1
|
Cheng F, Ma X, Lu X, Zhu Y, Abula R, Wu T, Bakri M, He F, Maiwulanjiang M. Antimicrobial properties of essential oil extracted from Schizonepeta annua against methicillin-resistant Staphylococcus aureus via membrane disruption. Microb Pathog 2024; 196:106975. [PMID: 39313133 DOI: 10.1016/j.micpath.2024.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Schizonepeta annua (Pall.) Schischk. has long been traditionally employed in China for its anti-inflammatory, antimicrobial, and soothing properties. This study evaluates the antibacterial properties of essential oil extracted from Schizonepeta annua (SEO) and oregano (OEO) against methicillin-resistant Staphylococcus aureus (MRSA). SEO and OEO demonstrated substantial antibacterial efficacy, with SEO exhibiting significantly enhanced antibacterial activity due to its complex composition. Mechanistic investigations revealed that both essential oils disrupt bacterial membrane integrity and biosynthetic pathways, leading to the extrusion of intracellular contents. Metabolomic analyses using GC-Q-TOF-MS highlighted SEO's selective targeting of bacterial membranes, while non-targeted metabolomics indicated significant effects on MRSA's amino acid metabolism and aminoacyl-tRNA biosynthesis. These findings suggest that SEO causes considerable damage to MRSA cell membranes and affects amino acid metabolism, supporting its traditional use and highlighting its potential in treating infections. Our results offer robust theoretical support for SEO's role as an antimicrobial agent and establish a solid foundation for its practical application in combating multidrug-resistant infections.
Collapse
Affiliation(s)
- Feng Cheng
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China; College of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xueping Ma
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China; College of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiuxiang Lu
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China; College of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yueyue Zhu
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China; College of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Reyanggu Abula
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China; College of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tao Wu
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Mahinur Bakri
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Fei He
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Maitinuer Maiwulanjiang
- Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China.
| |
Collapse
|
2
|
Zhao Y, Zhang T, Liang Y, Xie X, Pan H, Cao M, Wang S, Wu D, Wang J, Wang C, Hu W. Combination of aloe emodin, emodin, and rhein from Aloe with EDTA sensitizes the resistant Acinetobacter baumannii to polymyxins. Front Cell Infect Microbiol 2024; 14:1467607. [PMID: 39346899 PMCID: PMC11428196 DOI: 10.3389/fcimb.2024.1467607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background The continuous emergence and spread of polymyxin-resistant Acinetobacter baumannii pose a significant global health challenge, necessitating the development of novel therapeutic strategies. Aloe, with its long-standing history of medicinal use, has recently been the subject of substantial research for its efficacy against pathogenic infections. Methods This study investigates the potential application of anthraquinone components in aloe against polymyxin-resistant A. baumannii by liquid chromatography-mass spectrometry, in vitro activity assessment, and construction of animal infection models. Results The findings demonstrate that aloe emodin, emodin, rhein, and their mixtures in equal mass ratios (EAR) exhibit strain-specific antibacterial activities against polymyxin-resistant A. baumannii. Co-administration of EAR with EDTA synergistically and universally enhanced the antibacterial activity and bactericidal efficacy of polymyxins against polymyxin-resistant A. baumannii, while also reducing the frequency of polymyxin-resistant mutations in polymyxinssensitive A. baumannii. Following toxicity assessment on human hepatic and renal cell lines, the combination therapy was applied to skin wounds in mice infected with polymyxin-resistant A. baumannii. Compared to monotherapy, the combination therapy significantly accelerated wound healing and reduced bacterial burden. Conclusions The combination of EAR and EDTA with polymyxins offers a novel therapeutic approach for managing skin infections caused by polymyxinresistant A. baumannii.
Collapse
Affiliation(s)
- Yue Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinping Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiaoqing Xie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Cao
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Shuhua Wang
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Koçer İ, Eri̇nmez M, Zer Y. Genetic Evaluation of Heteroresistance among Carbapenem-Susceptible Clinical Isolates of Enterobacterales. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:5014876. [PMID: 39224189 PMCID: PMC11368546 DOI: 10.1155/2024/5014876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Carbapenems currently serve as the last line of defense when treating serious infections caused by multidrug-resistant Enterobacterales species; however, heteroresistance of these species is thought to cause failure in the treatment with these broad-spectrum antibiotics. This study was designed to determine the prevalence of carbapenem heteroresistance and associated genotypic modifications among phenotypically meropenem-susceptible Escherichia coli and Klebsiella pneumoniae isolates. A total of 204 isolates of E. coli (n: 118) and K. pneumoniae (n: 86) from various clinical samples were included in this prospective experimental study. Identification and antimicrobial susceptibility testing of the isolates were performed by VITEK® (bioMérieux, France). Strains that were found susceptible to carbapenem group antibiotics (meropenem, imipenem, and ertapenem) with automated system were further investigated by disk diffusion method. The isolates with discrete colony growth within the clear inhibition zone among phenotypically meropenem-susceptible strains were tested for heteroresistance with the "gold standard" population analysis profile-area under the curve (PAP-AUC) method. In addition, heteroresistant isolates were analyzed for the presence of carbapenemase genes with in-house PCR method. The heteroresistance prevalence rate was 3.5% for E. coli and 18.1% for K. pneumoniae. The presence of heteroresistance in a total of 10 meropenem-susceptible isolates (E. coli, n: 4; K. pneumoniae, n: 6) was confirmed by the PAP-AUC method. The most frequently detected carbapenemase in heteroresistant isolates was OXA-48 (6/10), followed by NDM-1 (2/10). Meropenem is frequently preferred as initial empirical monotherapy in most of Gram-negative infections in adult and pediatric patients. The presence of heteroresistance against meropenem is too important to ignore, and for this reason, it seems beneficial to prefer combined treatment regimens in clinical practice.
