1
|
Luo Q, Lu P, Chen Y, Shen P, Zheng B, Ji J, Ying C, Liu Z, Xiao Y. ESKAPE in China: epidemiology and characteristics of antibiotic resistance. Emerg Microbes Infect 2024; 13:2317915. [PMID: 38356197 PMCID: PMC10896150 DOI: 10.1080/22221751.2024.2317915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The escalation of antibiotic resistance and the diminishing antimicrobial pipeline have emerged as significant threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria, demanding urgently effective therapies. Despite the introduction of various new antibiotics and antibiotic adjuvants, such as innovative β-lactamase inhibitors, these organisms continue to pose substantial therapeutic challenges. People's Republic of China, as a country facing a severe bacterial resistance situation, has undergone a series of changes and findings in recent years in terms of the prevalence, transmission characteristics and resistance mechanisms of antibiotic resistant bacteria. The increasing levels of population mobility have not only shaped the unique characteristics of antibiotic resistance prevalence and transmission within People's Republic of China but have also indirectly reflected global patterns of antibiotic-resistant dissemination. What's more, as a vast nation, People's Republic of China exhibits significant variations in the levels of antibiotic resistance and the prevalence characteristics of antibiotic resistant bacteria across different provinces and regions. In this review, we examine the current epidemiology and characteristics of this important group of bacterial pathogens, delving into relevant mechanisms of resistance to recently introduced antibiotics that impact their clinical utility in China.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Singh A, Tanwar M, Singh TP, Sharma S, Sharma P. An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol 2024; 279:135253. [PMID: 39244118 DOI: 10.1016/j.ijbiomac.2024.135253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The rise of antimicrobial resistance has positioned ESKAPE pathogens as a serious global health threat, primarily due to the limitations and frequent failures of current treatment options. This growing risk has spurred the scientific community to seek innovative antibiotic therapies and improved oversight strategies. This review aims to provide a comprehensive overview of the origins and resistance mechanisms of ESKAPE pathogens, while also exploring next-generation treatment strategies for these infections. In addition, it will address both traditional and novel approaches to combating antibiotic resistance, offering insights into potential new therapeutic avenues. Emerging research underscores the urgency of developing new antimicrobial agents and strategies to overcome resistance, highlighting the need for novel drug classes and combination therapies. Advances in genomic technologies and a deeper understanding of microbial pathogenesis are crucial in identifying effective treatments. Integrating precision medicine and personalized approaches could enhance therapeutic efficacy. The review also emphasizes the importance of global collaboration in surveillance and stewardship, as well as policy reforms, enhanced diagnostic tools, and public awareness initiatives, to address resistance on a worldwide scale.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
3
|
Rodrigues YC, Silva MJA, dos Reis HS, dos Santos PAS, Sardinha DM, Gouveia MIM, dos Santos CS, Marcon DJ, Aires CAM, Souza CDO, Quaresma AJPG, Lima LNGC, Brasiliense DM, Lima KVB. Molecular Epidemiology of Pseudomonas aeruginosa in Brazil: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2024; 13:983. [PMID: 39452249 PMCID: PMC11504043 DOI: 10.3390/antibiotics13100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Globally, Pseudomonas aeruginosa is a high-priority opportunistic pathogen which displays several intrinsic and acquired antimicrobial resistance (AMR) mechanisms, leading to challenging treatments and mortality of patients. Moreover, its wide virulence arsenal, particularly the type III secretion system (T3SS) exoU+ virulotype, plays a crucial role in pathogenicity and poor outcome of infections. In depth insights into the molecular epidemiology of P. aeruginosa, especially the prevalence of high-risk clones (HRCs), are crucial for the comprehension of virulence and AMR features and their dissemination among distinct strains. This study aims to evaluate the prevalence and distribution of HRCs and non-HRCs among Brazilian isolates of P. aeruginosa. METHODS A systematic review and meta-analysis were conducted on studies published between 2011 and 2023, focusing on the prevalence of P. aeruginosa clones determined by multilocus sequence typing (MLST) in Brazil. Data were extracted from retrospective cross-sectional and case-control studies, encompassing clinical and non-clinical samples. The analysis included calculating the prevalence rates of various sequence types (STs) and assessing the regional variability in the distribution of HRCs and non-HRCs. RESULTS A total of 872 samples were analyzed within all studies, of which 298 (34.17%) were MLST typed, identifying 78 unique STs. HRCs accounted for 48.90% of the MLST-typed isolates, with ST277 being the most prevalent (100/298-33.55%), followed by ST244 (29/298-9.73%), ST235 (13/298-4.36%), ST111 (2/298-0.67%), and ST357 (2/298-0.67%). Significant regional variability was observed, with the Southeast region showing a high prevalence of ST277, while the North region shows a high prevalence of MLST-typed samples and HRCs. CONCLUSIONS Finally, this systematic review and meta-analysis highlight the role of P. aeruginosa clones in critical issue of AMR in P. aeruginosa in Brazil and the need of integration of comprehensive data from individual studies.
Collapse
Affiliation(s)
- Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Herald Souza dos Reis
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Pabllo Antonny Silva dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Daniele Melo Sardinha
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Carolynne Silva dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Davi Josué Marcon
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Caio Augusto Martins Aires
- Department of Health Sciences (DCS), Federal Rural University of the Semi-Arid Region (UFERSA), Av. Francisco Mota, 572-Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil;
| | - Cintya de Oliveira Souza
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Luana Nepomuceno Gondim Costa Lima
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Danielle Murici Brasiliense
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Karla Valéria Batista Lima
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| |
Collapse
|
4
|
Lee CH, Kim KM, Shin JI, Jeong DM, Byun JH, Jung MH, Kang HL, Kwon KW, Baik SC, Lee WK, Ahn SK, Yim CD, Hur DG, Lee JW, Shin MK. Clinical impact of major pathogenic genotypes of Pseudomonas aeruginosa associated with refractory chronic suppurative otitis media. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04957-x. [PMID: 39400676 DOI: 10.1007/s10096-024-04957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Chronic suppurative otitis media (CSOM) is characterized by persistent inflammation of the mucous membrane of the middle ear and mastoid. One of the primary causative agents of CSOM is P. aeruginosa, known for its production of virulent toxins and enzymes. Some cases of CSOM, improvement may not occur despite treatment lasting three weeks, leading to what is termed refractory CSOM. This research aims to characterize the P. aeruginosa strains isolated from patients with refractory CSOM in Gyeongsangnam-do, South Korea, providing insights into their pathogenic profiles. METHODS We conducted a retrospective analysis of P. aeruginosa isolates from the otorrhea of patients diagnosed with CSOM at a tertiary hospital in Gyeongsangnam-do, over a period from January 2005 to August 2022. The strains were examined using multilocus sequence typing (MLST) and toxin gene assay to assess genetic diversity and virulence. RESULTS 39 samples were obtained from 13 cases of refractory CSOM and 15 cases of non-refractory CSOM. The findings unveiled that the P. aeruginosa cultured from patients with refractory CSOM belonged to the P. aeruginosa sequence type 235 (ST235) strain, which harbors the exoU gene as a major virulence factor. CONCLUSION The detection of ST235 in refractory CSOM signifies a challenging clinical scenario. Given the genotype's strong virulence and antibiotic resistance, identifying ST235 through MLST can guide effective management approaches, including potential surgical intervention. This study underscores the necessity of broader epidemiological investigations to understand ST235 behavior and advocates for patient education to mitigate the impacts of this formidable pathogen in CSOM.
Collapse
Affiliation(s)
- Chang Hyeon Lee
- Department of Medicine, Graduate School, Gyeongsang National University, Jinju, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University Hospital, Jinju, Korea
| | - Kyu-Min Kim
- Department of Microbiology and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Biomedicine & Health Sciences and Integrated Research Center for Genomic Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Da Min Jeong
- Department of Medicine, College of medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Jung-Hyun Byun
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Myung Hwan Jung
- Department of Microbiology and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Medical Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyung-Lyun Kang
- Department of Microbiology and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Medical Sciences, Gyeongsang National University, Jinju, Korea
| | - Kee Woong Kwon
- Department of Microbiology and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Medical Sciences, Gyeongsang National University, Jinju, Korea
| | - Seung Chul Baik
- Department of Microbiology and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Medical Sciences, Gyeongsang National University, Jinju, Korea
| | - Woo-Kon Lee
- Department of Microbiology and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Medical Sciences, Gyeongsang National University, Jinju, Korea
| | - Seong-Ki Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University Hospital, Jinju, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University College of Medicine, Jinju, Korea
- Institute of Medical Sciences, Gyeongsang National University, Jinju, Korea
| | - Chae Dong Yim
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University Hospital, Jinju, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Dong Gu Hur
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University College of Medicine, Jinju, Korea
- Department of Otorhinolaryngology-Head and Neck surgery, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Jung Woo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University College of Medicine, Jinju, Korea
- Department of Otorhinolaryngology-Head and Neck surgery, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea.
- Institute of Medical Sciences, Gyeongsang National University, Jinju, Korea.
| |
Collapse
|
5
|
Zhang L, Xu Q, Tan FC, Deng Y, Hakki M, Shelburne SA, Kirienko NV. Role of R5 Pyocin in the Predominance of High-Risk Pseudomonas aeruginosa Isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.616987. [PMID: 39416193 PMCID: PMC11483031 DOI: 10.1101/2024.10.07.616987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Infections with antimicrobial resistant pathogens, such as Pseudomonas aeruginosa, are a frequent occurrence in healthcare settings. Human P. aeruginosa infections are predominantly caused by a small number of sequence types (ST), such as ST235, ST111, and ST175. Although ST111 is recognized as one of the most prevalent high-risk P. aeruginosa clones worldwide and frequently exhibits multidrug-resistant or extensively drug-resistant phenotypes, the basis for this dominance remains unclear. In this study, we used a genome-wide transposon insertion library screen to discover that the competitive advantage of ST111 strains over certain non-ST111 strains is through production of R pyocins. We confirmed this finding by showing that competitive dominance was lost by ST111 mutants with R pyocin gene deletions. Further investigation showed that sensitivity to ST111 R pyocin (specifically R5 pyocin) is caused by deficiency in the O-antigen ligase waaL, which leaves lipopolysaccharide (LPS) bereft of O antigen, enabling pyocins to bind the LPS core. In contrast, sensitivity of waaL mutants to R1 or R2 pyocins depended on additional genomic changes. In addition, we found the PA14 mutants in lipopolysaccharide biosynthesis (waaL, wbpL, wbpM) that cause high susceptibility to R pyocins also exhibit poor swimming motility. Analysis of 5,135 typed P. aeruginosa strains revealed that several international, high-risk sequence types (including ST235, ST111, and ST175) are enriched for R5 pyocin production, indicating a correlation between these phenotypes and suggesting a novel approach for evaluating risk from emerging prevalent P. aeruginosa strains. Overall, our study sheds light on the mechanisms underlying the dominance of ST111 strains and highlighting the role of waaL in extending spectrum of R pyocin susceptibility.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Filemon C Tan
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Yanhan Deng
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Morgan Hakki
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Samuel A. Shelburne
- Departments of Infectious Diseases and Genomic Medicine, MD Anderson Cancer Center, Houston TX
| | | |
Collapse
|
6
|
Long X, Li J, Yang H, Gao Y, Zeng X, Tang B. Discovery and characterization of tmexCD3-toprJ1 on a plasmid from Pseudomonas putida isolated in a public trash can. Microbiol Spectr 2024; 12:e0039524. [PMID: 39162548 PMCID: PMC11448381 DOI: 10.1128/spectrum.00395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Affiliation(s)
- Xiaoqian Long
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yuehua Gao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Biao Tang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
7
|
Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024; 22:598-616. [PMID: 38831030 DOI: 10.1038/s41579-024-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
The rise of antibiotic resistance and a dwindling antimicrobial pipeline have been recognized as emerging threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria for which effective therapies were rapidly needed. Now, entering the third decade of the twenty-first century, and despite the introduction of several new antibiotics and antibiotic adjuvants, such as novel β-lactamase inhibitors, these organisms continue to represent major therapeutic challenges. These bacteria share several key biological features, including adaptations for survival in the modern health-care setting, diverse methods for acquiring resistance determinants and the dissemination of successful high-risk clones around the world. With the advent of next-generation sequencing, novel tools to track and combat the spread of these organisms have rapidly evolved, as well as renewed interest in non-traditional antibiotic approaches. In this Review, we explore the current epidemiology and clinical impact of this important group of bacterial pathogens and discuss relevant mechanisms of resistance to recently introduced antibiotics that affect their use in clinical settings. Furthermore, we discuss emerging therapeutic strategies needed for effective patient care in the era of widespread antimicrobial resistance.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA.
