1
|
Toit SAD, Rip D. Exploring the genetic variability, virulence factors, and antibiotic resistance of Listeria monocytogenes from fresh produce, ready-to-eat hummus, and food-processing environments. J Food Sci 2024; 89:6916-6945. [PMID: 39327637 DOI: 10.1111/1750-3841.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024]
Abstract
Listeria monocytogenes is ubiquitous in nature and persistent in food-processing facilities, farms, retail stores, and home and restaurant kitchens. Current research suggests ready-to-eat (RTE) products (including RTE hummus and fresh produce) to be of increasing interest and concern. These foods are typically stored at refrigeration temperatures suited to the survival of L. monocytogenes and are consumed without further processing. Since L. monocytogenes is ubiquitous in agricultural environments, the cultivation of fresh produce predisposes it to contamination. The contamination of RTE foods originates either from raw ingredients or, more commonly, from cross-contamination within food-processing facilities. Research on the food-processing environment has been recommended to reduce the incidence of L. monocytogenes in foods. The consumption of contaminated foods by immunocompromised individuals causes invasive listeriosis, with a 20% to 30% fatality rate despite treatment. The emergence of antibiotic-resistant strains has reduced the effectiveness of modern medicine and may increase morbidity and mortality. Without epidemiological surveillance and identifying trends in disease determinants, no action can be taken to improve food safety and mitigate the risk of such outbreaks.
Collapse
Affiliation(s)
- Samantha Anne du Toit
- Department of Food Science, Stellenbosch University Matieland, Stellenbosch, South Africa
| | - Diane Rip
- Department of Food Science, Stellenbosch University Matieland, Stellenbosch, South Africa
| |
Collapse
|
2
|
Derelle R, von Wachsmann J, Mäklin T, Hellewell J, Russell T, Lalvani A, Chindelevitch L, Croucher NJ, Harris SR, Lees JA. Seamless, rapid, and accurate analyses of outbreak genomic data using split k-mer analysis. Genome Res 2024; 34:1661-1673. [PMID: 39406504 PMCID: PMC11529842 DOI: 10.1101/gr.279449.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/16/2024] [Indexed: 11/01/2024]
Abstract
Sequence variation observed in populations of pathogens can be used for important public health and evolutionary genomic analyses, especially outbreak analysis and transmission reconstruction. Identifying this variation is typically achieved by aligning sequence reads to a reference genome, but this approach is susceptible to reference biases and requires careful filtering of called genotypes. There is a need for tools that can process this growing volume of bacterial genome data, providing rapid results, but that remain simple so they can be used without highly trained bioinformaticians, expensive data analysis, and long-term storage and processing of large files. Here we describe split k-mer analysis (SKA2), a method that supports both reference-free and reference-based mapping to quickly and accurately genotype populations of bacteria using sequencing reads or genome assemblies. SKA2 is highly accurate for closely related samples, and in outbreak simulations, we show superior variant recall compared with reference-based methods, with no false positives. SKA2 can also accurately map variants to a reference and be used with recombination detection methods to rapidly reconstruct vertical evolutionary history. SKA2 is many times faster than comparable methods and can be used to add new genomes to an existing call set, allowing sequential use without the need to reanalyze entire collections. With an inherent absence of reference bias, high accuracy, and a robust implementation, SKA2 has the potential to become the tool of choice for genotyping bacteria. SKA2 is implemented in Rust and is freely available as open-source software.
Collapse
Affiliation(s)
- Romain Derelle
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W21PG, United Kingdom
| | - Johanna von Wachsmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Tommi Mäklin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
- Department of Mathematics and Statistics, University of Helsinki, Helsinki 00014, Finland
| | - Joel Hellewell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Timothy Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Ajit Lalvani
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W21PG, United Kingdom
| | - Leonid Chindelevitch
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W12 0BZ, United Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W12 0BZ, United Kingdom
| | - Simon R Harris
- Bill and Melinda Gates Foundation, Westminster, London SW1E 6AJ, United Kingdom
| | - John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom;
| |
Collapse
|
3
|
Halbedel S, Wamp S, Lachmann R, Holzer A, Pietzka A, Ruppitsch W, Wilking H, Flieger A. High density genomic surveillance and risk profiling of clinical Listeria monocytogenes subtypes in Germany. Genome Med 2024; 16:115. [PMID: 39375806 PMCID: PMC11457394 DOI: 10.1186/s13073-024-01389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Foodborne infections such as listeriosis caused by the bacterium Listeria monocytogenes represent a significant public health concern, particularly when outbreaks affect many individuals over prolonged time. Systematic collection of pathogen isolates from infected patients, whole genome sequencing (WGS) and phylogenetic analyses allow recognition and termination of outbreaks after source identification and risk profiling of abundant lineages. METHODS We here present a multi-dimensional analysis of > 1800 genome sequences from clinical L. monocytogenes isolates collected in Germany between 2018 and 2021. Different WGS-based subtyping methods were used to determine the population structure with its main phylogenetic sublineages as well as for identification of disease clusters. Clinical frequencies of materno-foetal and brain infections and in vitro infection experiments were used for risk profiling of the most abundant sublineages. These sublineages and large disease clusters were further characterised in terms of their genetic and epidemiological properties. RESULTS The collected isolates covered 62% of all notified cases and belonged to 188 infection clusters. Forty-two percent of these clusters were active for > 12 months, 60% generated cases cross-regionally, including 11 multinational clusters. Thirty-seven percent of the clusters were caused by sequence type (ST) ST6, ST8 and ST1 clones. ST1 was identified as hyper- and ST8, ST14, ST29 as well as ST155 as hypovirulent, while ST6 had average virulence potential. Inactivating mutations were found in several virulence and house-keeping genes, particularly in hypovirulent STs. CONCLUSIONS Our work presents an in-depth analysis of the genomic characteristics of L. monocytogenes isolates that cause disease in Germany. It supports prioritisation of disease clusters for epidemiological investigations and reinforces the need to analyse the mechanisms underlying hyper- and hypovirulence.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany.
- Institute for Medical Microbiology and Hospital Hygiene, Otto Von Guericke University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany.
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany
| | - Raskit Lachmann
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Alexandra Holzer
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Beethovenstraße 6, Graz, 8010, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Währingerstrasse 25a, Vienna, 1090, Austria
| | - Hendrik Wilking
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Antje Flieger
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany.
| |
Collapse
|
4
|
Lambrechts K, Gouws P, Rip D. Genetic diversity of Listeria monocytogenes from seafood products, its processing environment, and clinical origin in the Western Cape, South Africa using whole genome sequencing. AIMS Microbiol 2024; 10:608-643. [PMID: 39219753 PMCID: PMC11362271 DOI: 10.3934/microbiol.2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Listeria monocytogenes is a concern in seafood and its food processing environment (FPE). Several outbreaks globally have been linked to various types of seafood. Genetic profiling of L. monocytogenes is valuable to track bacterial contamination throughout the FPE and in understanding persistence mechanisms, with limited studies from South Africa. Forty-six L. monocytogenes isolates from origins: Fish/seafood products (n = 32) (salmon, smoked trout, fresh hake, oysters), the FPE (n = 6), and clinical (n = 8) were included in this study. Lineage typing, antibiotic susceptibility testing, and screening for two genes (bcrABC and emrC) conferring sanitizer tolerance was conducted. The seafood and FPE isolates originated from seven different factories processing various seafood products with undetermined origin. All clinical isolates were categorized as lineage I, and seafood and FPE isolates were mostly categorized into lineage II (p < 0.01). Seafood and FPE isolates (53%) carried the bcrABC gene cassette and one fish isolate, the emrC gene. A subset, n = 24, was grouped into serotypes, sequence types (STs), and clonal complexes (CCs) with whole genome sequencing (WGS). Eight CCs and ten STs were identified. All clinical isolates belonged to serogroup 4b, hypervirulent CC1. CC121 was the most prevalent in isolates from food and the FPE. All isolates carried Listeria pathogenicity islands (LIPI) 1 and 2. LIPI-3 and LIPI-4 were found in certain isolates. We identified genetic determinants linked to enhanced survival in the FPE, including stress survival islets (SSI) and genes conferring tolerance to sanitizers. SSI-1 was found in 44% isolates from seafood and the FPE. SSI-2 was found in all the ST121 seafood isolates. Isolates (42%) harbored transposon Tn1688_qac (ermC), conferring tolerance to quaternary ammonium compounds. Five plasmids were identified in 13 isolates from seafood and the FPE. This is the first One Health study reporting on L. monocytogenes genetic diversity, virulence and resistance profiles from various types of seafood and its FPE in South Africa.
Collapse
Affiliation(s)
| | | | - Diane Rip
- Department of Food Science, Stellenbosch University, 7602, South Africa
| |
Collapse
|
5
|
Bechtel TD, Hershelman J, Ghoshal M, McLandsborough L, Gibbons JG. Chemical mutagenesis of Listeria monocytogenes for increased tolerance to benzalkonium chloride shows independent genetic underpinnings and off-target antibiotic resistance. PLoS One 2024; 19:e0305663. [PMID: 39028728 PMCID: PMC11259264 DOI: 10.1371/journal.pone.0305663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/02/2024] [Indexed: 07/21/2024] Open
Abstract
Listeria monocytogenes, a potentially fatal foodborne pathogen commonly found in food processing facilities, creates a significant economic burden that totals more than $2 billion annually in the United States due to outbreaks. Quaternary ammonium compounds (QACs), including benzalkonium chloride (BAC), are among the most widely used sanitizers to inhibit the growth and spread of L. monocytogenes from food processing facilities. However, resistance to QACs has been increasing in L. monocytogenes and different genetic mechanisms conferring resistance have been discovered. Here, we used ethyl methanesulfonate (EMS) to chemically mutagenize the BAC-susceptible strain, L. monocytogenes FSL-N1-304. We isolated two mutants with increased tolerance to BAC compared to the parental strain. Next, we assessed the off-target effect of increased tolerance to BAC by measuring the minimum inhibitory concentrations (MICs) of a diverse set of antibiotics, revealing that mut-1 and mut-2 displayed significantly increased resistance to fluoroquinolone antibiotics compared to the parental strain. A hemolysis assay was then used to investigate a potential correlation between BAC tolerance and virulence. Interestingly, mut-1 and mut-2 both exhibited significantly higher hemolysis percentage than the parental strain. We then sequenced the genomes of the parental strain and both mutants to identify mutations that may be involved in the increased resistance to BAC. We identified 3 and 29 mutations in mut-1 and mut-2, respectively. mut-1 contained nonsynonymous mutations in dagK (a diacylglycerol kinase), lmo2768 (a permease-encoding gene), and lmo0186 (resuscitation promoting factor). mut-2 contained a nonsense mutation in the nucleotide excision repair enzyme UvrABC system protein B encoding gene, uvrB, which likely accounts for the higher number of mutations observed. Transcriptome analysis in the presence of BAC revealed that genes related to the phosphotransferase system and internalins were up-regulated in both mutants, suggesting their significance in the BAC stress response. These two mutants provide insights into alternative mechanisms for increased BAC tolerance and could further our understanding of how L. monocytogenes persists in the food processing environment.