Collapse
Affiliation(s)
- İpek Koçer
- Department of Medical MicrobiologySANKO University School of Medicine, Gaziantep 27090, Türkiye
| | - Mehmet Eri̇nmez
- Department of Medical MicrobiologyGaziantep University School of Medicine, Gaziantep 27310, Türkiye
| | - Yasemin Zer
- Department of Medical MicrobiologyGaziantep University School of Medicine, Gaziantep 27310, Türkiye
| |
Collapse
|
4
|
Wang X, Meng T, Dai Y, Ou HY, Wang M, Tang B, Sun J, Cheng D, Pan T, Tan R, Qu H. High prevalence of polymyxin-heteroresistant carbapenem-resistant Klebsiella pneumoniae and its within-host evolution to resistance among critically ill scenarios. Infection 2024:10.1007/s15010-024-02365-z. [PMID: 39143437 DOI: 10.1007/s15010-024-02365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE We aimed to explore the prevalence and within-host evolution of resistance in polymyxin-heteroresistant carbapenem-resistant Klebsiella pneumoniae (PHR-CRKP) in critically ill patients. METHODS We performed an epidemiological analysis of consecutive patients with PHR-CRKP from clinical cases. Our study investigated the within-host resistance evolution and its clinical significance during polymyxin exposure. Furthermore, we explored the mechanisms underlying the dynamic evolution of polymyxin resistance at both subpopulation and genetic levels, involved population analysis profile test, time-killing assays, competition experiments, and sanger sequencing. Additionally, comparative genomic analysis was performed on 713 carbapenemase-producing K. pneumoniae strains. RESULTS We enrolled 109 consecutive patients, and PHR-CRKP was found in 69.7% of patients without previous polymyxin exposure. 38.1% of PHR-CRKP isolates exhibited polymyxin resistance and led to therapeutic failure in critically ill scenarios. An increased frequency of resistant subpopulations was detected during PHR-CRKP evolution, with rapid regrowth of resistant subpopulations under high polymyxin concentrations, and a fitness cost in an antibiotic-free environment. Mechanistic analysis revealed that diverse mgrB insertions and pmrB hypermutations contributed to the dynamic changes in polymyxin susceptibility in dominant resistant subpopulations during PHR evolution, which were validated by comparative genomic analysis. Several deleterious mutations (e.g. pmrBLeu82Arg, pmrBSer85Arg) were firstly detected during PHR-CRKP evolution. Indeed, specific sequence types of K. pneumoniae demonstrated unique deletions and deleterious mutations. CONCLUSIONS Our study emphasizes the high prevalence of pre-existing heteroresistance in CRKP, which can lead to polymyxin resistance and fatal outcomes. Hence, it is essential to continuously monitor and observe the treatment response to polymyxins in appropriate critically ill scenarios.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China
| | - Tianjiao Meng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China
| | - Yunqi Dai
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Meng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Bin Tang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China
| | - Jingyong Sun
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Decui Cheng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China.
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China.
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Kounatidis D, Dalamaga M, Grivakou E, Karampela I, Koufopoulos P, Dalopoulos V, Adamidis N, Mylona E, Kaziani A, Vallianou NG. Third-Generation Tetracyclines: Current Knowledge and Therapeutic Potential. Biomolecules 2024; 14:783. [PMID: 39062497 PMCID: PMC11275049 DOI: 10.3390/biom14070783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Tetracyclines constitute a unique class of antibiotic agents, widely prescribed for both community and hospital infections due to their broad spectrum of activity. Acting by disrupting protein synthesis through tight binding to the 30S ribosomal subunit, their interference is typically reversible, rendering them bacteriostatic in action. Resistance to tetracyclines has primarily been associated with changes in pump efflux or ribosomal protection mechanisms. To address this challenge, tetracycline molecules have been chemically modified, resulting in the development of third-generation tetracyclines. These novel tetracyclines offer significant advantages in treating infections, whether used alone or in combination therapies, especially in hospital settings. Beyond their conventional antimicrobial properties, research has highlighted their potential non-antibiotic properties, including their impact on immunomodulation and malignancy. This review will focus on third-generation tetracyclines, namely tigecycline, eravacycline, and omadacycline. We will delve into their mechanisms of action and resistance, while also evaluating their pros and cons over time. Additionally, we will explore their therapeutic potential, analyzing their primary indications of prescription, potential future uses, and non-antibiotic features. This review aims to provide valuable insights into the clinical applications of third-generation tetracyclines, thereby enhancing understanding and guiding optimal clinical use.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Eugenia Grivakou
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (E.G.); (E.M.); (A.K.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Petros Koufopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (P.K.); (V.D.); (N.A.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (P.K.); (V.D.); (N.A.)
| | - Nikolaos Adamidis
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (P.K.); (V.D.); (N.A.)
| | - Eleni Mylona
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (E.G.); (E.M.); (A.K.)
| | - Aikaterini Kaziani
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (E.G.); (E.M.); (A.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (P.K.); (V.D.); (N.A.)
| |
Collapse
|
6
|
Zhao X, Zhong X, Yang S, Deng J, Deng K, Huang Z, Li Y, Yin Z, Liu Y, Viel JH, Wan H. Guiding antibiotics towards their target using bacteriophage proteins. Nat Commun 2024; 15:5287. [PMID: 38902231 PMCID: PMC11190222 DOI: 10.1038/s41467-024-49603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Novel therapeutic strategies against difficult-to-treat bacterial infections are desperately needed, and the faster and cheaper way to get them might be by repurposing existing antibiotics. Nanodelivery systems enhance the efficacy of antibiotics by guiding them to their targets, increasing the local concentration at the site of infection. While recently described nanodelivery systems are promising, they are generally not easy to adapt to different targets, and lack biocompatibility or specificity. Here, nanodelivery systems are created that source their targeting proteins from bacteriophages. Bacteriophage receptor-binding proteins and cell-wall binding domains are conjugated to nanoparticles, for the targeted delivery of rifampicin, imipenem, and ampicillin against bacterial pathogens. They show excellent specificity against their targets, and accumulate at the site of infection to deliver their antibiotic payload. Moreover, the nanodelivery systems suppress pathogen infections more effectively than 16 to 32-fold higher doses of free antibiotics. This study demonstrates that bacteriophage sourced targeting proteins are promising candidates to guide nanodelivery systems. Their specificity, availability, and biocompatibility make them great options to guide the antibiotic nanodelivery systems that are desperately needed to combat difficult-to-treat infections.
Collapse
Affiliation(s)
- Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinyi Zhong
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shinong Yang
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiarong Deng
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Deng
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengqun Huang
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongqiong Yin
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.
| | - Jakob H Viel
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, Netherlands
| | - Hongping Wan
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Beltrán-Martínez ME, Tapia-Rodríguez MR, Ayala-Zavala JF, Gómez-Álvarez A, Robles-Zepeda RE, Torres-Moreno H, de Rodríguez DJ, López-Romero JC. Antimicrobial and Antibiofilm Potential of Flourensia retinophylla against Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1671. [PMID: 38931103 PMCID: PMC11207523 DOI: 10.3390/plants13121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Staphylococcus aureus is a Gram-positive bacteria with the greatest impact in the clinical area, due to the high rate of infections and deaths reaching every year. A previous scenario is associated with the bacteria's ability to develop resistance against conventional antibiotic therapies as well as biofilm formation. The above situation exhibits the necessity to reach new effective strategies against this pathogen. Flourensia retinophylla is a medicinal plant commonly used for bacterial infections treatments and has demonstrated antimicrobial effect, although its effect against S. aureus and bacterial biofilms has not been investigated. The purpose of this work was to analyze the antimicrobial and antibiofilm potential of F. retinophylla against S. aureus. The antimicrobial effect was determined using an ethanolic extract of F. retinophylla. The surface charge of the bacterial membrane, the K+ leakage and the effect on motility were determined. The ability to prevent and remove bacterial biofilms was analyzed in terms of bacterial biomass, metabolic activity and viability. The results showed that F. retinophylla presents inhibitory (MIC: 250 µg/mL) and bactericidal (MBC: 500 µg/mL) activity against S. aureus. The MIC extract increased the bacterial surface charge by 1.4 times and the K+ concentration in the extracellular medium by 60%. The MIC extract inhibited the motility process by 100%, 61% and 40% after 24, 48 and 72 h, respectively. The MIC extract prevented the formation of biofilms by more than 80% in terms of biomass production and metabolic activity. An extract at 10 × MIC reduced the metabolic activity by 82% and the viability by ≈50% in preformed biofilms. The results suggest that F. retinophylla affects S. areus membrane and the process of biofilm formation and removal. This effect could set a precedent to use this plant as alternative for antimicrobial and disinfectant therapies to control infections caused by this pathogen. In addition, this shrub could be considered for carrying out a purification process in order to identify the compounds responsible for the antimicrobial and antibiofilm effect.