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
8
|
Kim N, Ko SY, Park SY, Kim SY, Lee DE, Kwon KT, Kim YK, Lee JC. Clonal Distribution and Its Association With the Carbapenem Resistance Mechanisms of Carbapenem-Non-Susceptible Pseudomonas aeruginosa Isolates From Korean Hospitals. Ann Lab Med 2024; 44:410-417. [PMID: 38433574 PMCID: PMC11169769 DOI: 10.3343/alm.2023.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Background Carbapenem resistance in Pseudomonas aeruginosa is a serious global health problem. We investigated the clonal distribution and its association with the carbapenem resistance mechanisms of carbapenem-non-susceptible P. aeruginosa isolates from three Korean hospitals. Methods A total of 155 carbapenem-non-susceptible P. aeruginosa isolates collected between 2011 and 2019 were analyzed for sequence types (STs), antimicrobial susceptibility, and carbapenem resistance mechanisms, including carbapenemase production, the presence of resistance genes, OprD mutations, and the hyperproduction of AmpC β-lactamase. Results Sixty STs were identified in carbapenem-non-susceptible P. aeruginosa isolates. Two high-risk clones, ST235 (N=41) and ST111 (N=20), were predominant; however, sporadic STs were more prevalent than high-risk clones. The resistance rate to amikacin was the lowest (49.7%), whereas that to piperacillin was the highest (92.3%). Of the 155 carbapenem-non-susceptible isolates, 43 (27.7%) produced carbapenemases. Three metallo-β-lactamase (MBL) genes, blaIMP-6 (N=38), blaVIM-2 (N=3), and blaNDM-1 (N=2), were detected. blaIMP-6 was detected in clonal complex 235 isolates. Two ST773 isolates carried blaNDM-1 and rmtB. Frameshift mutations in oprD were identified in all isolates tested, regardless of the presence of MBL genes. Hyperproduction of AmpC was detected in MBL gene-negative isolates. Conclusions Frameshift mutations in oprD combined with MBL production or hyperproduction of AmpC are responsible for carbapenem resistance in P. aeruginosa. Further attention is required to curb the emergence and spread of new carbapenem-resistant P. aeruginosa clones.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seo Yeon Ko
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong Yeob Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Da Eun Lee
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
| | - Ki Tae Kwon
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yu Kyung Kim
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
- Department of Laboratory Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
9
|
Zurita J, Sevillano G, Solís MB, Paz Y Miño A, Alves BR, Changuan J, González P. Pseudomonas aeruginosa epidemic high-risk clones and their association with multidrug-resistant. J Glob Antimicrob Resist 2024; 38:332-338. [PMID: 39019398 DOI: 10.1016/j.jgar.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVE In Ecuador, data on molecular epidemiology, as well as circulating clones, are limited. Therefore, this study aims to know the population structure of Pseudomonas aeruginosa by identifying clones in clinical samples in Quito-Ecuador. METHODS A significant set (45) clinical P. aeruginosa isolates were selected, including multidrug and non-multidrug resistant isolates, which were assigned to sequence types (STs) and compared with their antibiotic susceptibility profile. The genetic diversity was assessed by applying the multilocus sequence typing (MLST) scheme and the genetic relationships between different STs were corroborated by phylogenetic networks. RESULTS The MLST analysis identified 24 different STs and the most prevalent STs were ST-3750 and ST-253. The majority of the multidrug-resistance (MDR) isolates were included in ST-3750 and ST-253, also 3 singleton STs were identified as MDR isolates. The 21 different STs were found in non-multidrug resistance (non-MDR) isolates, and only 3 STs were found in more the one isolate. CONCLUSIONS The population structure of clinical P. aeruginosa present in these isolates indicates a significant association between MDR isolates and the clonal types: all ST-3750 and ST-253 isolates were MDR. ST-3750 is a closely related strain to the clonal complex ST111 (CC111). ST-253 and ST111 are a group of successful high-risk clones widely distributed worldwide. The multiresistant isolates studied are grouped in the most prevalent STs found, and the susceptible isolates correspond mainly with singleton STs. Therefore, these high-risk clones and their association with MDR phenotypes are contributing to the spread of MDR in Quito, Ecuador.
Collapse
Affiliation(s)
- Jeannete Zurita
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador; Facultad de Medicina. Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
| | - Gabriela Sevillano
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador
| | - María Belén Solís
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador
| | - Ariane Paz Y Miño
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador; Mass General Brigham Salem Hospital, Salem, MA, USA
| | | | - Jessica Changuan
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador
| | - Pablo González
- Unidad de Investigaciones en Biomedicina. Zurita & Zurita Laboratorios, Quito, Ecuador
| |
Collapse
|
10
|
Zagui GS, de Almeida OGG, Moreira NC, Silva NGA, Meschede MSC, Darini ALC, Andrade LN, Segura-Muñoz SI. Hospital wastewater as source of human pathogenic bacteria: A phenotypic and genomic analysis of international high-risk clone VIM-2-producing Pseudomonas aeruginosa ST235/O11. ENVIRONMENTAL RESEARCH 2024; 255:119166. [PMID: 38759772 DOI: 10.1016/j.envres.2024.119166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Pseudomonas aeruginosa belong to the special pathogen group capable of causing serious infections, with high mortality rates. The aim of this study was to describe the antibiotic resistance and genomic characteristics of Pseudomonas aeruginosa belonging to international high-risk clone ST235 (GPAE0131 isolate), obtained from hospital wastewater. P. aeruginosa GPAE0131 was isolated from ward tertiary hospital in Brazil and the antibiotic resistance profile was determined by the disc-diffusion method. Genomic characteristics related to antibiotic resistance and virulence factors were evaluated by genomic DNA sequencing on the Illumina MiSeq platform and bioinformatic analysis. GPAE0131 isolate showed resistance to piperacillin-tazobactam, cefepime, ceftazidime, imipenem, meropenem, ciprofloxacin, levofloxacin and tobramycin. Resistome comprehend of resistance genes to β-lactams (blaVIM-2, blaOXA-4, blaOXA-488, blaPDC-35), aminoglycosides (aph(3')-IIb, aac(6')-IIc, aac(6')-Ib9, aadA1), fosfomycin (fosA), chloramphenicol (catB7) and sulfonamides (sul1). Genome comparisons evidence insertion of blaVIM-2 and blaOXA-4 genes. GPAE0131 isolate was predicted to be pathogenic to humans and several virulence factors were found, including encoding gene for ExoU and exotoxin A. All of these features into a pathogenic international high-risk clone (ST235), classified as critical priority, stands out as public health concern due to the widespread dispersal of human pathogens through wastewater. It is suggested that mitigating measures be implemented, such as the treatment of hospital sewage and the addition of tertiary treatment, to prevent the escape of pathogens at this level into the environment.
Collapse
Affiliation(s)
- Guilherme Sgobbi Zagui
- Water Resources Research Group, Postgraduate Program in Environmental Technology, University of Ribeirão Preto, Brazil; School of Medicine, Department of Medicine, University of Ribeirão Preto, Brazil; Laboratory of Ecotoxicology and Environmental Parasitology, Ribeirão Preto College of Nursing, University of São Paulo, Brazil.
| | | | | | | | - Marina Smidt Celere Meschede
- Laboratory of Ecotoxicology and Environmental Parasitology, Ribeirão Preto College of Nursing, University of São Paulo, Brazil; Institute of Collective Health (ISCO), Federal University of Western Pará, Brazil
| | | | | | - Susana Inés Segura-Muñoz
- Laboratory of Ecotoxicology and Environmental Parasitology, Ribeirão Preto College of Nursing, University of São Paulo, Brazil
| |
Collapse
|
11
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Peng K, Liu YX, Sun X, Wang Q, Song L, Wang Z, Li R. Large-scale bacterial genomic and metagenomic analysis reveals Pseudomonas aeruginosa as potential ancestral source of tigecycline resistance gene cluster tmexCD-toprJ. Microbiol Res 2024; 285:127747. [PMID: 38739956 DOI: 10.1016/j.micres.2024.127747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The global dissemination of the multidrug resistance efflux pump gene cluster tmexCD-toprJ has greatly weakened the effects of multiple antibiotics, including tigecycline. However, the potential origin and transmission mechanisms of the gene cluster remain unclear. METHODS Here, we concluded a comprehensive bioinformatics analysis on integrated 73,498 bacterial genomes, including Pseudomonas spp., Klebsiella spp., Aeromonas spp., Proteus spp., and Citrobacter spp., along with 1,152 long-read metagenomic datasets to trace the origin and propagation of tmexCD-toprJ. RESULTS Our results demonstrated that tmexCD-toprJ was predominantly found in Pseudomonas aeruginosa sourced from human hosts in Asian countries and North American countries. Phylogenetic and genomic feature analyses showed that tmexCD-toprJ was likely evolved from mexCD-oprJ of some special clones of P. aeruginosa. Furthermore, metagenomic analysis confirmed that P. aeruginosa is the only potential ancestral bacterium for tmexCD-toprJ. A putative mobile genetic structure harboring tmexCD-toprJ, int-int-hp-hp-tnfxB-tmexCD-toprJ, was the predominant genetic context of tmexCD-toprJ across various bacterial genera, suggesting that the two integrase genes play a pivotal role in the horizontal transmission of tmexCD-toprJ. CONCLUSIONS Based on these findings, it is almost certain that the tmexCD-toprJ gene cluster was derived from P. aeruginosa and further spread to other bacteria.
Collapse
Affiliation(s)
- Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xinran Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiaojun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
13
|
Antonelli A, Coppi M, Bonaiuto C, Giovacchini N, Grifoni C, Vaggelli G, Pupillo R, Vannetti F, Farese A, Viaggi B, Pollini S, Rossolini GM. Pseudomonas aeruginosa producing FIM-1-metallo-β-lactamase: emergence and cross-transmission in a long-term acute care rehabilitation hospital. Antimicrob Agents Chemother 2024; 68:e0057424. [PMID: 38899928 PMCID: PMC11232380 DOI: 10.1128/aac.00574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
FIM-1 metallo-β-lactamase was previously detected in sporadic Pseudomonas aeruginosa clinical isolates. Here, we report on FIM-1-positive P. aeruginosa from two patients who had shared the same ward in a long-term acute care rehabilitation hospital. Whole-genome sequencing analysis revealed close relatedness of these isolates, which belonged to an ST235 sublineage (clade 8/14) different from those previously reported. Results highlighted the occurrence of clonal diversity among FIM-positive strains and the possibility of their cross-transmission in some healthcare settings.
Collapse
Affiliation(s)
- Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
- NARR Joint Laboratory for Antimicrobial Resistance Research and Control, University of Florence-IRCCS Don Gnocchi Foundation, Florence, Italy
| | - Marco Coppi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
- NARR Joint Laboratory for Antimicrobial Resistance Research and Control, University of Florence-IRCCS Don Gnocchi Foundation, Florence, Italy
| | - Chiara Bonaiuto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Nicla Giovacchini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Camilla Grifoni
- NARR Joint Laboratory for Antimicrobial Resistance Research and Control, University of Florence-IRCCS Don Gnocchi Foundation, Florence, Italy
- Severe Brain Injuries Unit, IRCCS Don Gnocchi Foundation, Florence, Italy
| | - Guendalina Vaggelli
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Roberto Pupillo
- Medical Direction, IRCCS Don Gnocchi Foundation, Florence, Italy
| | | | - Alberto Farese
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Bruno Viaggi
- Intensive Care Unit for Neurological Injuries, Careggi University Hospital, Florence, Italy
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
- NARR Joint Laboratory for Antimicrobial Resistance Research and Control, University of Florence-IRCCS Don Gnocchi Foundation, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
- NARR Joint Laboratory for Antimicrobial Resistance Research and Control, University of Florence-IRCCS Don Gnocchi Foundation, Florence, Italy
| |
Collapse
|
14
|
Salem S, Abdelsalam NA, Shata AH, Mouftah SF, Cobo-Díaz JF, Osama D, Atteya R, Elhadidy M. Unveiling the microevolution of antimicrobial resistance in selected Pseudomonas aeruginosa isolates from Egyptian healthcare settings: A genomic approach. Sci Rep 2024; 14:15500. [PMID: 38969684 PMCID: PMC11226647 DOI: 10.1038/s41598-024-65178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024] Open
Abstract
The incidence of Pseudomonas aeruginosa infections in healthcare environments, particularly in low-and middle-income countries, is on the rise. The purpose of this study was to provide comprehensive genomic insights into thirteen P. aeruginosa isolates obtained from Egyptian healthcare settings. Phenotypic analysis of the antimicrobial resistance profile and biofilm formation were performed using minimum inhibitory concentration and microtiter plate assay, respectively. Whole genome sequencing was employed to identify sequence typing, resistome, virulome, and mobile genetic elements. Our findings indicate that 92.3% of the isolates were classified as extensively drug-resistant, with 53.85% of these demonstrating strong biofilm production capabilities. The predominant clone observed in the study was ST773, followed by ST235, both of which were associated with the O11 serotype. Core genome multi-locus sequence typing comparison of these clones with global isolates suggested their potential global expansion and adaptation. A significant portion of the isolates harbored Col plasmids and various MGEs, all of which were linked to antimicrobial resistance genes. Single nucleotide polymorphisms in different genes were associated with the development of antimicrobial resistance in these isolates. In conclusion, this pilot study underscores the prevalence of extensively drug-resistant P. aeruginosa isolates and emphasizes the role of horizontal gene transfer facilitated by a diverse array of mobile genetic elements within various clones. Furthermore, specific insertion sequences and mutations were found to be associated with antibiotic resistance.
Collapse
Affiliation(s)
- Salma Salem
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nehal Adel Abdelsalam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed H Shata
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shaimaa F Mouftah
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Dina Osama
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
15
|
Pirnay JP, Djebara S, Steurs G, Griselain J, Cochez C, De Soir S, Glonti T, Spiessens A, Vanden Berghe E, Green S, Wagemans J, Lood C, Schrevens E, Chanishvili N, Kutateladze M, de Jode M, Ceyssens PJ, Draye JP, Verbeken G, De Vos D, Rose T, Onsea J, Van Nieuwenhuyse B, Soentjens P, Lavigne R, Merabishvili M. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat Microbiol 2024; 9:1434-1453. [PMID: 38834776 PMCID: PMC11153159 DOI: 10.1038/s41564-024-01705-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
In contrast to the many reports of successful real-world cases of personalized bacteriophage therapy (BT), randomized controlled trials of non-personalized bacteriophage products have not produced the expected results. Here we present the outcomes of a retrospective observational analysis of the first 100 consecutive cases of personalized BT of difficult-to-treat infections facilitated by a Belgian consortium in 35 hospitals, 29 cities and 12 countries during the period from 1 January 2008 to 30 April 2022. We assessed how often personalized BT produced a positive clinical outcome (general efficacy) and performed a regression analysis to identify functional relationships. The most common indications were lower respiratory tract, skin and soft tissue, and bone infections, and involved combinations of 26 bacteriophages and 6 defined bacteriophage cocktails, individually selected and sometimes pre-adapted to target the causative bacterial pathogens. Clinical improvement and eradication of the targeted bacteria were reported for 77.2% and 61.3% of infections, respectively. In our dataset of 100 cases, eradication was 70% less probable when no concomitant antibiotics were used (odds ratio = 0.3; 95% confidence interval = 0.127-0.749). In vivo selection of bacteriophage resistance and in vitro bacteriophage-antibiotic synergy were documented in 43.8% (7/16 patients) and 90% (9/10) of evaluated patients, respectively. We observed a combination of antibiotic re-sensitization and reduced virulence in bacteriophage-resistant bacterial isolates that emerged during BT. Bacteriophage immune neutralization was observed in 38.5% (5/13) of screened patients. Fifteen adverse events were reported, including seven non-serious adverse drug reactions suspected to be linked to BT. While our analysis is limited by the uncontrolled nature of these data, it indicates that BT can be effective in combination with antibiotics and can inform the design of future controlled clinical trials. BT100 study, ClinicalTrials.gov registration: NCT05498363 .
