1
|
Utembe W, Kamng'ona AW. Inhalation exposure to chemicals, microbiota dysbiosis and adverse effects on humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176938. [PMID: 39414049 DOI: 10.1016/j.scitotenv.2024.176938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
As revealed by culture-independent methodologies, disruption of the normal lung microbiota (LM) configuration (LM dysbiosis) is a potential mediator of adverse effects from inhaled chemicals. LM, which consists of microbiota in the upper and lower respiratory tract, is influenced by various factors, including inter alia environmental exposures. LM dysbiosis has been associated with multiple respiratory pathologies such as asthma, lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Chemically-induced LM dysbiosis appears to play significant roles in human respiratory diseases, as has been shown for some air pollutants, cigarette smoke and some inhalable chemical antibiotics. Lung microbiota are also linked with the central nervous system (CNS) in the so-called lung-brain axis. Inhaled chemicals that undergo mucociliary clearance may be linked to respiratory conditions through gut microbiota (GM) dysbiosis in the so-called Gut-Lung axis. However, current linkages of various disease states to LM appears to be associative, with causal linkages requiring further studies using more robust approaches, methods and techniques that are different from those applied in studies involving (GM). Most importantly, the sampling techniques determine the level of risk of cross contamination. Furthermore, the development of continuous or semi-continuous systems designed to replicate the lung microbiome will go a long way to further LM dysbiosis studies. These challenges notwithstanding, the preponderance of evidence points to the significant role of LM-mediated chemical toxicity in human disease and conditions.
Collapse
Affiliation(s)
- W Utembe
- Toxicology and Biochemistry Department, National Institute for Occupational Health, National Health Laboratory Services, Johannesburg 2000, South Africa; Environmental Health Division, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - A W Kamng'ona
- School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, Blantyre Campus, Mahatma Gandhi Road, Blantyre 312224, Malawi
| |
Collapse
|
2
|
Song M, Zhang S, Zhang Z, Guo L, Liang W, Li C, Wang Z. Bacillus coagulans restores pathogen-induced intestinal dysfunction via acetate-FFAR2-NF-κB-MLCK-MLC axis in Apostichopus japonicus. mSystems 2024; 9:e0060224. [PMID: 38940521 PMCID: PMC11265352 DOI: 10.1128/msystems.00602-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
Skin ulceration syndrome (SUS) is currently the main disease threatening Apostichopus japonicus aquaculture due to its higher mortality rate and infectivity, which is caused by Vibrio splendidus. Our previous studies have demonstrated that SUS is accompanied by intestinal microbiota (IM) dysbiosis, alteration of short-chain fatty acids (SCFAs) content and the damage to the intestinal barrier. However, the mediating effect of IM on intestine dysfunction is largely unknown. Herein, we conducted comprehensive intestinal microbiota transplantation (IMT) to explore the link between IM and SUS development. Furthermore, we isolated and identified a Bacillus coagulans strain with an ability to produce acetic acid from both healthy individual and SUS individual with IM from healthy donors. We found that dysbiotic IM and intestinal barrier function in SUS recipients A. japonicus could be restored by IM from healthy donors. The B. coagulans strain could restore IM community and intestinal barrier function. Consistently, acetate supply also restores intestinal homeostasis of SUS-diseased and V. splendidus-infected A. japonicus. Mechanically, acetate was found to specifically bind to its receptor-free fatty acid receptor 2 (FFAR2) to mediate IM structure community and intestinal barrier function. Knockdown of FFAR2 by transfection of specific FFAR2 siRNA could hamper acetate-mediated intestinal homeostasis in vivo. Furthermore, we confirmed that acetate/FFAR2 could inhibit V. splendidus-activated NF-κB-MLCK-MLC signaling pathway to restore intestinal epithelium integrity and upregulated the expression of ZO-1 and Occludin. Our findings provide the first evidence that B. coagulans restores pathogen-induced intestinal barrier dysfunction via acetate/FFAR2-NF-κB-MLCK-MLC axis, which provides new insights into the control and prevention of SUS outbreak from an ecological perspective.IMPORTANCESkin ulceration syndrome (SUS) as a main disease in Apostichopus japonicus aquaculture has severely restricted the developmental A. japonicus aquaculture industry. Intestinal microbiota (IM) has been studied extensively due to its immunomodulatory properties. Short-chain fatty acids (SCFAs) as an essential signal molecule for microbial regulation of host health also have attracted wide attention. Therefore, it is beneficial to explore the link between IM and SUS for prevention and control of SUS. In the study, the contribution of IM to SUS development has been examined. Additionally, our research further validated the restoration of SCFAs on intestinal barrier dysfunction caused by SUS via isolating SCFAs-producing bacteria. Notably, this restoration might be achieved by inhibition of NF-κB-MLCK-MLC signal pathway, which could be activated by V. splendidus. These findings may have important implications for exploration of the role of IM in SUS occurrence and provide insight into the SUS treatment.
Collapse
Affiliation(s)
- Mingshan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Shanshan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Liyuan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhonghua Wang
- Shandong Beiyou Biotechnology Co.,Ltd., Weifang, China
| |
Collapse
|
3
|
Zeng S, He J, Huang Z. The intestine microbiota of shrimp and its impact on cultivation. Appl Microbiol Biotechnol 2024; 108:362. [PMID: 38842702 PMCID: PMC11156720 DOI: 10.1007/s00253-024-13213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Intestinal microbiome contains several times of functional genes compared to the host and mediates the generation of multiple metabolic products, and therefore it is called "second genome" for host. Crustaceans rank second among the largest subphylum of aquaculture animals that are considered potentially satisfy global substantial food and nutrition security, among which the Pacific white shrimp (Litopenaeus vannamei) ranks the first in the production. Currently, increasing evidences show that outbreaks of some most devastating diseases in shrimp, including white feces syndrome (WFS) and acute hepatopancreatic necrosis disease (AHPND), are related to intestinal microbiota dysbiosis. Importantly, the intestine microbial composition can be altered by environmental stress, diet, and age. In this review, we overview the progress of intestinal microbiota dysbiosis and WFS or ANPHD in shrimp, and how the microbial composition is altered by external factors. Hence, developing suitable microbial micro-ecological prevention and control strategy to maintain intestinal balance may be a feasible solution to reduce the risk of disease outbreaks. Moreover, we highlight that defining the "healthy intestine microbiota" and evaluating the causality of intestinal microbiota dysbiosis and diseases following the logic of "Microecological Koch's postulates" should be the key goal in future shrimp intestinal field, which help to guide disease diagnosis and prevent disease outbreaks in shrimp farming. KEY POINTS: • Intestinal microbiota dysbiosis is relevant to multiple shrimp diseases. • Microecological Koch's postulates help to evaluate the causality of shrimp diseases.