Collapse
Affiliation(s)
- Tyler D. Bechtel
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
| | - Julia Hershelman
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States of America
| | - Mrinalini Ghoshal
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States of America
| | - Lynne McLandsborough
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States of America
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States of America
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
6
|
Rolon ML, Voloshchuk O, Bartlett KV, LaBorde LF, Kovac J. Multi-species biofilms of environmental microbiota isolated from fruit packing facilities promoted tolerance of Listeria monocytogenes to benzalkonium chloride. Biofilm 2024; 7:100177. [PMID: 38304489 PMCID: PMC10832383 DOI: 10.1016/j.bioflm.2024.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Listeria monocytogenes may survive and persist in food processing environments due to formation of complex multi-species biofilms of environmental microbiota that co-exists in these environments. This study aimed to determine the effect of selected environmental microbiota on biofilm formation and tolerance of L. monocytogenes to benzalkonium chloride in formed biofilms. The studied microbiota included bacterial families previously shown to co-occur with L. monocytogenes in tree fruit packing facilities, including Pseudomonadaceae, Xanthomonadaceae, Microbacteriaceae, and Flavobacteriaceae. Biofilm formation ability and the effect of formed biofilms on the tolerance of L. monocytogenes to benzalkonium chloride was measured in single- and multi-family assemblages. Biofilms were grown statically on polystyrene pegs submerged in a R2A broth. Biofilm formation was quantified using a crystal violet assay, spread-plating, confocal laser scanning microscopy, and its composition was assessed using amplicon sequencing. The concentration of L. monocytogenes in biofilms was determined using the most probable number method. Biofilms were exposed to the sanitizer benzalkonium chloride, and the death kinetics of L. monocytogenes were quantified using a most probable number method. A total of 8, 8, 6, and 3 strains of Pseudomonadaceae, Xanthomonadaceae, Microbacteriaceae, and Flavobacteriaceae, respectively, were isolated from the environmental microbiota of tree fruit packing facilities and were used in this study. Biofilms formed by Pseudomonadaceae, Xanthomonadaceae, and all multi-family assemblages had significantly higher concentration of bacteria, as well as L. monocytogenes, compared to biofilms formed by L. monocytogenes alone. Furthermore, multi-family assemblage biofilms increased the tolerance of L. monocytogenes to benzalkonium chloride compared to L. monocytogenes mono-species biofilms and planktonic multi-family assemblages. These findings suggest that L. monocytogenes control strategies should focus not only on assessing the efficacy of sanitizers against L. monocytogenes, but also against biofilm-forming microorganisms that reside in the food processing built environment, such as Pseudomonadaceae or Xanthomonadaceae.
Collapse
Affiliation(s)
- M. Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Olena Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Katelyn V. Bartlett
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Luke F. LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
7
|
Karlsmose AK, Ivanova M, Kragh ML, Kjeldgaard JS, Otani S, Svendsen CA, Papić B, Zdovc I, Tasara T, Stephan R, Heir E, Langsrud S, Møretrø T, Dalgaard P, Fagerlund A, Hansen LT, Aarestrup FM, Leekitcharoenphon P. A novel metagenomic approach uncovers phage genes as markers for increased disinfectant tolerance in mixed Listeria monocytogenes communities. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 119:105582. [PMID: 38467173 DOI: 10.1016/j.meegid.2024.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Listeria monocytogenes is an important human pathogen with a high mortality rate. Consumption of contaminated ready-to-eat food is the main mode of transmission to humans. Disinfectant-tolerant L. monocytogenes have emerged, which are believed to have increased persistence potential. Elucidating the mechanisms of L. monocytogenes disinfectant tolerance has been the focus of previous studies using pure cultures. A limitation of such approach is the difficulty to identify strains with reduced susceptibility due to inter-strain variation and the need to screen large numbers of strains and genes. In this study, we applied a novel metagenomic approach to detect genes associated with disinfectant tolerance in mixed L. monocytogenes planktonic communities. Two communities, consisting of 71 and 80 isolates each, were treated with the food industry disinfectants benzalkonium chloride (BC, 1.75 mg/L) or peracetic acid (PAA, 38 mg/L). The communities were subjected to metagenomic sequencing and differences in individual gene abundances between biocide-free control communities and biocide-treated communities were determined. A significant increase in the abundance of Listeria phage-associated genes was observed in both communities after treatment, suggesting that prophage carriage could lead to an increased disinfectant tolerance in mixed L. monocytogenes planktonic communities. In contrast, a significant decrease in the abundance of a high-copy emrC-harbouring plasmid pLmN12-0935 was observed in both communities after treatment. In PAA-treated community, a putative ABC transporter previously found to be necessary for L. monocytogenes resistance to antimicrobial agents and virulence, was among the genes with the highest weight for differentiating treated from control samples. The undertaken metagenomic approach in this study can be applied to identify genes associated with increased tolerance to other antimicrobials in mixed bacterial communities.
Collapse
Affiliation(s)
- Agnete Kirstine Karlsmose
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mirena Ivanova
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Laage Kragh
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jette Sejer Kjeldgaard
- Research Group for Global Capacity Building, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Saria Otani
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Christina Aaby Svendsen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Even Heir
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Trond Møretrø
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Paw Dalgaard
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Annette Fagerlund
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Lisbeth Truelstrup Hansen
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Moura A, Leclercq A, Vales G, Tessaud-Rita N, Bracq-Dieye H, Thouvenot P, Madec Y, Charlier C, Lecuit M. Phenotypic and genotypic antimicrobial resistance of Listeria monocytogenes: an observational study in France. THE LANCET REGIONAL HEALTH. EUROPE 2024; 37:100800. [PMID: 38362545 PMCID: PMC10866989 DOI: 10.1016/j.lanepe.2023.100800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 02/17/2024]
Abstract
Background Large-scale studies are needed to clarify antimicrobial resistance in the foodborne pathogen Listeria monocytogenes (Lm) and the effectiveness of listeriosis treatment options. Here we examined the antimicrobial resistance patterns in Lm over time and assessed genotype-phenotype concordances. Methods We analyzed 5339 Lm isolates (2908 clinical and 2431 food isolates) collected in France and overseas territories, between 2012 and 2019. Whole genome sequencing was performed for all isolates and antimicrobial resistance profiles inferred from draft assemblies. Antimicrobial susceptibility towards 22 antimicrobials was determined for all clinical isolates, and in food isolates with acquired resistance genes. Findings All tested isolates were resistant to at least 3 different classes of antimicrobials, consistent with Lm intrinsic traits. Acquired antimicrobial resistance in Lm was rare (2.23% isolates) and more prevalent in food (mainly lineage II) compared to clinical isolates (mainly lineage I) (3.74% vs 0.98%, p < 0.0001), and in isolates with disinfectants or stress resistance traits (e.g. bcrABC, 20.20% vs 7.20%, p < 0.0001), suggesting co-selection of resistance in food-production environments. Acquired antimicrobial resistance could be predicted from genomes with high accuracy (>99%), except for ciprofloxacin. Acquired antimicrobial phenotypes were towards tetracyclines (mostly due to tetM), trimethoprim (dfrD), lincosamides (lnuG), macrolides (ermB, mphB) and phenicols (fexA). Interpretation The reference treatment for listeriosis (aminopenicillins/aminoglycosides) remains effective, with no acquired resistance observed. Continuous surveillance of antimicrobial resistance in clinical and food isolates is crucial to detect the emergence of novel resistance. Funding Institut Pasteur, INSERM, Santé Publique France, Investissement d'Avenir program Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (ANR-10-LABX-62-IBEID).
Collapse
Affiliation(s)
- Alexandra Moura
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Alexandre Leclercq
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Guillaume Vales
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Nathalie Tessaud-Rita
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Hélène Bracq-Dieye
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Pierre Thouvenot
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Yoann Madec
- Institut Pasteur, Université Paris Cité, Emerging Diseases Epidemiology Unit, 75015, Paris, France
| | - Caroline Charlier
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Marc Lecuit
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006, Paris, France
| |
Collapse
|
9
|
Pracser N, Zaiser A, Ying HMK, Pietzka A, Wagner M, Rychli K. Diverse Listeria monocytogenes in-house clones are present in a dynamic frozen vegetable processing environment. Int J Food Microbiol 2024; 410:110479. [PMID: 37977080 DOI: 10.1016/j.ijfoodmicro.2023.110479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Listeria (L.) monocytogenes is of global concern for food safety as the listeriosis-causing pathogen is widely distributed in the food processing environments, where it can survive for a long time. Frozen vegetables contaminated with L. monocytogenes were recently identified as the source of two large listeriosis outbreaks in the EU and US. So far, only a few studies have investigated the occurrence and behavior of Listeria in frozen vegetables and the associated processing environment. This study investigates the occurrence of L. monocytogenes and other Listeria spp. in a frozen vegetable processing environment and in frozen vegetable products. Using whole genome sequencing (WGS), the distribution of sequence types (MLST-STs) and core genome sequence types (cgMLST-CT) of L. monocytogenes were assessed, and in-house clones were identified. Comparative genomic analyses and phenotypical characterization of the different MLST-STs and isolates were performed, including growth ability under low temperatures, as well as survival of freeze-thaw cycles. Listeria were widely disseminated in the processing environment and five in-house clones namely ST451-CT4117, ST20-CT3737, ST8-CT1349, ST8-CT6243, ST224-CT5623 were identified among L. monocytogenes isolates present in environmental swab samples. Subsequently, the identified in-house clones were also detected in product samples. Conveyor belts were a major source of contamination in the processing environment. A wide repertoire of stress resistance markers supported the colonization and survival of L. monocytogenes in the frozen vegetable processing facility. The presence of ArgB was significantly associated with in-house clones. Significant differences were also observed in the growth rate between different MLST-STs at low temperatures (4 °C and 10 °C), but not between in-house and non-in-house isolates. All isolates harbored major virulence genes such as full length InlA and InlB and LIPI-1, yet there were differences between MLST-STs in the genomic content. The results of this study demonstrate that WGS is a strong tool for tracing contamination sources and transmission routes, and for identifying in-house clones. Further research targeting the co-occurring microbiota and the presence of biofilms is needed to fully understand the mechanism of colonization and persistence in a food processing environment.
Collapse
Affiliation(s)
- Nadja Pracser
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria.
| | - Andreas Zaiser
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Hui Min Katharina Ying
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Ariane Pietzka
- Austrian National Reference Laboratory for Listeria monocytogenes, Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Beethovenstrasse 6, 8010 Graz, Austria.
| | - Martin Wagner
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria; Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Kathrin Rychli
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
10
|
Zhu L, Ji X, Wu Y, Xu W, Wang F, Huang X. Molecular characterization of Listeria monocytogenes strains isolated from imported food in China from 14 countries/regions, 2003-2018. Front Cell Infect Microbiol 2023; 13:1287564. [PMID: 38179422 PMCID: PMC10765603 DOI: 10.3389/fcimb.2023.1287564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Listeria monocytogenes (Lm) is associated with severe foodborne infections and ubiquitous in the nature. Identification of characteristics of Lm transmission through trading of food products is essential for rapidly tracking Lm sources and controlling dissemination of listeriosis. In this study, a total of 44 Lm strains were isolated from food products originating from 14 countries/regions during 2003-2018 at the Shanghai port. The genomes of these Lm strains were sequenced by high-throughput sequencing. Multilocus sequence typing (MLST) analysis showed that 43 isolates were divided into 17 sequence types (STs). The distribution of STs was decentralized, with the dominant ST2 accounting for only 18.18% of the strains. The LM63 strain did not match with any of the existing STs. Core-genome MLST (cgMLST) analysis based on 1748 core genes categorized the 44 strains into 30 cgMLST types (CTs), with CT10153 and CT7892 as the most predominant CTs. Notably, LM63 and LM67 shared the same CT in the cgMLST analysis. The phylogenetic analysis based on single-copy homologous genes revealed that the 44 Lm strains were primarily classified into two lineages. The SNP analysis also indicated that these strains were roughly divided into two clades, with strains in the first clade mainly collected earlier than those in the second clade, which were predominantly collected from 2010 onwards. The analysis using the virulence factor database (VFDB) indicated that the virulence gene inlJ was the most prevalent among these 44 strains. Notably, ddrA, msbA, and sugC were enriched in this dataset, requiring further clarification of their roles in Listeria through future studies. These results might provide a clue for understanding of the global epidemiology and surveillance of Lm and present insights for implementing effective measures to reduce or prevent Listeria contamination outbreaks in imported food products.
