1
|
Vineeth VK, Babu S, Reshma TR, Philip S, Prem E. Exhaustive identification and characterization of Colletotrichum siamense and Colletotrichum fructicola as causative agents of circular leaf spot disease of rubber tree (Hevea brasiliensis) in India. Fungal Biol 2024; 128:1907-1916. [PMID: 39059846 DOI: 10.1016/j.funbio.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024]
Abstract
The rubber tree (Hevea brasiliensis) is one of the major domesticated crops planted commercially for the production of natural rubber (NR) worldwide. In recent years, rubber trees in the Southern states of India and other rubber-producing countries have experienced a severe leaf spot disease, characterized by the appearance of several brown circular spots in the initial stage, which later spread all over the lamina of fully matured leaves, leading to yellowing and defoliation. The causal organism of this Circular Leaf Spot (CLS) disease has not been conclusively identified in any previous studies. In this study, we collected infected leaf samples from various locations in the South Indian states. We aimed to identify the actual fungal pathogen that causes the CLS disease on rubber trees. Based on the morphological and molecular analysis of the most frequently isolated fungi from infected leaf samples were identified as Colletotrichum siamense and Colletotrichum fructicola. Pathogenicity tests also confirmed the involvement of isolated Colletotrichum spp. in the development of CLS disease. These findings provide valuable insights into understanding the CLS disease and its impact on rubber cultivation. To our knowledge, it is the first report of C. siamense and C. fructicola associated with CLS disease of rubber trees in India.
Collapse
Affiliation(s)
- V K Vineeth
- Rubber Research Institute of India, Kottayam, Kerala, 686009, India.
| | - Shilpa Babu
- Rubber Research Institute of India, Kottayam, Kerala, 686009, India.
| | - T R Reshma
- Rubber Research Institute of India, Kottayam, Kerala, 686009, India.
| | - Shaji Philip
- Rubber Research Institute of India, Kottayam, Kerala, 686009, India.
| | - Edwin Prem
- Rubber Research Institute of India, Kottayam, Kerala, 686009, India.
| |
Collapse
|
2
|
Tata A, Zacometti C, Massaro A, Bragolusi M, Ceroni S, Falappa S, Prataviera D, Merenda M, Piro R, Catania S. Empowering veterinary clinical diagnosis in industrial poultry production by ambient mass spectrometry and chemiometrics: a new approach for precise poultry farming. Poult Sci 2024; 103:103709. [PMID: 38598914 PMCID: PMC11017065 DOI: 10.1016/j.psj.2024.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Untargeted metabolomic profiling, by ambient mass spectrometry and chemometric tools, has made a dramatic impact on human disease detection. In a similar vein, this study attempted the translation of this clinical human disease experience to farmed poultry for precise veterinary diagnosis. As a proof of principle, in this diagnostic/prognostic study, direct analysis in real-time high resolution mass spectrometry (DART-HRMS) was used in an untargeted manner to analyze fresh tissues (abdominal fat, leg skin, liver, and leg muscle) of pigmented and non-pigmented broilers to investigate the causes of lack of pigmentation in an industrial poultry farm. Afterwards, statistical analysis was applied to the DART-HRMS data to retrieve the molecular features that codified for 2 broiler groups, that is, properly pigmented and non-pigmented broilers. Higher abundance of oxidized lipids, high abundance of oxidized bile derivatives, and lower levels of tocopherol isomers (Vitamin E) and retinol (Vitamin A) were captured in nonpigmented than in pigmented broilers. In addition, conventional rapid analyses were used: 1) color parameters of the tissues of pigmented and non-pigmented broilers were measured to rationalize the color differences in abdominal fat, leg skin and leg muscle, and 2) macronutrients were determined in broiler leg muscle, to capture a detailed picture of the pathology and exclude other possible causes. In this study, the DART-HRMS system performed well in retrieving valuable chemical information from broilers that explained the differences between the 2 groups of broilers in absorption of xanthophylls and the subsequent lack of proper broiler pigmentation in affected broilers. The results suggest this technology could be useful in providing near real-time feedback to aid in veterinary decision-making in poultry farming.
Collapse
Affiliation(s)
- Alessandra Tata
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy.