Collapse
Affiliation(s)
- Shenzheng Zeng
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China.
| |
Collapse
|
4
|
Wongkuna S, Ambat A, Ghimire S, Mattiello SP, Maji A, Kumar R, Antony L, Chankhamhaengdecha S, Janvilisri T, Nelson E, Doerner KC, More S, Behr M, Scaria J. Identification of a microbial sub-community from the feral chicken gut that reduces Salmonella colonization and improves gut health in a gnotobiotic chicken model. Microbiol Spectr 2024; 12:e0162123. [PMID: 38315031 PMCID: PMC10913435 DOI: 10.1128/spectrum.01621-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/16/2023] [Indexed: 02/07/2024] Open
Abstract
A complex microbial community in the gut may prevent the colonization of enteric pathogens such as Salmonella. Some individual or a combination of species in the gut may confer colonization resistance against Salmonella. To gain a better understanding of the colonization resistance against Salmonella enterica, we isolated a library of 1,300 bacterial strains from feral chicken gut microbiota which represented a total of 51 species. Using a co-culture assay, we screened the representative species from this library and identified 30 species that inhibited Salmonella enterica subspecies enterica serovar Typhimurium in vitro. To improve the Salmonella inhibition capacity, from a pool of fast-growing species, we formulated 66 bacterial blends, each of which composed of 10 species. Bacterial blends were more efficient in inhibiting Salmonella as compared to individual species. The blend that showed maximum inhibition (Mix10) also inhibited other serotypes of Salmonella frequently found in poultry. The in vivo effect of Mix10 was examined in a gnotobiotic and conventional chicken model. The Mix10 consortium significantly reduced Salmonella load at day 2 post-infection in gnotobiotic chicken model and decreased intestinal tissue damage and inflammation in both models. Cell-free supernatant of Mix10 did not show Salmonella inhibition, indicating that Mix10 inhibits Salmonella through either nutritional competition, competitive exclusion, or through reinforcement of host immunity. Out of 10 species, 3 species in Mix10 did not colonize, while 3 species constituted more than 70% of the community. Two of these species were previously uncultured bacteria. Our approach could be used as a high-throughput screening system to identify additional bacterial sub-communities that confer colonization resistance against enteric pathogens and its effect on the host.IMPORTANCESalmonella colonization in chicken and human infections originating from Salmonella-contaminated poultry is a significant problem. Poultry has been identified as the most common food linked to enteric pathogen outbreaks in the United States. Since multi-drug-resistant Salmonella often colonize chicken and cause human infections, methods to control Salmonella colonization in poultry are needed. The method we describe here could form the basis of developing gut microbiota-derived bacterial blends as a microbial ecosystem therapeutic against Salmonella.
Collapse
Affiliation(s)
- Supapit Wongkuna
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Achuthan Ambat
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sudeep Ghimire
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Samara Paula Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Abhijit Maji
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Roshan Kumar
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Kinchel C. Doerner
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Melissa Behr
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
5
|
Aitken JM, Aitken JE, Agrawal G. Mycobacterium avium ssp. paratuberculosis and Crohn's Disease-Diagnostic Microbiological Investigations Can Inform New Therapeutic Approaches. Antibiotics (Basel) 2024; 13:158. [PMID: 38391544 PMCID: PMC10886072 DOI: 10.3390/antibiotics13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) is the cause of Johne's disease (JD), which is a chronic infectious gastrointestinal disease of ruminants and is often fatal. In humans, MAP has been associated with Crohn's disease (CD) for over a century, without conclusive evidence of pathogenicity. Numerous researchers have contributed to the subject, but there is still a need for evidence of the causation of CD by MAP. An infectious aetiology in CD that is attributable to MAP can only be proven by bacteriological investigations. There is an urgency in resolving this question due to the rising global incidence rates of CD. Recent papers have indicated the "therapeutic ceiling" may be close in the development of new biologics. Clinical trial outcomes have demonstrated mild or inconsistent improvements in therapeutic interventions over the last decades when compared with placebo. The necessity to revisit therapeutic options for CD is becoming more urgent and a renewed focus on causation is essential for progress in identifying new treatment options. This manuscript discusses newer interventions, such as vaccination, FMT, dietary remediation and gut microbiome regulation, that will become more relevant as existing therapeutic options expire. Revisiting the MAP theory as a potential infectious cause of CD, rather than the prevailing concept of an "aberrant immune response" will require expanding the current therapeutic programme to include potential new alternatives, and combinations of existing treatments. To advance research on MAP in humans, it is essential for microbiologists and medical scientists to microscopically detect CWDM and to biologically amplify the growth by directed culture.
Collapse
Affiliation(s)
- John M Aitken
- Otakaro Pathways Ltd., Innovation Park, Christchurch 7675, New Zealand
| | - Jack E Aitken
- Otakaro Pathways Ltd., Innovation Park, Christchurch 7675, New Zealand
| | - Gaurav Agrawal
- Division of Diabetes & Nutritional Sciences, Franklin-Wilkins Building, King's College London, London SE1 9NH, UK
| |
Collapse
|
6
|
Gilliland A, Chan JJ, De Wolfe TJ, Yang H, Vallance BA. Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology 2024; 166:44-58. [PMID: 37734419 DOI: 10.1053/j.gastro.2023.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The gut microbiota plays a significant role in the pathogenesis of both forms of inflammatory bowel disease (IBD), namely, Crohn's disease (CD) and ulcerative colitis (UC). Although evidence suggests dysbiosis and loss of beneficial microbial species can exacerbate IBD, many new studies have identified microbes with pathogenic qualities, termed "pathobionts," within the intestines of patients with IBD. The concept of pathobionts initiating or driving the chronicity of IBD has largely focused on the putative aggravating role that adherent invasive Escherichia coli may play in CD. However, recent studies have identified additional bacterial and fungal pathobionts in patients with CD and UC. This review will highlight the characteristics of these pathobionts and their implications for IBD treatment. Beyond exploring the origins of pathobionts, we discuss those associated with specific clinical features and the potential mechanisms involved, such as creeping fat (Clostridium innocuum) and impaired wound healing (Debaryomyces hansenii) in patients with CD as well as the increased fecal proteolytic activity (Bacteroides vulgatus) seen as a biomarker for UC severity. Finally, we examine the potential impact of pathobionts on current IBD therapies, and several new approaches to target pathobionts currently in the early stages of development. Despite recognizing that pathobionts likely contribute to the pathogenesis of IBD, more work is needed to define their modes of action. Determining whether causal relationships exist between pathobionts and specific disease characteristics could pave the way for improved care for patients, particularly for those not responding to current IBD therapies.