Collapse
Affiliation(s)
- Liying Zhu
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuejiao Ji
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinxin Huang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| |
Collapse
|
11
|
Chekrouni N, Kroon M, Drost EHGM, van Soest TM, Bijlsma MW, Brouwer MC, van de Beek D. Characteristics and prognostic factors of bacterial meningitis in the intensive care unit: a prospective nationwide cohort study. Ann Intensive Care 2023; 13:124. [PMID: 38055180 DOI: 10.1186/s13613-023-01218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Patients with bacterial meningitis can be severely ill necessitating intensive care unit (ICU) treatment. Here, we describe clinical features and prognostic factors of adults with bacterial meningitis admitted to the ICU in a nationwide prospective cohort study. METHODS We prospectively assessed clinical features and outcome of adults (age > 16 years) with community-acquired bacterial meningitis included in the MeninGene study between March 1, 2006 and July 1, 2022, that were initially admitted to the ICU. We identified independent predictors for initial ICU admission and for unfavourable outcome (Glasgow Outcome Scale score between 1-4) by multivariable logistic regression. RESULTS A total of 2709 episodes of bacterial meningitis were included, of which 1369 (51%) were initially admitted to the ICU. We observed a decrease in proportion of patients being admitted to the ICU during the Covid-19 pandemic in 2020 (decreased to 39%, p = 0.004). Median age of the 1369 patients initially admitted to the ICU was 61 years (IQR 49-69), and the rates of unfavourable outcome (47%) and mortality (22%) were high. During the Covid-19 pandemic, we observed a trend towards an increase in unfavourable outcome. Prognostic factors predictive for initial ICU admission were younger age, immunocompromised state, male sex, factors associated with pneumococcal meningitis, and those indicative of systemic compromise. Independent predictors for unfavourable outcome in the initial ICU cohort were advanced age, admittance to an academic hospital, cranial nerve palsies or seizures on admission, low leukocyte count in blood, high C-reactive protein in blood, low CSF: blood glucose ratio, listerial meningitis, need for mechanical ventilation, circulatory shock and persistent fever. 204 of 1340 episodes (15%) that were initially not admitted to the ICU were secondarily transferred to the ICU. The rates of unfavourable outcome (66%) and mortality (30%) in this group were high. CONCLUSIONS The majority of patients with community-acquired bacterial meningitis are admitted to the ICU, and the unfavourable outcome and mortality rates of these patients remain high. Patients that are initially admitted to non-ICU wards but secondarily transferred to the ICU also had very high rates of unfavourable outcome.
Collapse
Affiliation(s)
- Nora Chekrouni
- Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Merel Kroon
- Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Evelien H G M Drost
- Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Thijs M van Soest
- Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Merijn W Bijlsma
- Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Chowdhury B, Anand S. Environmental persistence of Listeria monocytogenes and its implications in dairy processing plants. Compr Rev Food Sci Food Saf 2023; 22:4573-4599. [PMID: 37680027 DOI: 10.1111/1541-4337.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Listeriosis, an invasive illness with a fatality rate between 20% and 30%, is caused by the ubiquitous bacterium Listeria monocytogenes. Human listeriosis has long been associated with foods. This is because the ubiquitous nature of the bacteria renders it a common food contaminant, posing a significant risk to the food processing sector. Although several sophisticated stress coping mechanisms have been identified as significant contributing factors toward the pathogen's persistence, a complete understanding of the mechanisms underlying persistence across various strains remains limited. Moreover, aside from genetic aspects that promote the ability to cope with stress, various environmental factors that exist in food manufacturing plants could also contribute to the persistence of the pathogen. The objective of this review is to provide insight into the challenges faced by the dairy industry because of the pathogens' environmental persistence. Additionally, it also aims to emphasize the diverse adaptation and response mechanisms utilized by L. monocytogenes in food manufacturing plants to evade environmental stressors. The persistence of L. monocytogenes in the food processing environment poses a serious threat to food safety and public health. The emergence of areas with high levels of L. monocytogenes contamination could facilitate Listeria transmission through aerosols, potentially leading to the recontamination of food, particularly from floors and drains, when sanitation is implemented alongside product manufacturing. Hence, to produce safe dairy products and reduce the frequency of outbreaks of listeriosis, it is crucial to understand the factors that contribute to the persistence of this pathogen and to implement efficient control strategies.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
13
|
Byun KH, Kim HJ. Survival strategies of Listeria monocytogenes to environmental hostile stress: biofilm formation and stress responses. Food Sci Biotechnol 2023; 32:1631-1651. [PMID: 37780599 PMCID: PMC10533466 DOI: 10.1007/s10068-023-01427-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Listeria monocytogenes is a critical foodborne pathogen that causes listeriosis and threatens public health. This pathogenic microorganism forms a transmission cycle in nature, food industry, and humans, expanding the areas of contamination among them and influencing food safety. L. monocytogenes forms biofilms to protect itself and promotes survival through stress responses to the various stresses (e.g., temperature, pH, and antimicrobial agents) that may be inflicted during food processing. Biofilms and mechanisms of resistance to hostile external or general stresses allow L. monocytogenes to survive despite a variety of efforts to ensure food safety. The current review article focuses on biofilm formation, resistance mechanisms through biofilms, and external specific or general stress responses of L. monocytogenes to help understand the unexpected survival rates of this bacterium; it also proposes the use of obstacle technology to effectively cope with it in the food industry.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Food Safety and Distribution Research Group, Korea Food Research Institute, Jeollabuk-Do, Wanju, 55365 Republic of Korea
| | - Hyun Jung Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Jeollabuk-Do, Wanju, 55365 Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon, 34113 Republic of Korea
| |
Collapse
|
14
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Barichello T, Rocha Catalão CH, Rohlwink UK, van der Kuip M, Zaharie D, Solomons RS, van Toorn R, Tutu van Furth M, Hasbun R, Iovino F, Namale VS. Bacterial meningitis in Africa. Front Neurol 2023; 14:822575. [PMID: 36864913 PMCID: PMC9972001 DOI: 10.3389/fneur.2023.822575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Bacterial meningitis differs globally, and the incidence and case fatality rates vary by region, country, pathogen, and age group; being a life-threatening disease with a high case fatality rate and long-term complications in low-income countries. Africa has the most significant prevalence of bacterial meningitis illness, and the outbreaks typically vary with the season and the geographic location, with a high incidence in the meningitis belt of the sub-Saharan area from Senegal to Ethiopia. Streptococcus pneumoniae (pneumococcus) and Neisseria meningitidis (meningococcus) are the main etiological agents of bacterial meningitis in adults and children above the age of one. Streptococcus agalactiae (group B Streptococcus), Escherichia coli, and Staphylococcus aureus are neonatal meningitis's most common causal agents. Despite efforts to vaccinate against the most common causes of bacterial neuro-infections, bacterial meningitis remains a significant cause of mortality and morbidity in Africa, with children below 5 years bearing the heaviest disease burden. The factors attributed to this continued high disease burden include poor infrastructure, continued war, instability, and difficulty in diagnosis of bacterial neuro-infections leading to delay in treatment and hence high morbidity. Despite having the highest disease burden, there is a paucity of African data on bacterial meningitis. In this article, we discuss the common etiologies of bacterial neuroinfectious diseases, diagnosis and the interplay between microorganisms and the immune system, and the value of neuroimmune changes in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Tatiana Barichello
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Carlos Henrique Rocha Catalão
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Neuroscience and Behavioral Science, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Ursula K. Rohlwink
- Pediatric Neurosurgery Unit, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Martijn van der Kuip
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Dan Zaharie
- Department of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Services, Tygerberg Hospital, Cape Town, South Africa
| | - Regan S. Solomons
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marceline Tutu van Furth
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Rodrigo Hasbun
- Division of Infectious Diseases, Department of Internal Medicine, UT Health, McGovern Medical School, Houston, TX, United States
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vivian Ssonko Namale
- Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, NY, United States
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
16
|
Lakicevic B, Jankovic V, Pietzka A, Ruppitsch W. Wholegenome sequencing as the gold standard approach for control of Listeria monocytogenes in the food chain. J Food Prot 2023; 86:100003. [PMID: 36916580 DOI: 10.1016/j.jfp.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022]
Abstract
Listeria monocytogenes has been implicated in numerous outbreaks and related deaths of listeriosis. In food production, L. monocytogenes occurs in raw food material and above all, through postprocessing contamination. The use of next-generation sequencing technologies such as whole-genome sequencing (WGS) facilitates foodborne outbreak investigations, pathogen source tracking and tracing geographic distributions of different clonal complexes, routine microbiological/epidemiological surveillance of listeriosis, and quantitative microbial risk assessment. WGS can also be used to predict various genetic traits related to virulence, stress, or antimicrobial resistance, which can be of great benefit for improving food safety management as well as public health.
Collapse
Affiliation(s)
- Brankica Lakicevic
- Department for Microbiological and Molecular-biological Testing, Institute of Meat Hygiene and Technology, Belgrade, Serbia.
| | - Vesna Jankovic
- Department for Microbiological and Molecular-biological Testing, Institute of Meat Hygiene and Technology, Belgrade, Serbia
| | - Ariane Pietzka
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene Division for Public Health, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
17
|
Maillard J. Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on bacterial antimicrobial resistance. J Appl Microbiol 2022; 133:3322-3346. [PMID: 35882500 PMCID: PMC9826383 DOI: 10.1111/jam.15739] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/11/2023]
Abstract
This review examined 3655 articles on benzalkonium chloride (BKC), benzethonium chloride (BZT) and chloroxylenol (CHO) aiming to understand their impact on antimicrobial resistance. Following the application of inclusion/exclusion criteria, only 230 articles were retained for analysis; 212 concerned BKC, with only 18 for CHO and BZT. Seventy-eight percent of studies used MIC to measure BKC efficacy. Very few studies defined the term 'resistance' and 85% of studies defined 'resistance' as <10-fold increase (40% as low as 2-fold) in MIC. Only a few in vitro studies reported on formulated products and when they did, products performed better. In vitro studies looking at the impact of BKC exposure on bacterial resistance used either a stepwise training protocol or exposure to constant BKC concentrations. In these, BKC exposure resulted in elevated MIC or/and MBC, often associated with efflux, and at time, a change in antibiotic susceptibility profile. The clinical relevance of these findings was, however, neither reported nor addressed. Of note, several studies reported that bacterial strains with an elevated MIC or MBC remained susceptible to the in-use BKC concentration. BKC exposure was shown to reduce bacterial diversity in complex microbial microcosms, although the clinical significance of such a change has not been established. The impact of BKC exposure on the dissemination of resistant genes (notably efflux) remains speculative, although it manifests that clinical, veterinary and food isolates with elevated BKC MIC carried multiple efflux pump genes. The correlation between BKC usage and gene carriage, maintenance and dissemination has also not been established. The lack of clinical interpretation and significance in these studies does not allow to establish with certainty the role of BKC on AMR in practice. The limited literature and BZT and CHO do not allow to conclude that these will impact negatively on emerging bacterial resistance in practice.