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium.
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Non-traditional Antibacterial Therapy (ESGNTA), Basel, Switzerland.
| | - Sarah Djebara
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Griet Steurs
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Johann Griselain
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Christel Cochez
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Steven De Soir
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Tea Glonti
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - An Spiessens
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Emily Vanden Berghe
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Sabrina Green
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Cédric Lood
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | | | - Nina Chanishvili
- Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia
| | - Mzia Kutateladze
- Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia
| | | | | | - Jean-Pierre Draye
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Gilbert Verbeken
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Thomas Rose
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals Leuven; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Brieuc Van Nieuwenhuyse
- Institute of Experimental and Clinical Research, Pediatric Department, UCLouvain, Brussels, Belgium
| | - Patrick Soentjens
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| |
Collapse
|
16
|
Valiatti TB, Streling AP, Cayô R, Santos FF, Almeida MS, Tonini MAL, Gales AC. Genomic analysis of a Pseudomonas aeruginosa strain harbouring bla KPC-2 and bla OXA-129 belonging to high-risk clone ST235 in Brazil. J Glob Antimicrob Resist 2024; 37:69-71. [PMID: 38428456 DOI: 10.1016/j.jgar.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Affiliation(s)
- Tiago Barcelos Valiatti
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, Brazil.
| | - Ana Paula Streling
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, Brazil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, Brazil; Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Bacteriologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, Brazil
| | - Fernanda Fernandes Santos
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, Brazil
| | - Myriam Santos Almeida
- Serviço de Infectologia, Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Marco André Loureiro Tonini
- Laboratório de Microbiologia, Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, Brazil
| |
Collapse
|
17
|
Talat A, Khan F, Khan AU. Genome analyses of colistin-resistant high-risk bla NDM-5 producing Klebsiella pneumoniae ST147 and Pseudomonas aeruginosa ST235 and ST357 in clinical settings. BMC Microbiol 2024; 24:174. [PMID: 38769479 PMCID: PMC11103832 DOI: 10.1186/s12866-024-03306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Colistin is a last-resort antibiotic used in extreme cases of multi-drug resistant (MDR) Gram-negative bacterial infections. Colistin resistance has increased in recent years and often goes undetected due to the inefficiency of predominantly used standard antibiotic susceptibility tests (AST). To address this challenge, we aimed to detect the prevalence of colistin resistance strains through both Vitek®2 and broth micro-dilution. We investigated 1748 blood, tracheal aspirate, and pleural fluid samples from the Intensive Care Unit (ICU), Neonatal Intensive Care Unit (NICU), and Tuberculosis and Respiratory Disease centre (TBRD) in an India hospital. Whole-genome sequencing (WGS) of extremely drug-resitant (XDR) and pan-drug resistant (PDR) strains revealed the resistance mechanisms through the Resistance Gene Identifier (RGI.v6.0.0) and Snippy.v4.6.0. Abricate.v1.0.1, PlasmidFinder.v2.1, MobileElementFinder.v1.0.3 etc. detected virulence factors, and mobile genetic elements associated to uncover the pathogenecity and the role of horizontal gene transfer (HGT). RESULTS This study reveals compelling insights into colistin resistance among global high-risk clinical isolates: Klebsiella pneumoniae ST147 (16/20), Pseudomonas aeruginosa ST235 (3/20), and ST357 (1/20). Vitek®2 found 6 colistin-resistant strains (minimum inhibitory concentrations, MIC = 4 μg/mL), while broth microdilution identified 48 (MIC = 32-128 μg/mL), adhering to CLSI guidelines. Despite the absence of mobile colistin resistance (mcr) genes, mechanisms underlying colistin resistance included mgrB deletion, phosphoethanolamine transferases arnT, eptB, ompA, and mutations in pmrB (T246A, R256G) and eptA (V50L, A135P, I138V, C27F) in K. pneumoniae. P. aeruginosa harbored phosphoethanolamine transferases basS/pmrb, basR, arnA, cprR, cprS, alongside pmrB (G362S), and parS (H398R) mutations. Both strains carried diverse clinically relevant antimicrobial resistance genes (ARGs), including plasmid-mediated blaNDM-5 (K. pneumoniae ST147) and chromosomally mediated blaNDM-1 (P. aeruginosa ST357). CONCLUSION The global surge in MDR, XDR and PDR bacteria necessitates last-resort antibiotics such as colistin. However, escalating resistance, particularly to colistin, presents a critical challenge. Inefficient colistin resistance detection methods, including Vitek2, alongside limited surveillance resources, accentuate the need for improved strategies. Whole-genome sequencing revealed alarming colistin resistance among K. pneumoniae and P. aeruginosa in an Indian hospital. The identification of XDR and PDR strains underscores urgency for enhanced surveillance and infection control. SNP analysis elucidated resistance mechanisms, highlighting the complexity of combatting resistance.
Collapse
Affiliation(s)
- Absar Talat
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Fatima Khan
- Microbiology Department, JNMC and Hospital, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
18
|
Oliver A, Rojo-Molinero E, Arca-Suarez J, Beşli Y, Bogaerts P, Cantón R, Cimen C, Croughs PD, Denis O, Giske CG, Graells T, Daniel Huang TD, Iorga BI, Karatuna O, Kocsis B, Kronenberg A, López-Causapé C, Malhotra-Kumar S, Martínez LM, Mazzariol A, Meyer S, Naas T, Notermans DW, Oteo-Iglesias J, Pedersen T, Pirš M, Poeta P, Poirel L, Pournaras S, Sundsfjord A, Szabó D, Tambić-Andrašević A, Vatcheva-Dobrevska R, Vitkauskienė A, Jeannot K. Pseudomonasaeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: update from ESGARS-ESCMID/ISARPAE Group. Clin Microbiol Infect 2024; 30:469-480. [PMID: 38160753 DOI: 10.1016/j.cmi.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
SCOPE Pseudomonas aeruginosa, a ubiquitous opportunistic pathogen considered one of the paradigms of antimicrobial resistance, is among the main causes of hospital-acquired and chronic infections associated with significant morbidity and mortality. This growing threat results from the extraordinary capacity of P. aeruginosa to develop antimicrobial resistance through chromosomal mutations, the increasing prevalence of transferable resistance determinants (such as the carbapenemases and the extended-spectrum β-lactamases), and the global expansion of epidemic lineages. The general objective of this initiative is to provide a comprehensive update of P. aeruginosa resistance mechanisms, especially for the extensively drug-resistant (XDR)/difficult-to-treat resistance (DTR) international high-risk epidemic lineages, and how the recently approved β-lactams and β-lactam/β-lactamase inhibitor combinations may affect resistance mechanisms and the definition of susceptibility profiles. METHODS To address this challenge, the European Study Group for Antimicrobial Resistance Surveillance (ESGARS) from the European Society of Clinical Microbiology and Infectious Diseases launched the 'Improving Surveillance of Antibiotic-Resistant Pseudomonas aeruginosa in Europe (ISARPAE)' initiative in 2022, supported by the Joint programming initiative on antimicrobial resistance network call and included a panel of over 40 researchers from 18 European Countries. Thus, a ESGARS-ISARPAE position paper was designed and the final version agreed after four rounds of revision and discussion by all panel members. QUESTIONS ADDRESSED IN THE POSITION PAPER To provide an update on (a) the emerging resistance mechanisms to classical and novel anti-pseudomonal agents, with a particular focus on β-lactams, (b) the susceptibility profiles associated with the most relevant β-lactam resistance mechanisms, (c) the impact of the novel agents and resistance mechanisms on the definitions of resistance profiles, and (d) the globally expanding XDR/DTR high-risk lineages and their association with transferable resistance mechanisms. IMPLICATION The evidence presented herein can be used for coordinated epidemiological surveillance and decision making at the European and global level.
Collapse
Affiliation(s)
- Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Estrella Rojo-Molinero
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Arca-Suarez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Yeşim Beşli
- Department of Medical Microbiology, Amerikan Hastanesi, Istanbul, Turkey
| | - Pierre Bogaerts
- National Center for Antimicrobial Resistance in Gram, CHU UCL Namur, Yvoir, Belgium
| | - Rafael Cantón
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Cansu Cimen
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter D Croughs
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Olivier Denis
- Department of Microbiology, CHU Namur Site-Godinne, Université Catholique de Louvain, Yvoir, Belgium; Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | - Christian G Giske
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Tíscar Graells
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Family Medicine and Primary Care, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Te-Din Daniel Huang
- National Center for Antimicrobial Resistance in Gram, CHU UCL Namur, Yvoir, Belgium
| | - Bogdan I Iorga
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Onur Karatuna
- EUCAST Development Laboratory, Clinical Microbiology, Central Hospital, Växjö, Sweden
| | - Béla Kocsis
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Andreas Kronenberg
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Luis Martínez Martínez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Microbiología, Hospital Universitario Reina Sofía, Departamento de Química Agrícola, Edafología y Microbiología, Universidad de Córdoba, e Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Spain
| | - Annarita Mazzariol
- Microbiology and Virology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Sylvain Meyer
- INSERM UMR 1092 and Université of Limoges, Limoges, France
| | - Thierry Naas
- Laboratoire Associé du Centre National de Référence de la Résistance aux Antibiotiques: Entérobactéries Résistantes aux Carbapénèmes, Le Kremlin-Bicêtre, France; Équipe INSERM ReSIST, Faculté de Médecine, Université Paris-Saclay, Paris, France
| | - Daan W Notermans
- Centre for Infectious Disease Control. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jesús Oteo-Iglesias
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Reference and Research Laboratory in Resistance to Antibiotics and Infections Related to Healthcare, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Mateja Pirš
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Patricia Poeta
- MicroART-Microbiology and Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, Portugal; Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; University of Trás-os-Montes and Alto Douro, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland; University of Fribourg, Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Spyros Pournaras
- Laboratory of Clinical Microbiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Research Group on Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dora Szabó
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary; Human Microbiota Study Group, Semmelweis University-Eötvös Lóránd Research Network, Budapest, Hungary
| | - Arjana Tambić-Andrašević
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Zagreb, Croatia; School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Astra Vitkauskienė
- Department of Laboratory Medicine, Faculty of Medicine, Medical Academy, Lithuanian University of Health Science, Kaunas, Lithuania
| | - Katy Jeannot
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Besançon, Besançon, France; Laboratoire associé du Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France; Chrono-environnement UMR 6249, CNRS, Université Franche-Comté, Besançon, France
| |
Collapse
|
19
|
Findlay J, Raro OHF, Poirel L, Nordmann P. Molecular analysis of metallo-beta-lactamase-producing Pseudomonas aeruginosa in Switzerland 2022-2023. Eur J Clin Microbiol Infect Dis 2024; 43:551-557. [PMID: 38233610 PMCID: PMC10917820 DOI: 10.1007/s10096-024-04752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
OBJECTIVES The occurrence of metallo-beta-lactamase-producing Pseudomonas aeruginosa (MBL-PA) isolates is increasing globally, including in Switzerland. The aim of this study was to characterise, phenotypically and genotypically, the MBL-PA isolates submitted to the Swiss National Reference Center for Emerging Antibiotic Resistance (NARA) reference laboratory over a 12-month period from July 2022 to July 2023. METHODS Thirty-nine non-duplicate MBL-PA Isolates were submitted to NARA over the study period from across Switzerland. Susceptibility was determined by broth microdilution according to EUCAST methodology. Whole-genome sequencing was performed on 34 isolates. Sequence types (STs) and resistance genes were ascertained using the Centre for Genomic Epidemiology platform. MBL genes, blaNDM-1, blaIMP-1, and blaVIM-2, were cloned into vector pUCP24 and transformed into P. aeruginosa PA14. RESULTS The most prevalent MBL types identified in this study were VIM (21/39; 53.8%) followed by NDM (11/39; 28.2%), IMP (6/39; 15.4%), and a single isolate produced both VIM and NDM enzymes. WGS identified 13 different STs types among the 39 isolates. They all exhibited resistance to cephalosporins, carbapenems, and the beta-lactam-beta-lactamase inhibitor combinations, ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-relebactam, and meropenem-vaborbactam, and 8 isolates were cefiderocol (FDC) resistant. Recombinant P. aeruginosa strains producing blaNDM-1, blaIMP-1, and blaVIM-2 exhibited FDC MICs of 16, 8, and 1 mg/L, respectively. CONCLUSIONS This study showed that the MBL-PA in Switzerland could be attributed to the wide dissemination of high-risk clones that accounted for most isolates in this study. Although FDC resistance was only found in 8 isolates, MBL carriage was shown to be a major contributor to this phenotype.