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Andrea Massaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Marco Bragolusi
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Simona Ceroni
- Fileni Alimentare SPA, Località Cerrete Collicelli N° 8, Cingoli, Macerata 62011, Italy
| | - Sonia Falappa
- Fileni Alimentare SPA, Località Cerrete Collicelli N° 8, Cingoli, Macerata 62011, Italy
| | - Davide Prataviera
- Avian Medicine Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Buttapietra, Verona 37060, Italy
| | - Marianna Merenda
- Avian Medicine Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Buttapietra, Verona 37060, Italy
| | - Roberto Piro
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salvatore Catania
- Avian Medicine Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Buttapietra, Verona 37060, Italy
| |
Collapse
|
3
|
Spatz S, Afonso CL. Non-Targeted RNA Sequencing: Towards the Development of Universal Clinical Diagnosis Methods for Human and Veterinary Infectious Diseases. Vet Sci 2024; 11:239. [PMID: 38921986 PMCID: PMC11209166 DOI: 10.3390/vetsci11060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Metagenomics offers the potential to replace and simplify classical methods used in the clinical diagnosis of human and veterinary infectious diseases. Metagenomics boasts a high pathogen discovery rate and high specificity, advantages absent in most classical approaches. However, its widespread adoption in clinical settings is still pending, with a slow transition from research to routine use. While longer turnaround times and higher costs were once concerns, these issues are currently being addressed by automation, better chemistries, improved sequencing platforms, better databases, and automated bioinformatics analysis. However, many technical options and steps, each producing highly variable outcomes, have reduced the technology's operational value, discouraging its implementation in diagnostic labs. We present a case for utilizing non-targeted RNA sequencing (NT-RNA-seq) as an ideal metagenomics method for the detection of infectious disease-causing agents in humans and animals. Additionally, to create operational value, we propose to identify best practices for the "core" of steps that are invariably shared among many human and veterinary protocols. Reference materials, sequencing procedures, and bioinformatics standards should accelerate the validation processes necessary for the widespread adoption of this technology. Best practices could be determined through "implementation research" by a consortium of interested institutions working on common samples.
Collapse
Affiliation(s)
- Stephen Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA;
| | | |
Collapse
|
4
|
Ria F, Delogu G, Ingrosso L, Sali M, Di Sante G. Secrets and lies of host-microbial interactions: MHC restriction and trans-regulation of T cell trafficking conceal the role of microbial agents on the edge between health and multifactorial/complex diseases. Cell Mol Life Sci 2024; 81:40. [PMID: 38216734 PMCID: PMC11071949 DOI: 10.1007/s00018-023-05040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 01/14/2024]
Abstract
Here we critically discuss data supporting the view that microbial agents (pathogens, pathobionts or commensals alike) play a relevant role in the pathogenesis of multifactorial diseases, but their role is concealed by the rules presiding over T cell antigen recognition and trafficking. These rules make it difficult to associate univocally infectious agents to diseases' pathogenesis using the paradigm developed for canonical infectious diseases. (Cross-)recognition of a variable repertoire of epitopes leads to the possibility that distinct infectious agents can determine the same disease(s). There can be the need for sequential infection/colonization by two or more microorganisms to develop a given disease. Altered spreading of infectious agents can determine an unwanted activation of T cells towards a pro-inflammatory and trafficking phenotype, due to differences in the local microenvironment. Finally, trans-regulation of T cell trafficking allows infectious agents unrelated to the specificity of T cell to modify their homing to target organs, thereby driving flares of disease. The relevant role of microbial agents in largely prevalent diseases provides a conceptual basis for the evaluation of more specific therapeutic approaches, targeted to prevent (vaccine) or cure (antibiotics and/or Biologic Response Modifiers) multifactorial diseases.
Collapse
Affiliation(s)
- F Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - G Delogu
- Mater Olbia Hospital, 07026, Olbia, Italy
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
| | - L Ingrosso
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - M Sali
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
- Department of Laboratory and Infectivology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - G Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132, Perugia, Italy.
| |
Collapse
|
5
|
Guo C, Wu JY. Pathogen Discovery in the Post-COVID Era. Pathogens 2024; 13:51. [PMID: 38251358 PMCID: PMC10821006 DOI: 10.3390/pathogens13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Pathogen discovery plays a crucial role in the fields of infectious diseases, clinical microbiology, and public health. During the past four years, the global response to the COVID-19 pandemic highlighted the importance of early and accurate identification of novel pathogens for effective management and prevention of outbreaks. The post-COVID era has ushered in a new phase of infectious disease research, marked by accelerated advancements in pathogen discovery. This review encapsulates the recent innovations and paradigm shifts that have reshaped the landscape of pathogen discovery in response to the COVID-19 pandemic. Primarily, we summarize the latest technology innovations, applications, and causation proving strategies that enable rapid and accurate pathogen discovery for both acute and historical infections. We also explored the significance and the latest trends and approaches being employed for effective implementation of pathogen discovery from various clinical and environmental samples. Furthermore, we emphasize the collaborative nature of the pandemic response, which has led to the establishment of global networks for pathogen discovery.