Collapse
Affiliation(s)
- Jean‐Yves Maillard
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| |
Collapse
|
18
|
Palma F, Radomski N, Guérin A, Sévellec Y, Félix B, Bridier A, Soumet C, Roussel S, Guillier L. Genomic elements located in the accessory repertoire drive the adaptation to biocides in Listeria monocytogenes strains from different ecological niches. Food Microbiol 2022; 106:103757. [PMID: 35690455 DOI: 10.1016/j.fm.2021.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 11/25/2022]
Abstract
In response to the massive use of biocides for controlling Listeria monocytogenes (hereafter Lm) contaminations along the food chain, strains showing biocide tolerance emerged. Here, accessory genomic elements were associated with biocide tolerance through pangenome-wide associations performed on 197 Lm strains from different lineages, ecological, geographical and temporal origins. Mobile elements, including prophage-related loci, the Tn6188_qacH transposon and pLMST6_emrC plasmid, were widespread across lineage I and II food strains and associated with tolerance to benzalkonium-chloride (BC), a quaternary ammonium compound (QAC) widely used in food processing. The pLMST6_emrC was also associated with tolerance to another QAC, the didecyldimethylammonium-chloride, displaying a pleiotropic effect. While no associations were detected for chemically reactive biocides (alcohols and chlorines), genes encoding for cell-surface proteins were associated with BC or polymeric biguanide tolerance. The latter was restricted to lineage I strains from animal and the environment. In conclusion, different genetic markers, with polygenic nature or not, appear to have driven the Lm adaptation to biocide, especially in food strains but also from animal and the environment. These markers could aid to monitor and predict the spread of biocide tolerant Lm genotypes across different ecological niches, finally reducing the risk of such strains in food industrial settings.
Collapse
Affiliation(s)
- Federica Palma
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France.
| | - Nicolas Radomski
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Alizée Guérin
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | - Yann Sévellec
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Benjamin Félix
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | - Christophe Soumet
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | - Sophie Roussel
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Laurent Guillier
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France; Maisons-Alfort Risk Assessment Department, University Paris-Est, ANSES, Maisons-Alfort, France
| |
Collapse
|
19
|
Macleod J, Beeton ML, Blaxland J. An Exploration of Listeria monocytogenes, Its Influence on the UK Food Industry and Future Public Health Strategies. Foods 2022; 11:1456. [PMID: 35627026 PMCID: PMC9141670 DOI: 10.3390/foods11101456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular pathogen that can cause listeriosis, an invasive disease affecting pregnant women, neonates, the elderly, and immunocompromised individuals. Principally foodborne, the pathogen is transmitted typically through contaminated foods. As a result, food manufacturers exert considerable efforts to eliminate L. monocytogenes from foodstuffs and the environment through food processing and disinfection. However, L. monocytogenes demonstrates a range of environmental stress tolerances, resulting in persistent colonies that act as reservoirs for the reintroduction of L. monocytogenes to food contact surfaces and food. Novel technologies for the rapid detection of L. monocytogenes and disinfection of food manufacturing industries have been developed to overcome these obstacles to minimise the risk of outbreaks and sporadic cases of listeriosis. This review is aimed at exploring L. monocytogenes in the UK, providing a summary of outbreaks, current routine microbiological testing and the increasing awareness of biocide tolerances. Recommendations for future research in the UK are made, pertaining to expanding the understanding of L. monocytogenes dissemination in the UK food industry and the continuation of novel technological developments for disinfection of food and the food manufacturing environment.
Collapse
Affiliation(s)
- Joshua Macleod
- Microbiology and Infection Research Group, School of Sport and Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK; (J.M.); (M.L.B.)
- ZERO2FIVE Food Industry Centre, Llandaff Campus, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | - Michael L. Beeton
- Microbiology and Infection Research Group, School of Sport and Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK; (J.M.); (M.L.B.)
| | - James Blaxland
- Microbiology and Infection Research Group, School of Sport and Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK; (J.M.); (M.L.B.)
- ZERO2FIVE Food Industry Centre, Llandaff Campus, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| |
Collapse
|
20
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes - How This Pathogen Survives in Food-Production Environments? Front Microbiol 2022; 13:866462. [PMID: 35558128 PMCID: PMC9087598 DOI: 10.3389/fmicb.2022.866462] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is the causative agent of human listeriosis, a severe disease, especially dangerous for the elderly, pregnant women, and newborns. Although this infection is comparatively rare, it is often associated with a significant mortality rate of 20-30% worldwide. Therefore, this microorganism has an important impact on food safety. L. monocytogenes can adapt, survive and even grow over a wide range of food production environmental stress conditions such as temperatures, low and high pH, high salt concentration, ultraviolet lights, presence of biocides and heavy metals. Furthermore, this bacterium is also able to form biofilm structures on a variety of surfaces in food production environments which makes it difficult to remove and allows it to persist for a long time. This increases the risk of contamination of food production facilities and finally foods. The present review focuses on the key issues related to the molecular mechanisms of the pathogen survival and adaptation to adverse environmental conditions. Knowledge and understanding of the L. monocytogenes adaptation approaches to environmental stress factors will have a significant influence on the development of new, efficient, and cost-effective methods of the pathogen control in the food industry, which is critical to ensure food production safety.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| | | | | |
Collapse
|
21
|
van der Putten BCL, Huijsmans NAH, Mende DR, Schultsz C. Benchmarking the topological accuracy of bacterial phylogenomic workflows using in silico evolution. Microb Genom 2022; 8. [PMID: 35290758 PMCID: PMC9176278 DOI: 10.1099/mgen.0.000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic analyses are widely used in microbiological research, for example to trace the progression of bacterial outbreaks based on whole-genome sequencing data. In practice, multiple analysis steps such as de novo assembly, alignment and phylogenetic inference are combined to form phylogenetic workflows. Comprehensive benchmarking of the accuracy of complete phylogenetic workflows is lacking. To benchmark different phylogenetic workflows, we simulated bacterial evolution under a wide range of evolutionary models, varying the relative rates of substitution, insertion, deletion, gene duplication, gene loss and lateral gene transfer events. The generated datasets corresponded to a genetic diversity usually observed within bacterial species (≥95 % average nucleotide identity). We replicated each simulation three times to assess replicability. In total, we benchmarked 19 distinct phylogenetic workflows using 8 different simulated datasets. We found that recently developed k-mer alignment methods such as kSNP and ska achieve similar accuracy as reference mapping. The high accuracy of k-mer alignment methods can be explained by the large fractions of genomes these methods can align, relative to other approaches. We also found that the choice of de novo assembly algorithm influences the accuracy of phylogenetic reconstruction, with workflows employing SPAdes or skesa outperforming those employing Velvet. Finally, we found that the results of phylogenetic benchmarking are highly variable between replicates. We conclude that for phylogenomic reconstruction, k-mer alignment methods are relevant alternatives to reference mapping at the species level, especially in the absence of suitable reference genomes. We show de novo genome assembly accuracy to be an underappreciated parameter required for accurate phylogenomic reconstruction.
Collapse
Affiliation(s)
- Boas C L van der Putten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Niek A H Huijsmans
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel R Mende
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Constance Schultsz
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Lourenco A, Linke K, Wagner M, Stessl B. The Saprophytic Lifestyle of Listeria monocytogenes and Entry Into the Food-Processing Environment. Front Microbiol 2022; 13:789801. [PMID: 35350628 PMCID: PMC8957868 DOI: 10.3389/fmicb.2022.789801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is an environmentally adapted saprophyte that can change into a human and animal bacterial pathogen with zoonotic potential through several regulatory systems. In this review, the focus is on the occurrence of Listeria sensu stricto and sensu lato in different ecological niches, the detection methods, and their analytical limitations. It also highlights the occurrence of L. monocytogenes genotypes in the environment (soil, water, and wildlife), reflects on the molecular determinants of L. monocytogenes for the saprophytic lifestyle and the potential for antibiotic resistance. In particular, the strain-specific properties with which some genotypes circulate in wastewater, surface water, soil, wildlife, and agricultural environments are of particular interest for the continuously updating risk analysis.
Collapse
Affiliation(s)
- Antonio Lourenco
- Department of Food Biosciences, Teagasc Food Research Centre, Co. Cork, Ireland
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Kristina Linke
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Beatrix Stessl
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
23
|
Lachtara B, Wieczorek K, Osek J. Genetic Diversity and Relationships of Listeria monocytogenes Serogroup IIa Isolated in Poland. Microorganisms 2022; 10:532. [PMID: 35336111 PMCID: PMC8951407 DOI: 10.3390/microorganisms10030532] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, 100 L. monocytogenes isolates of serogroup IIa from food and food production environments in Poland were characterized towards the presence of virulence, resistance, and stress response genes using whole-genome sequencing (WGS). The strains were also molecularly typed and compared with multi-locus sequence typing (MLST) and core genome MLST analyses. The present isolates were grouped into 6 sublineages (SLs), with the most prevalent SL155 (33 isolates), SL121 (32 isolates), and SL8 (28 isolates) and classified into six clonal complexes, with the most prevalent CC155 (33 strains), CC121 (32 isolates), and CC8 (28 strains). Furthermore, the strains were grouped to eight sequence types, with the most prevalent ST155 (33 strains), ST121 (30 isolates), and ST8 (28; strains) followed by 60 cgMLST types (CTs). WGS data showed the presence of several virulence genes or putative molecular markers playing a role in pathogenesis of listeriosis and involved in survival of L. monocytogenes in adverse environmental conditions. Some of the present strains were molecularly closely related to L. monocytogenes previously isolated in Poland. The results of the study showed that food and food production environments may be a source of L. monocytogenes of serogroup IIa with pathogenic potential.
