Au) nanoparticles (NPs) were created from Trichoderma saturnisporum, the much more productive fungal strain. Functional fungal extracellular enzymes and proteins carried out the activities of synthesis and capping of the generated nano-metals. Characterization was done on the obtained Ag-NPs and Au-NPs through UV-vis, FTIR, XRD, TEM, and SEM. Additionally, versus methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Klebsiella pneumoniae, the antibacterial activities of Ag-NPs and Au-NPs were assessed. In particular, the Ag-NPs were more effective against pathogenic bacteria than Au-NPs. Furthermore, antibiofilm study that shown Au-NPs had activity more than Ag-NPs. Interestingly, applying the DPPH procedure, these noble metallic NPs had antioxidant activity, in which the IC50 for Ag-NPs and Au-NPs was 73.5 μg/mL and 190.0 μg/mL, respectively. According to the cytotoxicity evaluation results, the alteration in the cells was shown as loss of their typical shape, partial or complete loss of monolayer, granulation, shrinking, or cell rounding with IC50 for normal Vero cell were 693.68 μg/mL and 661.24 μg/mL, for Ag-NPs and Au-NPs, respectively. While IC50 for cancer cell (Mcf7) was 370.56 μg/mL and 394.79 μg/mL for Ag-NPs and Au-NPs, respectively. Ag-NPs and Au-NPs produced via green synthesis have the potential to be employed in the medical industry as beneficial nanocompounds.
Collapse
Affiliation(s)
- Mohamed K Y Soliman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt.
| | - Mohammed Abu-Elghait
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Mohamed Salah Azab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| |
Collapse
|
12
|
Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population. J Clin Microbiol 2022; 60:e0029222. [PMID: 36069557 PMCID: PMC9580347 DOI: 10.1128/jcm.00292-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Children are prone to bloodstream infections (BSIs), the rapid and accurate diagnosis of which is an unmet clinical need. The T2MR technology is a direct molecular assay for identification of BSI pathogens, which can help to overcome the limits of blood culture (BC) such as diagnostic accuracy, blood volumes required, and turnaround time. We analyzed results obtained with the T2Bacteria (648) and T2Candida (106) panels in pediatric patients of the Bambino Gesù Children's Hospital between May 2018 and September 2020 in order to evaluate the performance of the T2Dx instrument with respect to BC. T2Bacteria and T2Candida panels showed 84.2% and 100% sensitivity with 85.9% and 94.1% specificity, respectively. The sensitivity and specificity of the T2Bacteria panel increased to 94.9% and 98.7%, respectively, when BC was negative but other laboratory data supported the molecular result. T2Bacteria sensitivity was 100% with blood volumes <2 mL in neonates and infants. T2Bacteria and T2Candida provided definitive microorganism identification in a mean time of 4.4 and 3.7 h, respectively, versus 65.7 and 125.5 h for BCs (P < 0.001). T2 panels rapidly and accurately enable a diagnosis of a pediatric BSI, even in children under 1 year of age and for very small blood volumes. These findings support their clinical use in life-threatening pediatric infections, where the time to diagnosis is of utmost importance, in order to improve survival and minimize the long-term sequalae of sepsis. The T2 technology could be further developed to include more bacteria and fungi species that are involved in the etiology of sepsis.
Collapse
|
13
|
Martin-Loeches I. Therapeutic drug monitoring (TDM) in real-time: a need for the present future. Expert Rev Anti Infect Ther 2022; 20:1245-1247. [PMID: 35921491 DOI: 10.1080/14787210.2022.2110070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Therapeutic drug monitoring (TDM) represents a real need for the present days. There is a huge amount of discussion around personalised medicine and probably this is very relevant in determining the right concentration of antibiotics in some populations. Patients with the most severe spectrum of infections, sepsis and septic shock, currently have wide variations on antibiotic concentrations. This is paramount in order to adequately treat patients with severe infection. In this editorial piece, we propose tools that help to cover the need of minimally invasive monitor of antibiotic concentrations.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, St. James's Hospital, Multidisciplinary Intensive Care Research Organisation (MICRO), Dublin Ireland.St James's Hospital, James's Street, Dublin, Ireland.,Trinity College Dublin, Ireland.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Pulmonary Department, Hospital Clinic, Universitat de Barcelona, IDIBAPS, ICREA, Barcelona, Spain
| |
Collapse
|
14
|
Pranada AB, Cordovana M, Meyer M, Hubert H, Abdalla M, Ambretti S, Steinmann J. Identification of micro-organism from positive blood cultures: comparison of three different short culturing methods to the Rapid Sepsityper workflow. J Med Microbiol 2022; 71. [PMID: 35930326 DOI: 10.1099/jmm.0.001571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sepsis is one of the leading causes of death worldwide. The rapid identification (ID) of the causative micro-organisms is crucial for the patients' clinical outcome. MALDI-TOF MS has been widely investigated to speed up the time-to-report for ID from positive blood cultures, and many different procedures and protocols were developed, all of them attributable either to the direct separation of microbial cells from the blood cells, or to a short subculture approach. In this study, the Rapid Sepsityper workflow (MBT Sepsityper IVD Kit, Bruker Daltonics GmbH and Co. KG, Bremen, Germany) was compared to three different short subculturing methods, established into the routine practice of three different clinical microbiology laboratories. A total of N=503 routine samples were included in this study and tested in parallel with the two approaches. Results of the rapid procedures were finally compared to routine proceedings with Gram-staining and overnight subculture. Among monomicrobial samples, the Rapid Sepsityper workflow enabled overall the correct identification of 388/443 (87.6 %) micro-organisms, while the short subculturing methods of 267/435 (61.8 %). Except for the performance with Streptococcus pneumoniae, in each one of the three sites the Rapid Sepsityper workflow proved to be superior to the short subculture method, regardless of the protocol applied, and it delivered a result from 1 to 5 h earlier.
Collapse
Affiliation(s)
- Arthur B Pranada
- Department of Medical Microbiology, MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| | | | | | | | | | - Simone Ambretti
- Operative Unit of Microbiology IRCSS Sant'Orsola, Bologna, Italy
| | - Joerg Steinmann
- Institute for Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nürnberg, Germany
| |
Collapse
|
15
|
Costa SP, Carvalho CM. Burden of bacterial bloodstream infections and recent advances for diagnosis. Pathog Dis 2022; 80:6631550. [PMID: 35790126 DOI: 10.1093/femspd/ftac027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/07/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bloodstream infections (BSIs) and subsequent organ dysfunction (sepsis and septic shock) are conditions that rank among the top reasons for human mortality and have a great impact on healthcare systems. Their treatment mainly relies on the administration of broad-spectrum antimicrobials since the standard blood culture-based diagnostic methods remain time-consuming for the pathogen's identification. Consequently, the routine use of these antibiotics may lead to downstream antimicrobial resistance and failure in treatment outcomes. Recently, significant advances have been made in improving several methodologies for the identification of pathogens directly in whole blood especially regarding specificity and time to detection. Nevertheless, for the widespread implementation of these novel methods in healthcare facilities, further improvements are still needed concerning the sensitivity and cost-effectiveness to allow a faster and more appropriate antimicrobial therapy. This review is focused on the problem of BSIs and sepsis addressing several aspects like their origin, challenges, and causative agents. Also, it highlights current and emerging diagnostics technologies, discussing their strengths and weaknesses.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.,International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Rua Alves Redol, 9 1000-029 Lisbon, Portugal
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
16
|
Rahat O, Shihab M, Etedgi E, Ben-David D, Estrin I, Goldshtein L, Zilberman-Itskovich S, Marchaim D. Empiric Usage of “Anti-Pseudomonal” Agents for Hospital-Acquired Urinary Tract Infections. Antibiotics (Basel) 2022; 11:antibiotics11070890. [PMID: 35884144 PMCID: PMC9312097 DOI: 10.3390/antibiotics11070890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/29/2022] Open
Abstract
Hospital-acquired urinary tract infection (HAUTI) is one of the most common hospital-acquired infections, and over 80% of HAUTI are catheter-associated (CAUTI). Pseudomonas aeruginosa, as well as other non-glucose fermenting Gram negative organisms (NGFGN, e.g., Acinetobacter baumannii), are frequently covered empirically with “anti-Pseudomonals” being administered for every HAUTI (and CAUTI). However, this common practice was never trialed in controlled settings in order to quantify its efficacy and its potential impacts on hospitalization outcomes. There were 413 patients with HAUTI that were included in this retrospective cohort study (2017–2018), 239 (57.9%) had CAUTI. There were 75 NGFGN infections (18.2% of HAUTI, 22.3% of CAUTI). P. aeruginosa was the most common NGFGN (82%). Despite multiple associations per univariable analysis, recent (3 months) exposure to antibiotics was the only independent predictor for NGFGN HAUTI (OR = 2.4, CI-95% = 1.2–4.8). Patients who received empiric anti-Pseudomonals suffered from worse outcomes, but in multivariable models (one for each outcome), none were independently associated with the empiric administration of anti-Pseudomonals. To conclude, approximately one of every five HAUTI (and CAUTI) are due to NGFGN, which justifies the practice of empiric anti-Pseudomonals for patients with HAUTI (and CAUTI), particularly patients who recently received antibiotics. The practice is not associated with independent deleterious impacts on outcomes.
Collapse
Affiliation(s)
- Ori Rahat
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin 7030000, Israel; (M.S.); (E.E.); (I.E.); (L.G.); (S.Z.-I.); (D.M.)