Collapse
Affiliation(s)
- Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Jian-Yong Wu
- School of Public Health, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
6
|
Heitzman JM, Mitushasi G, Spatafora D, Agostini S. Seasonal coral-algae interactions drive White Mat Syndrome coral disease outbreaks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166379. [PMID: 37595912 DOI: 10.1016/j.scitotenv.2023.166379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Ocean warming drives not only the increase of known coral disease prevalence but facilitates the emergence of new undescribed ones too. As climate change is restructuring coral ecosystems, novel biological interactions could lead to an increase in coral disease in both tropical and marginal coral communities. White Mat Syndrome (WMS) represents one such emerging coral disease, with outbreaks associated with high algal interactions and seasonal summer temperatures. However, the mechanisms behind its pathogenesis, modes of transmission and causative pathogens remain to be identified. Ex situ infection experiments pairing the coral Porites heronensis together with local potential contributory factors show that the macroalga Gelidium elegans hosts and proliferates the WMS microbial mat. This pathogenic consortium then infects adjacent corals, leading to their mortality. WMS was also observed to transmit following the fragmentation of the microbial mat, which was able to infect healthy corals. Sulfur-cycling bacteria (i.e., Beggiatoa, Desulfobacter sp., Arcobacteraceae species) and the free-living spirochete Oceanospirochaeta sediminicola were found consistently in both WMS and G. elegans consortia, suggesting they are putative pathogens of WMS. The predicted functional roles of these pathogenic consortia showed degradative processes, hinting that tissue lyses could drive mat formation and spread. Coral-algae interactions will rise due to ongoing ocean warming and coral ecosystem degradation, likely promoting the virulence and prevalence of algal-driven coral diseases.
Collapse
Affiliation(s)
- Joshua M Heitzman
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan.
| | - Guinther Mitushasi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan
| | - Davide Spatafora
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan
| |
Collapse
|
7
|
Hou D, Lian T, Guo G, Gong H, Wu C, Han P, Weng S, He J. Integration of microbiome and Koch's postulates to reveal multiple bacterial pathogens of whitish muscle syndrome in mud crab, Scylla paramamosain. MICROBIOME 2023; 11:155. [PMID: 37475003 PMCID: PMC10357871 DOI: 10.1186/s40168-023-01570-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/12/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND For more than a century, the Koch's postulates have been the golden rule for determining the causative agents in diseases. However, in cases of multiple pathogens-one disease, in which different pathogens can cause the same disease, the selection of microorganisms that regress infection is hard when Koch's postulates are applied. Microbiome approaches can obtain relatively complete information about disease-related microorganisms and can guide the selection of target microorganisms for regression infection. In the present study, whitish muscle syndrome (WMS) of Scylla paramamosain, which has typical symptoms with whitish muscle and blackened hemolymph was used as an example to establish a new research strategy that integrates microbiome approaches and Koch's postulates to determinate causative agents of multiple pathogens-one disease. RESULTS Microbiome results revealed that Aeromonas, Acinetobacter, Shewanella, Chryseomicrobium, Exiguobacterium, Vibrio and Flavobacterium, and Kurtzmaniella in hemolymph were bacterial and fungal indicators for WMS. A total of 23 bacteria and 14 fungi were isolated from hemolymph and muscle tissues, and among the bacteria, Shewanella chilikensis, S. xiamenensis, Vibrio alginolyticus, S. putrefaciens, V. fluvialis, and V. parahaemolyticus were present in hemolymph and/or muscle tissues in each WMS crab, and the last three species were also present in three Healthy crabs. The target bacteria and fungi were further screened to regression infections based on two criteria: whether they belonged to the indicator genera for WMS, whether they were isolated from both hemolymph and muscle tissues in most WMS crabs. Only S. chilikensis, S. putrefaciens, S. xiamenensis, V. alginolyticus, V. fluvialis, and V. parahaemolyticus met both two criteria. The six bacteria that met both two criteria and six fungi and another bacterium that unmatched any of two criteria were used to perform regression infection experiments based on Koch's postulates. S. chilikensis, S. putrefaciens, S. xiamenensis, V. alginolyticus, V. fluvialis, and V. parahaemolyticus met both two criteria, and the results indicate that they cause WMS in crabs independently. CONCLUSIONS This study fully demonstrated that our research strategy that integrates the microbiome and Koch's postulates can maximize the ability to catch pathogens in one net for the situation of multiple pathogens-one disease. Video Abstract.