Collapse
Affiliation(s)
- Jacqueline Findlay
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland.
| | - Otavio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA) Network, Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA) Network, Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
20
|
Tun T, Baleivanualala SC, Erdmann MB, Gimenez G, Aung HL. An extensively drug-resistant Pseudomonas aeruginosa isolate from Myanmar. J Glob Antimicrob Resist 2024; 36:1-3. [PMID: 37992964 DOI: 10.1016/j.jgar.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) including multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa has emerged as one of the serious public health threats across the globe. Southeast Asia is a 'hot spot' of antimicrobial-resistant bacteria, including MDR P. aeruginosa. Despite Myanmar being located in Southeast Asia and suffering from a high infectious disease burden, data on MDR and XDR P. aeruginosa from Myanmar are limited. In this communication, we report the draft genome of an XDR P. aeruginosa isolate, MMXDRPA001, that was identified during a routine diagnosis in Myanmar. METHODS An MMXDRPA001 isolate colonising a hospitalised patient was characterised by antibiotic resistance profiling following standard methods and whole-genome sequencing using an Illumina MiSeq platform. The generated reads were de novo assembled using SPAdes (v.3.9.1). Annotation was performed by Prokka (v.1.14.0). Sequence type, antimicrobial resistance and virulence-related genes were predicted from the sequence. The phylogenetic relationships of all P. aeruginosa isolates were determined using core genome single-nucleotide polymorphisms (SNPs) analysis utilising Snippy (v.4.6.0) and Gubbins (v.2.3.4). RESULTS P. aeruginosa MMXDRPA001 was resistant to most antipseudomonal β-lactams, aminoglycosides and quinolones. The assembly comprised 145 contigs totalling 6 808 493 bases of sequence and a total of 6183 coding sequences. The isolate belonged to sequence type (ST) 235, contained carbapenemase-encoding gene blaIMP-1 and was clonally related to a previously reported isolate from Thailand. CONCLUSION The identification of an international high-risk clone of ST235 XDR isolate in Myanmar, genomically relating to that from a neighbouring country underscores the need for coordinated AMR surveillance throughout healthcare settings in Myanmar and in the Southeast Asia region.
Collapse
Affiliation(s)
- Thanda Tun
- Yangon Central Women's Hospital, Yangon, Myanmar; West Yangon General Hospital, Yangon, Myanmar
| | - Sakiusa Cabe Baleivanualala
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mareike Britta Erdmann
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Htin Lin Aung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
21
|
Gondal AJ, Choudhry N, Niaz A, Yasmin N. Molecular Analysis of Carbapenem and Aminoglycoside Resistance Genes in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Strains: A Challenge for Tertiary Care Hospitals. Antibiotics (Basel) 2024; 13:191. [PMID: 38391577 PMCID: PMC10886086 DOI: 10.3390/antibiotics13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains have become a global threat due to their remarkable capability to survive and disseminate successfully by the acquisition of resistance genes. As a result, the treatment strategies have been severely compromised. Due to the insufficient available data regarding P. aeruginosa resistance from Pakistan, we aimed to investigate the resistance mechanisms of 249 P. aeruginosa strains by antimicrobial susceptibility testing, polymerase chain reaction for the detection of carbapenemases, aminoglycoside resistance genes, extended-spectrum beta-lactamases (ESBLs), sequence typing and plasmid typing. Furthermore, we tested silver nanoparticles (AgNPs) to evaluate their in vitro sensitivity against antimicrobial-resistant P. aeruginosa strains. We observed higher resistance against antimicrobials in the general surgery ward, general medicine ward and wound samples. Phenotypic carbapenemase-producer strains comprised 80.7% (201/249) with 89.0% (179/201) demonstrating genes encoding carbapenemases: blaNDM-1 (32.96%), blaOXA48 (37.43%), blaIMP (7.26%), blaVIM (5.03%), blaKPC-2 (1.12%), blaNDM-1/blaOXA48 (13.97%), blaOXA-48/blaVIM (1.68%) and blaVIM/blaIMP (0.56%). Aminoglycoside-modifying enzyme genes and 16S rRNA methylase variants were detected in 43.8% (109/249) strains: aac(6')-lb (12.8%), aac(3)-lla (12.0%), rmtB (21.1%), rmtC (11.0%), armA (12.8%), rmtD (4.6%), rmtF (6.4%), rmtB/aac(3)-lla (8.2%), rmtB/aac(6')-lla (7.3%) and rmtB/armA (3.6%). In total, 43.0% (77/179) of the strains coharbored carbapenemases and aminoglycoside resistance genes with 83.1% resistant to at least 1 agent in 3 or more classes and 16.9% resistant to every class of antimicrobials tested. Thirteen sequence types (STs) were identified: ST235, ST277, ST234, ST170, ST381, ST175, ST1455, ST1963, ST313, ST207, ST664, ST357 and ST348. Plasmid replicon types IncFI, IncFII, IncA/C, IncL/M, IncN, IncX, IncR and IncFIIK and MOB types F11, F12, H121, P131 and P3 were detected. Meropenem/AgNPs and Amikacin/AgNPs showed enhanced antibacterial activity. We reported the coexistence of carbapenemases and aminoglycoside resistance genes among carbapenem-resistant P. aeruginosa with diverse clonal lineages from Pakistan. Furthermore, we highlighted AgNP's potential role in handling future antimicrobial resistance concerns.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Ammara Niaz
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
22
|
Li J, Tang M, Liu Z, Wei Y, Xia F, Xia Y, Hu Y, Wang H, Zou M. Molecular characterization of extensively drug-resistant hypervirulent Pseudomonas aeruginosa isolates in China. Ann Clin Microbiol Antimicrob 2024; 23:13. [PMID: 38347529 PMCID: PMC10863134 DOI: 10.1186/s12941-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Recently, extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) isolates have been increasingly detected and posed great challenges to clinical anti-infection treatments. However, little is known about extensively resistant hypervirulent P. aeruginosa (XDR-hvPA). In this study, we investigate its epidemiological characteristics and provide important basis for preventing its dissemination. METHODS Clinical XDR-PA isolates were collected from January 2018 to January 2023 and identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry; antibiotic susceptibility testing was performed by broth microdilution method, and minimum inhibitory concentrations (MICs) were evaluated. Virulence was evaluated using the Galleria mellonella infection model; molecular characteristics, including resistance genes, virulence genes, and homology, were determined using whole-genome sequencing. RESULTS A total of 77 XDR-PA strains were collected; 47/77 strains were XDR-hvPA. Patients aged > 60 years showed a significantly higher detection rate of XDR-hvPA than of XDR-non-hvPA. Among the 47 XDR-hvPA strains, 24 strains carried a carbapenemase gene, including blaGES-1 (10/47), blaVIM-2 (6/47), blaGES-14 (4/47), blaIMP-45 (2/47), blaKPC-2 (1/47), and blaNDM-14 (1/47). ExoU, exoT, exoY, and exoS, important virulence factors of PA, were found in 31/47, 47/47, 46/47, and 29/47 strains, respectively. Notably, two XDR-hvPA simultaneously co-carried exoU and exoS. Six serotypes (O1, O4-O7, and O11) were detected; O11 (19/47), O7 (13/47), and O4 (9/47) were the most prevalent. In 2018-2020, O4 and O7 were the most prevalent serotypes; 2021 onward, O11 (16/26) was the most prevalent serotype. Fourteen types of ST were detected, mainly ST235 (14/47), ST1158 (13/47), and ST1800 (7/47). Five global epidemic ST235 XDR-hvPA carried blaGES and showed the MIC value of ceftazidime/avibactam reached the susceptibility breakpoint (8/4 mg/L). CONCLUSIONS The clinical detection rate of XDR-hvPA is unexpectedly high, particularly in patients aged > 60 years, who are seemingly more susceptible to contracting this infection. Clonal transmission of XDR-hvPA carrying blaGES, which belongs to the global epidemic ST235, was noted. Therefore, the monitoring of XDR-hvPA should be strengthened, particularly for elderly hospitalized patients, to prevent its spread.
Collapse
Affiliation(s)
- Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mengli Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhaojun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuhan Wei
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fengjun Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yubing Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yongmei Hu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Haichen Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
23
|
Antonelli A, Coppi M, Bonaiuto C, Giovacchini N, Vaggelli G, Farese A, Pollini S, Rossolini GM. Novel resistance ICEs carrying the blaFIM-1 metallo-β-lactamase gene from an ST235 Pseudomonas aeruginosa sublineage. Antimicrob Agents Chemother 2024; 68:e0120523. [PMID: 38206043 PMCID: PMC10848763 DOI: 10.1128/aac.01205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
FIM-1 is an acquired metallo-β-lactamase identified in a multidrug-resistant Pseudomonas aeruginosa (index strain FI-14/157) of clinical origin isolated in 2007 in Florence, Italy. Here we report on a second case of infection by FIM-1-positive P. aeruginosa (FI-17645), which occurred in 2020 in the same hospital. Both FIM-1-positive strains exhibited resistance to all anti-Pseudomonas antibiotics except colistin and cefiderocol. Comparative genomic characterization revealed that the two FIM-positive strains were closely related [core genome difference, 16 single nucleotide polymorphisms (SNPs)], suggesting a local circulation of similar strains. In the FI-14/157 index strain, the blaFIM-1 gene was associated with an ISCR19-like element that likely contributed to its capture downstream an integron platform inserted aboard a Tn21-like transposon, named Tn7703.1, which was associated with a large integrative and conjugative element (ICE) named ICE7705.1, integrated into an att site located within the 3'-end of tRNAGly CCC gene of the P. aeruginosa chromosome. In strain FI-17645, blaFIM-1 was associated with a closely related ICE, named ICE7705.2, integrated in the same chromosomal site. Similar ICE platforms, lacking the blaFIM-1-containing region, were detected in other ST235 P. aeruginosa strains from different geographic areas, suggesting a common ancestry and underscoring the role of these elements in the dissemination of resistance genes in P. aeruginosa. Sequence database mining revealed two draft P. aeruginosa genomes, one from Italy and one from the USA (both isolated in 2012), including a contig with blaFIM-1, suggesting that this resistance gene could have a broader distribution than originally anticipated.
Collapse
Affiliation(s)
- Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Marco Coppi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Chiara Bonaiuto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Nicla Giovacchini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Guendalina Vaggelli
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Alberto Farese
- Infectious and Tropical Diseases Unit, Florence Careggi University Hospital, Florence, Italy
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| |
Collapse
|
24
|
Ahmadi N, Salimizand H, Zomorodi AR, Abbas JE, Ramazanzadeh R, Haghi F, Hassanzadeh S, Jahantigh M, Shahin M. Genomic diversity of β-lactamase producing Pseudomonas aeruginosa in Iran; the impact of global high-risk clones. Ann Clin Microbiol Antimicrob 2024; 23:5. [PMID: 38218982 PMCID: PMC10790247 DOI: 10.1186/s12941-024-00668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Hospital-acquired infections caused by multidrug-resistant Pseudomonas aeruginosa incline hospital stay and costs of treatment that resulted in an increased mortality rate. The frequency of P. aeruginosa high-risk clones producing carbapenemases was investigated in our clinical samples. METHODS In this cross-sectional study, 155 non-repetitive P. aeruginosa isolates were included from different medical centers of Iran. Antibiotic susceptibility testing was determined, and the presence of β-lactamases were sought by phenotypic and genotypic methods. The clonal relationship of all isolates was investigated, and multi-locus sequence typing (MLST) was used for finding the sequence types of carbapenemase-producers. RESULTS The agent with highest percent susceptibility rate was recorded for colistin (94.9%). MOX and FOX were found both as low as 1.95% (3/155). The most frequent narrow spectrum β-lactamase was SHV with 7.7% (12/155) followed by PER, OXA-1, and TEM with the frequency of 7.1% (11/155), 3.2% (5/155), and 1.3% (2/155), respectively. Carbapenemases were detected in 28 isolates (18%). The most frequent carbapenemase was IMP with 9% (14/155) followed by NDM, 8.4% (13/155). OXA-48 and VIM were also detected both per one isolate (0.65%). MLST of carbapenem resistant P. aeruginosa isolates revealed that ST244, ST664, ST235, and ST357 were spread in subjected clinical settings. REP-PCR uncovered high genomic diversity in our clinical setting. CONCLUSION Clonal proliferation of ST235 strain plays a key role in the propagation of MDR pattern in P. aeruginosa. Our data showed that high-risk clones has distributed in Iran, and programs are required to limit spreading of these clones.
Collapse
Affiliation(s)
- Nazila Ahmadi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Himen Salimizand
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jalileh Ebn Abbas
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rashid Ramazanzadeh
- Department of Microbiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fakhri Haghi
- Department of Microbiology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sepideh Hassanzadeh
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojdeh Jahantigh
- Department of Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mojtaba Shahin
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Arak branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
25
|
Wu T, Zhang Z, Li T, Dong X, Wu D, Zhu L, Xu K, Zhang Y. The type III secretion system facilitates systemic infections of Pseudomonas aeruginosa in the clinic. Microbiol Spectr 2024; 12:e0222423. [PMID: 38088541 PMCID: PMC10783026 DOI: 10.1128/spectrum.02224-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The identification of decisive virulence-associated genes in highly pathogenic P. aeruginosa isolates in the clinic is essential for diagnosis and the start of appropriate treatment. Over the past decades, P. aeruginosa ST463 has spread rapidly in East China and is highly resistant to β-lactams. Given the poor clinical outcome caused by this phenotype, detailed information regarding its decisive virulence genes and factors affecting virulence expression needs to be deciphered. Here, we demonstrate that the T3SS effector ExoU has toxic effects on mammalian cells and is required for virulence in the murine bloodstream infection model. Moreover, a functional downstream SpcU is required for ExoU secretion and cytotoxicity. This work highlights the potential role of ExoU in the pathogenesis of disease and provides a new perspective for further research on the development of new antimicrobials with antivirulence ability.
