1
|
Mugge W, Elstgeest LEM, van Ginkel M, Pol L, de Lange IJ, Pambakian N, Assis de Souza A, Helmich RC, Kamphuis DJ. Essential Tremor Suppression with a Novel Anti-Tremor Orthosis: A Randomized Crossover Trial. Mov Disord 2025. [PMID: 39838596 DOI: 10.1002/mds.30082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Essential tremor (ET) is characterized by action tremor of the arms, which can interfere substantially with daily activities. Pharmacotherapy may be ineffective or associated with side effects, and stereotactic surgery is invasive. Hence, new accessible treatment options are urgently needed. An easy-to-use and lightweight orthotic device that exerts joint damping may provide an alternative solution for reducing tremor in daily activities. OBJECTIVE Our goal was to assess the efficacy of a novel anti-tremor orthosis (STIL) in reducing clinical and accelerometry measures of distal arm tremor in ET. METHODS In a randomized crossover single-blinded trial in 24 ET patients in a hospital setting, we compared three conditions: no orthosis (baseline), a sham device, and the anti-tremor orthosis (order randomized). The orthosis, but not the sham device, passively damped joints in the forearm. Participants performed seven tasks from the Tremor Research Group Essential Tremor Rating Scale (TETRAS). The two co-primary outcome measures were: clinical tremor severity (video-scored TETRAS) and tremor power (accelerometry). Patient satisfaction was self-assessed using the Dutch Quebec User Evaluation of Satisfaction with assistive Technology. Conditions were compared using Wilcoxon signed-rank tests. RESULTS The anti-tremor orthosis significantly reduced TETRAS scores compared to sham and baseline (baseline: 19.0 ± 3.2, sham: 13.7 ± 3.9, orthosis: 9.9 ± 3.6; mean ± standard deviation). Similar effects were observed for tremor power, which was reduced by 87.4% (orthosis vs. baseline) and 59.5% (orthosis vs. sham) across all tasks. A total of 71% of participants were (very) satisfied and 12.5% reported minor adverse events (discomfort/redness of skin). CONCLUSION The anti-tremor orthosis had a clinically relevant tremor-reducing effect in ET in a controlled setting, offering potential for a new treatment to manage ET in daily activities. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Winfred Mugge
- Faculty of Mechanical Engineering, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | | | - Milan van Ginkel
- Department of Neurology, Reinier de Graaf Hospital, Delft, The Netherlands
| | - Lucas Pol
- Department of Neurology, Reinier de Graaf Hospital, Delft, The Netherlands
| | - IJsbrand de Lange
- Department of Research and Development, STIL B.V, Delft, The Netherlands
| | - Nicola Pambakian
- Department of Research and Development, STIL B.V, Delft, The Netherlands
| | | | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre of Expertise for Parkinson and Movement Disorders, Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Daan J Kamphuis
- Department of Neurology, Reinier de Graaf Hospital, Delft, The Netherlands
| |
Collapse
|
2
|
Alotaibi S, Alfayez L, Alkhudhair M. Parkinson's Disease: Current Treatment Modalities and Emerging Therapies. Cureus 2024; 16:e75647. [PMID: 39803037 PMCID: PMC11725288 DOI: 10.7759/cureus.75647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Herein, we review the literature on Parkinson's disease (PD) management and summarize the progress in medical, surgical, and assisted therapeutic modalities for motor and non-motor symptoms. A thorough search strategy was implemented to retrieve all relevant articles and identify the best evidence from different databases including Scopus, PubMed, Google Scholar, the Cochrane Database of Systematic Reviews, and Evidence-Based Medicine reviews from the International Parkinson and Movement Disorder Society. Multiple terms, such as Parkinson, tremor, predominant, Parkinson management, deep brain stimulation, LCIG, ablative surgery for PD, medical management of PD, and assistive devices for PD, were used for screening. A total of 160 articles were gathered; irrelevant papers and older articles were excluded. After initial exclusion, we had 140 articles to review from 1980 to 2022. Five articles were found to be duplicated, and another five articles were excluded as they did not have additional information on management that could be used in this research paper. We found that management options and assistive devices for PD are improving, with new therapeutic options emerging every year. Medical therapy is the most common therapy as it corrects dopamine deficiency which is the main factor implicated in PD; other surgical treatment options are available in cases of chronic progressive disease course. This article adds significant value to the literature as it includes the history and the role of most Parkinson's disease management options.
Collapse
Affiliation(s)
- Shabab Alotaibi
- Neurology, Movement Disorder and Neuromodulation, King Saud Medical City, Riyadh, SAU
| | - Lujain Alfayez
- Neurology, Neurology Center, Prince Sultan Military Medical City, Riyadh, SAU
| | | |
Collapse
|
3
|
Vogelnik Žakelj K, Prezelj N, Gregorič Kramberger M, Kojović M. Mechanisms of tremor-modulating effects of primidone and propranolol in essential tremor. Parkinsonism Relat Disord 2024; 128:107151. [PMID: 39321734 DOI: 10.1016/j.parkreldis.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Primidone and propranolol are primary treatments for essential tremor, however the exact mechanisms underlying their efficacy are not fully elucidated. Understanding how these medications alleviate tremor may guide the development of additional pharmacologic treatments. Our prospective observational study employed transcranial magnetic stimulation (TMS) to explore mechanisms of primidone and propranolol effects in essential tremor. Eyeblink classical conditioning (EBCC) was tested as a potential predictor of treatment response. METHODS Patients with essential tremor underwent two evaluations: prior to commencing primidone or propranolol and following a minimum of three months of treatment. Tremor severity was assessed using accelerometry and clinically. TMS was employed to study changes in corticospinal excitability - resting and active motor thresholds, resting and active input/output curves and intracortical excitability - cortical silent period (CSP), short interval intracortical inhibition intensity curve (SICI), long interval intracortical inhibition (LICI), intracortical facilitation (ICF), and short afferent inhibition (SAI). EBCC, a marker of cerebellar function, was studied at baseline. RESULTS Of the 54 enrolled patients (28 primidone, 26 propranolol), 35 completed both visits. Primidone effect on decreasing hand tremor was associated with decreased corticospinal excitability, prolongation of CSP, increased LICI, increased SAI and decreased SICI. Propranolol effect on hand tremor was associated with decreased corticospinal excitability and increased SAI. Better EBCC at baseline predicted better response to primidone. CONCLUSIONS Primidone exerts its therapeutic effects by blocking voltage-gated sodium channels and by modulating GABA-A and GABA-B intracortical circuits. Propranolol's central effects are likely mediated via noradrenergic modulation of GABA outflow.