Collapse
Affiliation(s)
- Minerva Edith Beltrán-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Mexico; (M.E.B.-M.); (J.F.A.-Z.)
| | - Melvin Roberto Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón 85000, Mexico;
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Mexico; (M.E.B.-M.); (J.F.A.-Z.)
| | - Agustín Gómez-Álvarez
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | | | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| | | | - Julio César López-Romero
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| |
Collapse
|
8
|
Lin JY, Zhu ZC, Zhu J, Chen L, Du H. Antibiotic heteroresistance in Klebsiella pneumoniae: Definition, detection methods, mechanisms, and combination therapy. Microbiol Res 2024; 283:127701. [PMID: 38518451 DOI: 10.1016/j.micres.2024.127701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Klebsiella pneumoniae is a common opportunistic pathogen that presents significant challenges in the treatment of infections due to its resistance to multiple antibiotics. In recent years, K. pneumoniae has been reported for the development of heteroresistance, a phenomenon where subpopulations of the susceptible bacteria exhibit resistance. This heteroresistance has been associated with increased morbidity and mortality rates. Complicating matters further, its definition and detection pose challenges, often leading to its oversight or misdiagnosis. Various mechanisms contribute to the development of heteroresistance in K. pneumoniae, and these mechanisms differ among different antibiotics. Even for the same antibiotic, multiple mechanisms may be involved. However, our current understanding of these mechanisms remains incomplete, and further research is needed to gain a more comprehensive understanding of heteroresistance. While the clinical recommendation is to use combination antibiotic therapy to mitigate heteroresistance, this approach also comes with several drawbacks and potential adverse effects. In this review, we discuss the definition, detection methods, molecular mechanisms, and treatment of heterogenic resistance, aiming to pave the way for more effective treatment and management in the future. However, addressing the problem of heteroresistance in K. pneumoniae represents a long and complex journey that necessitates comprehensive research efforts.
Collapse
Affiliation(s)
- Jia Yao Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhi Chen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
9
|
Desmoulin A, Sababadichetty L, Kamus L, Daniel M, Feletti L, Allou N, Potron A, Leroy AG, Jaffar-Bandjee MC, Belmonte O, Garrigos T, Miltgen G. Adaptive resistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii (CRAB): Microbiological and clinical issues. Heliyon 2024; 10:e30365. [PMID: 38720704 PMCID: PMC11076957 DOI: 10.1016/j.heliyon.2024.e30365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Objectives Determining the best available therapy for carbapenem-resistant Acinetobacter baumannii (CRAB) infections is a challenge. Cefiderocol is an attractive alternative drug effective against many resistance mechanisms in Gram-negative bacteria. However, its place in the treatment of Acinetobacter baumannii infections remains unclear and much debated, with contradictory results. Methods We describe here the case of a 37-year-old man with ventilator-associated bacteraemic CRAB pneumonia in an intensive care unit. He was initially treated with a combination of colistin and tigecycline, and was then switched onto colistin and cefiderocol. We then used a new accessible protocol to test 30 CRAB isolates (OXA-23/OXA-24/OXA-58/NDM-1) for adaptive resistance to cefiderocol (ARC) after exposure to this drug. Results After clinical failure with the initial combination, we noted a significant clinical improvement in the patient on the second combination, leading to clinical cure. No ARC was detected in the two OXA-23 case-CRAB isolates. All NDM-1 CRAB isolates were resistant to cefiderocol in standard tests; the OXA-23, OXA-24 and OXA-58 CRAB isolates presented 84.2 %, 50 % and 0 % ARC, respectively. Conclusions ARC is not routinely assessed for CRAB isolates despite frequently being reported in susceptible isolates (69.2 %). Subpopulations displaying ARC may account for treatment failure, but this hypothesis should be treated with caution in the absence of robust clinical data. The two main findings of this work are that (i) cefiderocol monotherapy should probably not be recommended for OXA-23/24 CRAB infections and (ii) the characterisation of carbapenemases in CRAB strains may be informative for clinical decision-making.
Collapse
Affiliation(s)
- Anissa Desmoulin
- Laboratoire de Bactériologie, CHU Félix Guyon, Saint-Denis, La Réunion, France
| | - Loïk Sababadichetty
- UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - Laure Kamus
- Laboratoire de Bactériologie, CHU Félix Guyon, Saint-Denis, La Réunion, France
- UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - Marion Daniel
- UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - Lucie Feletti
- Laboratoire de Bactériologie, CHU Félix Guyon, Saint-Denis, La Réunion, France
| | - Nicolas Allou
- Service de Réanimation Polyvalente, CHU Félix Guyon, Saint-Denis, La Réunion, France
| | - Anaïs Potron
- Centre National de La Résistance Aux Antibiotiques, Laboratoire Associé Pseudomonas et Acinetobacter, CHU Jean Minjoz, Besançon, France
| | - Anne-Gaëlle Leroy
- Laboratoire de Bactériologie, Groupe Hospitalier Sud Réunion, Saint-Pierre, La Réunion, France
| | | | - Olivier Belmonte
- Laboratoire de Bactériologie, CHU Félix Guyon, Saint-Denis, La Réunion, France
| | - Thomas Garrigos
- Laboratoire de Bactériologie, CHU Félix Guyon, Saint-Denis, La Réunion, France
- UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
- Centre Régional en Antibiothérapie de La Réunion, Saint-Denis, La Réunion, France
| | - Guillaume Miltgen
- Laboratoire de Bactériologie, CHU Félix Guyon, Saint-Denis, La Réunion, France
- UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
- Centre Régional en Antibiothérapie de La Réunion, Saint-Denis, La Réunion, France
| |
Collapse
|
10
|
Sun L, Zhuang H, Chen M, Chen Y, Chen Y, Shi K, Yu Y. Vancomycin heteroresistance caused by unstable tandem amplifications of the vanM gene cluster on linear conjugative plasmids in a clinical Enterococcus faecium. Antimicrob Agents Chemother 2024; 68:e0115923. [PMID: 38506549 PMCID: PMC11064493 DOI: 10.1128/aac.01159-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/20/2024] [Indexed: 03/21/2024] Open
Abstract
Vancomycin heteroresistance is prone to missed detection and poses a risk of clinical treatment failure. We encountered one clinical Enterococcus faecium strain, SRR12, that carried a complete vanM gene cluster but was determined as susceptible to vancomycin using the broth microdilution method. However, distinct subcolonies appeared within the clear zone of inhibition in the E-test assay, one of which, named SRR12-v1, showed high-level resistance to vancomycin. SRR12 was confirmed as heteroresistant to vancomycin using population analysis profiling and displayed "revive" growth curves with a lengthy lag phase of over 13 hours when exposed to 2-32 mg/L vancomycin. The resistant subcolony SRR12-v1 was found to carry an identical vanM gene cluster to that of SRR12 but a significantly increased vanM copy number in the genome. Long-read whole genome sequencing revealed that a one-copy vanM gene cluster was located on a pELF1-like linear plasmid in SRR12. In comparison, tandem amplification of the vanM gene cluster jointed with IS1216E was seated on a linear plasmid in the genome of SRR12-v1. These amplifications of the vanM gene cluster were demonstrated as unstable and would decrease accompanied by fitness reversion after serial passaging for 50 generations under increasing vancomycin pressure or without antibiotic pressure but were relatively stable under constant vancomycin pressure. Further, vanM resistance in resistant variants was verified to be carried by conjugative plasmids with variable sizes using conjugation assays and S1-pulsed field gel electrophoresis blotting, suggesting the instability/flexibility of vanM cluster amplification in the genome and an increased risk of vanM resistance dissemination.