- Correspondence: ; Tel.: +972-8-977-9049; Fax: +972-8-977-9043
| | - Murad Shihab
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin 7030000, Israel; (M.S.); (E.E.); (I.E.); (L.G.); (S.Z.-I.); (D.M.)
| | - Elhai Etedgi
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin 7030000, Israel; (M.S.); (E.E.); (I.E.); (L.G.); (S.Z.-I.); (D.M.)
| | - Debby Ben-David
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
- Unit of Infection Control, Wolfson Medical Center, Holon 5822012, Israel
| | - Inna Estrin
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin 7030000, Israel; (M.S.); (E.E.); (I.E.); (L.G.); (S.Z.-I.); (D.M.)
| | - Lili Goldshtein
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin 7030000, Israel; (M.S.); (E.E.); (I.E.); (L.G.); (S.Z.-I.); (D.M.)
| | - Shani Zilberman-Itskovich
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin 7030000, Israel; (M.S.); (E.E.); (I.E.); (L.G.); (S.Z.-I.); (D.M.)
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Dror Marchaim
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin 7030000, Israel; (M.S.); (E.E.); (I.E.); (L.G.); (S.Z.-I.); (D.M.)
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| |
Collapse
|
17
|
Phonghanpot S, Jarintanan F. Secondary Metabolism Gene Diversity and Cocultivation toward Isolation and Identification of Potent Bioactive Compounds Producing Bacterial Strains from Thailand's Natural Resources. SCIENTIFICA 2022; 2022:2827831. [PMID: 35677864 PMCID: PMC9168185 DOI: 10.1155/2022/2827831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Thailand was proposed to be rich unexplored source of microorganisms, especially bacterial strains. There should be bacteria with high secondary metabolite production potential in the natural resources that are still unidentified. Moreover, they might not produce secondary metabolites in standard laboratory culture condition after isolation, in which coculture condition would help us pursuing the bacteria to produce bioactive metabolites. Here, we aimed to identify new bacterial strains with high secondary metabolite production potential from Thailand's natural resources. To achieve the goal, we performed bacteria isolation, phylogenetic analysis, degenerate PCR of secondary metabolism genes, cocultivation, antibacterial analysis, and HPLC chemical profiling. We isolated distinct 40 bacterial strains, which have over 98% 16S rRNA sequence similarity with known species. There were 22, 31, and 29 strains giving positive PCR amplification of NRPS, PKS, and TPS genes, respectively. Among them, Bacillus licheniformis RSUCC0101 had the highest number of PCR products, 26. In standard single culture condition, crude extracts prepared from Bacillus safensis RSUCC0021 and Bacillus amyloliquefaciens RSUCC0282 could inhibit the growth of Staphylococcus aureus ATCC25923. Furthermore, the cocultivation and HPLC analyses showed that the extracts prepared from 3 pairs of culture between Staphylococcus sp. RSUCC0020, Micrococcus luteus RSUCC0053, Staphylococcus sp. RSUCC0087, and Staphylococcus pasteuri RSUCC0090 could inhibit the growth of Staphylococcus aureus ATCC25923 and produced distinct chemical profiles from their single culture condition. Our study led to the isolation and identification of several promising bacterial strains for production of secondary metabolites that might be useful in biomedical applications.
Collapse
Affiliation(s)
- Suranat Phonghanpot
- Biochemistry Unit, Department of Biomedical Science, Faculty of Sciences, Rangsit University, 52/347 Muang Ake, Phaholyothin Road, Lak Hok, Muang, Pathum Thani 12000, Thailand
| | - Faongchat Jarintanan
- Faculty of Medical Technology, Rangsit University, 52/347 Muang Ake, Phaholyothin Road, Lak Hok, Muang, Pathum Thani 12000, Thailand
| |
Collapse
|
18
|
Gao Y, Wang HL, Zhang ZJ, Pan CK, Wang Y, Zhu YC, Xie FJ, Han QY, Zheng JB, Dai QQ, Ji YY, Du X, Chen PF, Yue CS, Wu JH, Kang K, Yu KJ. A Standardized Step-by-Step Approach for the Diagnosis and Treatment of Sepsis. J Intensive Care Med 2022; 37:1281-1287. [PMID: 35285730 DOI: 10.1177/08850666221085181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sepsis is the major culprit of death among critically ill patients who are hospitalized in intensive care units (ICUs). Although sepsis-related mortality is steadily declining year-by-year due to the continuous understanding of the pathophysiological mechanism on sepsis and improvement of the bundle treatment, sepsis-associated hospitalization is rising worldwide. Surviving Sepsis Campaign (SSC) guidelines are continuously updating, while their content is extremely complex and comprehensive for a precisely implementation in clinical practice. As a consequence, a standardized step-by-step approach for the diagnosis and treatment of sepsis is particularly important. In the present study, we proposed a standardized step-by-step approach for the diagnosis and treatment of sepsis using our daily clinical experience and the latest researches, which is close to clinical practice and is easy to implement. The proposed approach may assist clinicians to more effectively diagnose and treat septic patients and avoid the emergence of adverse clinical outcomes.
Collapse
Affiliation(s)
- Yang Gao
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Liang Wang
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhao Jin Zhang
- Department of Critical Care Medicine, The Yichun Forestry Administration Central Hospital, Yichun, China
| | - Chang Kun Pan
- Department of Critical Care Medicine, The Jiamusi Cancer Hospital, Jiamusi, China
| | - Ying Wang
- Department of Critical Care Medicine, The First People Hospital of Mudanjiang city, Mudanjiang, China
| | - Yu Cheng Zhu
- Department of Critical Care Medicine, The Hongxinglong Hospital of Beidahuang Group, Shuangyashan, China
| | - Feng Jie Xie
- Department of Critical Care Medicine, The Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Qiu Yuan Han
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Bo Zheng
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing Qing Dai
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Yuan Ji
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Du
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Fei Chen
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuang Shi Yue
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ji Han Wu
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Kang
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Jiang Yu
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Montaño ET, Nideffer JF, Brumage L, Erb M, Busch J, Fernandez L, Derman AI, Davis JP, Estrada E, Fu S, Le D, Vuppala A, Tran C, Luterstein E, Lakkaraju S, Panchagnula S, Ren C, Doan J, Tran S, Soriano J, Fujita Y, Gutala P, Fujii Q, Lee M, Bui A, Villarreal C, Shing SR, Kim S, Freeman D, Racha V, Ho A, Kumar P, Falah K, Dawson T, Enustun E, Prichard A, Gomez A, Khanna K, Wanamaker SA, Pogliano K, Pogliano J. Isolation and characterization of Streptomyces bacteriophages and Streptomyces strains encoding biosynthetic arsenals. PLoS One 2022; 17:e0262354. [PMID: 35061755 PMCID: PMC8782336 DOI: 10.1371/journal.pone.0262354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
The threat to public health posed by drug-resistant bacteria is rapidly increasing, as some of healthcare's most potent antibiotics are becoming obsolete. Approximately two-thirds of the world's antibiotics are derived from natural products produced by Streptomyces encoded biosynthetic gene clusters. Thus, to identify novel gene clusters, we sequenced the genomes of four bioactive Streptomyces strains isolated from the soil in San Diego County and used Bacterial Cytological Profiling adapted for agar plate culturing in order to examine the mechanisms of bacterial inhibition exhibited by these strains. In the four strains, we identified 104 biosynthetic gene clusters. Some of these clusters were predicted to produce previously studied antibiotics; however, the known mechanisms of these molecules could not fully account for the antibacterial activity exhibited by the strains, suggesting that novel clusters might encode antibiotics. When assessed for their ability to inhibit the growth of clinically isolated pathogens, three Streptomyces strains demonstrated activity against methicillin-resistant Staphylococcus aureus. Additionally, due to the utility of bacteriophages for genetically manipulating bacterial strains via transduction, we also isolated four new phages (BartholomewSD, IceWarrior, Shawty, and TrvxScott) against S. platensis. A genomic analysis of our phages revealed nearly 200 uncharacterized proteins, including a new site-specific serine integrase that could prove to be a useful genetic tool. Sequence analysis of the Streptomyces strains identified CRISPR-Cas systems and specific spacer sequences that allowed us to predict phage host ranges. Ultimately, this study identified Streptomyces strains with the potential to produce novel chemical matter as well as integrase-encoding phages that could potentially be used to manipulate these strains.
Collapse
Affiliation(s)
- Elizabeth T. Montaño
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Jason F. Nideffer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Lauren Brumage
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Marcella Erb
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Julia Busch
- Department of Immunology, Duke University, Durham, North Carolina, United Stated of America
| | - Lynley Fernandez
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Alan I. Derman
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - John Paul Davis
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Elena Estrada
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon Fu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Danielle Le
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Aishwarya Vuppala
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Cassidy Tran
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Elaine Luterstein
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Shivani Lakkaraju
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Sriya Panchagnula
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Caroline Ren
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Jennifer Doan
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon Tran
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Jamielyn Soriano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Yuya Fujita
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Pranathi Gutala
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Quinn Fujii
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Minda Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Anthony Bui
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Carleen Villarreal
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Samuel R. Shing
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Sean Kim
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Danielle Freeman
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Vipula Racha
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Alicia Ho
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Prianka Kumar
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kian Falah
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Thomas Dawson
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Eray Enustun
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Amy Prichard
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Ana Gomez
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Shelly A. Wanamaker
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
20
|
Zafer MM, El Bastawisie MM, Wassef M, Hussein AF, Ramadan MA. Epidemiological features of nosocomial Klebsiella pneumoniae: virulence and resistance determinants. Future Microbiol 2021; 17:27-40. [PMID: 34877876 DOI: 10.2217/fmb-2021-0092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: The authors aimed to examine antibiotic resistance genes and representative virulence determinants among 100 Klebsiella pneumoniae isolates with an emphasis on capsular serotypes and clonality of some of the isolates. Methods: PCR amplification of (rmpA, rmpA2, iutA, iroN and IncHI1B plasmid) and (NDM, OXA-48, KPC, CTX-M-15, VIM, IMP, SPM) was conducted. Wzi sequencing and multilocus sequence typing (MLST) were performed. Results: K2 was the only detected serotype in the authors' collection. RMPA2 was the most common capsule-associated virulence gene detected. All studied isolates harbored OXA-48-like (100%) and NDM (43%) (n = 43). ST147 was the most common sequence type. Conclusion: This work provides insight into the evolution of the coexistence of virulence and resistance genes in a tertiary healthcare setting in Cairo, Egypt.
