1
|
Sullivan DJ. Convalescent Plasma and Other Antibody Therapies for Infectious Diseases-Lessons Learned from COVID-19 and Future Prospects. Curr Top Microbiol Immunol 2024. [PMID: 39117846 DOI: 10.1007/82_2024_273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Antiviral passive antibody therapy includes convalescent plasma, hyperimmune globulin, and monoclonal antibodies. Passive antibodies have proven effective in reducing morbidity and mortality for SARS-CoV-2 and other infectious diseases when given early in the disease course with sufficiently high specific total and neutralizing antibody levels. Convalescent plasma can be delivered to patients before vaccination implementation or novel drug production. Carefully designed and executed randomized controlled trials near the pandemic outset are important for regulatory bodies, healthcare workers, guideline committees, the public, and the government. Unfortunately, many otherwise well-designed antibody-based clinical trials in COVID-19 were futile, either because they intervened too late in the disease or provided plasma with insufficient antibodies. The need for early treatment mandates outpatient clinical trials in parallel with inpatient trials. Early outpatient COVID-19 convalescent plasma transfusion with high antibody content within 9 days of symptom onset has proven effective in blunting disease progression and reducing hospitalization, thus reducing hospital overcrowding in a pandemic. Convalescent plasma offers the opportunity for hope by enabling community participation in outpatient curative therapy while monoclonal therapies, vaccines, and drugs are being developed. Maintaining the appropriate infrastructure for antibody infusion in both outpatient and inpatient facilities is critical for future pandemic readiness.
Collapse
Affiliation(s)
- David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St Rm W4606, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Leibovici L, Friedman J. Clinical Microbiology and Infection: how did we do in 2023? Clin Microbiol Infect 2024:S1198-743X(24)00314-8. [PMID: 38992432 DOI: 10.1016/j.cmi.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
|
3
|
Franchini M, Mengoli C, Casadevall A, Focosi D. Exploring Study Design Foibles in Randomized Controlled Trials on Convalescent Plasma in Hospitalized COVID-19 Patients. Life (Basel) 2024; 14:792. [PMID: 39063547 PMCID: PMC11278192 DOI: 10.3390/life14070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Sample size estimation is an essential step in the design of randomized controlled trials (RCTs) evaluating a treatment effect. Sample size is a critical variable in determining statistical significance and, thus, it significantly influences RCTs' success or failure. During the COVID-19 pandemic, many RCTs tested the efficacy of COVID-19 convalescent plasma (CCP) in hospitalized patients but reported different efficacies, which could be attributed to, in addition to timing and dose, inadequate sample size estimates. Methods: To assess the sample size estimation in RCTs evaluating the effect of treatment with CCP in hospitalized COVID-19 patients, we searched the medical literature between January 2020 and March 2024 through PubMed and other electronic databases, extracting information on expected size effect, statistical power, significance level, and measured efficacy. Results: A total of 32 RCTs were identified. While power and significance level were highly consistent, heterogeneity in the expected size effect was relevant. Approximately one third of the RCTs did not reach the planned sample size for various reasons, with the most important one being slow patient recruitment during the pandemic's peaks. RCTs with a primary outcome in favor of CCP treatment had a significant lower median absolute difference in the expected size effect than unfavorable RCTs (20.0% versus 33.9%, P = 0.04). Conclusions: The analyses of sample sizes in RCTs of CCP treatment in hospitalized COVID-19 patients reveal that many underestimated the number of participants needed because of excessively high expectations on efficacy, and thus, these studies had low statistical power. This, in combination with a lower-than-planned recruitment of cases and controls, could have further negatively influenced the primary outcomes of the RCTs.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Carlo Mengoli
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD 21205, USA;
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
4
|
Singh S, Boyd S, Schilling WHK, Watson JA, Mukaka M, White NJ. The relationship between viral clearance rates and disease progression in early symptomatic COVID-19: a systematic review and meta-regression analysis. J Antimicrob Chemother 2024; 79:935-945. [PMID: 38385479 PMCID: PMC11062948 DOI: 10.1093/jac/dkae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Effective antiviral drugs accelerate viral clearance in acute COVID-19 infections; the relationship between accelerating viral clearance and reducing severe clinical outcomes is unclear. METHODS A systematic review was conducted of randomized controlled trials (RCTs) of antiviral therapies in early symptomatic COVID-19, where viral clearance data were available. Treatment benefit was defined clinically as the relative risk of hospitalization/death during follow-up (≥14 days), and virologically as the SARS-CoV-2 viral clearance rate ratio (VCRR). The VCRR is the ratio of viral clearance rates between the intervention and control arms. The relationship between the clinical and virological treatment effects was assessed by mixed-effects meta-regression. RESULTS From 57 potentially eligible RCTs, VCRRs were derived for 44 (52 384 participants); 32 had ≥1 clinical endpoint in each arm. Overall, 9.7% (R2) of the variation in clinical benefit was explained by variation in VCRRs with an estimated linear coefficient of -0.92 (95% CI: -1.99 to 0.13; P = 0.08). However, this estimate was highly sensitive to the inclusion of the recent very large PANORAMIC trial. Omitting this outlier, half the variation in clinical benefit (R2 = 50.4%) was explained by variation in VCRRs [slope -1.47 (95% CI -2.43 to -0.51); P = 0.003], i.e. higher VCRRs were associated with an increased clinical benefit. CONCLUSION Methods of determining viral clearance in COVID-19 studies and the relationship to clinical outcomes vary greatly. As prohibitively large sample sizes are now required to show clinical treatment benefit in antiviral therapeutic assessments, viral clearance is a reasonable surrogate endpoint.