Collapse
Affiliation(s)
- Lingyan Sun
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Hemu Zhuang
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Gautier C, Maciel EI, Ene IV. Approaches for identifying and measuring heteroresistance in azole-susceptible Candida isolates. Microbiol Spectr 2024; 12:e0404123. [PMID: 38483474 PMCID: PMC10986555 DOI: 10.1128/spectrum.04041-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Heteroresistance to antifungal agents poses a significant challenge in the treatment of fungal infections. Currently, the absence of established methods for detecting and measuring heteroresistance impedes progress in understanding this phenomenon in fungal pathogens. In response to this gap, we present a comprehensive set of new and optimized methods designed to detect and quantify azole heteroresistance in Candida albicans. Here, we define two primary assays for measuring heteroresistance: population analysis profiling, based on growth on solid medium, and single-cell assays, based on growth in liquid culture. We observe good correlations between the measurements obtained with liquid and solid assays, validating their utility for studying azole heteroresistance. We also highlight that disk diffusion assays could serve as an additional tool for the rapid detection of heteroresistance. These methods collectively provide a versatile toolkit for researchers seeking to assess heteroresistance in C. albicans. They also serve as a critical step forward in the characterization of antifungal heteroresistance, providing a framework for investigating this phenomenon in diverse fungal species and in the context of other antifungal agents. Ultimately, these advancements will enhance our ability to effectively measure antifungal drug responses and combat fungal infections.IMPORTANCEHeteroresistance involves varying antimicrobial susceptibility within a clonal population. This phenomenon allows the survival of rare resistant subpopulations during drug treatment, significantly complicating the effective management of infections. However, the absence of established detection methods hampers progress in understanding this phenomenon in human fungal pathogens. We propose a comprehensive toolkit to address this gap in the yeast Candida albicans, encompassing population analysis profiling, single-cell assays, and disk diffusion assays. By providing robust and correlated measurements through both solid and liquid assays, this work will provide a framework for broader applications across clinically relevant Candida species. These methods will enhance our ability to understand this phenomenon and the failure of antifungal therapy.
Collapse
Affiliation(s)
- Cécile Gautier
- Fungal Heterogeneity Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Eli I. Maciel
- Fungal Heterogeneity Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Iuliana V. Ene
- Fungal Heterogeneity Group, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
12
|
Luo Q, Xu L, Wang Y, Fu H, Xiao T, Yu W, Zhou W, Zhang K, Shen J, Ji J, Ying C, Xiao Y. Clinical relevance, mechanisms, and evolution of polymyxin B heteroresistance carbapenem-resistant Klebsiella pneumoniae: A genomic, retrospective cohort study. Clin Microbiol Infect 2024; 30:507-514. [PMID: 38295990 DOI: 10.1016/j.cmi.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVES To study the clinical relevance, mechanisms, and evolution of polymyxin B (POLB) heteroresistance (PHR) in carbapenem-resistant Klebsiella pneumoniae (CRKP), potentially leading to a significant rise in POLB full resistant (FR) CRKP. METHODS Total of 544 CRKP isolates from 154 patients treated with POLB were categorized into PHR and POLB non-heteroresistance (NHR) groups. We performed statistical analysis to compare clinical implications and treatment responses. We employed whole-genome sequencing, bioinformatics, and PCR to study the molecular epidemiology, mechanisms behind PHR, and its evolution into FR. RESULTS We observed a considerable proportion (118 of 154, 76.62%) of clinically undetected PHR strains before POLB exposure, with a significant subset of them (33 of 118, 27.97%) evolving into FR after POLB treatment. We investigated the clinical implications, epidemiological characteristics, mechanisms, and evolutionary patterns of PHR strains in the context of POLB treatment. About 92.86% (39 of 42) of patients had PHR isolates before FR, highlighting the clinical importance of PHR. the ST15 exhibited a notably lower PHR rate (1 of 8, 12.5% vs. 117 of 144, 81.25%; p < 0.01). The ST11 PHR strains showing significantly higher rate of mgrB mutations by endogenous insertion sequences in their resistant subpopulation (RS) compared with other STs (78 of 106, 73.58% vs. 4 of 12, 33.33%; p < 0.01). The mgrB insertional inactivation rate was lower in FR isolates than in the RS of PHR isolates (15 of 42, 35.71% vs. 84 of 112, 75%; p < 0.01), whereas the pmrAB mutation rate was higher in FR isolates than in the RS of PHR isolates (8 of 42, 19.05% vs. 2 of 112, 1.79%; p < 0.01). The evolution from PHR to FR was influenced by subpopulation dynamics and genetic adaptability because of hypermutability. DISCUSSION We highlight significant genetic changes as the primary driver of PHR to FR in CRKP, underscoring polymyxin complexity.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linna Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Central Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingting Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangxiao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kanghui Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaying Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
| |
Collapse
|
13
|
Lin CK, Page A, Lohsen S, Haider AA, Waggoner J, Smith G, Babiker A, Jacob JT, Howard-Anderson J, Satola SW. Rates of resistance and heteroresistance to newer β-lactam/β-lactamase inhibitors for carbapenem-resistant Enterobacterales. JAC Antimicrob Resist 2024; 6:dlae048. [PMID: 38515868 PMCID: PMC10957161 DOI: 10.1093/jacamr/dlae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Background Heteroresistance (HR), the presence of antibiotic-resistant subpopulations within a primary isogenic population, may be a potentially overlooked contributor to newer β-lactam/β-lactamase inhibitor (BL/BLI) treatment failure in carbapenem-resistant Enterobacterales (CRE) infections. Objectives To determine rates of susceptibility and HR to BL/BLIs ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam in clinical CRE isolates. Methods The first CRE isolate per patient per year from two >500 bed academic hospitals from 1 January 2016 to 31 December 2021, were included. Reference broth microdilution (BMD) was used to determine antibiotic susceptibility, and population analysis profiling (PAP) to determine HR. Carbapenemase production (CP) was determined using the Carba NP assay. Results Among 327 CRE isolates, 46% were Enterobacter cloacae, 38% Klebsiella pneumoniae and 16% Escherichia coli. By BMD, 87% to 98% of CRE were susceptible to the three antibiotics tested. From 2016 to 2021, there were incremental decreases in the rates of susceptibility to each of the three BL/BLIs. HR was detected in each species-antibiotic combination, with the highest rates of HR (26%) found in K. pneumoniae isolates with imipenem/relebactam. HR or resistance to at least one BL/BLI by PAP was found in 24% of CRE isolates and 65% of these had detectable CP. Conclusion Twenty-four percent of CRE isolates tested were either resistant or heteroresistant (HR) to newer BL/BLIs, with an overall decrease of ∼10% susceptibility over 6 years. While newer BL/BLIs remain active against most CRE, these findings support the need for ongoing antibiotic stewardship and a better understanding of the clinical implications of HR in CRE.