Collapse
Affiliation(s)
| | | | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, 24-100 Pulawy, Poland; (B.L.); (K.W.)
| |
Collapse
|
24
|
Bland R, Waite-Cusic J, Weisberg AJ, Riutta ER, Chang JH, Kovacevic J. Adaptation to a Commercial Quaternary Ammonium Compound Sanitizer Leads to Cross-Resistance to Select Antibiotics in Listeria monocytogenes Isolated From Fresh Produce Environments. Front Microbiol 2022; 12:782920. [PMID: 35082767 PMCID: PMC8784610 DOI: 10.3389/fmicb.2021.782920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The effective elimination of Listeria monocytogenes through cleaning and sanitation is of great importance to the food processing industry. Specifically in fresh produce operations, the lack of a kill step requires effective cleaning and sanitation to mitigate the risk of cross-contamination from the environment. As facilities rely on sanitizers to control L. monocytogenes, reports of the development of tolerance to sanitizers and other antimicrobials through cross-resistance is of particular concern. We investigated the potential for six L. monocytogenes isolates from fresh produce handling and processing facilities and packinghouses to develop cross-resistance between a commercial sanitizer and antibiotics. Experimental adaptation of isolates belonging to hypervirulent clonal complexes (CC2, CC4, and CC6) to a commercial quaternary ammonium compound sanitizer (cQAC) resulted in elevated minimum inhibitory concentrations (2–3 ppm) and minimum bactericidal concentrations (3–4 ppm). Susceptibility to cQAC was restored for all adapted (qAD) isolates in the presence of reserpine, a known efflux pump inhibitor. Reduced sensitivity to 7/17 tested antibiotics (chloramphenicol, ciprofloxacin, clindamycin, kanamycin, novobiocin, penicillin, and streptomycin) was observed in all tested isolates. qAD isolates remained susceptible to antibiotics commonly used in the treatment of listeriosis (i.e., ampicillin and gentamicin). The whole genome sequencing of qAD strains, followed by comparative genomic analysis, revealed several mutations in fepR, the regulator for FepA fluoroquinolone efflux pump. The results suggest that mutations in fepR play a role in the reduction in antibiotic susceptibility following low level adaptation to cQAC. Further investigation into the cross-resistance mechanisms and pressures leading to the development of this phenomenon among L. monocytogenes isolates recovered from different sources is needed to better understand the likelihood of cross-resistance development in food chain isolates and the implications for the food industry.
Collapse
Affiliation(s)
- Rebecca Bland
- Food Innovation Center, Oregon State University, Portland, OR, United States.,Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Elizabeth R Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, OR, United States.,Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
25
|
Fox LJ, Kelly PP, Humphreys GJ, Waigh TA, Lu JR, McBain AJ. Assessing the risk of resistance to cationic biocides incorporating realism-based and biophysical approaches. J Ind Microbiol Biotechnol 2022; 49:kuab074. [PMID: 34718634 PMCID: PMC9113109 DOI: 10.1093/jimb/kuab074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
The control of microorganisms is a key objective in disease prevention and in medical, industrial, domestic, and food-production environments. Whilst the effectiveness of biocides in these contexts is well-evidenced, debate continues about the resistance risks associated with their use. This has driven an increased regulatory burden, which in turn could result in a reduction of both the deployment of current biocides and the development of new compounds and formulas. Efforts to balance risk and benefit are therefore of critical importance and should be underpinned by realistic methods and a multi-disciplinary approach, and through objective and critical analyses of the literature. The current literature on this topic can be difficult to navigate. Much of the evidence for potential issues of resistance generation by biocides is based on either correlation analysis of isolated bacteria, where reports of treatment failure are generally uncommon, or laboratory studies that do not necessarily represent real biocide applications. This is complicated by inconsistencies in the definition of the term resistance. Similar uncertainties also apply to cross-resistance between biocides and antibiotics. Risk assessment studies that can better inform practice are required. The resulting knowledge can be utilised by multiple stakeholders including those tasked with new product development, regulatory authorities, clinical practitioners, and the public. This review considers current evidence for resistance and cross-resistance and outlines efforts to increase realism in risk assessment. This is done in the background of the discussion of the mode of application of biocides and the demonstrable benefits as well as the potential risks.
Collapse
Affiliation(s)
- Laura J Fox
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Paul P Kelly
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Thomas A Waigh
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Jian R Lu
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
26
|
Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Front Microbiol 2022; 12:738470. [PMID: 35126322 PMCID: PMC8811131 DOI: 10.3389/fmicb.2021.738470] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible for listeriosis, a disease with a high mortality rate in susceptible people. It can persist in different habitats, including the farm environment, the food production environments, and in foods. This pathogen can grow under challenging conditions, such as low pH, low temperatures, and high salt concentrations. However, L. monocytogenes has a high degree of strain divergence regarding virulence potential, environmental adaption, and stress response. This review seeks to provide the reader with an up-to-date overview of clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on the genes and genomic islands responsible for virulence and resistance to environmental stresses is given to explain the complex adaptation among L. monocytogenes strains. Moreover, we highlight the use of advanced diagnostic technologies, such as whole-genome sequencing, to fine-tune quantitative microbiological risk assessment for better control of listeriosis.
Collapse
Affiliation(s)
- Brankica Z. Lakicevic
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
- *Correspondence: Brankica Z. Lakicevic,
| | | | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
27
|
Bagatella S, Tavares-Gomes L, Oevermann A. Listeria monocytogenes at the interface between ruminants and humans: A comparative pathology and pathogenesis review. Vet Pathol 2021; 59:186-210. [PMID: 34856818 DOI: 10.1177/03009858211052659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterium Listeria monocytogenes (Lm) is widely distributed in the environment as a saprophyte, but may turn into a lethal intracellular pathogen upon ingestion. Invasive infections occur in numerous species worldwide, but most commonly in humans and farmed ruminants, and manifest as distinct forms. Of those, neuroinfection is remarkably threatening due to its high mortality. Lm is widely studied not only as a pathogen but also as an essential model for intracellular infections and host-pathogen interactions. Many aspects of its ecology and pathogenesis, however, remain unclear and are rarely addressed in its natural hosts. This review highlights the heterogeneity and adaptability of Lm by summarizing its association with the environment, farm animals, and disease. It also provides current knowledge on key features of the pathology and (molecular) pathogenesis of various listeriosis forms in naturally susceptible species with a special focus on ruminants and on the neuroinvasive form of the disease. Moreover, knowledge gaps on pathomechanisms of listerial infections and relevant unexplored topics in Lm pathogenesis research are highlighted.
Collapse
Affiliation(s)
- Stefano Bagatella
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Leticia Tavares-Gomes
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Shedleur-Bourguignon F, Thériault WP, Longpré J, Thibodeau A, Fravalo P. Use of an Ecosystem-Based Approach to Shed Light on the Heterogeneity of the Contamination Pattern of Listeria monocytogenes on Conveyor Belt Surfaces in a Swine Slaughterhouse in the Province of Quebec, Canada. Pathogens 2021; 10:pathogens10111368. [PMID: 34832524 PMCID: PMC8625388 DOI: 10.3390/pathogens10111368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
The role of the accompanying microbiota in the presence of Listeria monocytogenes on meat processing surfaces is not yet understood, especially in industrial production conditions. In this study, 300 conveyor belt samples from the cutting room of a swine slaughterhouse were collected during production. The samples were subjected to the detection of L. monocytogenes. Recovered strains were characterized by serogrouping-PCR, InlA Sanger sequencing and for their ability to form biofilm. A selection of isolates was compared with core genome multi-locus sequence typing analysis (cgMLST). The sequencing of the V4 region of the 16S RNA gene of the microorganisms harvested from each sample was carried out in parallel using the Illumina MiSeq platform. Diversity analyses were performed and MaAsLin analysis was used to assess the link between L. monocytogenes detection and the surrounding bacteria. The 72 isolates collected showed a low genetic diversity and important persistence characteristics. L. monocytogenes isolates were not stochastically distributed on the surfaces: the isolates were detected on three out of six production lines, each associated with a specific meat cut: the half carcasses, the bostons and the picnics. MaAsLin biomarker analysis identified the taxa Veillonella (p ≤ 0.0397) as a bacterial determinant of the presence of L. monocytogenes on processing surfaces. The results of this study revealed a heterogenous contamination pattern of the processing surfaces by L. monocytogenes and targeted a bacterial indicator of the presence of the pathogen. These results could lead to a better risk assessment of the contamination of meat products.
Collapse
Affiliation(s)
- Fanie Shedleur-Bourguignon
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - William P. Thériault
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - Jessie Longpré
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
| | - Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pôle Agroalimentaire, Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
- Correspondence:
| |
Collapse
|
29
|
Bourdichon F, Betts R, Dufour C, Fanning S, Farber J, McClure P, Stavropoulou DA, Wemmenhove E, Zwietering MH, Winkler A. Processing environment monitoring in low moisture food production facilities: Are we looking for the right microorganisms? Int J Food Microbiol 2021; 356:109351. [PMID: 34500287 DOI: 10.1016/j.ijfoodmicro.2021.109351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 11/27/2022]
Abstract
Processing environment monitoring is gaining increasing importance in the context of food safety management plans/HACCP programs, since past outbreaks have shown the relevance of the environment as contamination pathway, therefore requiring to ensure the safety of products. However, there are still many open questions and a lack of clarity on how to set up a meaningful program, which would provide early warnings of potential product contamination. Therefore, the current paper aims to summarize and evaluate existing scientific information on outbreaks, relevant pathogens in low moisture foods, and knowledge on indicators, including their contribution to a "clean" environment capable of limiting the spread of pathogens in dry production environments. This paper also outlines the essential elements of a processing environment monitoring program thereby supporting the design and implementation of better programs focusing on the relevant microorganisms. This guidance document is intended to help industry and regulators focus and set up targeted processing environment monitoring programs depending on their purpose, and therefore provide the essential elements needed to improve food safety.
Collapse
Affiliation(s)
- François Bourdichon
- Food Safety, Microbiology, Hygiene, 16 Rue Gaston de Caillavet, 75015 Paris, France; Facoltà di Scienze Agrarie, Alimentarie Ambientali, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy.
| | - Roy Betts
- Campden BRI, Chipping Campden, Gloucestershire, United Kingdom
| | - Christophe Dufour
- Mérieux NutriSciences, 25 Boulevard de la Paix, 95891 Cergy Pontoise, France
| | - Séamus Fanning
- UCD - Centre for Food Safety, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Jeffrey Farber
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Peter McClure
- Mondelēz International, Bournville Lane, Birmingham B30 2LU, United Kingdom
| | | | | | - Marcel H Zwietering
- Food Microbiology, Wageningen University, PO Box 17, 6700AA, Wageningen, The Netherlands
| | - Anett Winkler
- Cargill Germany GmbH, Cerestar str. 2, D-47809 Krefeld, Germany
| |
Collapse
|
30
|
Chmielowska C, Korsak D, Chapkauskaitse E, Decewicz P, Lasek R, Szuplewska M, Bartosik D. Plasmidome of Listeria spp.-The repA-Family Business. Int J Mol Sci 2021; 22:ijms221910320. [PMID: 34638661 PMCID: PMC8508797 DOI: 10.3390/ijms221910320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteria of the genus Listeria (phylum Firmicutes) include both human and animal pathogens, as well as saprophytic strains. A common component of Listeria spp. genomes are plasmids, i.e., extrachromosomal replicons that contribute to gene flux in bacteria. This study provides an in-depth insight into the structure, diversity and evolution of plasmids occurring in Listeria strains inhabiting various environments under different anthropogenic pressures. Apart from the components of the conserved plasmid backbone (providing replication, stable maintenance and conjugational transfer functions), these replicons contain numerous adaptive genes possibly involved in: (i) resistance to antibiotics, heavy metals, metalloids and sanitizers, and (ii) responses to heat, oxidative, acid and high salinity stressors. Their genomes are also enriched by numerous transposable elements, which have influenced the plasmid architecture. The plasmidome of Listeria is dominated by a group of related replicons encoding the RepA replication initiation protein. Detailed comparative analyses provide valuable data on the level of conservation of these replicons and their role in shaping the structure of the Listeria pangenome, as well as their relationship to plasmids of other genera of Firmicutes, which demonstrates the range and direction of flow of genetic information in this important group of bacteria.