Collapse
Affiliation(s)
- Shivani Singh
- Faculty of Tropical Medicine, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Simon Boyd
- Faculty of Tropical Medicine, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - William H K Schilling
- Faculty of Tropical Medicine, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - James A Watson
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
- Biostatistics Department, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Mavuto Mukaka
- Faculty of Tropical Medicine, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Nicholas J White
- Faculty of Tropical Medicine, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| |
Collapse
|
5
|
Elias KM, Khan SR, Stadler E, Schlub TE, Cromer D, Polizzotto MN, Kent SJ, Turner T, Davenport MP, Khoury DS. Viral clearance as a surrogate of clinical efficacy for COVID-19 therapies in outpatients: a systematic review and meta-analysis. THE LANCET. MICROBE 2024; 5:e459-e467. [PMID: 38583464 DOI: 10.1016/s2666-5247(23)00398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 04/09/2024]
Abstract
BACKGROUND Surrogates of antiviral efficacy are needed for COVID-19. We aimed to investigate the relationship between the virological effect of treatment and clinical efficacy as measured by progression to severe disease in outpatients treated for mild-to-moderate COVID-19. METHODS In this systematic review and meta-analysis, we searched PubMed, Scopus, and medRxiv from database inception to Aug 16, 2023, for randomised placebo-controlled trials that tested virus-directed treatments (ie, any monoclonal antibodies, convalescent plasma, or antivirals) in non-hospitalised individuals with COVID-19. We only included studies that reported both clinical outcomes (ie, rate of disease progression to hospitalisation or death) and virological outcomes (ie, viral load within the first 7 days of treatment). We extracted summary data from eligible reports, with discrepancies resolved through discussion. We used an established meta-regression model with random effects to assess the association between clinical efficacy and virological treatment effect, and calculated I2 to quantify residual study heterogeneity. FINDINGS We identified 1718 unique studies, of which 22 (with a total of 16 684 participants) met the inclusion criteria, and were in primarily unvaccinated individuals. Risk of bias was assessed as low in 19 of 22 studies for clinical outcomes, whereas for virological outcomes, a high risk of bias was assessed in 11 studies, some risk in ten studies, and a low risk in one study. The unadjusted relative risk of disease progression for each extra log10 copies per mL reduction in viral load in treated compared with placebo groups was 0·12 (95% CI 0·04-0·34; p<0·0001) on day 3, 0·20 (0·08-0·50; p=0·0006) on day 5, and 0·53 (0·30-0·94; p=0·030) on day 7. The residual heterogeneity in our meta-regression was estimated as low (I2=0% [0-53] on day 3, 0% [0-71] on day 5, and 0% [0-43] on day 7). INTERPRETATION Despite the aggregation of studies with differing designs, and evidence of risk of bias in some virological outcomes, this review provides evidence that treatment-induced acceleration of viral clearance within the first 5 days after treatment is a potential surrogate of clinical efficacy to prevent hospitalisation with COVID-19. This work supports the use of viral clearance as an early phase clinical trial endpoint of therapeutic efficacy. FUNDING Australian Government Department of Health, Medical Research Future Fund, and Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- Karen M Elias
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Shanchita R Khan
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Eva Stadler
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Timothy E Schlub
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia; Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Mark N Polizzotto
- Clinical Hub for Interventional Research and John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Canberra, ACT, Australia; Canberra Regional Cancer Centre, The Canberra Hospital, Canberra, ACT, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tari Turner
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Franchini M, Focosi D. Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review. Life (Basel) 2024; 14:214. [PMID: 38398723 PMCID: PMC10890293 DOI: 10.3390/life14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Since late 2019, the new SARS-CoV-2 virus belonging to the Coronaviridae family has been responsible for COVID-19 pandemic, a severe acute respiratory syndrome. Several antiviral therapies, mostly derived from previous epidemics, were initially repurposed to fight this not rarely life-threatening respiratory illness. Among them, however, the only specific antibody-based therapy available against SARS-CoV-2 infection during the first year of the pandemic was represented by COVID-19 convalescent plasma (CCP). CCP, collected from recovered individuals, contains high levels of polyclonal antibodies of different subclasses able to neutralize SARS-CoV-2 infection. Tens of randomized controlled trials have been conducted during the last three years of the pandemic to evaluate the safety and the clinical efficacy of CCP in both hospitalized and ambulatory COVID-19 patients, whose main results will be summarized in this narrative review. In addition, we will present the current knowledge on the development of anti-SARS-CoV-2 hyperimmune polyclonal immunoglobulins.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| |
Collapse
|
7
|
Meyerowitz EA, Scott J, Richterman A, Male V, Cevik M. Clinical course and management of COVID-19 in the era of widespread population immunity. Nat Rev Microbiol 2024; 22:75-88. [PMID: 38114838 DOI: 10.1038/s41579-023-01001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
The clinical implications of COVID-19 have changed since SARS-CoV-2 first emerged in humans. The current high levels of population immunity, due to prior infection and/or vaccination, have been associated with a vastly decreased overall risk of severe disease. Some people, particularly those with immunocompromising conditions, remain at risk for severe outcomes. Through the course of the pandemic, variants with somewhat different symptom profiles from the original SARS-CoV-2 virus have emerged. The management of COVID-19 has also changed since 2020, with the increasing availability of evidence-based treatments in two main classes: antivirals and immunomodulators. Selecting the appropriate treatment(s) for patients with COVID-19 requires a deep understanding of the evidence and an awareness of the limitations of applying data that have been largely based on immune-naive populations to patients today who most likely have vaccine-derived and/or infection-derived immunity. In this Review, we provide a summary of the clinical manifestations and approaches to caring for adult patients with COVID-19 in the era of vaccine availability and the dominance of the Omicron subvariants, with a focus on the management of COVID-19 in different patient groups, including immunocompromised, pregnant, vaccinated and unvaccinated patients.
Collapse
Affiliation(s)
- Eric A Meyerowitz
- Division of Infectious Diseases, Montefiore Medical Center, Bronx, NY, USA
| | - Jake Scott
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Aaron Richterman
- Division of Infectious Diseases, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Muge Cevik
- Division of Infection and Global Health Research, School of Medicine, University of St Andrews, St Andrews, UK.
| |
Collapse
|
8
|
Siripongboonsitti T, Nontawong N, Tawinprai K, Suptawiwat O, Soonklang K, Poovorawan Y, Mahanonda N. Efficacy of combined COVID-19 convalescent plasma with oral RNA-dependent RNA polymerase inhibitor treatment versus neutralizing monoclonal antibody therapy in COVID-19 outpatients: a multi-center, non-inferiority, open-label randomized controlled trial (PlasMab). Microbiol Spectr 2023; 11:e0325723. [PMID: 37975699 PMCID: PMC10714803 DOI: 10.1128/spectrum.03257-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE This pivotal study reveals that high neutralizing titer COVID-19 convalescent plasma therapy (CPT) combined with favipiravir (FPV) is non-inferior to sotrovimab in preventing hospitalization and severe outcomes in outpatients with mild-to-moderate COVID-19 and high-risk comorbidities. It underscores the potential of CPT-FPV as a viable alternative to neutralizing monoclonal antibodies like sotrovimab, especially amid emerging variants with spike protein mutations. The study's unique approach, comparing a monoclonal antibody with CPT, demonstrates the efficacy of early intervention using high neutralizing antibody titer CPT, even in populations with a significant proportion of elderly patients. These findings are crucial, considering the alternative treatment challenges, especially in resource-limited countries, posed by the rapidly mutating SARS-CoV-2 virus and the need for adaptable therapeutic strategies.