Collapse
Affiliation(s)
- Mai M Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Maha M El Bastawisie
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Mona Wassef
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amira Fa Hussein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Bacterial Cytological Profiling Identifies Rhodanine-Containing PAINS Analogs as Specific Inhibitors of Escherichia coli Thymidylate Kinase In Vivo. J Bacteriol 2021; 203:e0010521. [PMID: 34280002 DOI: 10.1128/jb.00105-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, we sought to determine whether an in vivo assay for studying antibiotic mechanisms of action could provide insight into the activity of compounds that may inhibit multiple targets. Thus, we conducted an activity screen of 31 structural analogs of rhodanine-containing pan-assay interference compounds (PAINS). We identified nine active molecules against Escherichia coli and classified them according to their in vivo mechanisms of action. The mechanisms of action of PAINS are generally difficult to identify due to their promiscuity. However, we leveraged bacterial cytological profiling, a fluorescence microscopy technique, to study these complex mechanisms. Ultimately, we found that although some of our molecules promiscuously inhibit multiple cellular pathways, a few molecules specifically inhibit DNA replication despite structural similarity to related PAINS. A genetic analysis of resistant mutants revealed thymidylate kinase (essential for DNA synthesis) as an intracellular target of some of these rhodanine-containing antibiotics. This finding was supported by in vitro activity assays, as well as experiments utilizing a thymidylate kinase overexpression system. The analog that demonstrated the half-maximal inhibitory concentration in vitro and MIC in vivo displayed the greatest specificity for inhibition of the DNA replication pathway, despite containing a rhodamine moiety. Although it is thought that PAINS cannot be developed as antibiotics, this work showcases novel inhibitors of E. coli thymidylate kinase. Moreover, perhaps more importantly, this work highlights the utility of bacterial cytological profiling for studying the in vivo specificity of antibiotics and demonstrates that bacterial cytological profiling can identify multiple pathways that are inhibited by an individual molecule. IMPORTANCE We demonstrate that bacterial cytological profiling is a powerful tool for directing antibiotic discovery efforts because it can be used to determine the specificity of an antibiotic's in vivo mechanism of action. By assaying analogs of PAINS, molecules that are notoriously intractable and nonspecific, we (surprisingly) identify molecules with specific activity against E. coli thymidylate kinase. This suggests that structural modifications to PAINS can confer stronger inhibition by targeting a specific cellular pathway. While in vitro inhibition assays are susceptible to false-positive results (especially from PAINS), bacterial cytological profiling provides the resolution to identify molecules with specific in vivo activity.
Collapse
|
22
|
Paggi R, Cenci E, De Socio GV, Belati A, Marini D, Gili A, Camilloni B, Mencacci A. Accuracy and Impact on Patient Management of New Tools for Diagnosis of Sepsis: Experience with the T2 Magnetic Resonance Bacteria Panel. Pathogens 2021; 10:pathogens10091132. [PMID: 34578164 PMCID: PMC8465567 DOI: 10.3390/pathogens10091132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/20/2022] Open
Abstract
The rapid and accurate identification of pathogens responsible for sepsis is essential for prompt and effective antimicrobial therapy. Molecular technologies have been developed to detect the most common causative agents, with high sensitivity and short time to result (TTR). T2 Bacteria Panel (T2), based on a combination of PCR and T2 magnetic resonance, can identify directly in blood samples Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecium, and Acinetobacter baumannii pathogens. This study evaluates the role of T2 in the diagnosis of sepsis and its impact on patient management, specifically in terms of TTR and the switch from empirical to directed therapy, comparing results of blood culture (BC) and T2 assay in 82 patients with sepsis. T2 significantly improved the detection of the causative agents of sepsis. For pathogens included in the panel, T2 sensitivity was 100% (95% CI 86.3–100.0), significantly higher than that of BC (54.8%, 95% CI 36.0–72.7). The TTR (median, IQR) of positive T2 (3.66 h, 3.59–4.31) was significantly shorter than that of the positive BC (37.58 h, 20.10–47.32). A significant reduction in the duration of empiric therapy and an increase in the percentage of patients with switched therapy was observed in patients with a positive T2 result. In conclusion, T2 can shorten and improve the etiological diagnosis of sepsis with a positive impact on patient management.
Collapse
Affiliation(s)
- Riccardo Paggi
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Elio Cenci
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | | | - Alessandra Belati
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Daniele Marini
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Alessio Gili
- Public Health Section, Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy;
| | - Barbara Camilloni
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Antonella Mencacci
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
- Correspondence:
| |
Collapse
|
23
|
Ganesan R, Dughbaj MA, Ramirez L, Beringer S, Aboye TL, Shekhtman A, Beringer PM, Camarero JA. Engineered Cyclotides with Potent Broad in Vitro and in Vivo Antimicrobial Activity. Chemistry 2021; 27:12702-12708. [PMID: 34159664 PMCID: PMC8410672 DOI: 10.1002/chem.202101438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 12/18/2022]
Abstract
The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to the rapid development of drug resistance to current antibiotic therapeutics. Respiratory failure and septicemia are the leading causes of mortality among hospitalized patients. Here, the development of a novel engineered cyclotide with effective broad-spectrum antibacterial activity against several ESKAPE bacterial strains and clinical isolates is reported. The most active antibacterial cyclotide was extremely stable in serum, showed little hemolytic activity, and provided protection in vivo in a murine model of P. aeruginosa peritonitis. These results highlight the potential of the cyclotide scaffold for the development of novel antimicrobial therapeutic leads for the treatment of bacteremia.
Collapse
Affiliation(s)
- Rajasekaran Ganesan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Mansour A. Dughbaj
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Lisa Ramirez
- Department of Chemistry, State University of New York, Albany, NY 12222, USA
| | - Steven Beringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Teshome L. Aboye
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York, Albany, NY 12222, USA
| | - Paul M. Beringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033, USA
| |
Collapse
|
24
|
Overexpression of the adeB Efflux Pump Gene in Tigecycline-Resistant Acinetobacter baumannii Clinical Isolates and Its Inhibition by (+)Usnic Acid as an Adjuvant. Antibiotics (Basel) 2021; 10:antibiotics10091037. [PMID: 34572620 PMCID: PMC8472003 DOI: 10.3390/antibiotics10091037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter species are among the most life-threatening Gram-negative bacilli, causing hospital-acquired infections, and they are associated with high morbidity and mortality. They show multidrug resistance that acts via various mechanisms. In Acinetobacter baumannii, efflux pump-mediated resistance to many antimicrobial compounds, including tigecycline, has been widely reported. Natural compounds have been used for their various pharmacological properties, including anti-efflux pump activity. The present study aimed to evaluate the efflux pump-mediated resistance mechanism of Acinetobacter baumannii and the effect of (+)Usnic acid as an efflux pump inhibitor with tigecycline. For detecting the efflux pump activity of tigecycline-resistant Acinetobacter baumannii isolates, microbroth dilution method and real-time quantitative reverse transcription–polymerase chain reaction was used. (+)Usnic acid was added to tigecycline and tested by the checkerboard method to evaluate its efficacy as an efflux pump inhibitor. qRT-PCR analysis was carried out to show the downregulation of the efflux pump in the isolates. Out of 42 tigecycline-resistant Acinetobacter baumannii isolates, 19 showed efflux pump activity. All 19 strains expressed the adeB gene. (+)Usnic acid as an adjuvant showed better efficacy in lowering the minimum inhibitory concentration compared with the conventional efflux pump inhibitor, carbonyl cyanide phenylhydrazone.
Collapse
|
25
|
Nasution A, Khairunnisa K, Sulaiman SAS. Impacts of Pharmacy Intervention on Appropriateness of Antibiotics Use in Pneumonia Patients. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: This study analyzed the impact of pharmacy intervention on appropriateness of antibiotics use in the treatment of inpatients with pneumonia admitted to Universitas Sumatera Utara (USU) Hospital, Medan, Indonesia.
METHODS: This cohort study analyzed appropriateness of antibiotic use in the treatment of in-patients with pneumonia without interventions or baseline group (n = 33) admitted to USU Hospital year 2018 and 3-month period admission with pharmacy intervention (n = 42) year 2019. Characteristics of the patients and antibiotics provided to both groups were descriptively analyzed. The appropriateness of antibiotics use in both groups was analyzed based on their medical conditions, culture and sensitivity tests, and trustable literatures, and then categorized applying Gyssens method regarding dose, intervals, routes, length of provision, effectivity, and costs. The significant difference in inappropriate use of antibiotics between groups with and without interventions was analyzed applying unpaired t-test (p < 0.05 was considered statistically significant).