Collapse
Affiliation(s)
- Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
- Correspondence: (C.C.); (D.B.)
| | - Dorota Korsak
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Elvira Chapkauskaitse
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Robert Lasek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Magdalena Szuplewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
- Correspondence: (C.C.); (D.B.)
| |
Collapse
|
31
|
Wiktorczyk-Kapischke N, Skowron K, Grudlewska-Buda K, Wałecka-Zacharska E, Korkus J, Gospodarek-Komkowska E. Adaptive Response of Listeria monocytogenes to the Stress Factors in the Food Processing Environment. Front Microbiol 2021; 12:710085. [PMID: 34489900 PMCID: PMC8417233 DOI: 10.3389/fmicb.2021.710085] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Listeria monocytogenes are Gram-positive, facultatively anaerobic, non-spore-forming bacteria that easily adapt to changing environmental conditions. The ability to grow at a wide range of temperatures, pH, and salinity determines the presence of the pathogen in water, sewage, soil, decaying vegetation, and animal feed. L. monocytogenes is an etiological factor of listeriosis, especially dangerous for the elderly, pregnant women, and newborns. The major source of L. monocytogenes for humans is food, including fresh and smoked products. Its high prevalence in food is associated with bacterial adaptation to the food processing environment (FPE). Since the number of listeriosis cases has been progressively increasing an efficient eradication of the pathogen from the FPE is crucial. Understanding the mechanisms of bacterial adaptation to environmental stress will significantly contribute to developing novel, effective methods of controlling L. monocytogenes in the food industry.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jakub Korkus
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
32
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|
33
|
Halbedel S, Wilking H, Holzer A, Kleta S, Fischer MA, Lüth S, Pietzka A, Huhulescu S, Lachmann R, Krings A, Ruppitsch W, Leclercq A, Kamphausen R, Meincke M, Wagner-Wiening C, Contzen M, Kraemer IB, Al Dahouk S, Allerberger F, Stark K, Flieger A. Large Nationwide Outbreak of Invasive Listeriosis Associated with Blood Sausage, Germany, 2018-2019. Emerg Infect Dis 2021; 26:1456-1464. [PMID: 32568037 PMCID: PMC7323541 DOI: 10.3201/eid2607.200225] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invasive listeriosis is a severe foodborne infection in humans and is difficult to control. Listeriosis incidence is increasing worldwide, but some countries have implemented molecular surveillance programs to improve recognition and management of listeriosis outbreaks. In Germany, routine whole-genome sequencing, core genome multilocus sequence typing, and single nucleotide polymorphism calling are used for subtyping of Listeria monocytogenes isolates from listeriosis cases and suspected foods. During 2018–2019, an unusually large cluster of L. monocytogenes isolates was identified, including 134 highly clonal, benzalkonium-resistant sequence type 6 isolates collected from 112 notified listeriosis cases. The outbreak was one of the largest reported in Europe during the past 25 years. Epidemiologic investigations identified blood sausage contaminated with L. monocytogenes highly related to clinical isolates; withdrawal of the product from the market ended the outbreak. We describe how epidemiologic investigations and complementary molecular typing of food isolates helped identify the outbreak vehicle.
Collapse
|
34
|
Abstract
Purpose of review Community-acquired bacterial meningitis is a continually changing disease. This review summarises both dynamic epidemiology and emerging data on pathogenesis. Updated clinical guidelines are discussed, new agents undergoing clinical trials intended to reduce secondary brain damage are presented. Recent findings Conjugate vaccines are effective against serotype/serogroup-specific meningitis but vaccine escape variants are rising in prevalence. Meningitis occurs when bacteria evade mucosal and circulating immune responses and invade the brain: directly, or across the blood–brain barrier. Tissue damage is caused when host genetic susceptibility is exploited by bacterial virulence. The classical clinical triad of fever, neck stiffness and headache has poor diagnostic sensitivity, all guidelines reflect the necessity for a low index of suspicion and early Lumbar puncture. Unnecessary cranial imaging causes diagnostic delays. cerebrospinal fluid (CSF) culture and PCR are diagnostic, direct next-generation sequencing of CSF may revolutionise diagnostics. Administration of early antibiotics is essential to improve survival. Dexamethasone partially mitigates central nervous system inflammation in high-income settings. New agents in clinical trials include C5 inhibitors and daptomycin, data are expected in 2025. Summary Clinicians must remain vigilant for bacterial meningitis. Constantly changing epidemiology and emerging pathogenesis data are increasing the understanding of meningitis. Prospects for better treatments are forthcoming.
Collapse
|
35
|
Schmitz-Esser S, Anast JM, Cortes BW. A Large-Scale Sequencing-Based Survey of Plasmids in Listeria monocytogenes Reveals Global Dissemination of Plasmids. Front Microbiol 2021; 12:653155. [PMID: 33776982 PMCID: PMC7994336 DOI: 10.3389/fmicb.2021.653155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes is known for its capacity to cope with multiple stress conditions occurring in food and food production environments (FPEs). Plasmids can provide benefits to their host strains, and it is known that various Listeria strains contain plasmids. However, the current understanding of plasmid frequency and function in L. monocytogenes strains remains rather limited. To determine the presence of plasmids among L. monocytogenes strains and their potential contribution to stress survival, a comprehensive dataset was established based on 1,921 published genomes from strains representing 14 L. monocytogenes sequence types (STs). Our results show that an average of 54% of all L. monocytogenes strains in the dataset contained a putative plasmid. The presence of plasmids was highly variable between different STs. While some STs, such as ST1, ST2, and ST4, contained few plasmid-bearing strains (<15% of the strains per ST), other STs, such as ST121, ST5, ST8, ST3, and ST204, possessed a higher proportion of plasmid-bearing strains with plasmids found in >71% of the strains within each ST. Overall, the sizes of plasmids analyzed in this study ranged from 4 to 170 kbp with a median plasmid size of 61 kbp. We also identified two novel groups of putative Listeria plasmids based on the amino acid sequences of the plasmid replication protein, RepA. We show that highly conserved plasmids are shared among Listeria strains which have been isolated from around the world over the last few decades. To investigate the potential roles of plasmids, nine genes related to stress-response were selected for an assessment of their abundance and conservation among L. monocytogenes plasmids. The results demonstrated that these plasmid genes exhibited high sequence conservation but that their presence in plasmids was highly variable. Additionally, we identified a novel transposon, Tn7075, predicted to be involved in mercury-resistance. Here, we provide the largest plasmid survey of L. monocytogenes to date with a comprehensive examination of the distribution of plasmids among L. monocytogenes strains. Our results significantly increase our knowledge about the distribution, composition, and conservation of L. monocytogenes plasmids and suggest that plasmids are likely important for the survival of L. monocytogenes in food and FPEs.
Collapse
Affiliation(s)
- Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Justin M Anast
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Bienvenido W Cortes
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
36
|
Chmielowska C, Korsak D, Szuplewska M, Grzelecka M, Maćkiw E, Stasiak M, Macion A, Skowron K, Bartosik D. Benzalkonium chloride and heavy metal resistance profiles of Listeria monocytogenes strains isolated from fish, fish products and food-producing factories in Poland. Food Microbiol 2021; 98:103756. [PMID: 33875198 DOI: 10.1016/j.fm.2021.103756] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 01/05/2023]
Abstract
Phenotypic and genotypic resistance to benzalkonium chloride (BC), cadmium and arsenic was tested (by susceptibility assays and molecular methods) in 287 Listeria monocytogenes strains isolated from fish and fish products, and food-producing factories in Poland. Overall, 40% of the isolates were resistant to BC, 56% to cadmium and 41% to arsenic (57% displayed resistance to more than one of the tested compounds). Among BC-resistant isolates, the most commonly detected resistance determinant was the qacH gene (83%). Three distinct types of cadA gene determining resistance to cadmium were detected, with the cadA1 variant predominant (88%), while most arsenic-resistant isolates (86%) harbored the arsA gene associated with a Tn554-like transposon (one strain harbored two copies of arsA in different arsenic resistance cassettes). 53% of all tested isolates contained plasmids (from 4 kb to > 90 kb in size), which were classified into 11 groups (p1-p11) based on their restriction patterns. Interestingly, 12 isolates harbored the small mobilizable pLMST6-like plasmid pLIS3 encoding multidrug efflux pump EmrC. Clustering analysis of PFGE patterns revealed that these isolates represent several diverse bacterial populations, which strongly suggests mobility of the pLMST6-like plasmids among L. monocytogenes strains and their role in dissemination of BC resistance.
Collapse
Affiliation(s)
- Cora Chmielowska
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Dorota Korsak
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Molecular Microbiology, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Magdalena Szuplewska
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Monika Grzelecka
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Elżbieta Maćkiw
- National Institute of Public Health, National Institute of Hygiene, Department of Food Safety, Chocimska 24, 00-791, Warsaw, Poland
| | - Monika Stasiak
- National Institute of Public Health, National Institute of Hygiene, Department of Food Safety, Chocimska 24, 00-791, Warsaw, Poland
| | - Adrian Macion
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Krzysztof Skowron
- Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier, Department of Microbiology, M. Curie Skłodowskiej 9, 85-094, Bydgoszcz, Poland
| | - Dariusz Bartosik
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
37
|
Closed Genome Sequences of Clinical Listeria monocytogenes PCR Serogroup IVb Isolates Associated with Two Recent Large Listeriosis Outbreaks in Germany. Microbiol Resour Announc 2021; 10:10/5/e01434-20. [PMID: 33541883 PMCID: PMC7862961 DOI: 10.1128/mra.01434-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the closed genome sequences of two representative Listeria monocytogenes strains belonging to PCR serogroup IVb, which are related to two large outbreaks of human listeriosis that affected Germany in 2015 (Eta1) and 2018 to 2019 (Epsilon1a).
Collapse
|
38
|
Duze ST, Marimani M, Patel M. Tolerance of Listeria monocytogenes to biocides used in food processing environments. Food Microbiol 2021; 97:103758. [PMID: 33653529 DOI: 10.1016/j.fm.2021.103758] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes a life-threatening disease in humans known as listeriosis. Contamination of food during processing is the main route of transmission of Listeria monocytogenes. Therefore, biocides play a crucial role in food processing environments as they act as the first line of defense in the prevention and control of L. monocytogenes. Residues of biocides may be present at sublethal concentrations after disinfection. This, unfortunately, subjects L. monocytogenes to selection pressure, giving rise to tolerant strains, which pose a threat to food safety and public health. This review will give a brief description of L. monocytogenes, the clinical manifestation, treatment of listeriosis as well as recently recorded outbreaks. The article will then discuss the current literature on the ability of L. monocytogenes strains to tolerate biocides especially quaternary ammonium compounds as well as the mechanisms of tolerance towards biocides including the activation of efflux pump systems.