Collapse
Affiliation(s)
- Taweegrit Siripongboonsitti
- Division of Infectious Diseases, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Kriangkrai Tawinprai
- Division of Infectious Diseases, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Ornpreya Suptawiwat
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kamonwan Soonklang
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn 60th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nithi Mahanonda
- Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
9
|
Sullivan DJ, Focosi D, Hanley DF, Cruciani M, Franchini M, Ou J, Casadevall A, Paneth N. Outpatient randomized controlled trials to reduce COVID-19 hospitalization: Systematic review and meta-analysis. J Med Virol 2023; 95:e29310. [PMID: 38105461 PMCID: PMC10754263 DOI: 10.1002/jmv.29310] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
This COVID-19 outpatient randomized controlled trials (RCTs) systematic review compares hospitalization outcomes amongst four treatment classes over pandemic period, geography, variants, and vaccine status. Outpatient RCTs with hospitalization endpoint were identified in Pubmed searches through May 2023, excluding RCTs <30 participants (PROSPERO-CRD42022369181). Risk of bias was extracted from COVID-19-NMA, with odds ratio utilized for pooled comparison. Searches identified 281 studies with 61 published RCTs for 33 diverse interventions analyzed. RCTs were largely unvaccinated cohorts with at least one COVID-19 hospitalization risk factor. Grouping by class, monoclonal antibodies (mAbs) (OR = 0.31 [95% CI = 0.24-0.40]) had highest hospital reduction efficacy, followed by COVID-19 convalescent plasma (CCP) (OR = 0.69 [95% CI = 0.53-0.90]), small molecule antivirals (OR = 0.78 [95% CI = 0.48-1.33]), and repurposed drugs (OR = 0.82 [95% CI: 0.72-0.93]). Earlier in disease onset interventions performed better than later. This meta-analysis allows approximate head-to-head comparisons of diverse outpatient interventions. Omicron sublineages (XBB and BQ.1.1) are resistant to mAbs Despite trial heterogeneity, this pooled comparison by intervention class indicated oral antivirals are the preferred outpatient treatment where available, but intravenous interventions from convalescent plasma to remdesivir are also effective and necessary in constrained medical resource settings or for acute and chronic COVID-19 in the immunocompromised.
Collapse
Affiliation(s)
- David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Daniel F Hanley
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mario Cruciani
- Division of Hematology, Carlo Poma Hospital, Mantua, Italy
| | | | - Jiangda Ou
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nigel Paneth
- Departments of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Yazdani AN, Abdi A, Velpuri P, Patel P, DeMarco N, Agrawal DK, Rai V. A Review of Hematological Complications and Treatment in COVID-19. Hematol Rep 2023; 15:562-577. [PMID: 37873794 PMCID: PMC10594461 DOI: 10.3390/hematolrep15040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, and its variants have spread rapidly across the globe in the past few years, resulting in millions of deaths worldwide. Hematological diseases and complications associated with COVID-19 severely impact the mortality and morbidity rates of patients; therefore, there is a need for oversight on what pharmaceutical therapies are prescribed to hematologically at-risk patients. Thrombocytopenia, hemoglobinemia, leukopenia, and leukocytosis are all seen at increased rates in patients infected with COVID-19 and become more prominent in patients with severe COVID-19. Further, COVID-19 therapeutics may be associated with hematological complications, and this became more important in immunocompromised patients with hematological conditions as they are at higher risk of hematological complications after treatment. Thus, it is important to understand and treat COVID-19 patients with underlying hematological conditions with caution. Hematological changes during COVID-19 infection and treatment are important because they may serve as biomarkers as well as to evaluate the treatment response, which will help in changing treatment strategies. In this literature review, we discuss the hematological complications associated with COVID-19, the mechanisms, treatment groups, and adverse effects of commonly used COVID-19 therapies, followed by the hematological adverse events that could arise due to therapeutic agents used in COVID-19.
Collapse
Affiliation(s)
- Armand N. Yazdani
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Arian Abdi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Prathosh Velpuri
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Parth Patel
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nathaniel DeMarco
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
11
|
Senefeld JW, Gorman EK, Johnson PW, Moir ME, Klassen SA, Carter RE, Paneth NS, Sullivan DJ, Morkeberg OH, Wright RS, Fairweather D, Bruno KA, Shoham S, Bloch EM, Focosi D, Henderson JP, Juskewitch JE, Pirofski LA, Grossman BJ, Tobian AA, Franchini M, Ganesh R, Hurt RT, Kay NE, Parikh SA, Baker SE, Buchholtz ZA, Buras MR, Clayburn AJ, Dennis JJ, Diaz Soto JC, Herasevich V, Klompas AM, Kunze KL, Larson KF, Mills JR, Regimbal RJ, Ripoll JG, Sexton MA, Shepherd JR, Stubbs JR, Theel ES, van Buskirk CM, van Helmond N, Vogt MN, Whelan ER, Wiggins CC, Winters JL, Casadevall A, Joyner MJ. Rates Among Hospitalized Patients With COVID-19 Treated With Convalescent Plasma: A Systematic Review and Meta-Analysis. Mayo Clin Proc Innov Qual Outcomes 2023; 7:499-513. [PMID: 37859995 PMCID: PMC10582279 DOI: 10.1016/j.mayocpiqo.2023.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Objective To examine the association of COVID-19 convalescent plasma transfusion with mortality and the differences between subgroups in hospitalized patients with COVID-19. Patients and Methods On October 26, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma in the literature from January 1, 2020, to October 26, 2022. Randomized clinical trials and matched cohort studies investigating COVID-19 convalescent plasma transfusion compared with standard of care treatment or placebo among hospitalized patients with confirmed COVID-19 were included. The electronic search yielded 3841 unique records, of which 744 were considered for full-text screening. The selection process was performed independently by a panel of 5 reviewers. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were extracted by 5 independent reviewers in duplicate and pooled using an inverse-variance random effects model. The prespecified end point was all-cause mortality during hospitalization. Results Thirty-nine randomized clinical trials enrolling 21,529 participants and 70 matched cohort studies enrolling 50,160 participants were included in the systematic review. Separate meta-analyses reported that transfusion of COVID-19 convalescent plasma was associated with a decrease in mortality compared with the control cohort for both randomized clinical trials (odds ratio [OR], 0.87; 95% CI, 0.76-1.00) and matched cohort studies (OR, 0.76; 95% CI, 0.66-0.88). The meta-analysis of subgroups revealed 2 important findings. First, treatment with convalescent plasma containing high antibody levels was associated with a decrease in mortality compared with convalescent plasma containing low antibody levels (OR, 0.85; 95% CI, 0.73 to 0.99). Second, earlier treatment with COVID-19 convalescent plasma was associated with a decrease in mortality compared with the later treatment cohort (OR, 0.63; 95% CI, 0.48 to 0.82). Conclusion During COVID-19 convalescent plasma use was associated with a 13% reduced risk of mortality, implying a mortality benefit for hospitalized patients with COVID-19, particularly those treated with convalescent plasma containing high antibody levels treated earlier in the disease course.