RESULTS: Most of the pneumonia patients in both groups were male. Mean age of the patients (years) in group: without intervention, 60.20 ± 15.48; with intervention, 60.48 ± 14.76. The three most widely provided antibiotics were ceftriaxone, meropenem, and ciprofloxacin. Incidence of inappropriate use of antibiotics per patient in group: without intervention, 0.66; with intervention, 0.33. The inappropriate use of antibiotics reduced significantly in group with intervention, p = 0.049.
CONCLUSIONS: Pharmacy intervention is crucial to reduce the inappropriate use of antibiotics in the treatment of pneumonia.
Collapse
|
26
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
27
|
Peng X, Zhou W, Zhu Y, Wan C. Epidemiology, risk factors and outcomes of bloodstream infection caused by ESKAPEEc pathogens among hospitalized children. BMC Pediatr 2021; 21:188. [PMID: 33882891 PMCID: PMC8059001 DOI: 10.1186/s12887-021-02661-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background Bloodstream infection (BSI) resulting from ESKAPEEc pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp) is relevant to high mortality and economic cost. Data concerning the impact of BSI due to ESKAPEEc in pediatric population was virtually scant. Our purpose was to summarize the epidemiology, risk factors and outcomes of ESKAPEEc BSI among hospitalized children. Methods Inpatients diagnosed with BSI with definite etiology between January 2016 and December 2018 were enrolled retrospectively at the West China Second University Hospital. Data were systematically reviewed on patients’ clinical characteristics and laboratory findings to ascertain independent predictors, clinical features and outcomes. Results Of the 228 patients with BSI, 174 (76.3%) were caused by ESKAPEEc (124 MDR-ESKAPEEc). Multivariate analysis demonstrated that premature and/ or low birth weight (odds ratio [OR] = 2.981, P = 0.036), previous surgery and/or trauma (OR = 5.71, P = 0.029) and source of urinary tract infection (OR = 10.60, P = 0.004) were independently associated with ESKAPEEc BSI. The independent risk factor for MRD-ESKAPEEc BSI was nosocomial infection (OR = 3.314, P = 0.037). The overall mortality rate in patients with ESKAPEEc BSI was 14.4% (25/174), and no significant difference was ascertained in mortality between MRD-ESKAPEEc and non-MRD ESKAPEEc BSI groups (13.7% vs. 11.4%, P = 0.692). In addition, previous surgery and/or trauma, thrombocytopenia, and mechanical ventilation were significant risk factors for mortality caused by ESKAPEEc BSI. Conclusions More than two-thirds of BSI among hospitalized children were caused by ESKAPEEc. Previous surgery and/or trauma, thrombocytopenia and mechanical ventilation increased the risk rate for mortality in ESKAPEEc BSI. The risk factors ascertained could assist physicians to early suspect ESKAPEEc BSI and MDR ESKAPEEc BSI.
Collapse
Affiliation(s)
- Xiaoshan Peng
- Department of Pediatrics, West China Second Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, 610041, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wei Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Department of Clinical Microbiology Laboratory, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yu Zhu
- Department of Pediatrics, West China Second Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, 610041, Chengdu, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Chaomin Wan
- Department of Pediatrics, West China Second Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, 610041, Chengdu, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
28
|
Enshaei H, Puiggalí‐Jou A, del Valle LJ, Turon P, Saperas N, Alemán C. Nanotheranostic Interface Based on Antibiotic-Loaded Conducting Polymer Nanoparticles for Real-Time Monitoring of Bacterial Growth Inhibition. Adv Healthc Mater 2021; 10:e2001636. [PMID: 33336558 DOI: 10.1002/adhm.202001636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Indexed: 01/18/2023]
Abstract
Conducting polymers have been increasingly used as biologically interfacing electrodes for biomedical applications due to their excellent and fast electrochemical response, reversible doping-dedoping characteristics, high stability, easy processability, and biocompatibility. These advantageous properties can be used for the rapid detection and eradication of infections associated to bacterial growth since these are a tremendous burden for individual patients as well as the global healthcare system. Herein, a smart nanotheranostic electroresponsive platform, which consists of chloramphenicol (CAM)-loaded in poly(3,4-ethylendioxythiophene) nanoparticles (PEDOT/CAM NPs) for concurrent release of the antibiotic and real-time monitoring of bacterial growth is presented. PEDOT/CAM NPs, with an antibiotic loading content of 11.9 ± 1.3% w/w, are proved to inhibit the growth of Escherichia coli and Streptococcus sanguinis due to the antibiotic release by cyclic voltammetry. Furthermore, in situ monitoring of bacterial activity is achieved through the electrochemical detection of β-nicotinamide adenine dinucleotide, a redox active specie produced by the microbial metabolism that diffuse to the extracellular medium. According to these results, the proposed nanotheranostic platform has great potential for real-time monitoring of the response of bacteria to the released antibiotic, contributing to the evolution of the personalized medicine.
Collapse
Affiliation(s)
- Hamidreza Enshaei
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
| | - Anna Puiggalí‐Jou
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
| | - Luis J. del Valle
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
| | - Pau Turon
- B. Braun Surgical S.A. Carretera de Terrassa 121, Rubí Barcelona 08191 Spain
| | - Núria Saperas
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Baldiri Reixac 10‐12 Barcelona 08028 Spain
| |
Collapse
|
29
|
Zohar Y, Zilberman Itskovich S, Koren S, Zaidenstein R, Marchaim D, Koren R. The association of diabetes and hyperglycemia with sepsis outcomes: a population-based cohort analysis. Intern Emerg Med 2021; 16:719-728. [PMID: 32964373 DOI: 10.1007/s11739-020-02507-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/12/2020] [Indexed: 01/10/2023]
Abstract
The independent association of diabetes and hyperglycemia on the outcomes of sepsis remains unclear. We conducted retrospective cohort analyses of outcomes among patients with community-onset sepsis admitted to Shamir Medical Center, Israel (08-12/2016). Statistical associations were queried by Cox and logistic regressions, controlled for by matched propensity score analyses. Among 1527 patients with community-onset sepsis, 469 (30.7%) were diabetic. Diabetic patients were significantly older, with advanced complexity of comorbidities, and were more often exposed to healthcare environments. Despite statistically significant univariable associations with in-hospital and 90-day mortality, the adjusted Hazard Ratios (aHR) were 1.21 95% CI 0.8-1.71, p = 0.29 and 1.13 95% CI 0.86-1.49, p = 0.37, respectively. However, hyperglycemia at admission (i.e., above 200 mg/dl (was independently associated with: increased in-hospital mortality, aHR 1.48 95% CI 1.02-2.16, p = 0.037, 30-day mortality, aHR 1.8 95% CI 1.12-2.58, p = 0.001), and 90-day mortality, aHR 1.68 95% CI 1.24-2.27, p = 0.001. This association was more robust among diabetic patients than those without diabetes. In this study, diabetes was not associated with worse clinical outcomes in community-onset sepsis. However, high glucose levels at sepsis onset are independently associated with a worse prognosis, particularly among diabetic patients. Future trials should explore whether glycemic control could impact the outcomes and should be part of the management of sepsis, among the general adult septic population.
Collapse
Affiliation(s)
- Yarden Zohar
- Department of Internal Medicine A, Shamir (Assaf Harofeh) Medical Center, 7030000, Zerifin, Israel
| | | | - Shlomit Koren
- Diabetes Unit, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ronit Zaidenstein
- Department of Internal Medicine A, Shamir (Assaf Harofeh) Medical Center, 7030000, Zerifin, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dror Marchaim
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ronit Koren
- Department of Internal Medicine A, Shamir (Assaf Harofeh) Medical Center, 7030000, Zerifin, Israel.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
30
|
A "resistance calculator": Simple stewardship intervention for refining empiric practices of antimicrobials in acute-care hospitals. Infect Control Hosp Epidemiol 2021; 42:1082-1089. [PMID: 33736724 PMCID: PMC8459314 DOI: 10.1017/ice.2020.1372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: In the era of widespread resistance, there are 2 time points at which most empiric prescription errors occur among hospitalized adults: (1) upon admission (UA) when treating patients at risk of multidrug-resistant organisms (MDROs) and (2) during hospitalization, when treating patients at risk of extensively drug-resistant organisms (XDROs). These errors adversely influence patient outcomes and the hospital’s ecology. Design and setting: Retrospective cohort study, Shamir Medical Center, Israel, 2016. Patients: Adult patients (aged >18 years) hospitalized with sepsis. Methods: Logistic regressions were used to develop predictive models for (1) MDRO UA and (2) nosocomial XDRO. Their performances on the derivation data sets, and on 7 other validation data sets, were assessed using the area under the receiver operating characteristic curve (ROC AUC). Results: In total, 4,114 patients were included: 2,472 patients with sepsis UA and 1,642 with nosocomial sepsis. The MDRO UA score included 10 parameters, and with a cutoff of ≥22 points, it had an ROC AUC of 0.85. The nosocomial XDRO score included 7 parameters, and with a cutoff of ≥36 points, it had an ROC AUC of 0.87. The range of ROC AUCs for the validation data sets was 0.7–0.88 for the MDRO UA score and was 0.66–0.75 for nosocomial XDRO score. We created a free web calculator (https://assafharofe.azurewebsites.net). Conclusions: A simple electronic calculator could aid with empiric prescription during an encounter with a septic patient. Future implementation studies are needed to evaluate its utility in improving patient outcomes and in reducing overall resistances.