Collapse
Affiliation(s)
- Dongwei Hou
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Taixin Lian
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guangyu Guo
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Han Gong
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chengcheng Wu
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Peiyun Han
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China.
| |
Collapse
|
8
|
Costa PDS, Basso ME, Negri M, Svidzinski TIE. In Vitro and Ex Vivo Biofilm-Forming Ability of Rhinocladiella similis and Trichophyton rubrum Isolated from a Mixed Onychomycosis Case. J Fungi (Basel) 2023; 9:696. [PMID: 37504685 PMCID: PMC10381150 DOI: 10.3390/jof9070696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Infections caused by biofilm-forming agents have important implications for world health. Mixed infections, caused by more than one etiological agent, are also an emerging problem, especially regarding the standardization of effective diagnosis and treatment methods. Cases of mixed onychomycosis (OM) have been reported; however, studies on the microbial interactions between the different fungi in biofilms formed on nails are still scarce. We describe a case of mixed OM caused by the dermatophyte Trichophyton rubrum and the black yeast-like fungus Rhinocladiella similis. Identical growths of both fungi were observed in more than 50 cultures from different nail samples. Additionally, both species were able to form organized single and mixed biofilms, reinforcing the participation of both fungi in the etiology of this OM case. R. similis seemed to grow faster during the process, suggesting that T. rubrum benefits from biofilm development when in combination. Moreover, the biofilm of the Rhinocladiella isolate exhibited exacerbated production of the extracellular matrix, which was not observed with that of a Rhinocladiella reference strain, suggesting that the isolate had natural abilities that were possibly perfected during development in the nail of the patient.
Collapse
Affiliation(s)
- Polyana de Souza Costa
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá 87020-900, Brazil
| | - Maria Eduarda Basso
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá 87020-900, Brazil
| | - Melyssa Negri
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá 87020-900, Brazil
| | | |
Collapse
|
9
|
Lu RG, Li SS, Hu B, Li HY, Tian H, Liu WQ, Yan XJ, Liu H, Bai X. The first evidence of shaking mink syndrome-astrovirus associated encephalitis in farmed minks, China. Transbound Emerg Dis 2022; 69:3979-3984. [PMID: 36057957 DOI: 10.1111/tbed.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023]
Abstract
A novel neurological disorder, shaking mink syndrome (SMS), emerged in Denmark and Sweden in 2000. SMS has seldom been reported in China, but the causative agent has not been detected in the country. SMS outbreaks occurred in multiple provinces in 2020. A total of 44 brain samples from minks associated with SMS were collected from Heilongjiang, Liaoning and Shandong provinces of which 28 samples (63.3%) were SMS-astrovirus (SMS-AstV)-positive by reverse transcription PCR. Histopathological examination revealed non-suppurative encephalitis in three minks. Moreover, the complete coding region sequences (CDSs, 6559 bp) of a sample collected from a 2-month-old mink (termed SMS-AstV-H1, GSA accession No. SAMC816786) were amplified by PCR and Sanger sequencing. The complete CDS and open reading frame 2 sequences of SMS-AstV-H1 were 94.3% and 96.4% identical to an SMS-AstV strain (GenBank accession number: GU985458). Phylogenetically, SMS-AstV-H1 was closely related to an SMS-AstV strain (GU985458). Based on the above results, we describe SMS-AstV-associated encephalitis in farmed minks in China. Future studies need to focus on epidemiology, virus isolation and potential interspecies transmission of SMS-AstV.
Collapse
Affiliation(s)
- Rong-Guang Lu
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuang-Shuang Li
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hong-Ye Li
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hong Tian
- The State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wei-Quan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xi-Jun Yan
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hao Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Xue Bai
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
10
|
Colmant AMG, Charrel RN, Coutard B. Jingmenviruses: Ubiquitous, understudied, segmented flavi-like viruses. Front Microbiol 2022; 13:997058. [PMID: 36299728 PMCID: PMC9589506 DOI: 10.3389/fmicb.2022.997058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Jingmenviruses are a group of viruses identified recently, in 2014, and currently classified by the International Committee on Taxonomy of Viruses as unclassified Flaviviridae. These viruses closely related to flaviviruses are unique due to the segmented nature of their genome. The prototype jingmenvirus, Jingmen tick virus (JMTV), was discovered in Rhipicephalus microplus ticks collected from China in 2010. Jingmenviruses genomes are composed of four to five segments, encoding for up to seven structural proteins and two non-structural proteins, both of which display strong similarities with flaviviral non-structural proteins (NS2B/NS3 and NS5). Jingmenviruses are currently separated into two phylogenetic clades. One clade includes tick- and vertebrate-associated jingmenviruses, which have been detected in ticks and mosquitoes, as well as in humans, cattle, monkeys, bats, rodents, sheep, and tortoises. In addition to these molecular and serological detections, over a hundred human patients tested positive for jingmenviruses after developing febrile illness and flu-like symptoms in China and Serbia. The second phylogenetic clade includes insect-associated jingmenvirus sequences, which have been detected in a wide range of insect species, as well as in crustaceans, plants, and fungi. In addition to being found in various types of hosts, jingmenviruses are endemic, as they have been detected in a wide range of environments, all over the world. Taken together, all of these elements show that jingmenviruses correspond exactly to the definition of emerging viruses at risk of causing a pandemic, since they are already endemic, have a close association with arthropods, are found in animals in close contact with humans, and have caused sporadic cases of febrile illness in multiple patients. Despite these arguments, the vast majority of published data is from metagenomics studies and many aspects of jingmenvirus replication remain to be elucidated, such as their tropism, cycle of transmission, structure, and mechanisms of replication and restriction or epidemiology. It is therefore crucial to prioritize jingmenvirus research in the years to come, to be prepared for their emergence as human or veterinary pathogens.