Collapse
Affiliation(s)
- Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Patrick W. Johnson
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - M. Erin Moir
- Department of Kinesiology, University of Wisconsin-Madison, Madison
| | - Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - Nigel S. Paneth
- Department of Epidemiology and Biostatistics and Department of Pediatrics and Human Development, Michigan State University, East Lansing
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Olaf H. Morkeberg
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - R. Scott Wright
- Human Research Protection Program, Mayo Clinic, Rochester, MN
| | | | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
- Division of Cardiovascular Medicine, University of Florida, Gainesville
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Evan M. Bloch
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Italy
| | - Jeffrey P. Henderson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO
| | | | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Brenda J. Grossman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO
| | - Aaron A.R. Tobian
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ravindra Ganesh
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ryan T. Hurt
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Zachary A. Buchholtz
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew R. Buras
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | - Andrew J. Clayburn
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Joshua J. Dennis
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan C. Diaz Soto
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Allan M. Klompas
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Katie L. Kunze
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | | | - John R. Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Riley J. Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan G. Ripoll
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew A. Sexton
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - John R.A. Shepherd
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - James R. Stubbs
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Noud van Helmond
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew N.P. Vogt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Jeffrey L. Winters
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Liu M, Liang Z, Cheng ZJ, Liu L, Liu Q, Mai Y, Chen H, Lei B, Yu S, Chen H, Zheng P, Sun B. SARS-CoV-2 neutralising antibody therapies: Recent advances and future challenges. Rev Med Virol 2023; 33:e2464. [PMID: 37322826 DOI: 10.1002/rmv.2464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic represents an unparalleled global public health crisis. Despite concerted research endeavours, the repertoire of effective treatment options remains limited. However, neutralising-antibody-based therapies hold promise across an array of practices, encompassing the prophylaxis and management of acute infectious diseases. Presently, numerous investigations into COVID-19-neutralising antibodies are underway around the world, with some studies reaching clinical application stages. The advent of COVID-19-neutralising antibodies signifies the dawn of an innovative and promising strategy for treatment against SARS-CoV-2 variants. Comprehensively, our objective is to amalgamate contemporary understanding concerning antibodies targeting various regions, including receptor-binding domain (RBD), non-RBD, host cell targets, and cross-neutralising antibodies. Furthermore, we critically examine the prevailing scientific literature supporting neutralising antibody-based interventions, and also delve into the functional evaluation of antibodies, with a particular focus on in vitro (vivo) assays. Lastly, we identify and consider several pertinent challenges inherent to the realm of COVID-19-neutralising antibody-based treatments, offering insights into potential future directions for research and development.
Collapse
Affiliation(s)
- Mingtao Liu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiman Liang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Guangzhou Medical University, Guangzhou, China
| | - Qiwen Liu
- Guangzhou Medical University, Guangzhou, China
| | - Yiyin Mai
- Guangzhou Medical University, Guangzhou, China
| | | | - Baoying Lei
- Guangzhou Medical University, Guangzhou, China
| | - Shangwei Yu
- Guangzhou Medical University, Guangzhou, China
| | - Huihui Chen
- Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Steenhuis M, Wouters E, Schrezenmeier H, Rispens T, Tiberghien P, Harvala H, Feys HB, van der Schoot CE. Quality assessment and harmonization of laboratories across Europe for multiple SARS-CoV-2 serology assays. Vox Sang 2023; 118:666-673. [PMID: 37401414 DOI: 10.1111/vox.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND AND OBJECTIVES There is a need for conversion of SARS-CoV-2 serology data from different laboratories to a harmonized international unit. We aimed to compare the performance of multiple SARS-CoV-2 antibody serology assays among 25 laboratories across 12 European countries. MATERIALS AND METHODS To investigate this we have distributed to all participating laboratories a panel of 15 SARS-CoV-2 plasma samples and a single batch of pooled plasma calibrated to the WHO IS 20/136 standard. RESULTS All assays showed excellent discrimination between SARS-CoV-2 seronegative plasma samples and pre-vaccinated seropositive plasma samples but differed substantially in raw antibody titres. Titres could be harmonized to binding antibody units per millilitre by calibration in relation to a reference reagent. CONCLUSION The standardization of antibody quantification is of paramount importance to allow interpretation and comparison of serology data reported in clinical trials in order to identify donor cohorts from whom the most effective convalescent plasma can be collected.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| | - Elise Wouters
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Wurttemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| | | | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, London, UK
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - C Ellen van der Schoot
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
14
|
Levine AC, Fukuta Y, Huaman MA, Ou J, Meisenberg BR, Patel B, Paxton JH, Hanley DF, Rijnders BJA, Gharbharan A, Rokx C, Zwaginga JJ, Alemany A, Mitjà O, Ouchi D, Millat-Martinez P, Durkalski-Mauldin V, Korley FK, Dumont LJ, Callaway CW, Libster R, Marc GP, Wappner D, Esteban I, Polack F, Sullivan DJ. Coronavirus Disease 2019 Convalescent Plasma Outpatient Therapy to Prevent Outpatient Hospitalization: A Meta-Analysis of Individual Participant Data From 5 Randomized Trials. Clin Infect Dis 2023; 76:2077-2086. [PMID: 36809473 PMCID: PMC10273382 DOI: 10.1093/cid/ciad088] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Outpatient monoclonal antibodies are no longer effective and antiviral treatments for coronavirus disease 2019 (COVID-19) disease remain largely unavailable in many countries worldwide. Although treatment with COVID-19 convalescent plasma (CCP) is promising, clinical trials among outpatients have shown mixed results. METHODS We conducted an individual participant data meta-analysis from outpatient trials to assess the overall risk reduction for all-cause hospitalizations by day 28 in transfused participants. Relevant trials were identified by searching Medline, Embase, medRxiv, World Health Organization COVID-19 Research Database, Cochrane Library, and Web of Science from January 2020 to September 2022. RESULTS Five included studies from 4 countries enrolled and transfused 2620 adult patients. Comorbidities were present in 1795 (69%). The virus neutralizing antibody dilutional titer levels ranged from 8 to 14 580 in diverse assays. One hundred sixty of 1315 (12.2%) control patients were hospitalized, versus 111 of 1305 (8.5%) CCP-treated patients, yielding a 3.7% (95% confidence interval [CI], 1.3%-6.0%; P = .001) absolute risk reduction and 30.1% relative risk reduction for all-cause hospitalization. The hospitalization reduction was greatest in those with both early transfusion and high titer with a 7.6% absolute risk reduction (95% CI, 4.0%-11.1%; P = .0001) accompanied by at 51.4% relative risk reduction. No significant reduction in hospitalization was seen with treatment >5 days after symptom onset or in those receiving CCP with antibody titers below the median titer. CONCLUSIONS Among outpatients with COVID-19, treatment with CCP reduced the rate of all-cause hospitalization and may be most effective when given within 5 days of symptom onset and when antibody titer is higher.