Collapse
Affiliation(s)
- Christina K Lin
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alex Page
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Lohsen
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali A Haider
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jesse Waggoner
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Gillian Smith
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Georgia Emerging Infections Program, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ahmed Babiker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jesse T Jacob
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Georgia Emerging Infections Program, Atlanta, GA, USA
| | - Jessica Howard-Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Georgia Emerging Infections Program, Atlanta, GA, USA
| | - Sarah W Satola
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Georgia Emerging Infections Program, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Zhang Y, Liu D, Liu Y, Li Q, Liu H, Zhou P, Liu Y, Chen L, Yin W, Lu Y. Detection and characterization of eravacycline heteroresistance in clinical bacterial isolates. Front Microbiol 2024; 15:1332458. [PMID: 38601926 PMCID: PMC11004243 DOI: 10.3389/fmicb.2024.1332458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
Eravacycline (ERV) has emerged as a therapeutic option for the treatment of carbapenem-resistant pathogens. However, the advent of heteroresistance (HR) to ERV poses a challenge to these therapeutic strategies. This study aimed to investigate ERV HR prevalence among common clinical isolates and further characterize ERV HR in carbapenem-resistant Klebsiella pneumoniae (CRKP). A total of 280 clinical pathogens from two centers were selected for HR and analyzed using population analysis profiling (PAP) and modified E-tests. The PAP assay revealed an overall ERV HR prevalence of 0.7% (2/280), with intermediate heterogeneity observed in 24.3% (68/280) of strains. The proportion of heteroresistant strains was 18.3% according to modified E-test results. A time-killing assay demonstrated that CRKP CFU increased significantly after 10 h of ERV treatment, contributing to the reduced bactericidal effect of ERV in vitro. Interestingly, dual treatment with ERV and polymyxin B effectively inhibited the total CFU, simultaneously reducing the required polymyxin B concentration. Furthermore, fitness cost measurements revealed a growth trade-off in CRKP upon acquiring drug resistance, highlighting fitness costs as crucial factors in the emergence of ERV HR in CRKP. Overall, the findings of the current study suggest that ERV HR in clinical strains presents a potential obstacle in its clinical application.
Collapse
Affiliation(s)
- Yingfeng Zhang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Dongdong Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongzhu Liu
- Department of Gynecology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Qiwei Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongwei Liu
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Peng Zhou
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Yaqin Liu
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Lili Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiguo Yin
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Yang Lu
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| |
Collapse
|
15
|
Braspenning AJMM, Rajakani SG, Sey A, El Bounja M, Lammens C, Glupczynski Y, Malhotra-Kumar S. Assessment of Colistin Heteroresistance among Multidrug-Resistant Klebsiella pneumoniae Isolated from Intensive Care Patients in Europe. Antibiotics (Basel) 2024; 13:281. [PMID: 38534716 DOI: 10.3390/antibiotics13030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Heteroresistance (HR) to colistin is especially concerning in settings where multi-drug-resistant (MDR) K. pneumoniae are prevalent and empiric use of colistin might lead to treatment failures. This study aimed to assess the frequency of occurrence of colistin HR (CHR) among (MDR) K. pneumoniae (n = 676) isolated from patients hospitalized in 13 intensive care units (ICUs) in six European countries in a clinical trial assessing the impact of decolonization strategies. All isolates were whole-genome-sequenced and studied for in vitro colistin susceptibility. The majority were colistin-susceptible (CS) (n = 597, MIC ≤ 2 µg/mL), and 79 were fully colistin-resistant (CR) (MIC > 2 µg/mL). A total of 288 CS isolates were randomly selected for population analysis profiling (PAP) to assess CHR prevalence. CHR was detected in 108/288 CS K. pneumoniae. No significant association was found between the occurrence of CHR and country, MIC-value, K-antigen type, and O-antigen type. Overall, 92% (617/671) of the K. pneumoniae were MDR with high prevalence among CS (91%, 539/592) and CR (98.7%, 78/79) isolates. In contrast, the proportion of carbapenemase-producing K. pneumoniae (CP-Kpn) was higher among CR (72.2%, 57/79) than CS isolates (29.3%, 174/594). The proportions of MDR and CP-Kpn were similar among CHR (MDR: 85%, 91/107; CP-Kpn: 29.9%, 32/107) and selected CS isolates (MDR: 84.7%, 244/288; CP-Kpn: 28.1%, 80/285). WGS analysis of PAP isolates showed diverse insertion elements in mgrB or even among technical replicates underscoring the stochasticity of the CHR phenotype. CHR isolates showed high sequence type (ST) diversity (Simpson's diversity index, SDI: 0.97, in 52 of the 85 STs tested). CR (SDI: 0.85) isolates were highly associated with specific STs (ST101, ST147, ST258/ST512, p ≤ 0.003). The widespread nature of CHR among MDR K. pneumoniae in our study urge the development of rapid HR detection methods to inform on the need for combination regimens.