Collapse
Affiliation(s)
- Ashley Gilliland
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn J Chan
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis J De Wolfe
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Pandey H, Jain D, Tang DWT, Wong SH, Lal D. Gut microbiota in pathophysiology, diagnosis, and therapeutics of inflammatory bowel disease. Intest Res 2024; 22:15-43. [PMID: 37935653 PMCID: PMC10850697 DOI: 10.5217/ir.2023.00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 11/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease, which is thought to be an interplay between genetic, environment, microbiota, and immune-mediated factors. Dysbiosis in the gut microbial composition, caused by antibiotics and diet, is closely related to the initiation and progression of IBD. Differences in gut microbiota composition between IBD patients and healthy individuals have been found, with reduced biodiversity of commensal microbes and colonization of opportunistic microbes in IBD patients. Gut microbiota can, therefore, potentially be used for diagnosing and prognosticating IBD, and predicting its treatment response. Currently, there are no curative therapies for IBD. Microbiota-based interventions, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been recognized as promising therapeutic strategies. Clinical studies and studies done in animal models have provided sufficient evidence that microbiota-based interventions may improve inflammation, the remission rate, and microscopic aspects of IBD. Further studies are required to better understand the mechanisms of action of such interventions. This will help in enhancing their effectiveness and developing personalized therapies. The present review summarizes the relationship between gut microbiota and IBD immunopathogenesis. It also discusses the use of gut microbiota as a noninvasive biomarker and potential therapeutic option.
Collapse
Affiliation(s)
| | | | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Sahni V, Van Dyke TE. Immunomodulation of periodontitis with SPMs. FRONTIERS IN ORAL HEALTH 2023; 4:1288722. [PMID: 37927821 PMCID: PMC10623003 DOI: 10.3389/froh.2023.1288722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Inflammation is a critical component in the pathophysiology of numerous disease processes, with most therapeutic modalities focusing on its inhibition in order to achieve treatment outcomes. The resolution of inflammation is a separate, distinct pathway that entails the reversal of the inflammatory process to a state of homoeostasis rather than selective inhibition of specific components of the inflammatory cascade. The discovery of specialized pro-resolving mediators (SPMs) resulted in a paradigm shift in our understanding of disease etiopathology. Periodontal disease, traditionally considered as one of microbial etiology, is now understood to be an inflammation-driven process associated with dysbiosis of the oral microbiome that may be modulated with SPMs to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Vaibhav Sahni
- Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | - Thomas E. Van Dyke
- Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
- Faculty of Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
9
|
Poceviciute R, Bogatyrev SR, Romano AE, Dilmore AH, Mondragón-Palomino O, Takko H, Pradhan O, Ismagilov RF. Quantitative whole-tissue 3D imaging reveals bacteria in close association with mouse jejunum mucosa. NPJ Biofilms Microbiomes 2023; 9:64. [PMID: 37679412 PMCID: PMC10485000 DOI: 10.1038/s41522-023-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Because the small intestine (SI) epithelium lacks a thick protective mucus layer, microbes that colonize the thin SI mucosa may exert a substantial effect on the host. For example, bacterial colonization of the human SI may contribute to environmental enteropathy dysfunction (EED) in malnourished children. Thus far, potential bacterial colonization of the mucosal surface of the SI has only been documented in disease states, suggesting mucosal colonization is rare, likely requiring multiple perturbations. Furthermore, conclusive proof of bacterial colonization of the SI mucosal surface is challenging, and the three-dimensional (3D) spatial structure of mucosal colonies remains unknown. Here, we tested whether we could induce dense bacterial association with jejunum mucosa by subjecting mice to a combination of malnutrition and oral co-gavage with a bacterial cocktail (E. coli and Bacteroides spp.) known to induce EED. To visualize these events, we optimized our previously developed whole-tissue 3D imaging tools with third-generation hybridization chain reaction (HCR v3.0) probes. Only in mice that were malnourished and gavaged with the bacterial cocktail did we detect dense bacterial clusters surrounding intestinal villi suggestive of colonization. Furthermore, in these mice we detected villus loss, which may represent one possible consequence that bacterial colonization of the SI mucosa has on the host. Our results suggest that dense bacterial colonization of jejunum mucosa is possible in the presence of multiple perturbations and that whole-tissue 3D imaging tools can enable the study of these rare events.
Collapse
Affiliation(s)
- Roberta Poceviciute
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Said R Bogatyrev
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Medically Associated Science and Technology Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anna E Romano
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Amanda H Dilmore
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Biomedical Sciences Program, University of California San Diego, San Diego, CA, USA
| | - Octavio Mondragón-Palomino
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Heli Takko
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ojas Pradhan
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rustem F Ismagilov
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
10
|
Petersen AM. Gastrointestinal dysbiosis and Escherichia coli pathobionts in inflammatory bowel diseases. APMIS 2022; 130 Suppl 144:1-38. [PMID: 35899316 PMCID: PMC9546507 DOI: 10.1111/apm.13256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Munk Petersen
- Department of Gastroenterology and Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
11
|
Liu ZG, Dong JJ, Ke XL, Yi MM, Cao JM, Gao FY, Wang M, Ye X, Lu MX. Isolation, identification, and pathogenic characteristics of Nocardia seriolae in largemouth bass Micropterus salmoides. DISEASES OF AQUATIC ORGANISMS 2022; 149:33-45. [PMID: 35510819 DOI: 10.3354/dao03659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The largemouth bass Micropterus salmoides is an important freshwater aquaculture fish in China. Recently, largemouth bass at a fish farm in Guangdong province experienced an outbreak of a serious ulcer disease. As part of the investigations conducted to identify the aetiology and identify potentially effective control measures, we isolated a pathogenic bacterium (NK-1 strain) from the diseased fish. It was identified as Nocardia seriolae through morphological observation, physiological and biochemical analysis, and molecular identification, and its pathogenicity was verified by experimental infection. Pathological changes in the diseased fish included granulomatous lesions in the liver and spleen, destruction of renal tubules, necrosis of intestinal epithelial cells, infiltration of inflammatory cells in the brain, vacuolation of cells, and swelling and cracking of the mitochondria and endoplasmic reticulum. Bacterial detection using qPCR showed that the spleen and intestine were the main organs targeted by N. seriolae. The mortality of largemouth bass experimentally infected with N. seriolae at 21°C was significantly lower than that in fish infected at higher temperatures between 24 and 33°C; there were no significant differences in the levels of mortality at these higher temperatures. The level of mortality of largemouth bass infected with N. seriolae was lowest at a neutral water pH of 7 but increased significantly at higher and lower pH. Of the tested Chinese herbal medicines, Chinese sumac Galla chinensis and Chinese skullcap Scutellaria baicalensis exhibited the best antibacterial effects. This study lays a foundation for the clinical diagnosis and scientific control of ulcer disease in largemouth bass.