Collapse
Affiliation(s)
- Sanelisiwe Thinasonke Duze
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Musa Marimani
- Department of Anatomical Pathology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mrudula Patel
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa; National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
39
|
Gelbicova T, Florianova M, Hluchanova L, Kalova A, Korena K, Strakova N, Karpiskova R. Comparative Analysis of Genetic Determinants Encoding Cadmium, Arsenic, and Benzalkonium Chloride Resistance in Listeria monocytogenes of Human, Food, and Environmental Origin. Front Microbiol 2021; 11:599882. [PMID: 33519740 PMCID: PMC7840573 DOI: 10.3389/fmicb.2020.599882] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental adaptation of Listeria monocytogenes is a complex process involving various mechanisms that can contribute to their survival in the environment, further spreading throughout the food chain and the development of listeriosis. The aim of this study was to analyze whole-genome sequencing data in a set of 270 strains of L. monocytogenes derived from human listeriosis cases and food and environmental sources in order to compare the prevalence and type of genetic determinants encoding cadmium, arsenic, and benzalkonium chloride resistance. Most of the detected genes of cadmium (27.8%), arsenic (15.6%), and benzalkonium chloride (7.0%) resistance were located on mobile genetic elements, even in phylogenetically distant lineages I and II, which indicates the possibility of their horizontal spread. Although no differences were found in the prevalence of these genes between human and food strains, they have been detected sporadically in strains from the environment. Regarding cadmium resistance genes, cadA1C1_Tn5422 predominated, especially in clonal complexes (CCs) 121, 8, and 3 strains. At the same time, qacH_Tn6188-encoding benzalkonium chloride resistance was most frequently detected in the genome of CC121 strains. Genes encoding arsenic resistance were detected mainly in strains CC2 (located on the chromosomal island LGI2) and CC9 (carried on Tn554). The results indicated a relationship between the spread of genes encoding resistance to cadmium, arsenic, and benzalkonium chloride in certain serotypes and CCs and showed the need for a more extensive study of L. monocytogenes strains to better understand their ability to adapt to the food production environment.
Collapse
Affiliation(s)
- Tereza Gelbicova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia
| | - Martina Florianova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia
| | - Lucie Hluchanova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia.,Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia
| | - Alžběta Kalova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia
| | - Kristýna Korena
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia
| | - Nicol Strakova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia
| | - Renáta Karpiskova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia.,Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia
| |
Collapse
|
40
|
Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Fish and Fish Production Environments in Poland. Int J Mol Sci 2020; 21:ijms21249419. [PMID: 33321935 PMCID: PMC7764581 DOI: 10.3390/ijms21249419] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes, an important foodborne pathogen, may be present in different kinds of food and in food processing environments where it can persist for a long time. In this study, 28 L. monocytogenes isolates from fish and fish manufactures were characterized by whole genome sequencing (WGS). Core genome multilocus sequence typing (cgMLST) analysis was applied to compare the present isolates with publicly available genomes of L. monocytogenes strains recovered worldwide from food and from humans with listeriosis. All but one (96.4%) of the examined isolates belonged to molecular serogroup IIa, and one isolate (3.6%) was classified to serogroup IVb. The isolates of group IIa were mainly of MLST sequence types ST121 (13 strains) and ST8 (four strains) whereas the isolate of serogroup IVb was classified to ST1. Strains of serogroup IIa were further subtyped into eight different sublineages with the most numerous being SL121 (13; 48.1% strains) which belonged to six cgMLST types. The majority of strains, irrespective of the genotypic subtype, had the same antimicrobial resistance profile. The cluster analysis identified several molecular clones typical for L. monocytogenes isolated from similar sources in other countries; however, novel molecular cgMLST types not present in the Listeria database were also identified.
Collapse
|
41
|
Zamudio R, Haigh RD, Ralph JD, De Ste Croix M, Tasara T, Zurfluh K, Kwun MJ, Millard AD, Bentley SD, Croucher NJ, Stephan R, Oggioni MR. Lineage-specific evolution and gene flow in Listeria monocytogenes are independent of bacteriophages. Environ Microbiol 2020; 22:5058-5072. [PMID: 32483914 PMCID: PMC7614921 DOI: 10.1111/1462-2920.15111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing systemic infection with high mortality. To allow efficient tracking of outbreaks a clear definition of the genomic signature of a cluster of related isolates is required, but lineage-specific characteristics call for a more detailed understanding of evolution. In our work, we used core genome MLST (cgMLST) to identify new outbreaks combined to core genome SNP analysis to characterize the population structure and gene flow between lineages. Whilst analysing differences between the four lineages of L. monocytogenes we have detected differences in the recombination rate, and interestingly also divergence in the SNP differences between sub-lineages. In addition, the exchange of core genome variation between the lineages exhibited a distinct pattern, with lineage III being the best donor for horizontal gene transfer. Whilst attempting to link bacteriophage-mediated transduction to observed gene transfer, we found an inverse correlation between phage presence in a lineage and the extent of recombination. Irrespective of the profound differences in recombination rates observed between sub-lineages and lineages, we found that the previously proposed cut-off of 10 allelic differences in cgMLST can be still considered valid for the definition of a foodborne outbreak cluster of L. monocytogenes.
Collapse
Affiliation(s)
- Roxana Zamudio
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Richard D Haigh
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Joseph D Ralph
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
42
|
Assisi C, Forauer E, Oliver HF, Etter AJ. Genomic and Transcriptomic Analysis of Biofilm Formation in Persistent and Transient Listeria monocytogenes Isolates from the Retail Deli Environment Does Not Yield Insight into Persistence Mechanisms. Foodborne Pathog Dis 2020; 18:179-188. [PMID: 33227214 DOI: 10.1089/fpd.2020.2817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Persistence of Listeria monocytogenes in retail deli environments is a serious food safety issue, potentially leading to cross-contamination of ready-to-eat foods such as deli meats, salads, and cheeses. We previously discovered strong evidence of L. monocytogenes persistence in delis across multiple states. We hypothesized that this was correlated with isolates' innate characteristics, such as biofilm-forming capacity or gene differences. To test this hypothesis, we sequenced the genomes of 21 L. monocytogenes isolates previously collected longitudinally from the retail deli environment. Isolates were chosen to represent varying attachment capacity and sanitizer tolerance as well as persistence or transience. We used single-nucleotide polymorphism analysis to characterize the isolates' genetic relationships and used BLAST to search the isolates' genomes for antibiotic resistance elements, quaternary ammonium tolerance genes, and stress survival islets. We further chose four isolates for RNA-sequencing analysis and compared their global biofilm transcriptome with their global planktonic transcriptome. We did not find genetic content that explained persistence. The presence of stress survival islet-1 correlated to increased attachment capacity (p < 0.05), but not persistence. Further, the presence of sanitizer tolerance elements was not significantly correlated with phenotypic sanitizer tolerance. Analysis of biofilm versus planktonic gene expression did not show the expected differences in gene expression patterns. Overall, L. monocytogenes persistence in the deli environment is likely a matter of poor sanitation and/or facility design, rather than isolates' biofilm-forming capacity, sanitizer tolerance, or genomic content.
Collapse
Affiliation(s)
- Clara Assisi
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, Indiana, USA.,Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana, USA
| | - Emily Forauer
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences. The University of Vermont, Burlington, Vermont, USA
| | - Haley F Oliver
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, Indiana, USA
| | - Andrea J Etter
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, Indiana, USA.,Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana, USA.,Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences. The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
43
|
Baquero F, F Lanza V, Duval M, Coque TM. Ecogenetics of antibiotic resistance in Listeria monocytogenes. Mol Microbiol 2020; 113:570-579. [PMID: 32185838 DOI: 10.1111/mmi.14454] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/25/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
The acquisition process of antibiotic resistance in an otherwise susceptible organism is shaped by the ecology of the species. Unlike other relevant human pathogens, Listeria monocytogenes has maintained a high rate of susceptibility to the antibiotics used for decades to treat human and animal infections. However, L. monocytogenes can acquire antibiotic resistance genes from other organisms' plasmids and conjugative transposons. Ecological factors could account for its susceptibility. L. monocytogenes is ubiquitous in nature, most frequently including reservoirs unexposed to antibiotics, including intracellular sanctuaries. L. monocytogenes has a remarkably closed genome, reflecting limited community interactions, small population sizes and high niche specialization. The L. monocytogenes species is divided into variants that are specialized in small specific niches, which reduces the possibility of coexistence with potential donors of antibiotic resistance. Interactions with potential donors are also hampered by interspecies antagonism. However, occasional increases in population sizes (and thus the possibility of acquiring antibiotic resistance) can derive from selection of the species based on intrinsic or acquired resistance to antibiotics, biocides, heavy metals or by a natural tolerance to extreme conditions. High-quality surveillance of the emergence of resistance to the key drugs used in primary therapy is mandatory.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Ramón y Cajal University Hospital, Madrid, Spain
| | - Val F Lanza
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Ramón y Cajal University Hospital, Madrid, Spain.,Bioinformatics Unit, Ramón y Cajal Institute for Health Research, Ramón y Cajal University Hospital, Madrid, Spain
| | - Mélodie Duval
- Département de Biologie Cellulaire et Infection, Unité des interactions Bactéries-Cellules, Institut Pasteur, and Inserm, Paris, France
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Ramón y Cajal University Hospital, Madrid, Spain
| |
Collapse
|
44
|
Chmielowska C, Korsak D, Szmulkowska B, Krop A, Lipka K, Krupińska M, Bartosik D. Genetic Carriers and Genomic Distribution of cadA6-A Novel Variant of a Cadmium Resistance Determinant Identified in Listeria spp. Int J Mol Sci 2020; 21:E8713. [PMID: 33218089 PMCID: PMC7698968 DOI: 10.3390/ijms21228713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Listeria monocytogenes is a pathogen responsible for severe cases of food poisoning. Listeria spp. strains occurring in soil and water environments may serve as a reservoir of resistance determinants for pathogenic L. monocytogenes strains. A large collection of Listeria spp. strains (155) isolated from natural, agricultural, and urban areas was screened for resistance to heavy metals and metalloids, and the presence of resistance determinants and extrachromosomal replicons. Of the tested strains, 35% were resistant to cadmium and 17% to arsenic. Sequence analysis of resistance plasmids isolated from strains of Listeria seeligeri and Listeria ivanovii, and the chromosome of L. seeligeri strain Sr73, identified a novel variant of the cadAC cadmium resistance efflux system, cadA6, that was functional in L. monocytogenes cells. The cadA6 cassette was detected in four Listeria species, including strains of L. monocytogenes, isolated from various countries and sources-environmental, food-associated, and clinical samples. This resistance cassette is harbored by four novel composite or non-composite transposons, which increases its potential for horizontal transmission. Since some cadAC cassettes may influence virulence and biofilm formation, it is important to monitor their presence in Listeria spp. strains inhabiting different environments.
Collapse
Affiliation(s)
- Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (C.C.); (B.S.); (K.L.); (M.K.)
| | - Dorota Korsak
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Barbara Szmulkowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (C.C.); (B.S.); (K.L.); (M.K.)
| | - Alicja Krop
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Kinga Lipka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (C.C.); (B.S.); (K.L.); (M.K.)
| | - Martyna Krupińska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (C.C.); (B.S.); (K.L.); (M.K.)