Collapse
Affiliation(s)
- Anouk J M M Braspenning
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, 2610 Antwerp, Belgium
| | - Sahaya Glingston Rajakani
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, 2610 Antwerp, Belgium
| | - Adwoa Sey
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, 2610 Antwerp, Belgium
| | - Mariem El Bounja
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, 2610 Antwerp, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, 2610 Antwerp, Belgium
| | - Youri Glupczynski
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, 2610 Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, 2610 Antwerp, Belgium
| |
Collapse
|
16
|
Kavaliauskas P, Grybaitė B, Sapijanskaitė-Banevič B, Vaickelionienė R, Petraitis V, Petraitienė R, Naing E, Garcia A, Grigalevičiūtė R, Mickevičius V. Synthesis of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Promising Scaffolds for the Development of Antimicrobial Candidates Targeting Multidrug-Resistant Bacterial and Fungal Pathogens. Antibiotics (Basel) 2024; 13:193. [PMID: 38391579 PMCID: PMC10886201 DOI: 10.3390/antibiotics13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Infections caused by multidrug-resistant bacterial and fungal pathogens represent a significant global health concern, contributing to increased morbidity and mortality rates. Therefore, it is crucial to develop novel compounds targeting drug-resistant microbial strains. Herein, we report the synthesis of amino acid derivatives bearing an incorporated 4-hydroxyphenyl moiety with various substitutions. The resultant novel 3-((4-hydroxyphenyl)amino)propanoic acid derivatives 2-37 exhibited structure-dependent antimicrobial activity against both ESKAPE group bacteria and drug-resistant Candida species. Furthermore, these derivatives demonstrated substantial activity against Candida auris, with minimum inhibitory concentrations ranging from 0.5 to 64 µg/mL. Hydrazones 14-16, containing heterocyclic substituents, showed the most potent and broad-spectrum antimicrobial activity. This activity extended to methicillin-resistant Staphylococcus aureus (MRSA) with MIC values ranging from 1 to 8 µg/mL, vancomycin-resistant Enterococcus faecalis (0.5-2 µg/mL), Gram-negative pathogens (MIC 8-64 µg/mL), and drug-resistant Candida species (MIC 8-64 µg/mL), including Candida auris. Collectively, these findings underscore the potential utility of the novel 3-((4-hydroxyphenyl)amino)propanoic acid scaffold for further development as a foundational platform for novel antimicrobial agents targeting emerging and drug-resistant bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| | | | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| | - Vidmantas Petraitis
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Rūta Petraitienė
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Ethan Naing
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Andrew Garcia
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
17
|
Shields RK. Progress and New Challenges in Combatting the Threat of Antimicrobial Resistance: Perspective From an Infectious Diseases Pharmacist. J Infect Dis 2024; 229:303-306. [PMID: 37487530 DOI: 10.1093/infdis/jiad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Longshaw C, Santerre Henriksen A, Dressel D, Malysa M, Silvestri C, Takemura M, Yamano Y, Baba T, Slover CM. Heteroresistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii in the CREDIBLE-CR study was not linked to clinical outcomes: a post hoc analysis. Microbiol Spectr 2023; 11:e0237123. [PMID: 37966262 PMCID: PMC10714777 DOI: 10.1128/spectrum.02371-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The population analysis profiling (PAP) test is considered the "gold standard" method to detect heteroresistance. It exposes bacteria to increasing concentrations of antibiotics at high cell densities to detect any minority resistant subpopulations that might be missed by the low inoculums used for reference susceptibility tests. However, its clinical relevance has not been well established. In the CREDIBLE-CR study, a numerically increased all-cause mortality was observed in the cefiderocol arm relative to the best available therapy arm for patients with Acinetobacter spp. infections. Heteroresistance has independently been proposed by another research group as a potential explanation of the mortality difference. An analysis of the baseline carbapenem-resistant Acinetobacter calcoaceticus-baumannii complex isolates from patients treated with cefiderocol in the CREDIBLE-CR study showed the highest clinical cure rate and the lowest mortality for patients with PAP-heteroresistant isolates compared with PAP-susceptible or PAP-resistant isolates. These findings contradict the abovementioned hypothesis that heteroresistance contributed to the increased mortality.
Collapse
Affiliation(s)
| | | | | | | | | | - Miki Takemura
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Yoshinori Yamano
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Takamichi Baba
- Biostatistics Center, Shionogi & Co., Ltd., Osaka, Japan
| | | |
Collapse
|
19
|
Tiseo G, Galfo V, Falcone M. What is the clinical significance of 'heteroresistance' in nonfermenting Gram-negative strains? Curr Opin Infect Dis 2023; 36:555-563. [PMID: 37729656 PMCID: PMC10624410 DOI: 10.1097/qco.0000000000000964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to discuss the potential clinical significance of heteroresistance in nonfermenting Gram-negative bacilli (GNB). RECENT FINDINGS Recently, heteroresistance has been considered potentially responsible for clinical failure in Acinetobacter baumannii infections. This raised a scientific debate, still open, about the potential clinical significance of heteroresistance in nonfermenting GNB. SUMMARY We reviewed the literature of last 20 years and found a limited number of studies evaluating the relationship between heteroresistance and clinical outcome in nonfermenting GNB. Unlike Gram-positive bacteria, heteroresistance is reported in a significant proportion of nonfermenting GNB with some studies describing it in all tested strains and for several antibiotics (including tigecycline, carbapenems, levofloxacin, cefiderocol, colistin). One important issue is the need for validated detection method since the population analysis profile test, that is considered the gold standard, requires high costs and time. Studies evaluating the correlation between heteroresistance and clinical outcome are contrasting and have several limitations. Although in-vitro detection of heteroresistance in nonfermenting GNB has not been associated with in-vivo treatment failure, its presence may suggest to prefer combination regimens instead monotherapy when treating infections by nonfermenters. Further studies are needed to clarify the clinical significance of heteroresistance.
Collapse
Affiliation(s)
- Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
20
|
da Rocha Santos LMB, de Paula Ramos L, Santos CER, Miranda DG, Gimenez MG, Meccatti VM, Abu Hasna A, Dos Santos Oliveira M, Neto MB, Dias de Oliveira L. Saliva culture as a predictive indicator for current blood infections and antimicrobial resistance in the ICU setting. Sci Rep 2023; 13:20317. [PMID: 37985806 PMCID: PMC10662427 DOI: 10.1038/s41598-023-47143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Antimicrobial resistance is a worldwide health problem and patients in intensive care are more vulnerable, requiring strict control measures and early identification. Currently, clinical culture materials are used to identify the bacterial agent, but saliva culture is not validated, which has great clinical relevance because it participates in several pathophysiological processes. The aim of this study was to validate saliva culture in an intensive care unit environment, determining its diagnostic value for infection. For this purpose, the results of the 39-month surveillance cultures, from the database of a private hospital were evaluated. A total of 323 cultures were paired between saliva, tracheal secretions, blood and urine from patients who were hospitalized for more than 5 days. The search for correlations between the results was performed using the Spearman correlation test. Severity and evolution data were also correlated. It was possible to correlate the presence of Klebsiella spp. between blood culture and saliva culture in 25% of the results (r = 0.01) and the correlation between saliva and tracheal secretion was 33% (r = 0.33447) with p < 0.0001. In conclusion, saliva can be an excellent discriminator of systemic infections, and can be considered a useful culture in clinical practice.
Collapse
Affiliation(s)
- Leonardo Moura Brasil da Rocha Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
- Instituto Policlin de Ensino e Pesquisas-IPEP, Av. Nove de Julho, 430-Vila Ady'Anna, São José dos Campos, SP, 12243-001, Brazil
| | - Lucas de Paula Ramos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
- Laboratory "Systemic Health Care", EA4129, University of Lyon, Lyon, France
- UFR de Médicine, Université Lyon 1, Lyon, France
| | - Carlos Eduardo Rocha Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
- Instituto Policlin de Ensino e Pesquisas-IPEP, Av. Nove de Julho, 430-Vila Ady'Anna, São José dos Campos, SP, 12243-001, Brazil
| | - Diego Garcia Miranda
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
- UFR de Médicine, Université Lyon 1, Lyon, France
- Laboratoire des Multimatériaux et Interfaces CNRS (UMR 5615), Université Lyon 1, Villeurbanne, France
| | - Mariana Gadelho Gimenez
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University (ICT-UNESP), Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Vanessa Marques Meccatti
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Amjad Abu Hasna
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University (ICT-UNESP), Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil.