Collapse
Affiliation(s)
- Zhi-Gang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Efficacy of Probiotics-Based Interventions as Therapy for Inflammatory Bowel Disease: A Recent Update. Saudi J Biol Sci 2022; 29:3546-3567. [PMID: 35844369 PMCID: PMC9280206 DOI: 10.1016/j.sjbs.2022.02.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Probiotics such as Lactobacillus spp. play an important role in human health as they embark beneficial effect on the human gastrointestinal microflora composition and immune system. Dysbiosis in the gastrointestinal microbial composition has been identified as a major contributor to chronic inflammatory conditions, such as inflammatory bowel disease (IBD). Higher prevalence of IBD is often recorded in most of the developed Western countries, but recent data has shown an increase in previously regarded as lower risk regions, such as Japan, Malaysia, Singapore, and India. Although the IBD etiology remains a subject of speculation, the disease is likely to have developed because of interaction between extrinsic environmental elements; the host’s immune system, and the gut microbial composition. Compared to conventional treatments, probiotics and probiotic-based interventions including the introduction of specific prebiotics, symbiotic and postbiotic products had been demonstrated as more promising therapeutic measures. The present review discusses the association between gut dysbiosis, the pathogenesis of IBD, and risk factors leading to gut dysbiosis. In addition, it discusses recent studies focused on the alteration of the gastrointestinal microbiome as an effective therapy for IBD. The impact of the COVID-19 pandemic and other viral infections on IBD are also discussed in this review. Clinical and animal-based studies have shown that probiotic-based therapies can restore the gastrointestinal microbiota balance and reduce gut inflammations. Therefore, this review also assesses the status quo of these microbial-based therapies for the treatment of IBD. A better understanding of the mechanisms of their actions on modulating altered gut microbiota is required to enhance the effectiveness of the IBD therapeutics.
Collapse
|
13
|
Potential Replacements for Antibiotic Growth Promoters in Poultry: Interactions at the Gut Level and Their Impact on Host Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:145-159. [PMID: 34807441 DOI: 10.1007/978-3-030-85686-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chicken gastrointestinal tract (GIT) has a complex, biodiverse microbial community of ~ 9 million bacterial genes plus archaea and fungi that links the host diet to its health. This microbial population contributes to host physiology through metabolite signaling while also providing local and systemic nutrients to multiple organ systems. In a homeostatic state, the host-microbial interaction is symbiotic; however, physiological issues are associated with dysregulated microbiota. Manipulating the microbiota is a therapeutic option, and the concept of adding beneficial bacteria to the intestine has led to probiotic and prebiotic development. The gut microbiome is readily changeable by diet, antibiotics, pathogenic infections, and host- and environmental-dependent events. The intestine performs key roles of nutrient absorption, tolerance of beneficial microbiota, yet responding to undesirable microbes or microbial products and preventing translocation to sterile body compartments. During homeostasis, the immune system is actively preventing or modulating the response to known or innocuous antigens. Manipulating the microbiota through nutrition, modulating host immunity, preventing pathogen colonization, or improving intestinal barrier function has led to novel methods to prevent disease, but also resulted in improved body weight, feed conversion, and carcass yield in poultry. This review highlights the importance of adding different feed additives to the diets of poultry in order to manipulate and enhance health and productivity of flocks.
Collapse
|
14
|
Utembe W, Kamng'ona AW. Gut microbiota-mediated pesticide toxicity in humans: Methodological issues and challenges in the risk assessment of pesticides. CHEMOSPHERE 2021; 271:129817. [PMID: 33736210 DOI: 10.1016/j.chemosphere.2021.129817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Many in vivo and in vitro studies have shown that pesticides can disrupt the functioning of gut microbiota (GM), which can lead to many diseases in humans. While the tests developed by the Organization of Economic Cooperation and Development (OECD) are expected to capture most apical effects resulting from GM disruptions, exclusion of GM in the risk assessment might mischaracterize hazards or overestimate/underestimate risks, especially when extrapolating results from one species to another species or population with a substantially different GM. On the other hand, direct assessment of GM-mediated effects may face challenges in identifying hazards, since not all GM perturbations will lead to human adverse effects. In this regard, reliable and validated biomarkers for common GM-mediated adverse effects may be very useful in the identification of GM-mediated pesticide toxicity. Nevertheless, proving causality of GM-mediated effects will need modifications of Bradford Hill criteria as well as Koch's postulates, which are more suitable for the "one-pathogen" paradigm. Furthermore, risk assessment of GM-mediated effects may require pesticide toxicokinetics along the gut, possibly through modeling, and the establishment of the involvement of GM in the mechanism of action (MOA) of the pesticide. Risk assessment of GM mediated effects also requires the standardization of experimental approaches as well as the establishment of microbial reference communities, since variations exist among GM in human populations.
Collapse
Affiliation(s)
- Wells Utembe
- Toxicology Department, National Institute for Occupational Health (a division of the National Health Laboratory Service), Johannesburg, 2000, South Africa; Department of Environmental Heath, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2000, South Africa.
| | - Arox Wadson Kamng'ona
- Department of Biomedical Sciences, College of Medicine, University Of Malawi, Blantyre, Malawi; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| |
Collapse
|
15
|
Abstract
Inflammatory Bowel Disease (IBD) is a term used to describe a group of complex disorders of the gastrointestinal (GI) tract. IBDs include two main forms: Crohn’s Disease (CD) and Ulcerative Colitis (UC), which share similar clinical symptoms but differ in the anatomical distribution of the inflammatory lesions. The etiology of IBDs is undetermined. Several hypotheses suggest that Crohn’s Disease and Ulcerative Colitis result from an abnormal immune response against endogenous flora and luminal antigens in genetically susceptible individuals. While there is no cure for IBDs, most common treatments (medication and surgery) aim to reduce inflammation and help patients to achieve remission. There is growing evidence and focus on the prophylactic and therapeutic potential of probiotics in IBDs. Probiotics are live microorganisms that regulate the mucosal immune system, the gut microbiota and the production of active metabolites such as Short-Chain Fatty Acids (SCFAs). This review will focus on the role of intestinal dysbiosis in the immunopathogenesis of IBDs and understanding the health-promoting effects of probiotics and their metabolites.
Collapse
|
16
|
Bharucha T, Oeser C, Balloux F, Brown JR, Carbo EC, Charlett A, Chiu CY, Claas ECJ, de Goffau MC, de Vries JJC, Eloit M, Hopkins S, Huggett JF, MacCannell D, Morfopoulou S, Nath A, O'Sullivan DM, Reoma LB, Shaw LP, Sidorov I, Simner PJ, Van Tan L, Thomson EC, van Dorp L, Wilson MR, Breuer J, Field N. STROBE-metagenomics: a STROBE extension statement to guide the reporting of metagenomics studies. THE LANCET. INFECTIOUS DISEASES 2020; 20:e251-e260. [PMID: 32768390 PMCID: PMC7406238 DOI: 10.1016/s1473-3099(20)30199-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
The term metagenomics refers to the use of sequencing methods to simultaneously identify genomic material from all organisms present in a sample, with the advantage of greater taxonomic resolution than culture or other methods. Applications include pathogen detection and discovery, species characterisation, antimicrobial resistance detection, virulence profiling, and study of the microbiome and microecological factors affecting health. However, metagenomics involves complex and multistep processes and there are important technical and methodological challenges that require careful consideration to support valid inference. We co-ordinated a multidisciplinary, international expert group to establish reporting guidelines that address specimen processing, nucleic acid extraction, sequencing platforms, bioinformatics considerations, quality assurance, limits of detection, power and sample size, confirmatory testing, causality criteria, cost, and ethical issues. The guidance recognises that metagenomics research requires pragmatism and caution in interpretation, and that this field is rapidly evolving.