Collapse
|
11
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
12
|
Abstract
In this issue of Cell Host & Microbe, Li et al. take a step toward a better understanding of the microbiome-gut-brain axis in mental health. They report gastrointestinal testosterone degradation by a specific bacterial strain as a potential mechanism impacting symptom expression in males with depression.
Collapse
Affiliation(s)
- Cassandra E Gheorghe
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; INFANT Research Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
13
|
Bruijnesteijn van Coppenraet LES, Flipse J, Wallinga JA, Vermeer M, van der Reijden WA, Weel JFL, van der Zanden AGM, Schuurs TA, Ruijs GJHM. From a case-control survey to a diagnostic viral gastroenteritis panel for testing of general practitioners' patients. PLoS One 2021; 16:e0258680. [PMID: 34731182 PMCID: PMC8565752 DOI: 10.1371/journal.pone.0258680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/01/2021] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To evaluate the pathogenicity of a broad range of 11 possible gastroenteritis viruses, by means of statistical relationships with cases vs. controls, or Ct-values, in order to establish the most appropriate diagnostic panel for our general practitioner (GP) patients in the Netherlands (2010-2012). METHODS Archived stool samples from 1340 cases and 1100 controls were retested using internally controlled multiplex real-time PCRs for putative pathogenic gastroenteritis viruses: adenovirus, astrovirus, bocavirus, enterovirus, norovirus GI and GII, human parechovirus, rotavirus, salivirus, sapovirus, and torovirus. RESULTS The prevalence of any virus in symptomatic cases and asymptomatic controls was 16.6% (223/1340) and 10.2% (112/1100), respectively. Prevalence of astrovirus (adjusted odds ratio (aOR) 10.37; 95% confidence interval (CI) 1.34-80.06) and norovirus GII (aOR 3.10; CI 1.62-5.92) was significantly higher in cases versus controls. Rotavirus was encountered only in cases. We did not find torovirus and there was no statistically significant relationship with cases for salivirus (aOR 1,67; (CI) 0.43-6.54)), adenovirus non-group F (aOR 1.20; CI 0.75-1.91), bocavirus (aOR 0.85; CI 0.05-13.64), enterovirus (aOR 0.83; CI 0.50-1.37), human parechovirus (aOR 1.61; CI 0.54-4.77) and sapovirus (aOR 1.15; CI 0.67-1.98). Though adenovirus group F (aOR 6.37; CI 0.80-50.92) and norovirus GI (aOR 2.22, CI: 0.79-6.23) are known enteropathogenic viruses and were more prevalent in cases than in controls, this did not reach significance in this study. The Ct value did not discriminate between carriage and disease in PCR-positive subjects. CONCLUSIONS In our population, diagnostic gastroenteritis tests should screen for adenovirus group F, astrovirus, noroviruses GI and GII, and rotavirus. Case-control studies as ours are lacking and should also be carried out in populations from other epidemiological backgrounds.
Collapse
Affiliation(s)
| | - Jacky Flipse
- Laboratory of Medical Microbiology and Infectious Diseases, Isala, Zwolle, The Netherlands
| | - Janny A. Wallinga
- Laboratory of Medical Microbiology and Infectious Diseases, Isala, Zwolle, The Netherlands
| | - Marloes Vermeer
- ZGT Academy, Ziekenhuisgroep Twente, Almelo, The Netherlands
| | - Wil A. van der Reijden
- Regional Laboratory for Medical Microbiology and Public Health Kennemerland, Haarlem, The Netherlands
| | - Jan F. L. Weel
- Izore, Center for Infectious Diseases Friesland, Leeuwarden, The Netherlands
| | | | - Theo A. Schuurs
- Izore, Center for Infectious Diseases Friesland, Leeuwarden, The Netherlands
| | - Gijs J. H. M. Ruijs
- Laboratory of Medical Microbiology and Infectious Diseases, Isala, Zwolle, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
de Haan L, Sutterland AL, Schotborgh JV, Schirmbeck F, de Haan L. Association of Toxoplasma gondii Seropositivity With Cognitive Function in Healthy People: A Systematic Review and Meta-analysis. JAMA Psychiatry 2021; 78:1103-1112. [PMID: 34259822 PMCID: PMC8281022 DOI: 10.1001/jamapsychiatry.2021.1590] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE The parasite Toxoplasma gondii has been associated with behavioral alterations and psychiatric disorders. Studies investigating neurocognition in people with T gondii infection have reported varying results. To systematically analyze these findings, a meta-analysis evaluating cognitive function in healthy people with and without T gondii seropositivity is needed. OBJECTIVE To assess whether and to what extent T gondii seropositivity is associated with cognitive function in otherwise healthy people. DATA SOURCES A systematic search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. A systematic search of PubMed, MEDLINE, Web of Science, PsycInfo, and Embase