| | - Marcela Dos Santos Oliveira
- Anhembi Morumbi University, Benedito Matarazzo, 6070-Jardim Aquarius, São José dos Campos, SP, 12230-002, Brazil
| | - Morun Bernardino Neto
- Departamento de Ciências Básicas e Ambientais-LOB, Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal do Campinho, s/no, Lorena, SP, 12602-810, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| |
Collapse
|
21
|
Artini M, Papa R, Vrenna G, Trecca M, Paris I, D’Angelo C, Tutino ML, Parrilli E, Selan L. Antarctic Marine Bacteria as a Source of Anti-Biofilm Molecules to Combat ESKAPE Pathogens. Antibiotics (Basel) 2023; 12:1556. [PMID: 37887257 PMCID: PMC10604463 DOI: 10.3390/antibiotics12101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
The ESKAPE pathogens, including bacteria such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, pose a global health threat due to their ability to resist antimicrobial drugs and evade the immune system. These pathogens are responsible for hospital-acquired infections, especially in intensive care units, and contribute to the growing problem of multi-drug resistance. In this study, researchers focused on exploring the potential of Antarctic marine bacteria as a source of anti-biofilm molecules to combat ESKAPE pathogens. Four Antarctic bacterial strains were selected, and their cell-free supernatants were tested against 60 clinical ESKAPE isolates. The results showed that the supernatants did not exhibit antimicrobial activity but effectively prevented biofilm formation and dispersed mature biofilms. This research highlights the promising potential of Antarctic bacteria in producing compounds that can counteract biofilms formed by clinically significant bacterial species. These findings contribute to the development of new strategies for preventing and controlling infections caused by ESKAPE pathogens.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Marika Trecca
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Irene Paris
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Caterina D’Angelo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| |
Collapse
|
22
|
Monogue ML, Sanders JM, Pybus CA, Kim J, Zhan X, Clark AE, Greenberg DE. Ceftolozane/tazobactam heteroresistance in cystic fibrosis-related Pseudomonas aeruginosa infections. JAC Antimicrob Resist 2023; 5:dlad083. [PMID: 37441352 PMCID: PMC10333726 DOI: 10.1093/jacamr/dlad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Objectives Cystic fibrosis (CF) patients are often colonized with Pseudomonas aeruginosa. During treatment, P. aeruginosa can develop subpopulations exhibiting variable in vitro antimicrobial (ABX) susceptibility patterns. Heteroresistance (HR) may underlie reported discrepancies between in vitro susceptibility results and clinical responses to various ABXs. Here, we sought to examine the presence and nature of P. aeruginosa polyclonal HR (PHR) and monoclonal HR (MHR) to ceftolozane/tazobactam in isolates originating from CF pulmonary exacerbations. Methods This was a single-centre, non-controlled study. Two hundred and forty-six P. aeruginosa isolates from 26 adult CF patients were included. PHR was defined as the presence of different ceftolozane/tazobactam minimum inhibitory concentration (MIC) values among P. aeruginosa isolates originating from a single patient specimen. Population analysis profiles (PAPs) were performed to assess the presence of MHR, defined as ≥4-fold change in the ceftolozane/tazobactam MIC from a single P. aeruginosa colony. Results Sixteen of 26 patient specimens (62%) contained PHR P. aeruginosa populations. Of these 16 patients, 6 (23%) had specimens in which PHR P. aeruginosa isolates exhibited ceftolozane/tazobactam MICs with categorical differences (i.e. susceptible versus resistant) compared to results reported as part of routine care. One isolate, PSA 1311, demonstrated MHR. Canonical ceftolozane/tazobactam resistance genes were not found in the MHR isolates (MHR PSA 1311 or PHR PSA 6130). Conclusions Ceftolozane/tazobactam PHR exists among P. aeruginosa isolates in this work, and approximately a quarter of these populations contained isolates with ceftolozane/tazobactam susceptibiilty interpretations different from what was reported clinically, supporting concerns surrounding the utility of traditional susceptibility testing methodology in the setting of CF specimens. Genome sequencing of isolates with acquired MHR to ceftolozane/tazobactam revealed variants of unknown significance. Future work will be centred on determining the significance of these mutations to better understand these data in clinical context.
Collapse
Affiliation(s)
| | - James M Sanders
- Department of Pharmacy, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christine A Pybus
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaowei Zhan
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew E Clark
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David E Greenberg
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Yuan F, Xiao W, Wang X, Fu Y, Wei X. Clinical Characteristics and Prognosis of Bloodstream Infection with Carbapenem-Resistant Pseudomonas aeruginosa in Patients with Hematologic Malignancies. Infect Drug Resist 2023; 16:4943-4952. [PMID: 37546370 PMCID: PMC10402715 DOI: 10.2147/idr.s419064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Objective To analyze the clinical characteristics and prognostic risk factors of carbapenem-resistant Pseudomonas aeruginosa (CRPA) bloodstream infections in patients with hematologic malignancies. Methods Medical records and drug susceptibility data of patients with hematologic malignancies complicated by CRPA bloodstream infections admitted to the Cancer Hospital of Zhengzhou University between January 1, 2018, and December 31, 2022, were retrospectively analyzed. Results A total of 64 patients were included in the study, with a mortality rate of 37.5% (24/64) at 28 days after the occurrence of CRPA bloodstream infection. In Cox regression analysis, an absolute neutrophil count <0.5×109/L at discharge (HR 0.039, 95% CI 0.006 ~ 0.258, p=0.001), admission to the intensive care unit (HR 7.546, 95% CI 1.345 ~ 42.338, p= 0.022), and a higher Pitt bacteremia score (HR 0.207, 95% CI 0.046 ~ 0.939, p = 0.041) were independent risk factors associated with 28-day mortality. Survival analysis showed that patients receiving ceftazidime-avibactam-based (HR 0.368, 95% CI 0.107~ 1.268, p = 0.023) or polymyxin B (HR 2.561, 95% CI 0.721 ~ 9.101, p = 0.015) therapy had a higher survival rate. Conclusion Patients with hematologic neoplasms had high mortality from CRPA bloodstream infections, and admission to the intensive care unit, higher Pitt bacteremia score (PBS) scores, granulocyte deficiency, and granulocyte deficiency at discharge were independently associated with higher mortality. Early anti-infective treatment with ceftazidime-avibactam or polymyxin B may improve the clinical prognosis of patients.