Collapse
|
31
|
Kaushik AM, Hsieh K, Mach KE, Lewis S, Puleo CM, Carroll KC, Liao JC, Wang T. Droplet-Based Single-Cell Measurements of 16S rRNA Enable Integrated Bacteria Identification and Pheno-Molecular Antimicrobial Susceptibility Testing from Clinical Samples in 30 min. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003419. [PMID: 33747737 PMCID: PMC7967084 DOI: 10.1002/advs.202003419] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/13/2020] [Indexed: 05/06/2023]
Abstract
Empiric broad-spectrum antimicrobial treatments of urinary tract infections (UTIs) have contributed to widespread antimicrobial resistance. Clinical adoption of evidence-based treatments necessitates rapid diagnostic methods for pathogen identification (ID) and antimicrobial susceptibility testing (AST) with minimal sample preparation. In response, a microfluidic droplet-based platform is developed for achieving both ID and AST from urine samples within 30 min. In this platform, fluorogenic hybridization probes are utilized to detect 16S rRNA from single bacterial cells encapsulated in picoliter droplets, enabling molecular identification of uropathogenic bacteria directly from urine in as little as 16 min. Moreover, in-droplet single-bacterial measurements of 16S rRNA provide a surrogate for AST, shortening the exposure time to 10 min for gentamicin and ciprofloxacin. A fully integrated device and screening workflow were developed to test urine specimens for one of seven unique diagnostic outcomes including the presence/absence of Gram-negative bacteria, molecular ID of the bacteriaas Escherichia coli, an Enterobacterales, or other organism, and assessment of bacterial susceptibility to ciprofloxacin. In a 50-specimen clinical comparison study, the platform demonstrates excellent performance compared to clinical standard methods (areas-under-curves, AUCs >0.95), within a small fraction of the turnaround time, highlighting its clinical utility.
Collapse
Affiliation(s)
| | - Kuangwen Hsieh
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Kathleen E. Mach
- Department of UrologyStanford University School of MedicineStanfordCA94305USA
| | - Shawna Lewis
- Division of Medical MicrobiologyDepartment of PathologyJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | | | - Karen C. Carroll
- Division of Medical MicrobiologyDepartment of PathologyJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Joseph C. Liao
- Department of UrologyStanford University School of MedicineStanfordCA94305USA
| | - Tza‐Huei Wang
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21287USA
| |
Collapse
|
32
|
Third Generation Cephalosporin Resistant Enterobacterales Infections in Hospitalized Horses and Donkeys: A Case-Case-Control Analysis. Antibiotics (Basel) 2021; 10:antibiotics10020155. [PMID: 33557061 PMCID: PMC7913880 DOI: 10.3390/antibiotics10020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
In human medicine, infections caused by third-generation cephalosporin-resistant Enterobacterales (3GCRE) are associated with detrimental outcomes. In veterinary medicine, controlled epidemiological analyses are lacking. A matched case–case–control investigation (1:1:1 ratio) was conducted in a large veterinary hospital (2017–2019). In total, 29 infected horses and donkeys were matched to 29 animals with third-generation cephalosporin-susceptible Enterobacterales (3GCSE) infections, and 29 uninfected controls (overall n = 87). Despite multiple significant associations per bivariable analyses, the only independent predictor for 3GCRE infection was recent exposure to antibiotics (adjusted odds ratio (aOR) = 104, p < 0.001), but this was also an independent predictor for 3GCSE infection (aOR = 22, p < 0.001), though the correlation with 3GCRE was significantly stronger (aOR = 9.3, p = 0.04). In separated multivariable outcome models, 3GCRE infections were independently associated with reduced clinical cure rates (aOR = 6.84, p = 0.003) and with 90 days mortality (aOR = 3.6, p = 0.003). Klebsiella spp. were the most common 3GCRE (36%), and blaCTX-M-1 was the major β-lactamase (79%). Polyclonality and multiple sequence types were evident among all Enterobacterales (e.g., Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae). The study substantiates the significance of 3GCRE infections in equine medicine, and their independent detrimental impact on cure rates and mortality. Multiple Enterobacterales genera, subtypes, clones and mechanisms of resistance are prevalent among horses and donkeys with 3GCRE infections.
Collapse
|
33
|
An Evaluation of the Antibacterial Properties of Tormentic Acid Congener and Extracts From Callistemon viminalis on Selected ESKAPE Pathogens and Effects on Biofilm Formation. Adv Pharmacol Pharm Sci 2020; 2020:8848606. [PMID: 33225299 PMCID: PMC7669338 DOI: 10.1155/2020/8848606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
ESKAPE pathogens, namely, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, are responsible for a majority of all healthcare-acquired infections (HAI). The bacteria cause nosocomial infections in immunocompromised patients. Extracts from Callistemon viminalis have been shown to have antibacterial, antifungal, and anti-inflammatory activities. Tormentic acid congener, a pentacyclic triterpene saponin, was isolated from C. viminalis leaves. This study aimed to investigate the antibacterial effects of tormentic acid congener and leaf extracts on biofilm formation by A. baumannii, S. aureus, S. pyogenes, and P. aeruginosa. The antibacterial effects were determined by the microbroth dilution method, and ciprofloxacin was used as the standard antibacterial drug. Biofilm formation and detachment assays were performed using crystal violet staining. Production of extracellular polymeric DNA and polysaccharides from biofilms was also determined. Tormentic acid congener showed time-dependent antibacterial activity against P. aeruginosa with a MIC of 100 µg/ml and caused significant protein leakage. Antibacterial activity was found when tormentic acid congener was tested against both S. aureus and P. aeruginosa. The MICs were found to be 25 µg/ml and 12.5 µg/ml for P. aeruginosa and S. aureus cells, respectively. S. pyogenes was found to be susceptible to tormentic acid congener and the hydroethanolic extract with an MIC of 100 µg/ml and 25 µg/ml, respectively. A. baumannii was found not to be susceptible to the compound or the extracts. The compound and the extracts caused a significant decrease in the biofilm extracellular polysaccharide content of S. pyogenes. The extracts and tormentic acid congener caused detachment of biofilms and decreased the release of extracellular DNA and capsular polysaccharides from biofilms of P. aeruginosa and S. aureus. Tormentic acid congener and extracts, thus, have significant antibacterial and antibiofilm activities on these selected ESKAPE bacteria and can act as source lead compounds for the development of antibacterial triterpenoids.
Collapse
|
34
|
Cordovana M, Zignoli A, Ambretti S. Rapid Sepsityper in clinical routine: 2 years' successful experience. J Med Microbiol 2020; 69:1398-1404. [PMID: 33156750 DOI: 10.1099/jmm.0.001268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction. Rapid identification of the causative agent of sepsis is crucial for patient outcomes.Aim. The Sepsityper sample preparation method enables direct microbial identification of positive blood culture samples via matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS).Hypothesis/Gap statement. The implementation of the Sepsityper method in the routine practice could represent a fundamental tool to achieve a prompt identification of the causative agent of bloodstream infections, and therefore accelerate the adoption of the proper antibiotic treatment.Methodology. In this study, the novel rapid workflow of the MALDI Biotypr Sepsityper kit (Bruker Daltonik GmbH, Germany) was evaluated using routine samples from a 2-year period (n=6918), and dedicated optimized protocols for the microbial groups that were more difficult to identify were developed. Moreover, the use of the residual bacterial pellet to perform susceptibility testing using different methods (commercial broth microdilution, disc diffusion, gradient diffusion) was investigated.Results. The rapid Sepsityper protocol allowed the identification of 5470/6338 (86.3 %) monomicrobial samples at species level, with very good performance for all of the clinically most significant pathogens (2510/2592 enterobacteria, 631/669 Staphylococcus aureus and 223/246 enterococci were identified). Streptococcus pneumoniae, Bacteroides fragilis and yeasts were the most troublesome to identify, but the application of specific optimized protocols significantly improved their rate of identification (from 14.7-71.5 %, 47.8-89.7 % and 37.1-89.5 %, respectively). Specificity was 100 % (no identification was made for the false-positive samples). Further, the residual pellet proved to be suitable to investigate susceptibility to antimicrobials, enabling us to simplify the workflow and shorten the time to report.Conclusion. The Rapid Sepsityper workflow proved to be a reliable sample preparation method for identification and susceptibility testing directly from positive blood cultures, providing novel approaches for accelerated diagnostics of bloodstream infections.