Collapse
Affiliation(s)
- Tiantian Wu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenchuan Zhang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Tong Li
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Dong
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Research and Service Center, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Lixia Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaijin Xu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
26
|
Zhao Y, Xie L, Wang C, Zhou Q, Jelsbak L. Comparative whole-genome analysis of China and global epidemic Pseudomonas aeruginosa high-risk clones. J Glob Antimicrob Resist 2023; 35:149-158. [PMID: 37709140 DOI: 10.1016/j.jgar.2023.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVES The various sequence types (STs) of Pseudomonas aeruginosa (P. aeruginosa) high-risk clones (HiRiCs) have been sporadically reported in China, but the systematic analysis of genomes for these STs remains limited. This study aimed to address the evolutionary pathways underlying the emergence of HiRiCs and their routes of dissemination from Chinese and global perspectives. METHODS The phylogenetic analysis was performed based on 416 newly sequenced clinical P. aeruginosa strains from Guangdong (GD), published genome sequences of 282 Chinese isolates, and 868 HiRiCs isolates from other countries. The genomic comparison study of global HiRiC ST244 was conducted to detect the model of global dissemination and local separation driven by association regional-specific antibiotic resistance genes. Furthermore, the evolutionary route of the emerging, China-specific HiRiC ST1971 was explored using Most Recent Common Ancestor (MRCA) analysis. RESULTS Based on comparative genomics analysis, we found a clear geographical separation of ST244 isolates, yet with an association between ST244 isolates from GD and America. We identified a set of 38 AMR genes that contribute to the geographical separation in ST244, and we identified genetic determinants either positively (MexB) and negatively (opmD) associated with GD ST244. For the China-unique HiRiC ST1971, its evolutionary history across different continents before emerging as ST1971 in China was also deduced. CONCLUSION This study provides insight into the specific genetics underlying regional differences among globally disseminated P. aeruginosa HiRiCs (ST244) as well as new understanding of the dissemination and evolution of a regional HiRiC (ST1971). Understanding the genetics of these and other HiRiCs may assist in controlling their emergence and further spread.
Collapse
Affiliation(s)
- Yonggang Zhao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lu Xie
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Chongzhi Wang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Qian Zhou
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
27
|
Iwasaki S, Sato R, Kagami K, Akizawa K, Hayasaka K, Fukumoto T, Taki K, Niinuma Y, Yamada T, Oyamada R, Watanabe T, Nakakubo S, Watanabe C, Teshima T, Ishiguro N. Breaking away from an endemic state of multidrug-resistant Pseudomonas aeruginosa by daily sink disinfection. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e209. [PMID: 38156227 PMCID: PMC10753494 DOI: 10.1017/ash.2023.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 12/30/2023]
Abstract
The detection rate of multidrug-resistant Pseudomonas aeruginosa in patients admitted to 2 wards and the intensive care unit decreased from 20.3% (129 of 636 isolates) to 4.2% (37 of 889 isolates) after the start of disinfection of hand washing sinks using alkyl diaminoethylglycine hydrochloride.
Collapse
Affiliation(s)
- Sumio Iwasaki
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Rikako Sato
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Keisuke Kagami
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Pharmacy, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kouji Akizawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kasumi Hayasaka
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Tatsuya Fukumoto
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Keisuke Taki
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yusuke Niinuma
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Pharmacy, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takehiro Yamada
- Department of Pharmacotherapy, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Reiko Oyamada
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Tsubasa Watanabe
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Sho Nakakubo
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chiaki Watanabe
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takanori Teshima
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Nobuhisa Ishiguro
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
28
|
Sastre-Femenia MÀ, Fernández-Muñoz A, Gomis-Font MA, Taltavull B, López-Causapé C, Arca-Suárez J, Martínez-Martínez L, Cantón R, Larrosa N, Oteo-Iglesias J, Zamorano L, Oliver A. Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology and resistance mechanisms: a nation-wide five-year time lapse analysis. THE LANCET REGIONAL HEALTH. EUROPE 2023; 34:100736. [PMID: 37753216 PMCID: PMC10518487 DOI: 10.1016/j.lanepe.2023.100736] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Background Pseudomonas aeruginosa healthcare-associated infections are one of the top antimicrobial resistance threats world-wide. In order to analyze the current trends, we performed a Spanish nation-wide high-resolution analysis of the susceptibility profiles, the genomic epidemiology and the resistome of P. aeruginosa over a five-year time lapse. Methods A total of 3.180 nonduplicated P. aeruginosa clinical isolates from two Spanish nation-wide surveys performed in October 2017 and 2022 were analyzed. MICs of 13 antipseudomonals were determined by ISO-EUCAST. Multidrug resistance (MDR)/extensively drug resistance (XDR)/difficult to treat resistance (DTR)/pandrug resistance (PDR) profiles were defined following established criteria. All XDR/DTR isolates were subjected to whole genome sequencing (WGS). Findings A decrease in resistance to all tested antibiotics, including older and newer antimicrobials, was observed in 2022 vs 2017. Likewise, a major reduction of XDR (15.2% vs 5.9%) and DTR (4.2 vs 2.1%) profiles was evidenced, and even more patent among ICU isolates [XDR (26.0% vs 6.0%) and DTR (8.9% vs 2.6%)] (p < 0.001). The prevalence of Extended-spectrum β-lactamase/carbapenemase production was slightly lower in 2022 (2.1%. vs 3.1%, p = 0.064). However, there was a significant increase in the proportion of carbapenemase production among carbapenem-resistant strains (29.4% vs 18.1%, p = 0.0246). While ST175 was still the most frequent clone among XDR, a slight reduction in its prevalence was noted (35.9% vs 45.5%, p = 0.106) as opposed to ST235 which increased significantly (24.3% vs 12.3%, p = 0.0062). Interpretation While the generalized decrease in P. aeruginosa resistance, linked to a major reduction in the prevalence of XDR strains, is encouraging, the negative counterpart is the increase in the proportion of XDR strains producing carbapenemases, associated to the significant advance of the concerning world-wide disseminated hypervirulent high-risk clone ST235. Continued high-resolution surveillance, integrating phenotypic and genomic data, is necessary for understanding resistance trends and analyzing the impact of national plans on antimicrobial resistance. Funding MSD and the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea-NextGenerationEU.
Collapse
Affiliation(s)
- Miquel Àngel Sastre-Femenia
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, España
| | - Almudena Fernández-Muñoz
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, España
| | - María Antonia Gomis-Font
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, España
| | - Biel Taltavull
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, España
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, España
| | - Jorge Arca-Suárez
- Servicio de Microbiología, Complexo Hospitalario Universitario A Coruña, Instituto Investigación Biomédica A Coruña (INIBIC), CIBERINFEC, A Coruña, España
| | - Luis Martínez-Martínez
- Unidad de Gestión Clínica de Microbiología, Hospital Universitario Reina Sofía, Departamento de Química Agrícola, Edafología y Microbiología, Universidad de Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBERINFEC, Córdoba, España
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal- IRYCIS, CIBERINFEC, Madrid, España
| | - Nieves Larrosa
- Servicio de Microbiología, Hospital Universitario Vall d`Hebron, Vall d’Hebron Institut de Recerca (VHIR), Departamento de Genética y Microbiología, Universitat Autònoma de Barcelona, CIBERINFEC, Barcelona, España
| | - Jesús Oteo-Iglesias
- Centro Nacional de Microbiología, CIBERINFEC, Instituto de Salud Carlos III, Madrid, España
| | - Laura Zamorano
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, España
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, España
| |
Collapse
|
29
|
Wheatley RM, Botelho J. Chasing resistance: analyzing the fight against hospital infections. THE LANCET REGIONAL HEALTH. EUROPE 2023; 34:100740. [PMID: 37781067 PMCID: PMC10541483 DOI: 10.1016/j.lanepe.2023.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Rachel M. Wheatley
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, UK
| | - João Botelho
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| |
Collapse
|
30
|
Fethi M, Rojo-Bezares B, Arfaoui A, Dziri R, Chichón G, Barguellil F, López M, El Asli MS, Toledano P, Ouzari HI, Sáenz Y, Klibi N. High Prevalence of GES-5 Variant and Co-Expression of VIM-2 and GES-45 among Clinical Pseudomonas aeruginosa Strains in Tunisia. Antibiotics (Basel) 2023; 12:1394. [PMID: 37760691 PMCID: PMC10525555 DOI: 10.3390/antibiotics12091394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) are a global health concern. The antimicrobial resistance, virulence, and molecular typing of 57 CRPA isolated from 43 patients who attended a specific Tunisian hospital from September 2018 to July 2019 were analyzed. All but one were multidrug-resistant CRPA, and 77% were difficult-to-treat-resistant (DTR) isolates. The blaVIM-2 gene was detected in four strains (6.9%), and among the 36 blaGES-positive CRPA (62%), the blaGES-5 gene was the predominant variant (86%). Three strains co-harbored the blaVIM-2 and blaGES-45 genes, and seven CRPA carried the blaSHV-2a gene (14%). OprD alterations, including truncations by insertion sequences, were observed in 18 strains. Regarding the 46 class 1 integron-positive CRPA (81%), the blaGES-5 gene was located in integron In717, while the blaGES-29 and blaGES-45 genes were found in two new integrons (In2122 and In4879), and the blaVIM-2 gene was found in In1183 and the new integron In2142. Twenty-four PFGE patterns and thirteen sequence types (three new ones) were identified. The predominant serotype O:11 and exoU (81%) were mostly associated with ST235 and the new ST3385 clones. The seven blaSHV-2a-CRPA from different patients belonged to ST3385 and the same PFGE pattern. The blaGES-5- and blaVIM-2 + blaGES-45-positive CRPA recovered mostly from ICU patients belonged to the high-risk clone ST235. Our results highlight the alarming prevalence of blaGES-5- and ST235-CRPA, the co-existence of blaGES-45 and blaVIM-2, and their location within integrons favoring their dissemination.
Collapse
Affiliation(s)
- Meha Fethi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Raoudha Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Gabriela Chichón
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Farouk Barguellil
- Laboratory of Bacteriology, Military Hospital of Tunis, Tunis 1008, Tunisia
- Laboratory of Microorganisms and Environment, Molecular Diagnostic Tools and Emerging and Re-Emerging Infections (LR19DN03), Military Hospital of Tunis, Tunis 1008, Tunisia
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Mohamed Selim El Asli
- Laboratory of Bacteriology, Military Hospital of Tunis, Tunis 1008, Tunisia
- Laboratory of Microorganisms and Environment, Molecular Diagnostic Tools and Emerging and Re-Emerging Infections (LR19DN03), Military Hospital of Tunis, Tunis 1008, Tunisia
| | - Paula Toledano
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Hadda-Imen Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| |
Collapse
|
31
|
González de Aledo M, Blasco L, Lopez M, Ortiz-Cartagena C, Bleriot I, Pacios O, Hernández-García M, Cantón R, Tomas M. Prophage identification and molecular analysis in the genomes of Pseudomonas aeruginosa strains isolated from critical care patients. mSphere 2023; 8:e0012823. [PMID: 37366636 PMCID: PMC10449497 DOI: 10.1128/msphere.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Prophages are bacteriophages integrated into the bacterial host's chromosome. This research aims to analyze and characterize the existing prophages within a collection of 53 Pseudomonas aeruginosa strains from intensive care units (ICUs) in Portugal and Spain. A total of 113 prophages were localized in the collection, with 18 of them being present in more than one strain simultaneously. After annotation, five of them were discarded as incomplete, and the 13 remaining prophages were characterized. Of 13, 10 belonged to the siphovirus tail morphology group, 2 to the podovirus tail morphology group, and 1 to the myovirus tail morphology group. All prophages had a length ranging from 20,199 to 63,401 bp and a GC% between 56.2% and 63.6%. The number of open reading frames (ORFs) oscillated between 32 and 88, and in 3/13 prophages, more than 50% of the ORFs had an unknown function. With our findings, we show that prophages are present in the majority of the P. aeruginosa strains isolated from Portuguese and Spanish critically ill patients, many of them found in more than one circulating strain at the same time and following a similar clonal distribution pattern. Although a great sum of ORFs had an unknown function, number of proteins in relation to viral defense (anti-CRISPR proteins, toxin/antitoxin modules, proteins against restriction-modification systems) as well as to prophage interference into their host's quorum sensing system and regulatory cascades were found. This supports the idea that prophages have an influence in bacterial pathogenesis and anti-phage defense. IMPORTANCE Despite being known for decades, prophages remain understudied when compared to the lytic phages employed in phage therapy. This research aims to shed some light into the nature, composition, and role of prophages found within a set of circulating strains of Pseudomas aeruginosa, with special attention to high-risk clones. Given the fact that prophages can effectively influence bacterial pathogenesis, prophage basic research constitutes a topic of growing interest. Furthermore, the abundance of viral defense and regulatory proteins within prophage genomes detected in this study evidences the importance of characterizing the most frequent prophages in circulating clinical strains and in high-risk clones if phage therapy is to be used.
Collapse
Affiliation(s)
- Manuel González de Aledo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Blasco
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Maria Lopez
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Concha Ortiz-Cartagena
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Inés Bleriot
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Olga Pacios
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Maria Tomas
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| |
Collapse
|
32
|
Zhu Y, Kang Y, Zhang H, Yu W, Zhang G, Zhang J, Kang W, Duan S, Xu Y, Yang Q. Emergence of ST463 exoU-Positive, Imipenem-Nonsusceptible Pseudomonas aeruginosa Isolates in China. Microbiol Spectr 2023; 11:e0010523. [PMID: 37314344 PMCID: PMC10434062 DOI: 10.1128/spectrum.00105-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
This study investigated the resistance mechanisms and the distribution and proportions of virulence genes, including exoU, in 182 imipenem-nonsusceptible Pseudomonas aeruginosa (INS-PA) strains collected from China in 2019. There was no obvious prevalent sequence type or concentrated evolutionary multilocus sequence typing (MLST) type on the INS-PA phylogenetic tree in China. All of the INS-PA isolates harbored β-lactamases with/without other antimicrobial mechanisms, such as gross disruption of oprD and overexpression of efflux genes. Compared with exoU-negative isolates, exoU-positive isolates (25.3%, 46/182) presented higher virulence in A549 cell cytotoxicity assays. The southeast region of China had the highest proportion (52.2%, 24/46) of exoU-positive strains. The most frequent exoU-positive strains belonged to sequence type 463 (ST463) (23.9%, 11/46) and presented multiple resistance mechanisms and higher virulence in the Galleria mellonella infection model. The complex resistance mechanisms in INS-PA and the emergence of ST463 exoU-positive, multidrug-resistant P. aeruginosa strains in southeast China indicated a challenge that might lead to clinical treatment failure and higher mortality. IMPORTANCE This study investigates the resistance mechanisms and distribution and proportions of virulence genes of imipenem-nonsusceptible Pseudomonas aeruginosa (INS-PA) isolates in China in 2019. Harboring PDC and OXA-50-like genes is discovered as the most prevalent resistance mechanism in INS-PA, and the virulence of exoU-positive INS-PA isolates was significantly higher than that of exoU-negative INS-PA isolates. There was an emergence of ST463 exoU-positive INS-PA isolates in Zhejiang, China, most of which presented multidrug resistance and hypervirulence.