was performed to identify studies from database inception to June 7, 2019, that analyzed cognitive function among healthy participants with available data on T gondii seropositivity. Search terms included toxoplasmosis, neurotoxoplasmosis, Toxoplasma gondii, cognition disorder, neuropsychological, and psychomotor performance. STUDY SELECTION Studies that performed cognitive assessment and analyzed T gondii seroprevalence among otherwise healthy participants were included. DATA EXTRACTION AND SYNTHESIS Two researchers independently extracted data from published articles; if needed, authors were contacted to provide additional data. Quantitative syntheses were performed in predefined cognitive domains when 4 independent data sets per domain were available. Study quality, heterogeneity, and publication bias were assessed. MAIN OUTCOMES AND MEASURES Performance on neuropsychological tests measuring cognitive function. RESULTS The systematic search yielded 1954 records. After removal of 533 duplicates, an additional 1363 records were excluded based on a review of titles and abstracts. A total of 58 full-text articles were assessed for eligibility (including reference list screening); 45 articles were excluded because they lacked important data or did not meet study inclusion or reference list criteria. The remaining 13 studies comprising 13 289 healthy participants (mean [SD] age, 46.7 [16.0] years; 6586 men [49.6%]) with and without T gondii seropositivity were included in the meta-analysis. Participants without T gondii seropositivity had favorable functioning in 4 cognitive domains: processing speed (standardized mean difference [SMD], 0.12; 95% CI, 0.05-0.19; P = .001), working memory (SMD, 0.16; 95% CI, 0.06-0.26; P = .002), short-term verbal memory (SMD, 0.18; 95% CI, 0.09-0.27; P < .001), and executive functioning (SMD, 0.15; 95% CI, 0.01-0.28; P = .03). A meta-regression analysis found a significant association between older age and executive functioning (Q = 6.17; P = .01). Little suggestion of publication bias was detected. CONCLUSIONS AND RELEVANCE The study's findings suggested that T gondii seropositivity was associated with mild cognitive impairment in several cognitive domains. Although effect sizes were small, given the ubiquitous prevalence of this infection globally, the association with cognitive impairment could imply a considerable adverse effect at the population level. Further research is warranted to investigate the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Lies de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Arjen L. Sutterland
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jasper V. Schotborgh
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike Schirmbeck
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Wang YC, Wei Z, Lv X, Han S, Wang Z, Fan C, Zhang X, Shao J, Zhao YH, Sui L, Chen C, Liao M, Wang B, Jin N, Li C, Ma J, Hou ZJ, Yang Z, Han Z, Zhang Y, Niu J, Wang W, Wang Y, Liu Q. A new nairo-like virus associated with human febrile illness in China. Emerg Microbes Infect 2021; 10:1200-1208. [PMID: 34044749 PMCID: PMC8212832 DOI: 10.1080/22221751.2021.1936197] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several nairo-like viruses have been discovered in ticks in recent years, but their relevance to public health remains unknown. Here, we found a patient who had a history of tick bite and suffered from a febrile illness was infected with a previously discovered RNA virus, Beiji nairovirus (BJNV), in the nairo-like virus group of the order Bunyavirales. We isolated the virus by cell culture assay. BJNV could induce cytopathic effects in the baby hamster kidney and human hepatocellular carcinoma cells. Negative-stain electron microscopy revealed enveloped and spherical viral particles, morphologically similar to those of nairoviruses. We identified 67 patients as BJNV infection in 2017–2018. The median age of patients was 48 years (interquartile range 41–53 years); the median incubation period was 7 days (interquartile range 3–12 days). Most patients were men (70%), and a few (10%) had underlying diseases. Common symptoms of infected patients included fever (100%), headache (99%), depression (63%), coma (63%), and fatigue (54%), myalgia or arthralgia (45%); two (3%) patients became critically ill and one died. BJNV could cause growth retardation, viremia and histopathological changes in infected suckling mice. BJNV was also detected in sheep, cattle, and multiple tick species. These findings demonstrated that the newly discovered nairo-like virus may be associated with a febrile illness, with the potential vectors of ticks and reservoirs of sheep and cattle, highlighting its public health significance and necessity of further investigation in the tick-endemic areas worldwide.