Collapse
Affiliation(s)
- Fangfang Yuan
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University& Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| | - Weiqiang Xiao
- Department of Laboratory Science, The Affiliated Cancer Hospital of Zhengzhou University& Henan Cancer Hospital, Zhengzhou, People’s Republic of China;
| | - Xiaokun Wang
- Department of Laboratory Science, The Affiliated Cancer Hospital of Zhengzhou University& Henan Cancer Hospital, Zhengzhou, People’s Republic of China;
| | - Yuewen Fu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University& Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| | - Xudong Wei
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University& Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| |
Collapse
|
24
|
Rajakani SG, Xavier BB, Sey A, Mariem EB, Lammens C, Goossens H, Glupczynski Y, Malhotra-Kumar S. Insight into Antibiotic Synergy Combinations for Eliminating Colistin Heteroresistant Klebsiella pneumoniae. Genes (Basel) 2023; 14:1426. [PMID: 37510330 PMCID: PMC10378790 DOI: 10.3390/genes14071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Colistin heteroresistance has been identified in several bacterial species, including Escherichia coli and Klebsiella pneumoniae, and may underlie antibiotic therapy failures since it most often goes undetected by conventional antimicrobial susceptibility tests. This study utilizes population analysis profiling (PAP) and time-kill assay for the detection of heteroresistance in K. pneumoniae and for evaluating the association between in vitro regrowth and heteroresistance. The mechanisms of colistin resistance and the ability of combination therapies to suppress resistance selection were also analysed. In total, 3 (18%) of the 16 colistin-susceptible strains (MIC ≤ 2 mg/L) were confirmed to be heteroresistant to colistin by PAP assay. In contrast to the colistin-susceptible control strains, all three heteroresistant strains showed regrowth when exposed to colistin after 24 h following a rapid bactericidal action. Colistin resistance in all the resistant subpopulations was due to the disruption of the mgrB gene by various insertion elements such as ISKpn14 of the IS1 family and IS903B of the IS5 family. Colistin combined with carbapenems (imipenem, meropenem), aminoglycosides (amikacin, gentamicin) or tigecycline was found to elicit in vitro synergistic effects against these colistin heteroresistant strains. Our experimental results showcase the potential of combination therapies for treatment of K. pneumoniae infections associated with colistin heteroresistance.
Collapse
Affiliation(s)
- Sahaya Glingston Rajakani
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Adwoa Sey
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - El Bounja Mariem
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Youri Glupczynski
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
25
|
Kon H, Hameir A, Nutman A, Temkin E, Keren Paz A, Lellouche J, Schwartz D, Weiss DS, Kaye KS, Daikos GL, Skiada A, Durante-Mangoni E, Dishon Benattar Y, Yahav D, Daitch V, Bernardo M, Iossa D, Friberg LE, Theuretzbacher U, Leibovici L, Dickstein Y, Pollak D, Mendelsohn S, Paul M, Carmeli Y. Prevalence and Clinical Consequences of Colistin Heteroresistance and Evolution into Full Resistance in Carbapenem-Resistant Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0509322. [PMID: 37219426 PMCID: PMC10269815 DOI: 10.1128/spectrum.05093-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Colistin heteroresistance (HR) refers to a bacterial population comprised of several subpopulations with different levels of resistance to colistin. In this study, we discuss the classic form of HR, in which a resistant subpopulation exists within a predominantly susceptible population. We investigated the prevalence of colistin HR and its evolution into full resistance among 173 clinical carbapenem-resistant Acinetobacter baumannii isolates and examined the effect of HR on clinical outcomes. To determine HR, we performed population analysis profiling. Our results showed a high prevalence of HR (67.1%). To examine evolution of HR strains into full resistance, the HR strains were grown in colistin-containing broth, transferred onto colistin-containing plates, and colonies on these plates were transferred into colistin-free broth. Many of the HR strains (80.2%) evolved into full resistance, 17.2% reverted to HR, and 2.6% were borderline. We used logistic regression to compare 14-day clinical failure and 14-day mortality between patients infected by HR versus susceptible non-HR carbapenem-resistant A. baumannii. In the subgroup of patients with bacteremia, HR was significantly associated with 14-day mortality. IMPORTANCE To our knowledge, this is the first large-scale study to report on HR in Gram-negative bacteria. We described the prevalence of colistin HR in a large sample of carbapenem-resistant A. baumannii isolates, the evolution of many colistin HR isolates to a resistant phenotype following colistin exposure and withdrawal, and the clinical consequences of colistin HR. We found a high prevalence of HR among clinical carbapenem-resistant A. baumannii isolates; most evolved into a resistant phenotype following colistin exposure and withdrawal. In patients treated with colistin, evolution of HR A. baumannii into full resistance could lead to higher rates of treatment failure and contribute to the reservoir of colistin-resistant pathogens in health care settings.
Collapse
Affiliation(s)
- Hadas Kon
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Amichay Hameir
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Amir Nutman
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elizabeth Temkin
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Alona Keren Paz
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Jonathan Lellouche
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
- Adelson School of Medicine, Ariel University, Israel
| | - David Schwartz
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - David S. Weiss
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Keith S. Kaye
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - George L. Daikos
- First Department of Medicine, Laikon General Hospital, Athens, Greece
- National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Skiada
- First Department of Medicine, Laikon General Hospital, Athens, Greece
- National and Kapodistrian University of Athens, Athens, Greece
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- AORN dei Colli-Monaldi Hospital, Naples, Italy
| | - Yael Dishon Benattar
- Institute of Infectious Diseases, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Dafna Yahav
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Vered Daitch
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Medicine E, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Mariano Bernardo
- Microbiology and Virology Unit, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - Domenico Iossa
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | | | - Leonard Leibovici
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Medicine E, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Yaakov Dickstein
- Institute of Infectious Diseases, Rambam Health Care Campus, Haifa, Israel
| | - Dina Pollak
- Microbiology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Sigal Mendelsohn
- Microbiology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Mical Paul
- Institute of Infectious Diseases, Rambam Health Care Campus, Haifa, Israel
| | - Yehuda Carmeli
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Synergistic Antibacterial Proficiency of Green Bioformulated Zinc Oxide Nanoparticles with Potential Fosfomycin Synergism against Nosocomial Bacterial Pathogens. Microorganisms 2023; 11:microorganisms11030645. [PMID: 36985218 PMCID: PMC10053094 DOI: 10.3390/microorganisms11030645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The drug resistance of bacterial pathogens causes considerable morbidity and death globally, hence there is a crucial necessity for the development of effective antibacterial medicines to address the antibacterial resistance issue. The bioprepared zinc oxide nanoparticles (ZnO-NPs) were prepared utilizing the flower extract of Hibiscus sabdariffa and then characterized using different physicochemical techniques. The antibacterial effectiveness of the bioprepared ZnO-NPs and their synergism with fosfomycin were evaluated using disk diffusion assay against the concerned pathogens. Transmission electron microscopy (TEM) investigation of the bioprepared ZnO-NPs showed that their average particle size was 18.93 ± 2.65 nm. Escherichia coli expressed the highest sensitivity to the bioinspired ZnO-NPs with a suppressive zone of 22.54 ± 1.26 nm at a concentration of 50 µg/disk, whereas the maximum synergistic effect of the bioinspired ZnO-NPs with fosfomycin was noticed against Klebsiella pneumoniae strain with synergism ratio of 100.29%. In conclusion, the bioinspired ZnO-NPs demonstrated significant antibacterial and synergistic efficacy with fosfomycin against the concerned nosocomial bacterial pathogens, highlighting the potential of using the ZnO NPs-fosfomycin combination for effective control of nosocomial infections in intensive care units (ICUs) and health care settings. Furthermore, the biogenic ZnO-NPs’ potential antibacterial action against food pathogens such as Salmonella typhimurium and E. coli indicates their potential usage in food packaging applications.
Collapse
|