Collapse
Affiliation(s)
- Ying Zhu
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Kang
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Hui Zhang
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Yu
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Zhang
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingjia Zhang
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Kang
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Simeng Duan
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiwen Yang
- Clinical Laboratory Department, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Fereshteh S, Haririzadeh Jouriani F, Noori Goodarzi N, Torkamaneh M, Khasheii B, Badmasti F. Defeating a superbug: A breakthrough in vaccine design against multidrug-resistant Pseudomonas aeruginosa using reverse vaccinology. PLoS One 2023; 18:e0289609. [PMID: 37535697 PMCID: PMC10399887 DOI: 10.1371/journal.pone.0289609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Multidrug-resistant Pseudomonas aeruginosa has become a major cause of severe infections. Due to the lack of approved vaccines, this study has presented putative vaccine candidates against it. METHODS P. aeruginosa 24Pae112 as a reference strain was retrieved from GenBank database. The surface-exposed, antigenic, non-allergenic, and non-homologous human proteins were selected. The conserved domains of selected proteins were evaluated, and the prevalence of proteins was assessed among 395 genomes. Next, linear and conformational B-cell epitopes, and human MHC II binding sites were determined. Finally, five conserved and highly antigenic B-cell epitopes from OMPs were implanted on the three platforms as multi-epitope vaccines, including FliC, the bacteriophage T7 tail, and the cell wall-associated transporter proteins. The immunoreactivity was investigated using molecular docking and immune simulation. Furthermore, molecular dynamics simulation was done to refine the chimeric cell-wall-associated transporter-TLR4 complex as the best interaction. RESULTS Among 6494 total proteins of P. aeruginosa 24Pae112, 16 proteins (seven OMPs and nine secreted) were ideal according to the defined criteria. These proteins had a molecular weight of 110 kDa and were prevalent in ≥ 75% of P. aeruginosa genomes. Among the presented multi-epitope vaccines, the chimeric cell-wall-associated transporter had the strongest interaction with TLR4. Moreover, the immune simulation response revealed that the bacteriophage T7 tail chimeric protein had the strongest ability to stimulate the immune system. In addition, molecular docking and molecular dynamic simulation indicated the proper and stable interactions between the chimeric cell-wall-associated transporter and TLR4. CONCLUSION This study proposed 16 shortlisted proteins as promising immunogenic targets. Two novel platforms (e.g. cell-wall-associated transporter and bacteriophage T7 tail proteins) for designing of multi-epitope vaccines (MEVs), showed the better performance compared to FliC. In our future studies, these two MEVs will receive more scrutiny to evaluate their immunoreactivity.
Collapse
Affiliation(s)
| | | | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Torkamaneh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
34
|
Atassi G, Medernach R, Scheetz M, Nozick S, Rhodes NJ, Murphy-Belcaster M, Murphy KR, Alisoltani A, Ozer EA, Hauser AR. Genomics of Aminoglycoside Resistance in Pseudomonas aeruginosa Bloodstream Infections at a United States Academic Hospital. Microbiol Spectr 2023; 11:e0508722. [PMID: 37191517 PMCID: PMC10269721 DOI: 10.1128/spectrum.05087-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/22/2023] [Indexed: 05/17/2023] Open
Abstract
Pseudomonas aeruginosa frequently becomes resistant to aminoglycosides by the acquisition of aminoglycoside modifying enzyme (AME) genes and the occurrence of mutations in the mexZ, fusA1, parRS, and armZ genes. We examined resistance to aminoglycosides in a collection of 227 P. aeruginosa bloodstream isolates collected over 2 decades from a single United States academic medical institution. Resistance rates of tobramycin and amikacin were relatively stable over this time, while the resistance rates of gentamicin were somewhat more variable. For comparison, we examined resistance rates to piperacillin-tazobactam, cefepime, meropenem, ciprofloxacin, and colistin. Resistance rates to the first four antibiotics were also stable, although uniformly higher for ciprofloxacin. Colistin resistance rates were initially quite low, rose substantially, and then began to decrease at the end of the study. Clinically relevant AME genes were identified in 14% of isolates, and mutations predicted to cause resistance were relatively common in the mexZ and armZ genes. In a regression analysis, resistance to gentamicin was associated with the presence of at least one gentamicin-active AME gene and significant mutations in mexZ, parS, and fusA1. Resistance to tobramycin was associated with the presence of at least one tobramycin-active AME gene. An extensively drug-resistant strain, PS1871, was examined further and found to contain five AME genes, most of which were within clusters of antibiotic resistance genes embedded in transposable elements. These findings demonstrate the relative contributions of aminoglycoside resistance determinants to P. aeruginosa susceptibilities at a United States medical center. IMPORTANCE Pseudomonas aeruginosa is frequently resistant to multiple antibiotics, including aminoglycosides. The rates of resistance to aminoglycosides in bloodstream isolates collected over 2 decades at a United States hospital remained constant, suggesting that antibiotic stewardship programs may be effective in countering an increase in resistance. Mutations in the mexZ, fusA1, parR, pasS, and armZ genes were more common than acquisition of genes encoding aminoglycoside modifying enzymes. The whole-genome sequence of an extensively drug resistant isolate indicates that resistance mechanisms can accumulate in a single strain. Together, these results suggest that aminoglycoside resistance in P. aeruginosa remains problematic and confirm known resistance mechanisms that can be targeted for the development of novel therapeutics.
Collapse
Affiliation(s)
- Giancarlo Atassi
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rachel Medernach
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marc Scheetz
- Department of Pharmacy Practice, Pharmacometrics Center of Excellence, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois, USA
| | - Sophia Nozick
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nathaniel J. Rhodes
- Pharmacometrics Center of Excellence, College of Graduate Studies, Department of Pharmacology, Midwestern University, Downers Grove, Illinois, USA
| | - Megan Murphy-Belcaster
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Katherine R. Murphy
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arghavan Alisoltani
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A. Ozer
- Department of Medicine (Division of Infectious Diseases), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alan R. Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medicine (Division of Infectious Diseases), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
35
|
Yasuda N, Fujita T, Fujioka T, Tagawa M, Kohira N, Torimaru K, Shiota S, Kumagai T, Morita D, Ogawa W, Tsuchiya T, Kuroda T. Effects of the order of exposure to antimicrobials on the incidence of multidrug-resistant Pseudomonas aeruginosa. Sci Rep 2023; 13:8826. [PMID: 37258635 DOI: 10.1038/s41598-023-35256-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa (MDRP) is one of the most important pathogens in clinical practice. To clarify the mechanisms contributing to its emergence, we isolated MDRPs using the P. aeruginosa PAO1, the whole genome sequence of which has already been elucidated. Mutant strains resistant to carbapenems, aminoglycosides, and new quinolones, which are used to treat P. aeruginosa infections, were isolated; however, none met the criteria for MDRPs. Then, PAO1 strains were exposed to these antimicrobial agents in various orders and the appearance rate of MDRP varied depending on the order of exposure; MDRPs more frequently appeared when gentamicin was applied before ciprofloxacin, but were rarely isolated when ciprofloxacin was applied first. Exposure to ciprofloxacin followed by gentamicin increased the expression of MexCD-OprJ, an RND-type multidrug efflux pump, due to the NfxB mutation. In contrast, exposure to gentamicin followed by ciprofloxacin resulted in more mutations in DNA gyrase. These results suggest that the type of quinolone resistance mechanism is related to the frequency of MDRP and that the risk of MDRP incidence is highly dependent on the order of exposure to gentamicin and ciprofloxacin.
Collapse
Affiliation(s)
- Nami Yasuda
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Tomoko Fujita
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Takahiro Fujioka
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Mei Tagawa
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Naoki Kohira
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Kensho Torimaru
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Sumiko Shiota
- Department of Molecular Biology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Takanori Kumagai
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Daichi Morita
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Wakano Ogawa
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
- Department of Microbiology and Biochemistry, Daiichi University of Pharmacy, 22-1, Tamagawa-Machi, Minami-ku, Fukuoka, 815-8511, Japan
| | - Tomofusa Tsuchiya
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Teruo Kuroda
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
36
|
Varela MF, Stephen J, Bharti D, Lekshmi M, Kumar S. Inhibition of Multidrug Efflux Pumps Belonging to the Major Facilitator Superfamily in Bacterial Pathogens. Biomedicines 2023; 11:1448. [PMID: 37239119 PMCID: PMC10216197 DOI: 10.3390/biomedicines11051448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial pathogens resistant to multiple structurally distinct antimicrobial agents are causative agents of infectious disease, and they thus constitute a serious concern for public health. Of the various bacterial mechanisms for antimicrobial resistance, active efflux is a well-known system that extrudes clinically relevant antimicrobial agents, rendering specific pathogens recalcitrant to the growth-inhibitory effects of multiple drugs. In particular, multidrug efflux pump members of the major facilitator superfamily constitute central resistance systems in bacterial pathogens. This review article addresses the recent efforts to modulate these antimicrobial efflux transporters from a molecular perspective. Such investigations can potentially restore the clinical efficacy of infectious disease chemotherapy.
Collapse
Affiliation(s)
- Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM 88130, USA
| | - Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Deeksha Bharti
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Sanath Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| |
Collapse
|
37
|
Li X, Zhang X, Cai H, Zhu Y, Ji J, Qu T, Tu Y, Zhou H, Yu Y. Overexpression of bla GES-1 due to a strong promoter in the class 1 integron contributes to decreased ceftazidime-avibactam susceptibility in carbapenem-resistant Pseudomonas aeruginosa ST235. Drug Resist Updat 2023; 69:100973. [PMID: 37148599 DOI: 10.1016/j.drup.2023.100973] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/10/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Sequence type 235 (ST235) Pseudomonas aeruginosa, harboring so-called international, high-risk, or widespread clones, is associated with relatively high morbidity and mortality, partly due to multiantibiotic and high-level antibiotic resistance. Treatment of infections caused by such strains with ceftazidime-avibactam (CZA) is often successful. However, CZA resistance in carbapenem-resistant P. aeruginosa (CRPA) strains has been consistently reported with the increasing use of this drug. Likewise, we identified thirty-seven CZA-resistant ST235 P. aeruginosa strains from among 872 CRPA isolates. A total of 10.8% of the ST235 CRPA strains were resistant to CZA. Site-directed mutagenesis, cloning, expression, and whole-genome sequencing analysis revealed that overexpression of blaGES-1, which was carried in a class 1 integron of the complex transposon Tn6584, occurred due to a strong promoter, contributing to CZA resistance. Moreover, such overexpression of blaGES-1 combined with an efflux pump resulted in high-level resistance to CZA, considerably reducing the therapeutic options available for treating infections caused by ST235 CRPA. Considering the widespread presence of ST235 P. aeruginosa strains, clinicians should be aware of the risk of CZA resistance development in high-risk ST235 P. aeruginosa. Surveillance initiatives for preventing further dissemination of high-risk ST235 CRPA isolates with CZA resistance are essential.
Collapse
Affiliation(s)
- Xi Li
- Centre of Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang 310014, China
| | - Xiaofan Zhang
- Centre of Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang 310014, China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yiwei Zhu
- Department of Critical Care Medicine, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingshu Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Yuexing Tu
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, Zhejiang 310012, China.
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Yunsong Yu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
38
|
Sun Z, Yang F, Ji J, Cao W, Liu C, Ding B, Xu X. Dissecting the genotypic features of a fluoroquinolone-resistant Pseudomonas aeruginosa ST316 sublineage causing ear infections in Shanghai, China. Microb Genom 2023; 9:mgen000989. [PMID: 37079456 PMCID: PMC10210959 DOI: 10.1099/mgen.0.000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/20/2023] [Indexed: 04/21/2023] Open
Abstract
Limited information is available regarding the genomic characteristics of P. aeruginosa causing ear infections. Our aim is to characterize the genotypic features of an emerging ST316 sublineage causing aural infections in Shanghai. A total of 199 ear swab isolates were subjected to whole genome sequencing (WGS). Complete genomes for two isolates were resolved. We showed this recently emerged sublineage exhibited high-level resistance to fluoroquinolones (FQs) primarily by accumulation of known mutations in quinolone resistance determining regions (QRDRs). Loss-of-function mutations in mexR and mexCD were frequently detected. Mutations in fusA1 (P166S) and parE (S492F) were resident in this sublinage about 2 years after its emergence. Recombination events might be a key driver of genomic diversity in this sublineage. Convergent evolution events on Multidrug-resistant (MDR) determinants were also observed. We generated predictive machine models and identified biomarkers of resistance to gentamicin, fosfomycin, and cefoperazone-sulbactam in this sublineage. This sublineage tended to be less virulent by loss of a series virulence genes represented by ppkA, rhlI, and iron uptake- and antimicrobial activity-related genes. Specific mutations were detected in pilU and lpxB genes that related to surface structures. Moreover, this sublineage differed from non-ST316 isolates in several ways, including virulence genes related to cell surface structure. Our analysis suggested acquisition of a roughly 390 kbp MDR plasmid carrying qnrVC1 might play an important role in the success of this sublinage. Clonal expansion of this sublineage exhibiting enhanced adaptation to cause ear infections is concerning, which requires urgent control measures to be implemented.