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (C.C.); (B.S.); (K.L.); (M.K.)
| |
Collapse
|
45
|
Comparative recovery of Listeria spp. From dairy environmental surfaces using 3M™ and World Bioproducts© environmental swabs with standard enrichment and enumeration methods. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Kurpas M, Osek J, Moura A, Leclercq A, Lecuit M, Wieczorek K. Genomic Characterization of Listeria monocytogenes Isolated From Ready-to-Eat Meat and Meat Processing Environments in Poland. Front Microbiol 2020; 11:1412. [PMID: 32670248 PMCID: PMC7331111 DOI: 10.3389/fmicb.2020.01412] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is one of the major foodborne pathogens. Isolates of PCR-serogroups IIb (n = 17) and IVb (n = 31) recovered from food (n = 33) and food processing environment (n = 15) in Poland were characterized using whole genome sequencing. Most isolates belonged to Multi-Locus Sequence Type (MLST) ST2 (31.3%) and ST5 (22.9%). Core genome MLST (cgMLST) analysis classified isolates into seven sublineages (SL) and 25 different cgMLST types (CT). Consistent with the MLST results, most sublineages were SL2 and SL5. Eleven isolates harbored aacA4 encoding resistance to aminoglycosides, three isolates harbored emrC (n = 3) and one brcABC (n = 1) encoding tolerance to benzalkonium chloride. Isolates belonging to SL5 CT2323 carried a so far unreported inlB allele with a deletion of 141 nucleotides encoding the β-repeat sheet and partially the GW1 domain of InlB. Comparison with publicly available genome sequences from L. monocytogenes isolated from human listeriosis cases in Poland from 2004 to 2013 revealed five common CTs, suggesting a possible epidemiological link with these strains. The present study contributes to characterize the diversity of L. monocytogenes in ready-to-eat (RTE) meat and meat processing environments in Poland and unravels previously unnoticed links with clinical cases in Europe.
Collapse
Affiliation(s)
- Monika Kurpas
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
- Inserm U1117, Paris, France
| | - Alexandre Leclercq
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
- Inserm U1117, Paris, France
- Université de Paris, Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, Paris, France
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
47
|
Cremers AJH, Mobegi FM, van der Gaast-de Jongh C, van Weert M, van Opzeeland FJ, Vehkala M, Knol MJ, Bootsma HJ, Välimäki N, Croucher NJ, Meis JF, Bentley S, van Hijum SAFT, Corander J, Zomer AL, Ferwerda G, de Jonge MI. The Contribution of Genetic Variation of Streptococcus pneumoniae to the Clinical Manifestation of Invasive Pneumococcal Disease. Clin Infect Dis 2020; 68:61-69. [PMID: 29788414 DOI: 10.1093/cid/ciy417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
Background Different clinical manifestations of invasive pneumococcal disease (IPD) have thus far mainly been explained by patient characteristics. Here we studied the contribution of pneumococcal genetic variation to IPD phenotype. Methods The index cohort consisted of 349 patients admitted to 2 Dutch hospitals between 2000-2011 with pneumococcal bacteremia. We performed genome-wide association studies to identify pneumococcal lineages, genes, and allelic variants associated with 23 clinical IPD phenotypes. The identified associations were validated in a nationwide (n = 482) and a post-pneumococcal vaccination cohort (n = 121). The contribution of confirmed pneumococcal genotypes to the clinical IPD phenotype, relative to known clinical predictors, was tested by regression analysis. Results Among IPD patients, the presence of pneumococcal gene slaA was a nationwide confirmed independent predictor of meningitis (odds ratio [OR], 10.5; P = .001), as was sequence cluster 9 (serotype 7F: OR, 3.68; P = .057). A set of 4 pneumococcal genes co-located on a prophage was a confirmed independent predictor of 30-day mortality (OR, 3.4; P = .003). We could detect the pneumococcal variants of concern in these patients' blood samples. Conclusions In this study, knowledge of pneumococcal genotypic variants improved the clinical risk assessment for detrimental manifestations of IPD. This provides us with novel opportunities to target, anticipate, or avert the pathogenic effects related to particular pneumococcal variants, and indicates that information on pneumococcal genotype is important for the diagnostic and treatment strategy in IPD. Ongoing surveillance is warranted to monitor the clinical value of information on pneumococcal variants in dynamic microbial and susceptible host populations.
Collapse
Affiliation(s)
- Amelieke J H Cremers
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands.,Department of Medical Microbiology, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Fredrick M Mobegi
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands.,Bacterial Genomics Group, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Christa van der Gaast-de Jongh
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Michelle van Weert
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Fred J van Opzeeland
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Minna Vehkala
- Department of Mathematics and Statistics, University of Helsinki, Finland
| | - Mirjam J Knol
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Niko Välimäki
- Department of Mathematics and Statistics, University of Helsinki, Finland
| | - Nicholas J Croucher
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Stephen Bentley
- Wellcome Trust Sanger Institute, Pathogen Genomics Group, Hinxton, Cambridge, United Kingdom
| | - Sacha A F T van Hijum
- Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands.,Bacterial Genomics Group, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands.,NIZO, Ede, The Netherlands
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Finland.,Wellcome Trust Sanger Institute, Pathogen Genomics Group, Hinxton, Cambridge, United Kingdom.,Department of Biostatistics, University of Oslo, Norway
| | - Aldert L Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Gerben Ferwerda
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Antunes P, Novais C, Peixe L. Food-to-Humans Bacterial Transmission. Microbiol Spectr 2020; 8:10.1128/microbiolspec.mtbp-0019-2016. [PMID: 31950894 PMCID: PMC10810214 DOI: 10.1128/microbiolspec.mtbp-0019-2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Microorganisms vehiculated by food might benefit health, cause minimal change within the equilibrium of the host microbial community or be associated with foodborne diseases. In this chapter we will focus on human pathogenic bacteria for which food is conclusively demonstrated as their transmission mode to human. We will describe the impact of foodborne diseases in public health, the reservoirs of foodborne pathogens (the environment, human and animals), the main bacterial pathogens and food vehicles causing human diseases, and the drivers for the transmission of foodborne diseases related to the food-chain, host or bacteria features. The implication of food-chain (foodborne pathogens and commensals) in the transmission of resistance to antibiotics relevant to the treatment of human infections is also evidenced. The multiplicity and interplay of drivers related to intensification, diversification and globalization of food production, consumer health status, preferences, lifestyles or behaviors, and bacteria adaptation to different challenges (stress tolerance and antimicrobial resistance) from farm to human, make the prevention of bacteria-food-human transmission a modern and continuous challenge. A global One Health approach is mandatory to better understand and minimize the transmission pathways of human pathogens, including multidrug-resistant pathogens and commensals, through food-chain.
Collapse
Affiliation(s)
- Patrícia Antunes
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
49
|
Ferwerda B, Maury MM, Brouwer MC, Hafner L, van der Ende A, Bentley S, Lecuit M, van de Beek D. Residual Variation Intolerance Score Detects Loci Under Selection in Neuroinvasive Listeria monocytogenes. Front Microbiol 2019; 10:2702. [PMID: 31849867 PMCID: PMC6901971 DOI: 10.3389/fmicb.2019.02702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterium that can be found in a broad range of environments, including soil, food, animals, and humans. L. monocytogenes can cause a foodborne disease manifesting as sepsis and meningo-encephalitis. To evaluate signals of selection within the core genome of neuroinvasive L. monocytogenes strains, we sequenced 122 L. monocytogenes strains from cerebrospinal fluid (CSF) of Dutch meningitis patients and performed a genome-wide analysis using Tajima’s D and ω (dN/dS). We also evaluated the residual variation intolerance score (RVIS), a computationally less demanding methodology, to identify loci under selection. Results show that the large genetic distance between the listerial lineages influences the Tajima’s D and ω (dN/dS) outcome. Within genetic lineages we detected signals of selection in 6 of 2327 loci (<1%), which were replicated in an external cohort of 105 listerial CSF isolates from France. Functions of identified loci under selection were within metabolism pathways (lmo2476, encoding aldose 1-epimerase), putative antimicrobial resistance mechanisms (lmo1855, encoding PBPD3), and virulence factors (lmo0549, internalin-like protein; lmo1482, encoding comEC). RVIS over the two genetic lineages showed signals of selection in internalin-like proteins loci potentially involved in pathogen-host interaction (lmo0549, lmo0610, and lmo1290). Our results show that RVIS can be used to detect bacterial loci under selection.
Collapse
Affiliation(s)
- Bart Ferwerda
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mylène M Maury
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France
| | - Mathijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas Hafner
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France
| | - Arie van der Ende
- Department of Medical Microbiology, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC/RIVM, University of Amsterdam, Amsterdam, Netherlands
| | - Stephen Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France.,Paris Descartes University, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Paris, France
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
50
|
Taylor AJ, Stasiewicz MJ. Persistent and sporadic Listeria monocytogenes strains do not differ when growing at 37 °C, in planktonic state, under different food associated stresses or energy sources. BMC Microbiol 2019; 19:257. [PMID: 31744459 PMCID: PMC6862832 DOI: 10.1186/s12866-019-1631-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background The foodborne pathogen Listeria monocytogenes causes the potentially lethal disease listeriosis. Within food-associated environments, L. monocytogenes can persist for long periods and increase the risk of contamination by continued presence in processing facilities or other food-associated environments. Most research on phenotyping of persistent L. monocytogenes’ has explored biofilm formation and sanitizer resistance, with less data examining persistent L. monocytogenes’ phenotypic responses to extrinsic factors, such as variations in osmotic pressure, pH, and energy source availability. It was hypothesized that isolates of persistent strains are able to grow, and grow faster, under a broader range of intrinsic and extrinsic factors compared to closely related isolates of sporadic strains. Results To test this hypothesis, 95 isolates (representing 74 isolates of 20 persistent strains and 21 isolates of sporadic strains) from a series of previous studies in retail delis, were grown at 37 °C, in (i) stress conditions: salt (0, 5, and 10% NaCl), pH (5.2, 7.2, and 9.2), and sanitizer (benzalkonium chloride, 0, 2, and 5 μg/mL) and (ii) energy sources: 25 mM glucose, cellobiose, glycogen, fructose, lactose, and sucrose; the original goal was to follow up with low temperature experiments for treatments where significant differences were observed. Growth rate and the ability to grow of 95 isolates were determined using high-throughput, OD600, growth curves. All stress conditions reduced growth rates in isolates compared to control (p < 0.05). In addition, growth varied by the tested energy sources. In chemically defined, minimal media there was a trend toward more isolates showing growth in all replicates using cellobiose (p = 0.052) compared to the control (glucose) and fewer isolates able to grow in glycogen (p = 0.02), lactose (p = 2.2 × 10− 16), and sucrose (p = 2.2 × 10− 16). Still, at least one isolate was able to consistently grow in every replicate for each energy source. Conclusions The central hypothesis was rejected, as there was not a significant difference in growth rate or ability to grow for retail deli isolates of persistent strains compared to sporadic strains for any treatments at 37 °C. Therefore, these data suggest that persistence is likely not determined by a phenotype unique to persistent strains grown at 37 °C and exposed to extrinsic stresses or variation in energy sources.
Collapse
Affiliation(s)
- Alexander J Taylor
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew J Stasiewicz
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|