Collapse
Affiliation(s)
- Tehmina Bharucha
- Department of Biochemistry, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos.
| | - Clarissa Oeser
- Centre for Molecular Epidemiology and Translational Research, University College London, London, UK
| | | | - Julianne R Brown
- Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children, London, UK
| | - Ellen C Carbo
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Andre Charlett
- Statistics, Modelling and Economics Department, Public Health England, London, UK
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eric C J Claas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marcus C de Goffau
- Wellcome Sanger Institute, Hinxton, UK; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jutte J C de Vries
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Susan Hopkins
- Healthcare-Associated Infection and Antimicrobial Resistance, Public Health England, London, UK; Infectious Diseases Unit, Royal Free Hospital, London, UK
| | - Jim F Huggett
- National Measurement Laboratory, LGC, Teddington, UK; School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Duncan MacCannell
- Office of Advanced Molecular Detection, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sofia Morfopoulou
- Division of Infection and Immunity, University College London, London, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institutes of Health, Bethesda, MD, USA
| | | | - Lauren B Reoma
- Section of Infections of the Nervous System, National Institutes of Health, Bethesda, MD, USA
| | - Liam P Shaw
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Igor Sidorov
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Le Van Tan
- Emerging Infections Group, Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, UK
| | - Michael R Wilson
- Weill Institute for Neurosciences and Department of Neurology, University of California, San Francisco, CA, USA
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK; Great Ormond Street Hospital for Children, London, UK
| | - Nigel Field
- Centre for Molecular Epidemiology and Translational Research, University College London, London, UK
| |
Collapse
|
17
|
Khazaei T, Williams RL, Bogatyrev SR, Doyle JC, Henry CS, Ismagilov RF. Metabolic multistability and hysteresis in a model aerobe-anaerobe microbiome community. SCIENCE ADVANCES 2020; 6:eaba0353. [PMID: 32851161 PMCID: PMC7423363 DOI: 10.1126/sciadv.aba0353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/26/2020] [Indexed: 05/20/2023]
Abstract
Major changes in the microbiome are associated with health and disease. Some microbiome states persist despite seemingly unfavorable conditions, such as the proliferation of aerobe-anaerobe communities in oxygen-exposed environments in wound infections or small intestinal bacterial overgrowth. Mechanisms underlying transitions into and persistence of these states remain unclear. Using two microbial taxa relevant to the human microbiome, we combine genome-scale mathematical modeling, bioreactor experiments, transcriptomics, and dynamical systems theory to show that multistability and hysteresis (MSH) is a mechanism describing the shift from an aerobe-dominated state to a resilient, paradoxically persistent aerobe-anaerobe state. We examine the impact of changing oxygen and nutrient regimes and identify changes in metabolism and gene expression that lead to MSH and associated multi-stable states. In such systems, conceptual causation-correlation connections break and MSH must be used for analysis. Using MSH to analyze microbiome dynamics will improve our conceptual understanding of stability of microbiome states and transitions between states.
Collapse
Affiliation(s)
- Tahmineh Khazaei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rory L. Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Said R. Bogatyrev
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - John C. Doyle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Christopher S. Henry
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA
| | - Rustem F. Ismagilov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
18
|
Andrade JC, Almeida D, Domingos M, Seabra CL, Machado D, Freitas AC, Gomes AM. Commensal Obligate Anaerobic Bacteria and Health: Production, Storage, and Delivery Strategies. Front Bioeng Biotechnol 2020; 8:550. [PMID: 32582673 PMCID: PMC7291883 DOI: 10.3389/fbioe.2020.00550] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
In the last years several human commensals have emerged from the gut microbiota studies as potential probiotics or therapeutic agents. Strains of human gut inhabitants such as Akkermansia, Bacteroides, or Faecalibacterium have shown several interesting bioactivities and are thus currently being considered as food supplements or as live biotherapeutics, as is already the case with other human commensals such as bifidobacteria. The large-scale use of these bacteria will pose many challenges and drawbacks mainly because they are quite sensitive to oxygen and/or very difficult to cultivate. This review highlights the properties of some of the most promising human commensals bacteria and summarizes the most up-to-date knowledge on their potential health effects. A comprehensive outlook on the potential strategies currently employed and/or available to produce, stabilize, and deliver these microorganisms is also presented.
Collapse
Affiliation(s)
- José Carlos Andrade
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| | - Diana Almeida
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Melany Domingos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Catarina Leal Seabra
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Daniela Machado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Cristina Freitas
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Maria Gomes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
19
|
Petersen AM, Mirsepasi-Lauridsen HC, Vester-Andersen MK, Sørensen N, Krogfelt KA, Bendtsen F. High Abundance of Proteobacteria in Ileo-Anal Pouch Anastomosis and Increased Abundance of Fusobacteria Associated with Increased Pouch Inflammation. Antibiotics (Basel) 2020; 9:antibiotics9050237. [PMID: 32397087 PMCID: PMC7277091 DOI: 10.3390/antibiotics9050237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
Low diversity intestinal dysbiosis has been associated with inflammatory bowel disease, including patients with ulcerative colitis with an ileo-anal pouch anastomosis. Furthermore, specific Escherichia coli phylogroups have been linked to inflammatory bowel disease. Our aim was to characterize the differences among microbiota and E. coli phylogroups in active and inactive pouchitis. Disease activity was assessed using the modified pouch disease activity index and by fecal calprotectin. Microbiota diversity was assessed by 16S rDNA MiSeq sequencing. E. coli phylogroup was determined after triplex PCR. Twenty patients with ulcerative colitis with an ileo-anal pouch anastomosis were included, 10 of whom had active pouchitis. Ileo-anal pouch anastomosis patients had an increased abundance of Proteobacteria colonization compared to patients with ulcerative colitis or Crohn's disease and healthy controls, p = 1.4·10-5. No differences in E. coli phylogroup colonization could be determined between cases of active and inactive disease. No significant link was found between α-diversity and pouch inflammation. However, higher levels of Fusobacteria colonization were found in patients with a pouch with a fecal calprotectin level above 500, p = 0.02. In conclusion, patients with a pouch had an increased Proteobacteria abundance, but only Fusobacteria abundance was linked to inflammation.
Collapse
Affiliation(s)
- Andreas Munk Petersen
- Gastrounit, Medical Section, Amager-Hvidovre University Hospital, 2650 Copenhagen, Denmark; (M.K.V.-A.); (F.B.)