Collapse
Affiliation(s)
- Yan-Chun Wang
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China.,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Xiaolong Lv
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Shuzheng Han
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Zedong Wang
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China.,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Changfa Fan
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xu Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Jianwei Shao
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Ying-Hua Zhao
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Liyan Sui
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chen Chen
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, South China Agricultural University, Guangzhou, People's Republic of China
| | - Bo Wang
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Ningyi Jin
- Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Chang Li
- Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Jun Ma
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Zhi-Jun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Zhen Han
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Yong Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Junqi Niu
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wei Wang
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Youchun Wang
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Quan Liu
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China.,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China.,College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China.,College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
16
|
Edridge AWD, van der Hoek L. Emerging orthobunyaviruses associated with CNS disease. PLoS Negl Trop Dis 2020; 14:e0008856. [PMID: 33112863 PMCID: PMC7652332 DOI: 10.1371/journal.pntd.0008856] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/09/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023] Open
Abstract
The Orthobunyavirus genus comprises a wide range of arthropod-borne viruses which are prevalent worldwide and commonly associated with central nervous system (CNS) disease in humans and other vertebrates. Several orthobunyaviruses have recently emerged and increasingly more will likely do so in the future. Despite this large number, an overview of these viruses is currently lacking, making it challenging to determine importance from a One Health perspective. Causality is a key feature of determining importance, yet classical tools are unfit to evaluate the causality of orthobunyaviral CNS disease. Therefore, we aimed to provide an overview of orthobunyaviral CNS disease in vertebrates and objectify the causality strength of each virus. In total, we identified 27 orthobunyaviruses described in literature to be associated with CNS disease. Ten were associated with disease in multiple host species of which seven included humans. Seven viruses were associated with both congenital and postnatal CNS disease. CNS disease-associated orthobunyaviruses were spread across all known Orthobunyavirus serogroups by phylogenetic analyses. Taken together, these results indicate that orthobunyaviruses may have a common tendency to infect the CNS of vertebrates. Next, we developed six tailor-made causality indicators and evaluated the causality strength of each of the identified orthobunyaviruses. Nine viruses had a 'strong' causality score and were deemed causal. Eight had a 'moderate' and ten a 'weak' causality score. Notably, there was a lack of case-control studies, which was only available for one virus. We, therefore, stress the importance of proper case-control studies as a fundamental aspect of proving causality. This comprehensible overview can be used to identify orthobunyaviruses which may be considered causal, reveal research gaps for viruses with moderate to low causality scores, and provide a framework to evaluate the causality of orthobunyaviruses that may newly emerge in the future.
Collapse
Affiliation(s)
- Arthur Wouter Dante Edridge
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, the Netherlands
- Global Child Health Group, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
17
|
Douros K, Everard ML. Time to Say Goodbye to Bronchiolitis, Viral Wheeze, Reactive Airways Disease, Wheeze Bronchitis and All That. Front Pediatr 2020; 8:218. [PMID: 32432064 PMCID: PMC7214804 DOI: 10.3389/fped.2020.00218] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The diagnosis and management of infants and children with a significant viral lower respiratory tract illness remains the subject of much debate and little progress. Over the decades various terms for such illnesses have been in and fallen out of fashion or have evolved to mean different things to different clinicians. Terms such as "bronchiolitis," "reactive airways disease," "viral wheeze," and many more are used to describe the same condition and the same term is frequently used to describe illnesses caused by completely different dominant pathologies. This lack of clarity is due, in large part, to a failure to understand the basic underlying inflammatory and associated processes and, in part, due to the lack of a simple test to identify a condition such as asthma. Moreover, there is a lack of insight into the fact that the same pathology can produce different clinical signs at different ages. The consequence is that terminology and fashions in treatment have tended to go around in circles. As was noted almost 60 years ago, amongst pre-school children with a viral LRTI and airways obstruction there are those with a "viral bronchitis" and those with asthma. In the former group, a neutrophil dominated inflammation response is responsible for the airways' obstruction whilst amongst asthmatics much of the obstruction is attributable to bronchoconstriction. The airways obstruction in the former group is predominantly caused by airways secretions and to some extent mucosal oedema (a "snotty lung"). These patients benefit from good supportive care including supplemental oxygen if required (though those with a pre-existing bacterial bronchitis will also benefit from antibiotics). For those with a viral exacerbation of asthma, characterized by bronchoconstriction combined with impaired b-agonist responsiveness, standard management of an exacerbation of asthma (including the use of steroids to re-establish bronchodilator responsiveness) represents optimal treatment. The difficulty is identifying which group a particular patient falls into. A proposed simplified approach to the nomenclature used to categorize virus associated LRTIs is presented based on an understanding of the underlying pathological processes and how these contribute to the physical signs.