Collapse
Affiliation(s)
- Adam C Levine
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yuriko Fukuta
- Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Moises A Huaman
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jiangda Ou
- Division of Brain Injury Outcomes, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barry R Meisenberg
- Department of Hematology–Oncology, Anne Arundel Medical Center, Annapolis, Maryland, USA
| | - Bela Patel
- Division of Critical Care Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - James H Paxton
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Daniel F Hanley
- Division of Brain Injury Outcomes, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Arvind Gharbharan
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Jaap Jan Zwaginga
- Department of Haematology, Leiden University Medical Centre, Leiden, The Netherlands
- Center for Clinical Transfusion Research, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Andrea Alemany
- Fight Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Oriol Mitjà
- Fight Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Lihir Medical Centre, International SOS, Lihir Island, Papua New Guinea
| | - Dan Ouchi
- Fight Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Pere Millat-Martinez
- ISGlobal, Department of Infectious Diseases, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Valerie Durkalski-Mauldin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Frederick K Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Larry J Dumont
- Vitalant Research Institute, Research Department, Denver, Colorado, USA
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Romina Libster
- Fundación INFANT, Buenos Aires, Argentina
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | - Fernando Polack
- Fundación INFANT, Buenos Aires, Argentina
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Bloch EM, Focosi D, Shoham S, Senefeld J, Tobian AAR, Baden LR, Tiberghien P, Sullivan DJ, Cohn C, Dioverti V, Henderson JP, So-Osman C, Juskewitch JE, Razonable RR, Franchini M, Goel R, Grossman BJ, Casadevall A, Joyner MJ, Avery RK, Pirofski LA, Gebo KA. Guidance on the Use of Convalescent Plasma to Treat Immunocompromised Patients With Coronavirus Disease 2019. Clin Infect Dis 2023; 76:2018-2024. [PMID: 36740590 PMCID: PMC10249987 DOI: 10.1093/cid/ciad066] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) is a safe and effective treatment for COVID-19 in immunocompromised (IC) patients. IC patients have a higher risk of persistent infection, severe disease, and death from COVID-19. Despite the continued clinical use of CCP to treat IC patients, the optimal dose, frequency/schedule, and duration of CCP treatment has yet to be determined, and related best practices guidelines are lacking. A group of individuals with expertise spanning infectious diseases, virology and transfusion medicine was assembled to render an expert opinion statement pertaining to the use of CCP for IC patients. For optimal effect, CCP should be recently and locally collected to match circulating variant. CCP should be considered for the treatment of IC patients with acute and protracted COVID-19; dosage depends on clinical setting (acute vs protracted COVID-19). CCP containing high-titer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, retains activity against circulating SARS-CoV-2 variants, which have otherwise rendered monoclonal antibodies ineffective.
Collapse
Affiliation(s)
- Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathon Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lindsey R Baden
- Department of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine-St-Denis and Université de Franche-Comté, Besançon, France
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Claudia Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Veronica Dioverti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey P Henderson
- Departments of Internal Medicine (Division of Infectious Diseases) and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia So-Osman
- Department Transfusion Medicine, Division Blood Bank, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
- Department Haematology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Justin E Juskewitch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester campus, Minnesota, USA
| | - Raymund R Razonable
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ruchika Goel
- Division of Hematology/Oncology, Simmons Cancer Institute at SIU School of Medicine and Mississippi Valley Regional Blood Center, Springfield, Illinois, USA
| | - Brenda J Grossman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin K Avery
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liise-anne Pirofski
- Department of Medicine, Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Desmarets M, Hoffmann S, Vauchy C, Rijnders BJA, Toussirot E, Durrbach A, Körper S, Schrezenmeier E, van der Schoot CE, Harvala H, Brunotte G, Appl T, Seifried E, Tiberghien P, Bradshaw D, Roberts DJ, Estcourt LJ, Schrezenmeier H. Early, very high-titre convalescent plasma therapy in clinically vulnerable individuals with mild COVID-19 (COVIC-19): protocol for a randomised, open-label trial. BMJ Open 2023; 13:e071277. [PMID: 37105693 PMCID: PMC10151238 DOI: 10.1136/bmjopen-2022-071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION COVID-19 convalescent plasma (CCP) is a possible treatment option for COVID-19. A comprehensive number of clinical trials on CCP efficacy have already been conducted. However, many aspects of CCP treatment still require investigations: in particular (1) Optimisation of the CCP product, (2) Identification of the patient population in need and most likely to benefit from this treatment approach, (3) Timing of administration and (4) CCP efficacy across viral variants in vivo. We aimed to test whether high-titre CCP, administered early, is efficacious in preventing hospitalisation or death in high-risk patients. METHODS AND ANALYSIS COVIC-19 is a multicentre, randomised, open-label, adaptive superiority phase III trial comparing CCP with very high neutralising antibody titre administered within 7 days of symptom onset plus standard of care versus standard of care alone. We will enrol patients in two cohorts of vulnerable patients [(1) elderly 70+ years, or younger with comorbidities; (2) immunocompromised patients]. Up to 1020 participants will be enrolled in each cohort (at least 340 with a sample size re-estimation after reaching 102 patients). The primary endpoint is the proportion of participants with (1) Hospitalisation due to progressive COVID-19, or (2) Who died by day 28 after randomisation. Principal analysis will follow the intention-to-treat principle. ETHICS AND DISSEMINATION Ethical approval has been granted by the University of Ulm ethics committee (#41/22) (lead ethics committee for Germany), Comité de protection des personnes Sud-Est I (CPP Sud-Est I) (#2022-A01307-36) (ethics committee for France), and ErasmusMC ethics committee (#MEC-2022-0365) (ethics committee for the Netherlands). Signed informed consent will be obtained from all included patients. The findings will be published in peer-reviewed journals and presented at relevant stakeholder conferences and meetings. TRIAL REGISTRATION Clinical Trials.gov (NCT05271929), EudraCT (2021-006621-22).