- Department of Clinical Microbiology, Amager-Hvidovre University Hospital, 2650 Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-38-62-59-60
| | | | - Marianne K. Vester-Andersen
- Gastrounit, Medical Section, Amager-Hvidovre University Hospital, 2650 Copenhagen, Denmark; (M.K.V.-A.); (F.B.)
- Department of Internal Medicine, Zealand University Hospital, 4600 Køge, Denmark
| | - Nikolaj Sørensen
- Clinical-Microbiomics, Ole Maaløes Vej 3, Clinical Microbiomics, 2200 Copenhagen, Denmark;
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark; (H.C.M.-L.); (K.A.K.)
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Flemming Bendtsen
- Gastrounit, Medical Section, Amager-Hvidovre University Hospital, 2650 Copenhagen, Denmark; (M.K.V.-A.); (F.B.)
- Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Nguyen T, Sedghi L, Ganther S, Malone E, Kamarajan P, Kapila YL. Host-microbe interactions: Profiles in the transcriptome, the proteome, and the metabolome. Periodontol 2000 2020; 82:115-128. [PMID: 31850641 DOI: 10.1111/prd.12316] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontal studies using transcriptomics, proteomics, and metabolomics encompass the collection of mRNA transcripts, proteins, and small-molecule chemicals in the context of periodontal health and disease. The number of studies using these approaches has significantly increased in the last decade and they have provided new insight into the pathogenesis and host-microbe interactions that define periodontal diseases. This review provides an overview of current molecular findings using -omic approaches that underlie periodontal disease, including modulation of the host immune response, tissue homeostasis, and complex metabolic processes of the host and the oral microbiome. Integration of these -omic approaches will broaden our perspective of the molecular mechanisms involved in periodontal disease, advancing and improving the diagnosis and treatment of various stages and forms of periodontal disease.
Collapse
Affiliation(s)
- Trang Nguyen
- School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Lea Sedghi
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
21
|
Van Dyke TE, Bartold PM, Reynolds EC. The Nexus Between Periodontal Inflammation and Dysbiosis. Front Immunol 2020; 11:511. [PMID: 32296429 PMCID: PMC7136396 DOI: 10.3389/fimmu.2020.00511] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
The nexus between periodontal inflammation and the polymicrobial biofilm in the gingival sulcus is critical to understanding the pathobiology of periodontitis. Both play a major role in the etiology and pathogenesis of periodontal diseases and each reinforces the other. However, this nexus is also at the center of a significant conundrum for periodontology. For all mucosal polymicrobial biofilms, the most confounding issue is the paradoxical relationship between inflammation, infection, and disease. Despite significant advances made in both periodontal microbiology and periodontal pathobiology, the issue of which comes first, the inflammatory response or the change to a dysbiotic subgingival microbiota, is still debated. In this paper, we present a model for the pathogenesis of periodontitis based on the central role of inflammation and how this modulates the polymicrobial biofilm within the context of the continuum of health, gingivitis, and periodontitis. We propose a new model termed “Inflammation-Mediated Polymicrobial-Emergence and Dysbiotic-Exacerbation” (IMPEDE), which is designed to integrate into and complement the 2017 World Workshop Classification of Periodontitis.
Collapse
Affiliation(s)
| | - P Mark Bartold
- School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - Eric C Reynolds
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Huang Z, Zeng S, Xiong J, Hou D, Zhou R, Xing C, Wei D, Deng X, Yu L, Wang H, Deng Z, Weng S, Kriengkrai S, Ning D, Zhou J, He J. Microecological Koch's postulates reveal that intestinal microbiota dysbiosis contributes to shrimp white feces syndrome. MICROBIOME 2020; 8:32. [PMID: 32156316 PMCID: PMC7065354 DOI: 10.1186/s40168-020-00802-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/10/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Recently, increasing evidence supports that some complex diseases are not attributed to a given pathogen, but dysbiosis in the host intestinal microbiota (IM). The full intestinal ecosystem alterations, rather than a single pathogen, are associated with white feces syndrome (WFS), a globally severe non-infectious shrimp disease, while no experimental evidence to explore the causality. Herein, we conducted comprehensive metagenomic and metabolomic analysis, and intestinal microbiota transplantation (IMT) to investigate the causal relationship between IM dysbiosis and WFS. RESULTS Compared to the Control shrimp, we found dramatically decreased microbial richness and diversity in WFS shrimp. Ten genera, such as Vibrio, Candidatus Bacilloplasma, Photobacterium, and Aeromonas, were overrepresented in WFS, whereas 11 genera, including Shewanella, Chitinibacter, and Rhodobacter were enriched in control. The divergent changes in these populations might contribute the observation that a decline of pathways conferring lipoic acid metabolism and mineral absorption in WFS. Meanwhile, some sorts of metabolites, especially lipids and organic acids, were found to be related to the IM alteration in WFS. Integrated with multiomics and IMT, we demonstrated that significant alterations in the community composition, functional potentials, and metabolites of IM were closely linked to shrimp WFS. The distinguished metabolites which were attributed to the IM dysbiosis were validated by feed-supplementary challenge. Both homogenous selection and heterogeneous selection process were less pronounced in WFS microbial community assembly. Notably, IMT shrimp from WFS donors eventually developed WFS clinical signs, while the dysbiotic IM can be recharacterized in recipient shrimp. CONCLUSIONS Collectively, our findings offer solid evidence of the causality between IM dysbiosis and shrimp WFS, which exemplify the 'microecological Koch's postulates' (an intestinal microbiota dysbiosis, a disease) in disease etiology, and inspire our cogitation on etiology from an ecological perspective. Video abstract.
Collapse
Affiliation(s)
- Zhijian Huang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Shenzheng Zeng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, People’s Republic of China
| | - Dongwei Hou
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Renjun Zhou
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Chengguang Xing
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Dongdong Wei
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Xisha Deng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Lingfei Yu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Hao Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Zhixuan Deng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| | | | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK USA
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong People’s Republic of China
| |
Collapse
|
23
|
Relman DA. Thinking about the microbiome as a causal factor in human health and disease: philosophical and experimental considerations. Curr Opin Microbiol 2020; 54:119-126. [PMID: 32114367 DOI: 10.1016/j.mib.2020.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/15/2023]
Abstract
Relationships between hosts and host-associated microbial communities are complex, intimate, and associated with a wide variety of health and disease states. For these reasons, these relationships have raised many difficult questions and claims about microbiome causation. While philosophers and scientists alike have pondered the challenges of causal inference and offered postulates and rules, there are no simple solutions, especially with poorly characterized, putative causal factors such as microbiomes, ill-defined host effects, and inadequate experimental models. Recommendations are provided here for conceptual and experimental approaches regarding microbiome causal inference, and for a research agenda.