Collapse
Affiliation(s)
- Miriam Cordovana
- Operative Unit of Microbiology, University Hospital Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | - Anna Zignoli
- Operative Unit of Microbiology, University Hospital Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | - Simone Ambretti
- Operative Unit of Microbiology, University Hospital Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
35
|
McMurtrie T, Prather J, Cone R, Montgomery T, Patel C, McGwin G, Spitler C. Extended Antibiotic Coverage in the Management of Type II Open Fractures. Surg Infect (Larchmt) 2020; 22:662-667. [PMID: 33064633 DOI: 10.1089/sur.2020.300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Responsible antibiotic stewardship requires surgeons treating open fractures to use the narrowest appropriate antibiotic coverage possible to prevent infection. Because inter-observer agreement about the application of the Gustilo-Anderson open fracture classification is moderate at best, antibiotic selection can be overly aggressive. The purpose of this study was to evaluate the outcomes of Type II open fractures treated with gram-positive coverage only (GP) versus broad-spectrum antibiotic coverage (BS) with piperacillin-tazobactam (PT). Methods: A retrospective review of all Type II open fractures was performed at a single Level one trauma center over a 5-year period (2013-2017). All patients received prophylactic antibiotics on arrival on the basis of the best judgment of classification by the house officer on call. The final Gustilo-Anderson open fracture classification was assigned intra-operatively by the operating surgeon. Two groups were created, a GP antibiotic group (cefazolin and/or clindamycin) and a BS group (PT). A minimum of 3-month follow-up was required for inclusion. Patient demographics, cost of treatment, fracture-related infection (FRI) rates, and infecting bacteria were assessed. Results: The GP group contained 70 open fractures and the BS group contained 74 open fractures. Between the groups, there were no differences in age, sex, race, Body Mass Index, American Society of Anesthesiologists Class, or smoking status. There were no statistical differences in Injury Severity Score (ISS), fracture location, fixation method, or rates of staged management with external fixation. There was no difference in FRI rate between the GP and BS groups (8.6% versus 10.8%; p = 0.78). The bacteria responsible for FRI were similar in the GP and BS groups. The hospital charge for PT was 4.39 × the cost of cefazolin. Conclusions: The use of BS coverage in Type II open fractures does not result in a lower infection rate and adds significant cost to patient care. These data support the use of a GP-only antibiotic regimen for Type II open fractures.
Collapse
Affiliation(s)
- Thompson McMurtrie
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John Prather
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ryan Cone
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tyler Montgomery
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chirag Patel
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gerald McGwin
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Clay Spitler
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
36
|
Yang Q, Pogue JM, Li Z, Nation RL, Kaye KS, Li J. Agents of Last Resort: An Update on Polymyxin Resistance. Infect Dis Clin North Am 2020; 34:723-750. [PMID: 33011049 DOI: 10.1016/j.idc.2020.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymyxin resistance is a major public health threat, because the polymyxins represent last-line therapeutics for gram-negative pathogens resistant to essentially all other antibiotics. Minimizing any potential emergence and dissemination of polymyxin resistance relies on an improved understanding of mechanisms of and risk factors for polymyxin resistance, infection prevention and stewardship strategies, together with optimization of dosing of polymyxins (eg, combination regimens).
Collapse
Affiliation(s)
- Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.9 Dongdan Santiao, Dongcheng District, Beijing, China.
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Zekun Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.9 Dongdan Santiao, Dongcheng District, Beijing, China
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Keith S Kaye
- Department of Internal Medicine, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Jian Li
- Laboratory of Antimicrobial Systems Pharmacology, Department of Microbiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
37
|
Kamurai B, Mombeshora M, Mukanganyama S. Repurposing of Drugs for Antibacterial Activities on Selected ESKAPE Bacteria Staphylococcus aureus and Pseudomonas aeruginosa. Int J Microbiol 2020; 2020:8885338. [PMID: 33061985 PMCID: PMC7542517 DOI: 10.1155/2020/8885338] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Increasing cases of multidrug-resistant pathogens have evolved into a global health crisis. ESKAPE group of bacteria are associated with antibiotic resistance, and infections caused by these pathogens result in high mortality and morbidity. However, de novo synthesis of antibiotics is expensive and time-consuming since the development of a new drug has to go through several clinical trials. Repurposing of old drugs for the treatment of antimicrobial resistant pathogens has been explored as an alternative strategy in the field of antimicrobial drug discovery. Ten non-antimicrobial compounds were screened for antibacterial activity on two ESKAPE organisms, Staphylococcus aureus and Pseudomonas aeruginosa. The drugs used in this study were amodiaquine an antimalarial drug, probenecid used to prevent gout, ibuprofen a painkiller, 2-amino-5-chlorobenzaxazole used as a tool for assessing hepatic cytochrome P450 activity in rodents, ellargic acid an antioxidant, quercetin an antioxidant and anti-inflammatory drug, N-N diacryloylpiperazine used to crosslink polyacrylamide gel in 2D-protein electrophoresis, epicatechin an antioxidant and antiviral drug, curcumin an anticancer drug, and quinine an antimalarial drug. Antibacterial susceptibility tests were carried out for the 10 compounds. Curcumin exhibited the most potent antimicrobial activity against both bacteria, with MICs of 50 μg/ml and 100 μg/ml for P. aeruginosa and S. aureus, respectively. Ellargic acid was found to have an MIC of 100 μg/ml against S. aureus. Curcumin caused protein and nucleic acid leakage from the bacterial cell membrane in both bacterial species. When curcumin was combined with ciprofloxacin, it was found to enhance the antibacterial effects of ciprofloxacin. The combination with ciprofloxacin reduced the MIC for ciprofloxacin from 0.5 μg/ml to 0.0625 μg/ml on P. aeruginosa and 0.25 μg/ml to 0.0625 μg/ml on S. aureus. The results obtained show that curcumin has antibacterial activity against S. aureus and P. aeruginosa and may enhance the antibacterial activity of ciprofloxacin.
Collapse
Affiliation(s)
- Bridget Kamurai
- Department of Biochemistry, University of Zimbabwe, P.O. Box MP 167 Mt. Pleasant, Harare, Zimbabwe
| | - Molly Mombeshora
- Department of Biochemistry, University of Zimbabwe, P.O. Box MP 167 Mt. Pleasant, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Department of Biochemistry, University of Zimbabwe, P.O. Box MP 167 Mt. Pleasant, Harare, Zimbabwe
| |
Collapse
|
38
|
Kronenfeld N, Zilberman-Itskovich S, Lazarovitch T, Zaidenstein R, Saadon H, Maya T, Katz DE, Marchaim D. The impact of improper empirical usage of antipseudomonals on admission to an acute care hospital. J Glob Antimicrob Resist 2020; 22:5-8. [DOI: 10.1016/j.jgar.2019.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023] Open
|
39
|
Jalde SS, Choi HK. Recent advances in the development of β-lactamase inhibitors. J Microbiol 2020; 58:633-647. [PMID: 32720096 DOI: 10.1007/s12275-020-0285-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
β-Lactam antibiotics are the most commonly prescribed antibiotics worldwide; however, antimicrobial resistance (AMR) is a global challenge. The β-lactam resistance in Gram-negative bacteria is due to the production of β-lactamases, including extended-spectrum β-lactamases, metallo-β-lactamases, and carbapenem-hydrolyzing class D β-lactamases. To restore the efficacy of BLAs, the most successful strategy is to use them in combination with β-lactamase inhibitors (BLI). Here we review the medically relevant β-lactamase families and penicillins, diazabicyclooctanes, boronic acids, and novel chemical scaffold-based BLIs, in particular approved and under clinical development.
Collapse
Affiliation(s)
- Shivakumar S Jalde
- Department of Medicinal Chemistry, Jungwon University, Goesan, 28420, Republic of Korea
| | - Hyun Kyung Choi
- Department of Medicinal Chemistry, Jungwon University, Goesan, 28420, Republic of Korea.
| |
Collapse
|
40
|
Bouganim R, Dykman L, Fakeh O, Motro Y, Oren R, Daniel C, Lazarovitch T, Zaidenstein R, Moran-Gilad J, Marchaim D. The Clinical and Molecular Epidemiology of Noncarbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae: A Case-Case-Control Matched Analysis. Open Forum Infect Dis 2020; 7:ofaa299. [PMID: 32855986 PMCID: PMC7443108 DOI: 10.1093/ofid/ofaa299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Risk factors and outcomes associated with carbapenem-resistant Enterobacteriaceae (CRE) acquisitions are derived primarily from cohorts consisting of carbapenemase-producing (CP) strains. Worldwide epidemiology of non-CP-CRE is evolving, but controlled epidemiological analyses are lacking. Methods A matched case-case-control investigation was conducted at Shamir (Assaf Harofeh) Medical Center, Israel, on November 2014–December 2016. Noncarbapenemase-producing CRE (as defined by the US Clinical and Laboratory Standards Institute Standards) carriers were matched to patients with non-CRE Enterobacterales and to uninfected controls (1:1:1 ratio). Matched and nonmatched multivariable regression models were constructed to analyze predictors for acquisition and the independent impact of carriage on multiple outcomes, respectively. Representative isolates were whole genome sequenced and analyzed for resistome and phylogeny. Results Noncarbapenemase-producing CRE carriers (n = 109) were matched to the 2 comparative groups (overall n = 327). Recent exposure to antibiotics (but not specifically to carbapenems), prior intensive care unit admission, and chronic skin ulcers were all independent predictors for non-CP-CRE acquisition. Acquisitions were almost exclusively associated with asymptomatic carriage (n = 104), and despite strong associations per univariable analyses, none were independently associated with worse outcomes. Genomic analyses of 13 representative isolates revealed polyclonality, confirmed the absence of carbapenemases, but confirmed the coexistence of multiple other genes contributing to carbapenem-resistance phenotype (multiple beta-lactamases and efflux pumps). Conclusions Noncarbapenemase-producing CRE acquisitions are primarily associated with asymptomatic carriage, specifically among prone populations with extensive recent exposures to antibiotics. The prevalent mode of acquisition is “emergence of resistance” (not “patient-to-patient transmission”), and therefore the role of stewardship interventions in reducing the spread of these therapeutically challenging pathogens should be further explored.