Collapse
Affiliation(s)
- Maxime Desmarets
- Centre d'Investigation Clinique Inserm CIC1431, CHU Besançon, Besançon, Bourgogne Franche-Comté, France
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
| | - Simone Hoffmann
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
| | - Charline Vauchy
- Centre d'Investigation Clinique Inserm CIC1431, CHU Besançon, Besançon, Bourgogne Franche-Comté, France
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
| | - Bart J A Rijnders
- University Medical Center, Erasmus MC, Rotterdam, Zuid-Holland, Netherlands
| | - Eric Toussirot
- Centre d'Investigation Clinique Inserm CIC1431, CHU Besançon, Besançon, Bourgogne Franche-Comté, France
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
| | - Antoine Durrbach
- Department of Nephrology, AP-HP Hôpital Henri Mondor, Créteil, Île-de-France, France
| | - Sixten Körper
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Baden-Württemberg, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Noord-Holland, Netherlands
| | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, Colindale, London, UK
| | - Gaëlle Brunotte
- Centre d'investigation clinique Inserm CIC1431, CHU Besançon, Besançon, France
| | - Thomas Appl
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
| | - Erhard Seifried
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
| | - Pierre Tiberghien
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
- Etablissement Francais du Sang, La Plaine Saint-Denis, Île-de-France, France
| | - Daniel Bradshaw
- Virus Reference Department, UK Health Security Agency, London, UK
| | - David J Roberts
- NHS Blood and Transplant, Oxford, Oxfordshire, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Lise J Estcourt
- NHS Blood and Transplant, Oxford, Oxfordshire, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Hubert Schrezenmeier
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
17
|
McDyer JF, Azimpouran M, Durkalski-Mauldin VL, Clevenger RG, Yeatts SD, Deng X, Barsan W, Silbergleit R, El Kassar N, Popescu I, Dimitrov D, Li W, Lyons EJ, Lieber SC, Stone M, Korley FK, Callaway CW, Dumont LJ, Norris PJ. COVID-19 convalescent plasma boosts early antibody titer and does not influence the adaptive immune response. JCI Insight 2023; 8:e167890. [PMID: 36862515 PMCID: PMC10174456 DOI: 10.1172/jci.insight.167890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Multiple randomized, controlled clinical trials have yielded discordant results regarding the efficacy of convalescent plasma in outpatients, with some showing an approximately 2-fold reduction in risk and others showing no effect. We quantified binding and neutralizing antibody levels in 492 of the 511 participants from the Clinical Trial of COVID-19 Convalescent Plasma in Outpatients (C3PO) of a single unit of COVID-19 convalescent plasma (CCP) versus saline infusion. In a subset of 70 participants, peripheral blood mononuclear cells were obtained to define the evolution of B and T cell responses through day 30. Binding and neutralizing antibody responses were approximately 2-fold higher 1 hour after infusion in recipients of CCP compared with saline plus multivitamin, but levels achieved by the native immune system by day 15 were almost 10-fold higher than those seen immediately after CCP administration. Infusion of CCP did not block generation of the host antibody response or skew B or T cell phenotype or maturation. Activated CD4+ and CD8+ T cells were associated with more severe disease outcome. These data show that CCP leads to a measurable boost in anti-SARS-CoV-2 antibodies but that the boost is modest and may not be sufficient to alter disease course.
Collapse
Affiliation(s)
| | | | | | | | - Sharon D. Yeatts
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - William Barsan
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Robert Silbergleit
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nahed El Kassar
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Iulia Popescu
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Wei Li
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Frederick K. Korley
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Larry J. Dumont
- Vitalant Research Institute, San Francisco, California, USA
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | | |
Collapse
|
18
|
Convalescent Plasma Therapy for COVID-19: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Viruses 2023; 15:v15030765. [PMID: 36992474 PMCID: PMC10054551 DOI: 10.3390/v15030765] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Background: While passive immunotherapy has been considered beneficial for patients with severe respiratory viral infections, the treatment of COVID-19 cases with convalescent plasma produced mixed results. Thus, there is a lack of certainty and consensus regarding its effectiveness. This meta-analysis aims to assess the role of convalescent plasma treatment on the clinical outcomes of COVID-19 patients enrolled in randomized controlled trials (RCTs). Methods: A systematic search was conducted in the PubMed database (end-of-search: 29 December 2022) for RCTs on convalescent plasma therapy compared to supportive care\standard of care. Pooled relative risk (RR) and 95% confidence intervals were calculated with random-effects models. Subgroup and meta-regression analyses were also performed, in order to address heterogeneity and examine any potential association between the factors that varied, and the outcomes reported. The present meta-analysis was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A total of 34 studies were included in the meta-analysis. Per overall analysis, convalescent plasma treatment was not associated with lower 28-day mortality [RR = 0.98, 95% CI (0.91, 1.06)] or improved 28-day secondary outcomes, such as hospital discharge [RR = 1.00, 95% CI (0.97, 1.03)], ICU-related or score-related outcomes, with effect estimates of RR = 1.00, 95% CI (0.98, 1.05) and RR = 1.06, 95% CI (0.95, 1.17), respectively. However, COVID-19 outpatients treated with convalescent plasma had a 26% less risk of requiring hospital care, when compared to those treated with the standard of care [RR = 0.74, 95% CI (0.56, 0.99)]. Regarding subgroup analyses, COVID-19 patients treated with convalescent plasma had an 8% lower risk of ICU-related disease progression when compared to those treated with the standard of care (with or without placebo or standard plasma infusions) [RR = 0.92, 95% CI (0.85, 0.99)] based on reported outcomes from RCTs carried out in Europe. Finally, convalescent plasma treatment was not associated with improved survival or clinical outcomes in the 14-day subgroup analyses. Conclusions: Outpatients with COVID-19 treated with convalescent plasma had a statistically significantly lower risk of requiring hospital care when compared to those treated with placebo or the standard of care. However, convalescent plasma treatment was not statistically associated with prolonged survival or improved clinical outcomes when compared to placebo or the standard of care, per overall analysis in hospitalized populations. This hints at potential benefits, when used early, to prevent progression to severe disease. Finally, convalescent plasma was significantly associated with better ICU-related outcomes in trials carried out in Europe. Well-designed prospective studies could clarify its potential benefit for specific subpopulations in the post-pandemic era.