Collapse
Affiliation(s)
- David A Relman
- Departments of Microbiology & Immunology, and of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States; Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States; Freeman Spogli Institute for International Studies, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
24
|
Ghias MH, Hyde MJ, Tomalin LE, Morgan BP, Alavi A, Lowes MA, Piguet V. Role of the Complement Pathway in Inflammatory Skin Diseases: A Focus on Hidradenitis Suppurativa. J Invest Dermatol 2019; 140:531-536.e1. [PMID: 31870626 DOI: 10.1016/j.jid.2019.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Although the role of immune dysregulation in hidradenitis suppurativa (HS) has yet to be elucidated, recent studies identified several complement abnormalities in patients with HS. The complement system serves a critical role in the modulation of immune response and regulation of cutaneous commensal bacteria. Complement is implicated in several inflammatory skin diseases including systemic lupus erythematosus, angioedema, pemphigus, bullous pemphigoid, and HS. A model of HS pathogenesis is proposed, integrating the role of commensal bacteria, cutaneous immune responses, and complement dysregulation. The role of complement in disease pathogenesis has led to the development of novel anticomplement agents and clinical trials investigating the efficacy of such treatments in HS.
Collapse
Affiliation(s)
| | | | - Lewis E Tomalin
- Icahn School of Medicine at Mt. Sinai Department of Population Health, New York, New York
| | - B Paul Morgan
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Afsaneh Alavi
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, Ontario, Canada
| | | | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Tiffany CR, Bäumler AJ. Dysbiosis: from fiction to function. Am J Physiol Gastrointest Liver Physiol 2019; 317:G602-G608. [PMID: 31509433 PMCID: PMC6879887 DOI: 10.1152/ajpgi.00230.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 01/31/2023]
Abstract
Advances in data collection technologies reveal that an imbalance (dysbiosis) in the composition of host-associated microbial communities (microbiota) is linked to many human illnesses. This association makes dysbiosis a central concept for understanding how the human microbiota contributes to health and disease. However, it remains problematic to define the term dysbiosis by cataloguing microbial species names. Here, we discuss how incorporating the germ-organ concept, ecological assumptions, and immunological principles into a theoretical framework for microbiota research provides a functional definition for dysbiosis. The generation of such a framework suggests that the next logical step in microbiota research will be to illuminate the mechanistic underpinnings of dysbiosis, which often involves a weakening of immune mechanisms that balance our microbial communities.
Collapse
Affiliation(s)
- Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis California
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis California
| |
Collapse
|
26
|
Bass D, Stentiford GD, Wang HC, Koskella B, Tyler CR. The Pathobiome in Animal and Plant Diseases. Trends Ecol Evol 2019; 34:996-1008. [PMID: 31522755 DOI: 10.1016/j.tree.2019.07.012] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
A growing awareness of the diversity and ubiquity of microbes (eukaryotes, prokaryotes, and viruses) associated with larger 'host' organisms has led to the realisation that many diseases thought to be caused by one primary agent are the result of interactions between multiple taxa and the host. Even where a primary agent can be identified, its effect is often moderated by other symbionts. Therefore, the one pathogen-one disease paradigm is shifting towards the pathobiome concept, integrating the interaction of multiple symbionts, host, and environment in a new understanding of disease aetiology. Taxonomically, pathobiomes are variable across host species, ecology, tissue type, and time. Therefore, a more functionally driven understanding of pathobiotic systems is necessary, based on gene expression, metabolic interactions, and ecological processes.
Collapse
Affiliation(s)
- David Bass
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Barrack Road, The Nothe, Weymouth, DT4 8UB, UK; Sustainable Aquaculture Futures, University of Exeter, Exeter, EX4 4QD, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Grant D Stentiford
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Barrack Road, The Nothe, Weymouth, DT4 8UB, UK; Sustainable Aquaculture Futures, University of Exeter, Exeter, EX4 4QD, UK
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Charles R Tyler
- Sustainable Aquaculture Futures, University of Exeter, Exeter, EX4 4QD, UK; Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4HB, UK
| |
Collapse
|
27
|
Brooks AW. How could ethnicity-associated microbiomes contribute to personalized therapies? Future Microbiol 2019; 14:451-455. [PMID: 31033343 DOI: 10.2217/fmb-2019-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Andrew W Brooks
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, 37232 USA.,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, 37232 USA
| |
Collapse
|
28
|
Ragland NH, Miedel EL, Engelman RW. PCR Prevalence of Murine Opportunistic Microbes and their Mitigation by Using Vaporized Hydrogen Peroxide. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:208-215. [PMID: 30795821 DOI: 10.30802/aalas-jaalas-18-000112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposing immunodeficient mice to opportunistic microbes introduces risks of data variability, morbidity, mortality, and the invalidation of studies involving unique human reagents, including the loss of primary human hematopoietic cells, patient-derived xenografts, and experimental therapeutics. The prevalence of 15 opportunistic microbes in a murine research facility was determined by yearlong PCR-based murine and IVC equipment surveillance comprising 1738 specimens. Of the 8 microbes detected, 3 organisms- Staphylococcus xylosus, Proteus mirabilis, and Pasteurella pneumotropica biotype Heyl-were most prevalent in both murine and IVC exhaust plenum specimens. Overall, the 8 detectable microbes were more readily PCR-detectable in IVC exhaust airways than in murine specimens, supporting the utility of PCR testing of IVC exhaust airways as a component of immunodeficient murine health surveillance. Vaporized hydrogen peroxide (VHP) exposure of IVC equipment left unassembled (that is, in a 'static-open' configuration) did not eliminate PCR detectable evidence of microbes. In contrast, VHP exposure of IVC equipment assembled 'active-closed' eliminated PCR-detectable evidence of all microbes. Ensuring data integrity and maintaining a topographically complex immunodeficient murine research environment is facilitated by knowing the prevalent opportunistic microbes to be monitored and by implementing a PCR-validated method of facility decontamination that mitigates opportunistic microbes and the risk of invalidation of studies involving immunodeficient mice.
Collapse
Affiliation(s)
- Natalie H Ragland
- Department of Comparative Medicine, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA.
| | - Emily L Miedel
- Department of Comparative Medicine, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA
| | - Robert W Engelman
- Department of Comparative Medicine, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
29
|
Brooks AW, Priya S, Blekhman R, Bordenstein SR. Gut microbiota diversity across ethnicities in the United States. PLoS Biol 2018; 16:e2006842. [PMID: 30513082 PMCID: PMC6279019 DOI: 10.1371/journal.pbio.2006842] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Composed of hundreds of microbial species, the composition of the human gut microbiota can vary with chronic diseases underlying health disparities that disproportionally affect ethnic minorities. However, the influence of ethnicity on the gut microbiota remains largely unexplored and lacks reproducible generalizations across studies. By distilling associations between ethnicity and differences in two US-based 16S gut microbiota data sets including 1,673 individuals, we report 12 microbial genera and families that reproducibly vary by ethnicity. Interestingly, a majority of these microbial taxa, including the most heritable bacterial family, Christensenellaceae, overlap with genetically associated taxa and form co-occurring clusters linked by similar fermentative and methanogenic metabolic processes. These results demonstrate recurrent associations between specific taxa in the gut microbiota and ethnicity, providing hypotheses for examining specific members of the gut microbiota as mediators of health disparities.