Collapse
Affiliation(s)
- Konstantinos Douros
- Third Department of Paediatrics, Attikon Hospital, University of Athens School of Medicine, Athens, Greece
| | - Mark L. Everard
- Division of Paediatrics and Child Health, Perth Children's Hospital, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
18
|
Hosainzadegan H, Khalilov R, Gholizadeh P. The necessity to revise Koch's postulates and its application to infectious and non-infectious diseases: a mini-review. Eur J Clin Microbiol Infect Dis 2019; 39:215-218. [PMID: 31440916 DOI: 10.1007/s10096-019-03681-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/12/2019] [Indexed: 01/15/2023]
Abstract
Advances in the science have promoted all aspects of human's life; these, in turn, have changed many principles and scientific postulates. Koch's postulates, since the beginning of their implementation, have been one of the important subjects involving complications and misinterpretations regarding the causal relationship of microbe-hosts. These postulates have been shown not to be correct in some cases including the inability of some microbes to grow in the culture medium, viruses, or anaerobic bacteria. Today, due to some new scientific facts like the social behaviors of bacteria, such as quorum sensing, there are serious problems regarding the definition of whole microbial effects; these include microbiomes and viromes, as well as their interaction with the existing eukaryotics, the complicated relations between bacteria, L-forms, and cell wall-deficient bacteria, and the important role of microbes in the development of non-infectious diseases. So, the application of Koch's postulates to explain the causal relationships between host-microbes could be difficult. Therefore, nowadays, even the molecular Koch's postulates are not accountable. Also, according to the new scientific discoveries, various criteria such as changes in the immune system, pathology, and clinical findings, along with the results of daily laboratory tests, should be used to apply Koch's postulates in the etiologic studies. Otherwise, the possible etiologic relationships between the host-microbes cannot be verified due to numerous complications; certainly, the relationship between the doctor and the lab is ultimately weakened. Therefore, public health, prevention, and much of the antimicrobial treatments will also remain in a state of ambiguity.
Collapse
Affiliation(s)
- Hasan Hosainzadegan
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Rovshan Khalilov
- Institute of Radiation Problems, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Sutterland AL, Kuin A, Kuiper B, van Gool T, Leboyer M, Fond G, de Haan L. Driving us mad: the association of Toxoplasma gondii with suicide attempts and traffic accidents - a systematic review and meta-analysis. Psychol Med 2019; 49:1608-1623. [PMID: 31010440 DOI: 10.1017/s0033291719000813] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Unnatural causes of death due to traffic accidents (TA) and suicide attempts (SA) constitute a major burden on global health, which remained stable in the last decade despite widespread efforts of prevention. Recently, latent infection with Toxoplasma gondii (T. gondii) has been suggested to be a biological risk factor for both TA and SA. Therefore, a systematic search concerning the relationship of T. gondii infection with TA and/or SA according to PRISMA guidelines in Medline, Pubmed and PsychInfo was conducted collecting papers up to 11 February 2019 (PROSPERO #CRD42018090206). The random-effect model was applied and sensitivity analyses were subsequently performed. Lastly, the population attributable fraction (PAF) was calculated. We found a significant association for antibodies against T. gondii with TA [odds ratio (OR) = 1.69; 95% confidence interval (CI) 1.20-2.38, p = 0.003] and SA (OR = 1.39; 95% CI 1.10-1.76, p = 0006). Indication of publication bias was found for TA, but statistical adjustment for this bias did not change the OR. Heterogeneity between studies on SA was partly explained by type of control population used (ORhealthy controls = 1.9, p < 0.001 v. ORpsychiatric controls = 1.06, p = 0.87) and whether subjects with schizophrenia only were analysed (ORschizophrenia = 0.87, p = 0.62 v. ORvarious = 1.8, p < 0.001). The association was significantly stronger with higher antibody titres in TA and in studies that did not focus on schizophrenia subjects concerning SA. PAF of a T. gondii infection was 17% for TA and 10% for SA. This indicates that preventing T. gondii infection may play a role in the prevention of TA or SA, although uncertainty remains whether infection and outcome are truly causally related.
Collapse
Affiliation(s)
- Arjen L Sutterland
- Department of Psychiatry,Amsterdam UMC, University of Amsterdam,Meibergdreef 5 1105 AZ, Amsterdam,The Netherlands
| | - Anne Kuin
- Department of Psychiatry,Amsterdam UMC, University of Amsterdam,Meibergdreef 5 1105 AZ, Amsterdam,The Netherlands
| | - Bouke Kuiper
- Department of Psychiatry,Amsterdam UMC, University of Amsterdam,Meibergdreef 5 1105 AZ, Amsterdam,The Netherlands
| | - Tom van Gool
- Department of Parasitology,Amsterdam UMC, University of Amsterdam,Meibergdreef 9 1105 AZ, Amsterdam,The Netherlands
| | | | | | - Lieuwe de Haan
- Department of Psychiatry,Amsterdam UMC, University of Amsterdam,Meibergdreef 5 1105 AZ, Amsterdam,The Netherlands
| |
Collapse
|
20
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|