Collapse
|
19
|
Alemany A, Millat-Martinez P, Corbacho-Monné M, Suñer C, Galvan-Casas C, Carrera C, Ouchi D, Prat N, Ara J, Nadal N, Riel R, Funollet B, Ojeda-Ciurana C, Balague LE, Salvador-González B, Arcarons AF, Vidal-Alaball J, Del Cura-González MI, Barrientos RR, Ramos-Blanes R, Bou AA, Mondou E, Torres M, Campins N, Sanz A, Tang Y, Rodriguez-Arias MÀ, Bassat Q, Clotet B, Mitjà O. Subcutaneous anti-COVID-19 hyperimmune immunoglobulin for prevention of disease in asymptomatic individuals with SARS-CoV-2 infection: a double-blind, placebo-controlled, randomised clinical trial. EClinicalMedicine 2023; 57:101898. [PMID: 36936402 PMCID: PMC10005687 DOI: 10.1016/j.eclinm.2023.101898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Anti-COVID-19 hyperimmune immunoglobulin (hIG) can provide standardized and controlled antibody content. Data from controlled clinical trials using hIG for the prevention or treatment of COVID-19 outpatients have not been reported. We assessed the safety and efficacy of subcutaneous anti-COVID-19 hyperimmune immunoglobulin 20% (C19-IG20%) compared to placebo in preventing development of symptomatic COVID-19 in asymptomatic individuals with SARS-CoV-2 infection. METHODS We did a multicentre, randomized, double-blind, placebo-controlled trial, in asymptomatic unvaccinated adults (≥18 years of age) with confirmed SARS-CoV-2 infection within 5 days between April 28 and December 27, 2021. Participants were randomly assigned (1:1:1) to receive a blinded subcutaneous infusion of 10 mL with 1 g or 2 g of C19-IG20%, or an equivalent volume of saline as placebo. The primary endpoint was the proportion of participants who remained asymptomatic through day 14 after infusion. Secondary endpoints included the proportion of individuals who required oxygen supplementation, any medically attended visit, hospitalisation, or ICU, and viral load reduction and viral clearance in nasopharyngeal swabs. Safety was assessed as the proportion of patients with adverse events. The trial was terminated early due to a lack of potential benefit in the target population in a planned interim analysis conducted in December 2021. ClinicalTrials.gov registry: NCT04847141. FINDINGS 461 individuals (mean age 39.6 years [SD 12.8]) were randomized and received the intervention within a mean of 3.1 (SD 1.27) days from a positive SARS-CoV-2 test. In the prespecified modified intention-to-treat analysis that included only participants who received a subcutaneous infusion, the primary outcome occurred in 59.9% (91/152) of participants receiving 1 g C19-IG20%, 64.7% (99/153) receiving 2 g, and 63.5% (99/156) receiving placebo (difference in proportions 1 g C19-IG20% vs. placebo, -3.6%; 95% CI -14.6% to 7.3%, p = 0.53; 2 g C19-IG20% vs placebo, 1.1%; -9.6% to 11.9%, p = 0.85). None of the secondary clinical efficacy endpoints or virological endpoints were significantly different between study groups. Adverse event rate was similar between groups, and no severe or life-threatening adverse events related to investigational product infusion were reported. INTERPRETATION Our findings suggested that administration of subcutaneous human hyperimmune immunoglobulin C19-IG20% to asymptomatic individuals with SARS-CoV-2 infection was safe but did not prevent development of symptomatic COVID-19. FUNDING Grifols.
Collapse
Affiliation(s)
- Andrea Alemany
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Facultat de Medicina-Universitat de Barcelona, Barcelona, Spain
- Corresponding author. Department of Infectious Diseases and Fight Infectious Diseases Foundation, Hospital Germans Trias Pujol, Badalona, Catalonia, Spain.
| | | | - Marc Corbacho-Monné
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Facultat de Medicina-Universitat de Barcelona, Barcelona, Spain
- Hospital Universitari Parc Taulí, I3PT, 08028, Sabadell, Spain
| | - Clara Suñer
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Cristina Galvan-Casas
- Fight Infectious Diseases Foundation, Badalona, Spain
- Department of Dermatology, Hospital Universitario de Móstoles, Madrid, Spain
| | - Caty Carrera
- Fight Infectious Diseases Foundation, Badalona, Spain
- Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Barcelona, Spain
| | - Dan Ouchi
- Fight Infectious Diseases Foundation, Badalona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Prat
- Gerència Territorial Metropolitana Nord, Institut Català de la Salut, Barcelona, Spain
| | - Jordi Ara
- Gerència Territorial Metropolitana Nord, Institut Català de la Salut, Barcelona, Spain
| | - Nuria Nadal
- Gerència Territorial de Barcelona, Institut Català de la Salut, Barcelona, Spain
| | - Ricard Riel
- Gerència Territorial de Barcelona, Institut Català de la Salut, Barcelona, Spain
| | - Blanca Funollet
- Gerència Territorial de Barcelona, Institut Català de la Salut, Barcelona, Spain
| | - Carmen Ojeda-Ciurana
- Gerència Territorial Metropolitana Sud, Institut Català de la Salut, Barcelona, Spain
| | - Lluis Esteve Balague
- Gerència Territorial Metropolitana Sud, Institut Català de la Salut, Barcelona, Spain
| | - Betlem Salvador-González
- Gerència Territorial Metropolitana Sud, Institut Català de la Salut, Barcelona, Spain
- Unitat de Suport a la Recerca Costa de Ponent, Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), l’Hospitalet de Llobregat, Spain
| | - Anna Forcada Arcarons
- Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Barcelona, Spain
| | - Josep Vidal-Alaball
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
- Health Promotion in Rural Areas Research Group, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
- Facultat de Medicina, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
| | - María Isabel Del Cura-González
- Unidad de Investigación, Gerencia Asistencial de Atención Primaria, Madrid, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud -RICAPPS- ISCIII, Spain
| | - Ricardo Rodríguez Barrientos
- Unidad de Investigación, Gerencia Asistencial de Atención Primaria, Madrid, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud -RICAPPS- ISCIII, Spain
| | - Rafel Ramos-Blanes
- Unitat de Suport a la Recerca de Girona, Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Girona, Spain
| | - Alberto Alum Bou
- Unitat de Suport a la Recerca de Girona, Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Girona, Spain
| | - Elsa Mondou
- Scientific Innovation Office, Grifols, Barcelona, Spain
| | - Mireia Torres
- Scientific Innovation Office, Grifols, Barcelona, Spain
| | - Neus Campins
- Scientific Innovation Office, Grifols, Barcelona, Spain
| | - Ana Sanz
- Scientific Innovation Office, Grifols, Barcelona, Spain
| | | | - Miquel Àngel Rodriguez-Arias
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
- ICREA, Pg Lluís Companys 23, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Bonaventura Clotet
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Facultat de Medicina, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | | | - Oriol Mitjà
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Facultat de Medicina, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- Lihir Medical Centre, International SOS, Lihir Island, Papua New Guinea
| |
Collapse
|
20
|
Pirofski LA. COVID-19 convalescent plasma therapy through the lens of the third year of the pandemic. Clin Microbiol Infect 2023; 29:130-132. [PMID: 36343900 PMCID: PMC9633635 DOI: 10.1016/j.cmi.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Liise-anne Pirofski
- Corresponding author. Division of Infectious Diseases, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Room 610. Bronx, New York 10461-1900
| |
Collapse
|
21
|