Collapse
Affiliation(s)
- Andrew W. Brooks
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sambhawa Priya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, Minnesota, United States of America
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Seth R. Bordenstein
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
30
|
Microbiome shifts with onset and progression of Sea Star Wasting Disease revealed through time course sampling. Sci Rep 2018; 8:16476. [PMID: 30405146 PMCID: PMC6220307 DOI: 10.1038/s41598-018-34697-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022] Open
Abstract
The recent outbreak of Sea Star Wasting Disease (SSWD) is one of the largest marine epizootics in history, but the host-associated microbial community changes specific to disease progression have not been characterized. Here, we sampled the microbiomes of ochre sea stars, Pisaster ochraceus, through time as animals stayed healthy or became sick and died with SSWD. We found community-wide differences in the microbiomes of sick and healthy sea stars, changes in microbial community composition through disease progression, and a decrease in species richness of the microbiome in late stages of SSWD. Known beneficial taxa (Pseudoalteromonas spp.) decreased in abundance at symptom onset and through disease progression, while known pathogenic (Tenacibaculum spp.) and putatively opportunistic bacteria (Polaribacter spp. and Phaeobacter spp.) increased in abundance in early and late disease stages. Functional profiling revealed microbes more abundant in healthy animals performed functions that inhibit growth of other microbes, including pathogen detection, biosynthesis of secondary metabolites, and degradation of xenobiotics. Changes in microbial composition with disease onset and progression suggest that a microbial imbalance of the host could lead to SSWD or be a consequence of infection by another pathogen. This work highlights the importance of the microbiome in SSWD and also suggests that a healthy microbiome may help confer resistance to SSWD.
Collapse
|
31
|
Harris KG, Chang EB. The intestinal microbiota in the pathogenesis of inflammatory bowel diseases: new insights into complex disease. Clin Sci (Lond) 2018; 132:2013-2028. [PMID: 30232239 PMCID: PMC6907688 DOI: 10.1042/cs20171110] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic diseases of increasing worldwide prevalence characterized by gastrointestinal (GI) inflammation leading to debilitating symptoms and complications. The contribution of the intestinal microbiota to the pathogenesis and etiology of these diseases is an area of active research interest. Here, we discuss key mechanisms underlying the chronic inflammation seen in IBD as well as evidence implicating the intestinal microbiota in the development and potentiation of that inflammation. We also discuss recently published work in areas of interest within the field of microbial involvement in IBD pathogenesis - the importance of proper microecology within the GI tract, the evidence that the intestinal microbiota transduces environmental and genetic risk factors for IBD, and the mechanisms by which microbial products contribute to communication between microbe and host. There is an extensive body of published research on the evidence for microbial involvement in IBD; the goal of this review is to highlight the growing edges of the field where exciting and innovative research is pushing the boundaries of the conceptual framework of the role of the intestinal microbiota in IBD pathogenesis.
Collapse
Affiliation(s)
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, U.S.A.
| |
Collapse
|
32
|
Misic AM, Miedel EL, Brice AK, Cole S, Zhang GF, Dyer CD, Secreto A, Smith AL, Danet-Desnoyers G, Beiting DP. Culture-independent Profiling of the Fecal Microbiome to Identify Microbial Species Associated with a Diarrheal Outbreak in Immunocompromised Mice. Comp Med 2018; 68:261-268. [PMID: 29898804 DOI: 10.30802/aalas-cm-17-000084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immunocompromised mice are used frequently in biomedical research, in part because they accommodate the engraftment and study of primary human cells within a mouse model; however, these animals are susceptible to opportunistic infections and require special husbandry considerations. In 2015, an outbreak marked by high morbidity but low mortality swept through a colony of immunocompromised mice; this outbreak rapidly affected 75% of the colony and ultimately required complete depopulation of the barrier suite. Conventional microbiologic and molecular diagnostics were unsuccessful in determining the cause; therefore, we explored culture-independent methods to broadly profile the microbial community in the feces of affected animals. This approach identified 4 bacterial taxa- Candidatus Arthromitus, Clostridium celatum, Clostridiales bacterium VE202-01, and Bifidobacterium pseudolongum strain PV8-2- that were significantly enriched in the affected mice. Based on these results, specific changes were made to the animal husbandry procedures for immunocompromised mice. This case report highlights the utility of culture-independent methods in laboratory animal diagnostics.
Collapse
Affiliation(s)
- Ana M Misic
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily L Miedel
- Comparative Medicine, University of South Florida, Tampa, Florida, USA
| | - Angela K Brice
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Comparative Medicine, University of South Florida, Tampa, Florida, USA
| | - Stephen Cole
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Grace F Zhang
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cecilia D Dyer
- Comparative Medicine, University of South Florida, Tampa, Florida, USA
| | - Anthony Secreto
- Stem Cell and Xenograft Core, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Abigail L Smith
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Comparative Medicine, University of South Florida, Tampa, Florida, USA
| | - Gwenn Danet-Desnoyers
- Stem Cell and Xenograft Core, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P Beiting
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
33
|
Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 2017. [DOI: 10.1038/nrmicro.2017.58] [Citation(s) in RCA: 460] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Karavolos M, Holban A. Nanosized Drug Delivery Systems in Gastrointestinal Targeting: Interactions with Microbiota. Pharmaceuticals (Basel) 2016; 9:E62. [PMID: 27690060 PMCID: PMC5198037 DOI: 10.3390/ph9040062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
The new age of nanotechnology has signaled a stream of entrepreneurial possibilities in various areas, form industry to medicine. Drug delivery has benefited the most by introducing nanostructured systems in the transport and controlled release of therapeutic molecules at targeted sites associated with a particular disease. As many nanosized particles reach the gastrointestinal tract by various means, their interactions with the molecular components of this highly active niche are intensively investigated. The well-characterized antimicrobial activities of numerous nanoparticles are currently being considered as a reliable and efficient alternative to the eminent world crisis in antimicrobial drug discovery. The interactions of nanosystems present in the gastrointestinal route with host microbiota is unavoidable; hence, a major research initiative is needed to explore the mechanisms and effects of these nanomaterials on microbiota and the impact that microbiota may have in the outcome of therapies entailing drug delivery nanosystems through the gastrointestinal route. These coordinated studies will provide novel techniques to replace or act synergistically with current technologies and help develop new treatments for major diseases via the discovery of unique antimicrobial molecules.
Collapse
Affiliation(s)
| | - Alina Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest 77206, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 011061, Romania.
| |
Collapse
|