Collapse
Affiliation(s)
- Ruth Bouganim
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Liana Dykman
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Omar Fakeh
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Yair Motro
- Department of Health Systems Management, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rivka Oren
- Department of Health Systems Management, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chen Daniel
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Tzilia Lazarovitch
- Clinical Microbiology Laboratory, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Ronit Zaidenstein
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Medicine A, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Jacob Moran-Gilad
- Department of Health Systems Management, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dror Marchaim
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| |
Collapse
|
41
|
Deelen JWT, Rottier WC, Giron Ortega JA, Rodriguez-Baño J, Harbarth S, Tacconelli E, Jacobsson G, Zahar JR, van Werkhoven CH, Bonten MJM. An international prospective cohort study to validate two prediction rules for infections caused by 3rd-generation cephalosporin-resistant Enterobacterales. Clin Infect Dis 2020; 73:e4475-e4483. [PMID: 32640024 PMCID: PMC8849131 DOI: 10.1093/cid/ciaa950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background The possibility of bloodstream infections caused by third-generation cephalosporin-resistant Enterobacterales (3GC-R-BSI) leads to a trade-off between empiric inappropriate treatment (IAT) and unnecessary carbapenem use (UCU). Accurately predicting 3GC-R-BSI could reduce IAT and UCU. We externally validate 2 previously derived prediction rules for community-onset (CO) and hospital-onset (HO) suspected bloodstream infections. Methods In 33 hospitals in 13 countries we prospectively enrolled 200 patients per hospital in whom blood cultures were obtained and intravenous antibiotics with coverage for Enterobacterales were empirically started. Cases were defined as 3GC-R-BSI or 3GC-R gram-negative infection (3GC-R-GNI) (analysis 2); all other outcomes served as a comparator. Model discrimination and calibration were assessed. Impact on carbapenem use was assessed at several cutoff points. Results 4650 CO infection episodes were included and the prevalence of 3GC-R-BSI was 2.1% (n = 97). IAT occurred in 69 of 97 (71.1%) 3GC-R-BSI and UCU in 398 of 4553 non–3GC-R-BSI patients (8.7%). Model calibration was good, and the AUC was .79 (95% CI, .75–.83) for 3GC-R-BSI. The prediction rule potentially reduced IAT to 62% (60/97) while keeping UCU comparable at 8.4% or could reduce UCU to 6.3% (287/4553) while keeping IAT equal. IAT and UCU in all 3GC-R-GNIs (analysis 2) improved at similar percentages. 1683 HO infection episodes were included and the prevalence of 3GC-R-BSI was 4.9% (n = 83). Here model calibration was insufficient. Conclusions A prediction rule for CO 3GC-R infection was validated in an international cohort and could improve empirical antibiotic use. Validation of the HO rule yielded suboptimal performance.
Collapse
Affiliation(s)
- J W Timotëus Deelen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter C Rottier
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - José A Giron Ortega
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/Departamento de Medicina, Universidad de Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Jesús Rodriguez-Baño
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/Departamento de Medicina, Universidad de Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Stephan Harbarth
- Infection Control Program, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Gunnar Jacobsson
- Region Västra Götaland, Skaraborg Hospital, Department of Infectious Diseases, Skövde, Sweden
| | - Jean-Ralph Zahar
- IAME, UMR 1137, Université Paris 13, Sorbonne Paris Cité, France; Service de Microbiologie Clinique et Unité de Contrôle et de Prévention Du Risque Infectieux, Groupe Hospitalier Paris Seine Saint-Denis, AP-HP, Rue de Stalingrad, Bobigny, France
| | - Cornelis H van Werkhoven
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
42
|
Simoska O, Stevenson KJ. Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst 2020; 144:6461-6478. [PMID: 31603150 DOI: 10.1039/c9an01747j] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbial infections remain the principal cause for high morbidity and mortality rates. While approximately 1400 human pathogens have been recognized, the majority of healthcare-associated infectious diseases are caused by only a few opportunistic pathogens (e.g., Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli), which are associated with increased antibiotic and antimicrobial resistance. Rapid detection, reliable identification and real-time monitoring of these pathogens remain not only a scientific problem but also a practical challenge of vast importance, especially in tailoring effective treatment strategies. Although the development of vaccinations and antibacterial drug treatments are the leading research, progress, and implementation of early warning, quantitative systems indicative of confirming pathogen presence are necessary. Over the years, various approaches, such as conventional culturing, straining, molecular methods (e.g., polymerase chain reaction and immunological assays), microscopy-based and mass spectrometry techniques, have been employed to identify and quantify pathogenic agents. While being sensitive in some cases, these procedures are costly, time-consuming, mostly qualitative, and are indirect detection methods. A great challenge is therefore to develop rapid, highly sensitive, specific devices with adequate figures of merit to corroborate the presence of microbes and enable dynamic real-time measurements of metabolism. As an alternative, electrochemical sensor platforms have been developed as powerful quantitative tools for label-free detection of infection-related biomarkers with high sensitivity. This minireview is focused on the latest electrochemical-based approaches for pathogen sensing, putting them into the context of standard sensing methods, such as cell culturing, mass spectrometry, and fluorescent-based approaches. Description of the latest, impactful electrochemical sensors for pathogen detection will be presented. Recent breakthroughs will be highlighted, including the use of micro- and nano-electrode arrays for real-time detection of bacteria in polymicrobial infections and microfluidic devices for pathogen separation analysis. We will conclude with perspectives and outlooks to understand shortcomings in designing future sensing schemes. The need for high sensitivity and selectivity, low-cost implementation, fast detection, and screening increases provides an impetus for further development in electrochemical detectors for microorganisms and biologically relevant targets.
Collapse
Affiliation(s)
- Olja Simoska
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, TX 78712, USA
| | | |
Collapse
|
43
|
Synergy between Florfenicol and Aminoglycosides against Multidrug-Resistant Escherichia coli Isolates from Livestock. Antibiotics (Basel) 2020; 9:antibiotics9040185. [PMID: 32316130 PMCID: PMC7235850 DOI: 10.3390/antibiotics9040185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 11/21/2022] Open
Abstract
The increasing prevalence of antimicrobial resistance and the laborious development of novel antimicrobial agents have limited the options for effective antimicrobial therapy. The combination of previously used antimicrobial agents represents an alternative therapy for multidrug-resistant (MDR) pathogens. The objective of this study was to investigate the synergistic effect of a florfenicol (FFL)-based combination with other antimicrobial agents against MDR Escherichia coli isolates from livestock using checkerboard assays and murine infection models. The FFL/amikacin (AMK) and FFL/gentamicin (GEN) combinations showed synergy against 10/11 and 6/11 MDR E. coli isolates in vitro, respectively. The combination of FFL with aminoglycosides (AMK or GEN) exhibited a better synergistic effect against MDR E. coli isolates than the cephalothin (CEF)/GEN or FFL/CEF combinations. The combination of FFL with AMK or GEN could reduce the emergence of resistant mutants in vitro. The FFL/AMK combination showed a higher survival rate of mice infected with MDR E. coli isolates than FFL or AMK alone. In summary, the combination of FFL with aminoglycosides (AMK or GEN) is highly effective against MDR E. coli isolates both in vitro and in vivo. Our findings may contribute to the discovery of an effective combination regimen against MDR E. coli infections in veterinary medicine.
Collapse
|
44
|
Costa SP, Dias NM, Melo LDR, Azeredo J, Santos SB, Carvalho CM. A novel flow cytometry assay based on bacteriophage-derived proteins for Staphylococcus detection in blood. Sci Rep 2020; 10:6260. [PMID: 32277078 PMCID: PMC7148305 DOI: 10.1038/s41598-020-62533-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Bloodstream infections (BSIs) are considered a major cause of death worldwide. Staphylococcus spp. are one of the most BSIs prevalent bacteria, classified as high priority due to the increasing multidrug resistant strains. Thus, a fast, specific and sensitive method for detection of these pathogens is of extreme importance. In this study, we have designed a novel assay for detection of Staphylococcus in blood culture samples, which combines the advantages of a phage endolysin cell wall binding domain (CBD) as a specific probe with the accuracy and high-throughput of flow cytometry techniques. In order to select the biorecognition molecule, three different truncations of the C-terminus of Staphylococcus phage endolysin E-LM12, namely the amidase (AMI), SH3 and amidase+SH3 (AMI_SH3) were cloned fused with a green fluorescent protein. From these, a higher binding efficiency to Staphylococcus cells was observed for AMI_SH3, indicating that the amidase domain possibly contributes to a more efficient binding of the SH3 domain. The novel phage endolysin-based flow cytometry assay provided highly reliable and specific detection of 1-5 CFU of Staphylococcus in 10 mL of spiked blood, after 16 hours of enrichment culture. Overall, the method developed herein presents advantages over the standard BSIs diagnostic methods, potentially contributing to an early and effective treatment of BSIs.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Nicolina M Dias
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sílvio B Santos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carla M Carvalho
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.
| |
Collapse
|
45
|
Lewis R, Clooney AG, Stockdale SR, Buttimer C, Draper LA, Ross RP, Hill C. Isolation of a Novel Jumbo Bacteriophage Effective Against Klebsiella aerogenes. Front Med (Lausanne) 2020; 7:67. [PMID: 32185177 PMCID: PMC7058600 DOI: 10.3389/fmed.2020.00067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing levels of bacterial resistance to many common and last resort antibiotics has increased interest in finding new treatments. The low rate of approval of new antibiotics has led to the search for new and alternative antimicrobial compounds. Bacteriophages (phages) are bacterial viruses found in almost every environment. Phage therapy was historically investigated to control bacterial infections and is still in use in Georgia and as a treatment of last resort. Phage therapy is increasingly recognized as an alternative antimicrobial treatment for antibiotic resistant pathogens. A novel lytic Klebsiella aerogenes phage N1M2 was isolated from maize silage. Klebsiella aerogenes, a member of the ESKAPE bacterial pathogens, is an important target for new antimicrobial therapies. Klebsiella aerogenes can form biofilms on medical devices which aids its environmental persistence and for this reason we tested the effect of phage N1M2 against biofilms. Phage N1M2 successfully removed a pre-formed Klebsiella aerogenes biofilm. Biofilm assays were also carried out with Staphylococcus aureus and Phage K. Phage K successfully removed a preformed Staphylococcus aureus biofilm. Phage N1M2 and Phage K in combination were significantly better at removing a mixed community biofilm of Klebsiella aerogenes and Staphylococcus aureus than either phage alone.