Collapse
Affiliation(s)
- Zhewei Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Feifei Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Jian Ji
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Chunhong Liu
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Baixing Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| |
Collapse
|
39
|
Peykov S, Strateva T. Whole-Genome Sequencing-Based Resistome Analysis of Nosocomial Multidrug-Resistant Non-Fermenting Gram-Negative Pathogens from the Balkans. Microorganisms 2023; 11:microorganisms11030651. [PMID: 36985224 PMCID: PMC10051916 DOI: 10.3390/microorganisms11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Non-fermenting Gram-negative bacilli (NFGNB), such as Pseudomonas aeruginosa and Acinetobacter baumannii, are among the major opportunistic pathogens involved in the global antibiotic resistance epidemic. They are designated as urgent/serious threats by the Centers for Disease Control and Prevention and are part of the World Health Organization’s list of critical priority pathogens. Also, Stenotrophomonas maltophilia is increasingly recognized as an emerging cause for healthcare-associated infections in intensive care units, life-threatening diseases in immunocompromised patients, and severe pulmonary infections in cystic fibrosis and COVID-19 individuals. The last annual report of the ECDC showed drastic differences in the proportions of NFGNB with resistance towards key antibiotics in different European Union/European Economic Area countries. The data for the Balkans are of particular concern, indicating more than 80% and 30% of invasive Acinetobacter spp. and P. aeruginosa isolates, respectively, to be carbapenem-resistant. Moreover, multidrug-resistant and extensively drug-resistant S. maltophilia from the region have been recently reported. The current situation in the Balkans includes a migrant crisis and reshaping of the Schengen Area border. This results in collision of diverse human populations subjected to different protocols for antimicrobial stewardship and infection control. The present review article summarizes the findings of whole-genome sequencing-based resistome analyses of nosocomial multidrug-resistant NFGNBs in the Balkan countries.
Collapse
Affiliation(s)
- Slavil Peykov
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111, Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| |
Collapse
|
40
|
Kabic J, Fortunato G, Vaz-Moreira I, Kekic D, Jovicevic M, Pesovic J, Ranin L, Opavski N, Manaia CM, Gajic I. Dissemination of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa in Serbian Hospital Settings: Expansion of ST235 and ST654 Clones. Int J Mol Sci 2023; 24:ijms24021519. [PMID: 36675030 PMCID: PMC9863560 DOI: 10.3390/ijms24021519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
This nationwide study aimed to investigate the molecular characteristics of metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa in Serbia, underlying resistance mechanisms, the genetic context of detected MBL genes, and the clonal relationship between isolates harboring genes-encoding MBL. Overall, 320/5334 isolates collected from 2018 to 2021 were identified as P. aeruginosa. Carbapenem-resistant P. aeruginosa (CRPA) were screened for the presence of blaVIM, blaIMP, and blaNDM, genes whereas MBL-positive isolates were tested for the presence of the blaCTX-M-2, blaPER, blaTEM, blaSHV, blaVEB, and blaGES. Multilocus sequence typing and phylogenomic analysis were performed for P. aeruginosa-producing MBL. The majority of the P. aeruginosa isolates were recovered from the lower respiratory tract (n = 120; 37.5%) and wound specimens (n = 108; 33.75%). CRPA isolates accounted for 43.1% (n = 138) of the tested isolates, 31 out of them being blaNDM-1-positive (22.5%). The colistin resistance rate was 0.3%. MLST analysis revealed the occurrence of ST235 (n = 25) and ST654 (n = 6), mostly confined to Serbia. The distribution of beta-lactamase-encoding genes in these isolates suggested clonal dissemination and possible recombination: ST235/blaNDM-1, ST235/blaNDM-1/blaPER-1, ST654/blaNDM-1, ST654/blaNDM-1/blaPER-1, and ST654/blaNDM-1/blaGES-5. High-risk clones ST235 and ST654 identified for the first time in Serbia, are important vectors of acquired MBL and ESBL and their associated multidrug resistance phenotypes represent a cause for considerable concern.
Collapse
Affiliation(s)
- Jovana Kabic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 1, 11000 Belgrade, Serbia
| | - Gianuario Fortunato
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ivone Vaz-Moreira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 1, 11000 Belgrade, Serbia
| | - Milos Jovicevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 1, 11000 Belgrade, Serbia
| | - Jovan Pesovic
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Lazar Ranin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 1, 11000 Belgrade, Serbia
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 1, 11000 Belgrade, Serbia
| | - Célia M. Manaia
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 1, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-113643-3373
| |
Collapse
|
41
|
Soonthornsit J, Pimwaraluck K, Kongmuang N, Pratya P, Phumthanakorn N. Molecular epidemiology of antimicrobial-resistant Pseudomonas aeruginosa in a veterinary teaching hospital environment. Vet Res Commun 2023; 47:73-86. [PMID: 35449493 DOI: 10.1007/s11259-022-09929-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/17/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to investigate sites for colonization and molecular epidemiology of antimicrobial-resistant Pseudomonas aeruginosa in a veterinary teaching hospital. Bacterial specimens from surface and liquid samples (n = 165) located in five rooms were collected three times every 2 months, and antimicrobial susceptibility was subsequently determined by minimum inhibitory concentrations. The genomes of resistant strains were further analyzed using whole-genome sequencing. Among 19 P. aeruginosa isolates (11.5%, 19/165), sinks were the most frequent colonization site (53.3%), followed by rubber tubes (44.4%), and anesthesia-breathing circuit (33.3%). The highest resistance to gentamicin (47.4%), followed by piperacillin/tazobactam (36.8%), levofloxacin (36.8%), and ciprofloxacin (36.8%), was observed from 19 P. aeruginosa isolates, of which 10 were resistant strains. Of these 10 antimicrobial-resistant isolates, five were multidrug-resistant isolates, including carbapenem. From the multilocus sequence typing (MLST) analysis, five sequence types (STs), including a high-risk clone of human ST235 (n = 3), and ST244 (n = 3), ST606 (n = 2), ST485 (n = 1), and ST3405 (n = 1) were identified in resistant strains. Multiresistant genes were identified consistent with STs, except ST235. The MLST approach and single nucleotide polymorphism analysis revealed a link between resistant strains from ward rooms and those from examination, wound care, and operating rooms. The improvement of routine cleaning, especially of sink environments, and the continued monitoring of antimicrobial resistance of P. aeruginosa in veterinary hospitals are necessary to prevent the spread of resistant clones and ensure infection control.
Collapse
Affiliation(s)
- Jeerawat Soonthornsit
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon Nakhon Pathom, Thailand
| | | | | | - Ploy Pratya
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Nathita Phumthanakorn
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya Campus, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon Nakhon Pathom, Thailand.
| |
Collapse
|
42
|
Zhao Y, Chen D, Ji B, Zhang X, Anbo M, Jelsbak L. Whole-genome sequencing reveals high-risk clones of Pseudomonas aeruginosa in Guangdong, China. Front Microbiol 2023; 14:1117017. [PMID: 37125174 PMCID: PMC10140354 DOI: 10.3389/fmicb.2023.1117017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
The ever-increasing prevalence of infections produced by multidrug-resistant or extensively drug-resistant Pseudomonas aeruginosa is commonly linked to a limited number of aptly-named epidemical 'high-risk clones' that are widespread among and within hospitals worldwide. The emergence of new potential high-risk clone strains in hospitals highlights the need to better and further understand the underlying genetic mechanisms for their emergence and success. P. aeruginosa related high-risk clones have been sporadically found in China, their genome sequences have rarely been described. Therefore, the large-scale sequencing of multidrug-resistance high-risk clone strains will help us to understand the emergence and transmission of antibiotic resistances in P. aeruginosa high-risk clones. In this study, 212 P. aeruginosa strains were isolated from 2 tertiary hospitals within 3 years (2018-2020) in Guangdong Province, China. Whole-genome sequencing, multi-locus sequence typing (MLST) and antimicrobial susceptibility testing were applied to analyze the genomic epidemiology of P. aeruginosa in this region. We found that up to 130 (61.32%) of the isolates were shown to be multidrug resistant, and 196 (92.45%) isolates were Carbapenem-Resistant Pseudomonas aeruginosa. MLST analysis demonstrated high diversity of sequence types, and 18 reported international high-risk clones were identified. Furthermore, we discovered the co-presence of exoU and exoS genes in 5 collected strains. This study enhances insight into the regional research of molecular epidemiology and antimicrobial resistance of P. aeruginosa in China. The high diversity of clone types and regional genome characteristics can serve as a theoretical reference for public health policies and help guide measures for the prevention and control of P. aeruginosa resistance.
Collapse
Affiliation(s)
- Yonggang Zhao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dingqiang Chen
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Mikkel Anbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Lars Jelsbak,
| |
Collapse
|
43
|
Schuster D, Axtmann K, Holstein N, Felder C, Voigt A, Färber H, Ciorba P, Szekat C, Schallenberg A, Böckmann M, Zarfl C, Neidhöfer C, Smalla K, Exner M, Bierbaum G. Antibiotic concentrations in raw hospital wastewater surpass minimal selective and minimum inhibitory concentrations of resistant Acinetobacter baylyi strains. Environ Microbiol 2022; 24:5721-5733. [PMID: 36094736 DOI: 10.1111/1462-2920.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023]
Abstract
Antibiotics are essential for modern medicine, they are employed frequently in hospitals and, therefore, present in hospital wastewater. Even in concentrations, that are lower than the minimum inhibitory concentrations (MICs) of susceptible bacteria, antibiotics may exert an influence and select resistant bacteria, if they exceed the MSCs (minimal selective concentrations) of resistant strains. Here, we compare the MSCs of fluorescently labelled Acinetobacter baylyi strains harboring spontaneous resistance mutations or a resistance plasmid with antibiotic concentrations determined in hospital wastewater. Low MSCs in the μg/L range were measured for the quinolone ciprofloxacin (17 μg/L) and for the carbapenem meropenem (30 μg/L). A 24 h continuous analysis of hospital wastewater showed daily fluctuations of the concentrations of these antibiotics with distinctive peaks at 7-8 p.m. and 5-6 a.m. The meropenem concentrations were always above the MSC and MIC values of A. baylyi. In addition, the ciprofloxacin concentrations were in the range of the lowest MSC for about half the time. These results explain the abundance of strains with meropenem and ciprofloxacin resistance in hospital wastewater and drains.
Collapse
Affiliation(s)
- Dominik Schuster
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Katharina Axtmann
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Niklas Holstein
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Carsten Felder
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Alex Voigt
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Harald Färber
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Patrick Ciorba
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christiane Szekat
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Anna Schallenberg
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Matthias Böckmann
- Environmental Systems Analysis, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Christiane Zarfl
- Environmental Systems Analysis, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
44
|
Emergence of KPC-31, a KPC-3 Variant Associated with Ceftazidime-Avibactam Resistance, in an Extensively Drug-Resistant ST235 Pseudomonas aeruginosa Clinical Isolate. Antimicrob Agents Chemother 2022; 66:e0064822. [PMID: 36286541 PMCID: PMC9664854 DOI: 10.1128/aac.00648-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A ceftazidime-avibactam-resistant KPC-producing
Pseudomonas aeruginosa
strain was isolated in Argentina from a tracheal aspirate. The patient was treated with ceftazidime-avibactam in combination with other agents for 130 days.
Collapse
|
45
|
Weber C, Schultze T, Göttig S, Kessel J, Schröder A, Tietgen M, Besier S, Burbach T, Häussler S, Wichelhaus TA, Hack D, Kempf VAJ, Hogardt M. Antimicrobial Activity of Ceftolozane-Tazobactam, Ceftazidime-Avibactam, and Cefiderocol against Multidrug-Resistant Pseudomonas aeruginosa Recovered at a German University Hospital. Microbiol Spectr 2022; 10:e0169722. [PMID: 36190424 PMCID: PMC9603231 DOI: 10.1128/spectrum.01697-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/12/2022] [Indexed: 12/31/2022] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa increasingly causes health care-associated infections. In this study, we determined the activity of ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol against 223 MDR P. aeruginosa clinical isolates recovered from 2013 to 2017 at the University Hospital Frankfurt by using MIC test strips. Furthermore, we evaluated the presence of genes encoding major β-lactamases, such as VIM, IMP, NDM, GIM, SPM, and KPC; the extended spectrum β-lactamase (ESBL)-carbapenemase GES; and the virulence-associated traits ExoS and ExoU, as in particular ExoU is thought to be associated with poor clinical outcome. For MDR P. aeruginosa isolates, the MIC50/MIC90 values of ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol were 8/>256 mg/L, 16/>256 mg/L, and 0.25/1 mg/L, respectively. Cefiderocol showed the highest susceptibility rate (97.3%) followed by ceftazidime-avibactam (48.4%) and ceftolozane-tazobactam (46.6%). In 81 (36.3%) isolates, carbapenemase gene blaVIM was detected, and in 5 (2.2%) isolates, blaGES was detected (with a positive association of exoU and blaVIM). More than half of the isolates belong to the so-called international P. aeruginosa "high-risk" clones, with sequence type 235 (ST235) (24.7%) being the most prevalent. This study underlines that ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol are important options for the treatment of infections due to MDR P. aeruginosa, with cefiderocol currently being the most active available antipseudomonal β-lactam agent. According to our clinical experience, the outcome of cefiderocol therapy (8 patients) was favorable especially in cases of MDR P. aeruginosa-associated complicated urinary tract infections. IMPORTANCE After testing ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol against a collection of 233 multidrug-resistant (MDR) Pseudomonas aeruginosa, we showed that cefiderocol is the most active antipseudomonal β-lactam agent (susceptibility rates were 46.6%, 48.4%, and 97.4%, respectively). The most prevalent one was sequence type 235 (ST235) (24.7%), followed by ST244, ST175, and ST233, with all belonging to the top 10 P. aeruginosa high-risk clones with worldwide distribution. Our data indicate that during surveillance studies special attention should be paid to the MDR and highly virulent VIM- and ExoU-producing variant of ST235. Furthermore, in the case of infections caused by carbapenemase-producing MDR P. aeruginosa, cefiderocol is the preferred treatment option, while outcomes of complicated urinary tract infections and hospital-acquired pneumonia with cefiderocol were favorable.