Levine AC, Fukuta Y, Huaman MA, Ou J, Meisenberg BR, Patel B, Paxton JH, Hanley DF, Rijnders BJA, Gharbharan A, Rokx C, Zwaginga JJ, Alemany A, Mitjà O, Ouchi D, Millat-Martinez P, Durkalski-Mauldin V, Korley FK, Dumont LJ, Callaway CW, Libster R, Marc GP, Wappner D, Esteban I, Polack F, Sullivan DJ. COVID-19 Convalescent Plasma Outpatient Therapy to Prevent Outpatient Hospitalization: A Meta-analysis of Individual Participant Data From Five Randomized Trials. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.12.16.22283585. [PMID: 36561181 PMCID: PMC9774226 DOI: 10.1101/2022.12.16.22283585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Monoclonal antibody and antiviral treatments for COVID-19 disease remain largely unavailable worldwide, and existing monoclonal antibodies may be less active against circulating omicron variants. Although treatment with COVID-19 convalescent plasma (CCP) is promising, randomized clinical trials (RCTs) among outpatients have shown mixed results. Methods We conducted an individual participant data meta-analysis from all outpatient CCP RCTs to assess the overall risk reduction for all-cause hospitalizations by day 28 in all participants who had transfusion initiated. Relevant trials were identified by searching MEDLINE, Embase, MedRxiv, WHO, Cochrane Library, and Web of Science from January 2020 to September 2022. Results Five included studies from four countries enrolled and transfused 2,620 adult patients. Comorbidities were present in 1,795 (69%). The anti-Spike or virus neutralizing antibody titer range across all trials was broad. 160 (12.2%) of 1315 control patients were hospitalized, versus 111 (8.5%) of 1305 CCP-treated patients, yielding a 3.7% (95%CI: 1.3%-6.0%; p=.001) ARR and 30.1% RRR for all-cause hospitalization. The effect size was greatest in those with both early transfusion and high titer with a 7.6% ARR (95%CI: 4.0%-11.1%; p=.0001) accompanied by at 51.4% RRR. No significant reduction in hospitalization was seen with treatment > 5 days after symptom onset or in those receiving CCP with antibody titers below the median titer. Conclusions Among outpatients with COVID-19, treatment with CCP reduced the rate of all-cause hospitalization. CCP may be most effective when given within 5 days of symptom onset and when antibody titer is higher. Key Points While the outpatient COVID-19 randomized controlled trial meta-analysis indicated heterogeneity in participant risk factors and convalescent plasma, the combined CCP efficacy for reducing hospitalization was significant, improving with transfusion within 5 days of symptom onset and high antibody neutralization levels.
Collapse
Affiliation(s)
- Adam C. Levine
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yuriko Fukuta
- Department of Medicine – Infectious Disease, Baylor College of Medicine, Houston, Texas, USA
| | - Moises A. Huaman
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jiangda Ou
- Division of Brain Injury Outcomes, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Barry R. Meisenberg
- Department of Hematology – Oncology, Anne Arundel Medical Center, Annapolis, Maryland, USA
| | - Bela Patel
- Division of Critical Care Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - James H. Paxton
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Daniel F. Hanley
- Division of Brain Injury Outcomes, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bart JA Rijnders
- Department of Internal Medicine, Section of Infectious Diseases and department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Arvind Gharbharan
- Department of Internal Medicine, Section of Infectious Diseases and department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section of Infectious Diseases and department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jaap Jan Zwaginga
- Department of Haematology, Leiden University Medical Centre, Leiden, The Netherlands and; CCTR, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Andrea Alemany
- Fight Infectious Diseases Foundation, Badalona, Spain; Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Oriol Mitjà
- Fight Infectious Diseases Foundation, Badalona, Spain; Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain,Universitat de Vic-Universitat Central de Catalunya, Vic, Spain; Lihir Medical Centre, International SOS, Lihir Island, Papua New Guinea
| | - Dan Ouchi
- Fight Infectious Diseases Foundation, Badalona, Spain; Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | | | | - Larry J. Dumont
- Vitalant Research Institute, Denver, CO; University of Colorado School of Medicine, Aurora, CO
| | | | - Romina Libster
- Fundación INFANT, Buenos Aires, Argentina,Vanderbilt University, Nashville, TN, USA
| | | | | | | | - Fernando Polack
- Fundación INFANT, Buenos Aires, Argentina,Vanderbilt University, Nashville, TN, USA
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Kiss-Dala N, Szabo BG, Lakatos B, Reti M, Szlavik J, Valyi-Nagy I. Use of convalescent plasma therapy in hospitalised adult patients with non-critical COVID-19: a focus on the elderly from Hungary. GeroScience 2022; 44:2427-2445. [PMID: 36367599 PMCID: PMC9650173 DOI: 10.1007/s11357-022-00683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Convalescent plasma therapy might be a feasible option for treatment of novel infections. During the early phases of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, several promising results were published with convalescent plasma therapy, followed by more disappointing findings of randomised controlled trials. In our single-centre, open-label, prospective, cohort study, we assessed the findings of 180 patients treated with convalescent plasma during the first four waves of the pandemic in Hungary. The primary outcome was all-cause mortality; secondary outcomes were clinical improvement and need for intensive care unit admission by day 28. Subgroup analysis comparing elderly and non-elderly (less than 65 years of age) was performed. Twenty (11.4%) patients died by day 28, at significantly higher rates in the elderly subgroup (3 vs. 17, p < 0.01). One hundred twenty-eight (72.7%) patients showed clinical improvement, and 15 (8.5%) were transferred to the intensive care unit until day 28. Non-elderly patients showed clinical improvement by day 28 in significantly higher rates (improvement 74 vs. 54, no improvement 15 vs. 11, worsening or death 4 vs. 18 patients, p < 0.01). In conclusion, we found similar clinical outcome results as randomised controlled trials, and the impact of risk factors for unfavourable clinical outcomes among patients in the elderly population.
Collapse
Affiliation(s)
- Noemi Kiss-Dala
- School of PhD Studies, Semmelweis University, H-1085 Ulloi Ut 26, Budapest, Hungary.
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary.
| | - Balint Gergely Szabo
- School of PhD Studies, Semmelweis University, H-1085 Ulloi Ut 26, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Botond Lakatos
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Marienn Reti
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Janos Szlavik
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Istvan Valyi-Nagy
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| |
Collapse
|
23
|
Focosi D, Franchini M. Home and Out-of-Hospital Therapy with COVID-19 Convalescent Plasma in Europe. Life (Basel) 2022; 12:1704. [PMID: 36362859 PMCID: PMC9692823 DOI: 10.3390/life12111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2023] Open
Abstract
COVID19 convalescent plasma (CCP) has proven an effective treatment for outpatients, and CCP collected from vaccinated donors is among the few effective therapeutic options for immunocompromised patients. Despite this, most countries are still relying over in-hospital compassionate usages outside clinical trials. Given the need for early treatment, home transfusions are expecially needed. We review here the state of the art for out-of-hospital CCP transfusions and discuss solutions to potential burocratic hurdles.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| |
Collapse
|