Collapse
Affiliation(s)
- Rhea Lewis
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
46
|
Ma Y, Wang C, Li Y, Li J, Wan Q, Chen J, Tay FR, Niu L. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901872. [PMID: 31921562 PMCID: PMC6947519 DOI: 10.1002/advs.201901872] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Indexed: 05/19/2023]
Abstract
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are among the most common opportunistic pathogens in nosocomial infections. ESKAPE pathogens distinguish themselves from normal ones by developing a high level of antibiotic resistance that involves multiple mechanisms. Contemporary therapeutic strategies which are potential options in combating ESKAPE bacteria need further investigation. Herein, a broad overview of the antimicrobial research on ESKAPE pathogens over the past five years is provided with prospective clinical applications.
Collapse
Affiliation(s)
- Yu‐Xuan Ma
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Chen‐Yu Wang
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Yuan‐Yuan Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Jing Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Ji‐Hua Chen
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Franklin R. Tay
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| | - Li‐Na Niu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| |
Collapse
|
47
|
Ignorance of pre-ED healthcare setting is a factor leading to inappropriate initial antibiotic treatment of sepsis in ED and poor outcomes in ICU. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 53:532-541. [PMID: 31917133 DOI: 10.1016/j.jmii.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/01/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Appropriate initial antibiotic therapy is critical for successfully treating sepsis. In the emergency department (ED), clinicians often rely on septic symptoms to guide empirical therapy. The aim of this study was to investigate whether history of contacting pre-ED healthcare setting is easy to be neglected and whether the patients received more inappropriate initial antibiotic therapy and developed poorer outcomes. METHODS Septic patients (n = 453) admitted from ED to the intensive care unit (ICU) between 2014 and 2017 were retrospectively selected. Appropriate antibiotic treatment or not was determined by checking whether the selected antibiotics can effectively eradicate the bacteria identified. Various indexes were compared between patients with appropriate and inappropriate initial antibiotic treatments, including septic symptoms (qSOFA scores) in ED, septic-severity change in ICU (SOFA-score ratios), and septic outcomes (APACHE II scores, stay length, 30-day survival probability). These indexes were also compared between pre-ED healthcare and pre-ED community patients. RESULTS In comparison with pre-ED community patients, pre-ED healthcare patients received more inappropriate initial antibiotic treatment in ED, showing poorer outcomes in ICU, including septic severity, stay-lengths in ICU and 30-day survival probabilities. Pre-ED settings is more significant than qSOFA scores to predict the inappropriate initial antibiotic treatment. CONCLUSIONS Pre-ED healthcare settings, which are indexes for infection with antibiotic resistant pathogens, are easy to be neglected in the first hour in ED. We suggested that standard operating procedure for getting enough information of pre-ED settings should be incorporated to the 1 h bundle of sepsis guideline.
Collapse
|
48
|
Karlowsky JA, Lob SH, Kazmierczak KM, Hawser SP, Magnet S, Young K, Motyl MR, Sahm DF. In vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens isolated in 17 European countries: 2015 SMART surveillance programme. J Antimicrob Chemother 2019; 73:1872-1879. [PMID: 29659861 DOI: 10.1093/jac/dky107] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/07/2018] [Indexed: 11/14/2022] Open
Abstract
Objectives Relebactam is an inhibitor of class A β-lactamases, including KPC β-lactamases, and class C β-lactamases, and is currently under clinical development in combination with imipenem. The objective of the current study was to evaluate the in vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) submitted by clinical laboratories in 17 European countries to the Study for Monitoring Antimicrobial Resistance Trends (SMART) global surveillance programme in 2015. Methods MICs were determined using the CLSI standard broth microdilution method and interpreted using EUCAST clinical breakpoints. Relebactam was tested at a fixed concentration of 4 mg/L in combination with doubling dilutions of imipenem. Imipenem/relebactam MICs were interpreted using breakpoints for imipenem. Results Rates of susceptibility to imipenem and imipenem/relebactam for isolates of P. aeruginosa (n = 1705), K. pneumoniae (n = 1591) and Enterobacter spp. (n = 772) were 72.0/94.7%, 88.7/94.8% and 95.6/96.8%, respectively. Relebactam restored imipenem susceptibility to 81.1%, 54.2% and 26.5% of imipenem-non-susceptible isolates of P. aeruginosa (n = 477), K. pneumoniae (n = 179) and Enterobacter spp. (n = 34). Most imipenem/relebactam-non-susceptible isolates carried MBLs, OXA-48 or GES carbapenemases. Relebactam did not increase the number of isolates of A. baumannii (n = 486) susceptible to imipenem. Conclusions Relebactam restored susceptibility to imipenem for the majority of imipenem-non-susceptible isolates of P. aeruginosa and K. pneumoniae tested as well as some isolates of imipenem-non-susceptible Enterobacter spp. Based on our results, imipenem/relebactam appears to be a promising therapeutic option for treating patients with infections caused by antimicrobial-resistant Gram-negative bacilli.
Collapse
Affiliation(s)
- James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sibylle H Lob
- International Health Management Associates, Inc., Schaumburg, IL, USA
| | | | | | | | | | | | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, IL, USA
| |
Collapse
|
49
|
Sha AM, Garib BT. Antibacterial Effect of Curcumin against Clinically Isolated Porphyromonas gingivalis and Connective Tissue Reactions to Curcumin Gel in the Subcutaneous Tissue of Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6810936. [PMID: 31687395 PMCID: PMC6794974 DOI: 10.1155/2019/6810936] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
The aim of this study was to find the antibacterial potential of curcumin against Porphyromonas gingivalis and connective tissue responses to curcumin gel in the subcutaneous tissue of rats. The sample consisted of subgingival plaque collected from patients with chronic periodontitis. The P. gingivalis clinically isolated strain was confirmed by anaerobic culture, morphology, biochemical tests (Vitek ANC Kit), and PCR (16S rDNA). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by incubation of twofold serial dilution of broth media containing curcumin (from 100 to 0.05 µg/ml) for 48 h at 37°C. Fifteen adult Wistar rats (3-4 months old) were used and randomly divided into three groups (negative control, positive control, and experimental groups). Tubes were implanted on the back skin (45 tubes). Rats were euthanized at 7, 30, and 60 days after surgical processes, and then the samples were taken and processed to achieve conventional hematoxylin and eosin-stained slides. The MIC and MBC of curcumin against clinically isolated P. gingivalis were 12 µg/ml. Curcumin gel caused moderate inflammatory reactions at 7 and 30 days, while at 60 days, it caused dramatic decline and resulted in a nonsignificant response. Besides, curcumin gel stimulated quick reepithelialization, fibroblast proliferation, and scarring through the formation of thick bundles of well-organized collagen fibers. Curcumin has an effective antibacterial action against clinically isolated P. gingivalis at low concentration (12 µg/ml), and it was regarded as the biocompatible material in the subcutaneous tissues.
Collapse
Affiliation(s)
- Aram Mohammed Sha
- Department of Periodontology, College of Dentistry, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Balkees Taha Garib
- Department of Oral Pathology, College of Dentistry, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| |
Collapse
|
50
|
Kim D, Kwon SJ, Sauve J, Fraser K, Kemp L, Lee I, Nam J, Kim J, Dordick JS. Modular Assembly of Unique Chimeric Lytic Enzymes on a Protein Scaffold Possessing Anti-Staphylococcal Activity. Biomacromolecules 2019; 20:4035-4043. [PMID: 31524374 DOI: 10.1021/acs.biomac.9b01134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lytic enzymes have been considered as potential alternatives to antibiotics. These enzymes, particularly those that target Gram-positive bacteria, consist of modular cell wall-binding and catalytic domains, which can be shuffled with those of other lytic enzymes to produce unnatural chimeric enzymes. In this work, we report the in vitro shuffling of two different modular domains using a protein self-assembly methodology. Catalytic domains (CD) and cell wall-binding domains (BD) from the bacteriocin lysostaphin (Lst) and a putative autolysin from Staphylococcus aureus (SA1), respectively, were genetically site-specifically biotinylated and assembled with streptavidin to generate 23 permuted chimeras. The specific assembly of a CD (3 equiv) and a BD (1 equiv) from Lst and SA1, respectively [CDL-BDS (3:1)], on a streptavidin scaffold yielded high lytic activity against S. aureus (at least 5.6 log reduction), which was higher than that obtained with either native Lst or SA1 alone. Moreover, at 37 °C, the initial rate of cell lysis was over 3-fold higher than that with free Lst, thereby revealing the unique catalytic properties of the chimeric proteins. In vitro self-assembly of functional domains from modular lytic enzymes on a protein scaffold likely expands the repertoire of bactericidal enzymes with improved activities.
Collapse
Affiliation(s)
- Domyoung Kim
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Jessica Sauve
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Keith Fraser
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Leighann Kemp
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Inseon Lee
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Jahyun Nam
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| |
Collapse
|