Collapse
Affiliation(s)
- C. Weber
- Institute for Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - T. Schultze
- Institute for Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Center of Competence for Infection Control of the State of Hesse, Frankfurt am Main, Germany
| | - S. Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - J. Kessel
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - A. Schröder
- Institute for Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German National Consiliary Laboratory on Cystic Fibrosis Bacteriology, Frankfurt am Main, Germany
| | - M. Tietgen
- Institute for Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Center of Competence for Infection Control of the State of Hesse, Frankfurt am Main, Germany
| | - S. Besier
- Institute for Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German National Consiliary Laboratory on Cystic Fibrosis Bacteriology, Frankfurt am Main, Germany
| | - T. Burbach
- Institute for Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - S. Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - T. A. Wichelhaus
- Institute for Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - D. Hack
- Institute for Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Center of Competence for Infection Control of the State of Hesse, Frankfurt am Main, Germany
| | - V. A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Center of Competence for Infection Control of the State of Hesse, Frankfurt am Main, Germany
| | - M. Hogardt
- Institute for Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German National Consiliary Laboratory on Cystic Fibrosis Bacteriology, Frankfurt am Main, Germany
| |
Collapse
|
46
|
Rosales-Reyes R, Flores-Vega VR, Lezana-Fernández JL, Santos-Preciado JI. Significance of Molecular Identification of Genomic Variants of Pseudomonas aeruginosa in Children with Cystic Fibrosis in Mexico. Arch Med Res 2022; 53:641-642. [PMID: 36123225 DOI: 10.1016/j.arcmed.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa is a significant cause of lung infections in patients with cystic fibrosis (CF). Pseudomonas produces a chronic infection that increases the morbidity and mortality in affected individuals. The rapid identification of Pseudomonas in these individuals enables conventional antimicrobial treatment to be started. However, over the years, treatment of P. aeruginosa has become problematic and very challenging due to their intrinsic and acquired antibiotic resistance. Microbiology plays an essential role in determining the antimicrobial susceptibility/resistance profiles of isolated strains, helping to optimize antimicrobial treatment for affected patients. In addition to the conventional susceptibility analysis, whole genome sequencing has emerged as a powerful tool for determining specific genomic variants, both in specific geographic areas and globally. Thus, molecular epidemiologic surveillance could help to establish a better treatment strategy and counter the spread of high-risk, P. aeruginosa variants among CF individuals.
Collapse
Affiliation(s)
- Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Verónica Roxana Flores-Vega
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Lezana-Fernández
- Laboratorio de Fisiología Pulmonar, Clínica de Fibrosis Quística, Hospital Infantil de Mexico Federico Gómez, Mexico City, Mexico
| | - José Ignacio Santos-Preciado
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
47
|
Adelantado Lacasa M, Portillo ME, Lobo Palanco J, Chamorro J, Ezpeleta Baquedano C. Molecular Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa Acquired in a Spanish Intensive Care Unit: Using Diverse Typing Methods to Identify Clonal Types. Microorganisms 2022; 10:microorganisms10091791. [PMID: 36144393 PMCID: PMC9502743 DOI: 10.3390/microorganisms10091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing number of infections from multidrug-resistant P. aeruginosa (MDRPA) has compromised the selection of appropriate treatment in critically ill patients. Recent investigations have shown the existence of MDRPA global clones that have been disseminated in hospitals worldwide. We aimed to describe the molecular epidemiology and genetic diversity of the MDRPA acquired by Intensive Care Units (ICU) patients in our hospital. We used phenotypic methods to define the MDRPA and molecular methods were used to illustrate the presence of carbapenemase encoding genes. To characterize the MDRPA isolates, we used MALDI-TOF biomarker peaks, O-antigen serotyping, and multi-locus sequence typing analyses. Our data show that the most widely distributed MDRPA clone in our ICU unit was the ST175 strain. These isolates were further investigated by the whole-genome sequencing technique to determine the resistome profile and phylogenetic relationships, which showed, as previously described, that the MDR profile was due to the intrinsic resistance mechanisms and not the carbapenemase encoding genes. In addition, this study suggests that the combination of environmental focus and cross-transmission are responsible for the spread of MDRPA clones within our ICU unit. Serotyping and MALDI-TOF analyses are useful tools for the early detection of the most prevalent MDRPA clones in our hospital. Using these methods, semi-directed treatments can be introduced at earlier stages and healthcare professionals can actively search for environmental foci as possible sources of outbreaks.
Collapse
Affiliation(s)
- Marta Adelantado Lacasa
- Microbiology Area, Laboratory Department, Hospital Reina Sofía, 31500 Tudela, Spain
- Instituto de Investigación Sanitaria de Navarra—IdiSNA, 31008 Pamplona, Spain
- Correspondence:
| | - Maria Eugenia Portillo
- Instituto de Investigación Sanitaria de Navarra—IdiSNA, 31008 Pamplona, Spain
- Clinical Microbiology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | | | - Judith Chamorro
- Preventive Medicine Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Carmen Ezpeleta Baquedano
- Instituto de Investigación Sanitaria de Navarra—IdiSNA, 31008 Pamplona, Spain
- Clinical Microbiology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
48
|
Hernández-García M, García-Castillo M, Melo-Cristino J, Pinto MF, Gonçalves E, Alves V, Vieira AR, Ramalheira E, Sancho L, Diogo J, Ferreira R, Cruz H, Chaves C, Bou G, Cercenado E, Delgado-Valverde M, Oliver A, Pitart C, Rodríguez-Lozano J, Tormo N, Díaz-Regañón J, Pássaro L, Duarte J, Cantón R. In vitro activity of imipenem/relebactam against Pseudomonas aeruginosa isolates recovered from ICU patients in Spain and Portugal (SUPERIOR and STEP studies). J Antimicrob Chemother 2022; 77:3163-3172. [PMID: 36059128 DOI: 10.1093/jac/dkac298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To study the in vitro activity of imipenem/relebactam and comparators and the imipenem/relebactam resistance mechanisms in a Pseudomonas aeruginosa collection from Portugal (STEP, 2017-18) and Spain (SUPERIOR, 2016-17) surveillance studies. METHODS P. aeruginosa isolates (n = 474) were prospectively recovered from complicated urinary tract (cUTI), complicated intra-abdominal (cIAI) and lower respiratory tract (LRTI) infections in 11 Portuguese and 8 Spanish ICUs. MICs were determined (ISO broth microdilution). All imipenem/relebactam-resistant P. aeruginosa isolates (n = 30) and a subset of imipenem/relebactam-susceptible strains (n = 32) were characterized by WGS. RESULTS Imipenem/relebactam (93.7% susceptible), ceftazidime/avibactam (93.5% susceptible) and ceftolozane/tazobactam (93.2% susceptible) displayed comparable activity. The imipenem/relebactam resistance rate was 6.3% (Portugal 5.8%; Spain 8.9%). Relebactam restored imipenem susceptibility to 76.9% (103/134) of imipenem-resistant isolates, including MDR (82.1%; 32/39), XDR (68.8%; 53/77) and difficult-to-treat (DTR) isolates (67.2%; 45/67). Among sequenced strains, differences in population structure were detected depending on the country: clonal complex (CC)175 and CC309 in Spain and CC235, CC244, CC348 and CC253 in Portugal. Different carbapenemase gene distributions were also found: VIM-20 (n = 3), VIM-1 (n = 2), VIM-2 (n = 1) and VIM-36 (n = 1) in Spain and GES-13 (n = 13), VIM-2 (n = 3) and KPC-3 (n = 2) in Portugal. GES-13-CC235 (n = 13) and VIM type-CC175 (n = 5) associations were predominant in Portugal and Spain, respectively. Imipenem/relebactam showed activity against KPC-3 strains (2/2), but was inactive against all GES-13 producers and most of the VIM producers (8/10). Mutations in genes affecting porin inactivation, efflux pump overexpression and LPS modification might also be involved in imipenem/relebactam resistance. CONCLUSIONS Microbiological results reinforce imipenem/relebactam as a potential option to treat cUTI, cIAI and LRTI caused by MDR/XDR P. aeruginosa isolates, except for GES-13 and VIM producers.
Collapse
Affiliation(s)
- Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain.,CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María García-Castillo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - José Melo-Cristino
- Laboratório de Microbiologia Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Margarida F Pinto
- Laboratório de Microbiologia, Serviço de Patologia Clínica, Centro Hospitalar Universitário Lisboa Central, Lisboa, Portugal
| | - Elsa Gonçalves
- Laboratório de Microbiologia Clínica Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Valquíria Alves
- Laboratório de Microbiologia, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
| | - Ana Raquel Vieira
- Serviço de Patologia Clínica, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Elmano Ramalheira
- Serviço Patologia Clínica, Hospital Infante Dom Pedro, Aveiro, Portugal
| | - Luísa Sancho
- Serviço de Patologia Clínica, Hospital Prof. Dr. Fernando da Fonseca, Amadora, Portugal
| | - José Diogo
- Serviço de Microbiologia, Hospital Garcia de Orta, Almada, Portugal
| | - Rui Ferreira
- Serviço de Patologia Clínica-Microbiologia, CHUA-Unidade de Portimão, Portimão, Portugal
| | - Hugo Cruz
- Serviço de Microbiologia do Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Catarina Chaves
- Serviço de Microbiologia, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Germán Bou
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Microbiología, Hospital Universitario A Coruña, A Coruña, Spain
| | - Emilia Cercenado
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Delgado-Valverde
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,UGC Enfermedades Infecciosas y Microbiología Clínica, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Antonio Oliver
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Microbiología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Cristina Pitart
- Servicio de Microbiología, Hospital Clínic i Provincial, Barcelona, Spain
| | - Jesús Rodríguez-Lozano
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Nuria Tormo
- Servicio de Microbiología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | | | | | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain.,CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
49
|
Lopes R, Furlan JPR, Stehling EG. Acquisition of bla IMP-13 on a novel IncP-7 plasmid in XDR VIM-2-positive Pseudomonas aeruginosa belonging to the global high-risk clone ST235 in an agricultural ecosystem. J Glob Antimicrob Resist 2022; 30:403-405. [PMID: 35917928 DOI: 10.1016/j.jgar.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ralf Lopes
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
50
|
Goyal M, Pelegrin AC, Jaillard M, Saharman YR, Klaassen CHW, Verbrugh HA, Severin JA, van Belkum A. Whole Genome Multi-Locus Sequence Typing and Genomic Single Nucleotide Polymorphism Analysis for Epidemiological Typing of Pseudomonas aeruginosa From Indonesian Intensive Care Units. Front Microbiol 2022; 13:861222. [PMID: 35910643 PMCID: PMC9329958 DOI: 10.3389/fmicb.2022.861222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
We have previously studied carbapenem non-susceptible Pseudomonas aeruginosa (CNPA) strains from intensive care units (ICUs) in a referral hospital in Jakarta, Indonesia (Pelegrin et al., 2019). We documented that CNPA transmissions and acquisitions among patients were variable over time and that these were not significantly reduced by a set of infection control measures. Three high risk international CNPA clones (sequence type (ST)235, ST823, ST357) dominated, and carbapenem resistance was due to carbapenemase-encoding genes and mutations in the porin OprD. Pelegrin et al. (2019) reported core genome analysis of these strains. We present a more refined and detailed whole genome-based analysis of major clones represented in the same dataset. As per our knowledge, this is the first study reporting Single Nucleotide Polymorphisms (wgSNP) analysis of Pseudomonas strains. With whole genome-based Multi Locus Sequence Typing (wgMLST) of the 3 CNPA clones (ST235, ST357 and ST823), three to eleven subgroups with up to 200 allelic variants were observed for each of the CNPA clones. Furthermore, we analyzed these CNPA clone clusters for the presence of wgSNP to redefine CNPA transmission events during hospitalization. A maximum number 35350 SNPs (including non-informative wgSNPs) and 398 SNPs (ST-specific_informative-wgSNPs) were found in ST235, 34,570 SNPs (including non-informative wgSNPs) and 111 SNPs (ST-specific_informative-wgSNPs) in ST357 and 26,443 SNPs (including non-informative SNPs) and 61 SNPs (ST-specific_informative-wgSNPs) in ST823. ST-specific_Informative-wgSNPs were commonly noticed in sensor-response regulator genes. However, the majority of non-informative wgSNPs was found in conserved hypothetical proteins or in uncharacterized proteins. Of note, antibiotic resistance and virulence genes segregated according to the wgSNP analyses. A total of 8 transmission chains for ST235 strains followed by 9 and 4 possible transmission chains for ST357 and ST823 were traceable on the basis of pairwise distances of informative-wgSNPs (0 to 4 SNPs) among the strains. The present study demonstrates the value of detailed whole genome sequence analysis for highly refined epidemiological analysis of P. aeruginosa.
Collapse
Affiliation(s)
- Manisha Goyal
- bioMérieux Open Innovation and Partnerships, Macry-LÉtoile, France
| | | | | | - Yulia Rosa Saharman
- Department of Clinical Microbiology, Faculty of Medicine, Dr. Cipto Mangunkusumo General Hospital, Universitas Indonesia, Jakarta, Indonesia
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Henri A. Verbrugh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Juliëtte A. Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Alex van Belkum
- bioMérieux Open Innovation and Partnerships, Macry-LÉtoile, France
- *Correspondence: Alex van Belkum,
| |
Collapse
|