Collapse
Affiliation(s)
- Katarina Vogelnik Žakelj
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Neža Prezelj
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia; Karolinska Institutet, Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Huddinge, Sweden
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Kilinc B, Cetisli-Korkmaz N, Bir LS, Marangoz AD, Senol H. The quality of life in individuals with Parkinson's Disease: is it related to functionality and tremor severity? A cross-sectional study. Physiother Theory Pract 2024; 40:2213-2222. [PMID: 37515776 DOI: 10.1080/09593985.2023.2236691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Symptoms seen in Parkinson's Disease (PD) affect the quality of life (QoL) of individuals. OBJECTIVES This study aimed to examine the relationship of QoL with tremor severity and upper limb functionality in individuals with PD. METHODS Parkinson's Disease Quality of Life Questionnaire (PDQ-39) was used to examine the QoL of the participants, electromyography was used to measure the tremor amplitude, Nine-Hole Peg Test (NHPT) was used to evaluate the upper limb functionality and dynamometer was used to evaluate grip and pinch strength. Resting and postural tremor amplitudes were recorded from both sides of the hand and forearm. The relationship between QoL and other parameters was tested with Spearman Correlation Analysis. Mann-Whitney U test was used to compare individuals with and without tremor. RESULTS It was obtained that tremor amplitude was significantly related to: activities of daily living (rho = 0.597); emotional well-being (rho = 0.694); stigma (rho = 0.524); social support (rho = 0.595 and 0.559), and communication [rho = 0.532 (right forearm), 0.564 (left forearm), and 0.527 (right hand)] sub-parameters of PDQ-39 (p < .05). The relationship of the grip and pinch strength with the PDQ-39 sub-parameters was significant (p < .05), except for social support and communication. The relationship between NHPT and almost all parameters of PDQ-39 (p < .05), except bodily discomfort and social support, was significant. CONCLUSION It was concluded that future studies focusing on QoL could also consider tremor severity and grip strength as well as dexterity in individuals with PD.
Collapse
Affiliation(s)
- Buse Kilinc
- Institute of Health Sciences, Department of Physical Therapy and Rehabilitation, Pamukkale University, Denizli, Türkiye
| | | | - Levent Sinan Bir
- Faculty of Medicine, Department of Neurology, Pamukkale University, Denizli, Türkiye
| | - Ahmet Dogucem Marangoz
- Department of Geriatric Psychiatry and Psychotherapy, Klinikum Stuttgart, Stuttgart, Germany
| | - Hande Senol
- Faculty of Medicine, Department of Biostatistics, Pamukkale University, Denizli, Türkiye
| |
Collapse
|
5
|
Quattrone A, Zappia M, Quattrone A. Simple biomarkers to distinguish Parkinson's disease from its mimics in clinical practice: a comprehensive review and future directions. Front Neurol 2024; 15:1460576. [PMID: 39364423 PMCID: PMC11446779 DOI: 10.3389/fneur.2024.1460576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
In the last few years, a plethora of biomarkers have been proposed for the differentiation of Parkinson's disease (PD) from its mimics. Most of them consist of complex measures, often based on expensive technology, not easily employed outside research centers. MRI measures have been widely used to differentiate between PD and other parkinsonism. However, these measurements were often performed manually on small brain areas in small patient cohorts with intra- and inter-rater variability. The aim of the current review is to provide a comprehensive and updated overview of the literature on biomarkers commonly used to differentiate PD from its mimics (including parkinsonism and tremor syndromes), focusing on parameters derived by simple qualitative or quantitative measurements that can be used in routine practice. Several electrophysiological, sonographic and MRI biomarkers have shown promising results, including the blink-reflex recovery cycle, tremor analysis, sonographic or MRI assessment of substantia nigra, and several qualitative MRI signs or simple linear measures to be directly performed on MR images. The most significant issue is that most studies have been conducted on small patient cohorts from a single center, with limited reproducibility of the findings. Future studies should be carried out on larger international cohorts of patients to ensure generalizability. Moreover, research on simple biomarkers should seek measurements to differentiate patients with different diseases but similar clinical phenotypes, distinguish subtypes of the same disease, assess disease progression, and correlate biomarkers with pathological data. An even more important goal would be to predict the disease in the preclinical phase.
Collapse
Affiliation(s)
- Andrea Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
6
|
Digranes N, Hoeberg E, Lervik A, Hubin A, Nordgreen J, Haga HA. Motor effects of fentanyl in isoflurane-anaesthetized pigs and the subsequent effect of ketanserin or naloxone. Vet Anaesth Analg 2024; 51:491-499. [PMID: 39142980 DOI: 10.1016/j.vaa.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE To examine the effect of ketanserin and naloxone on fentanyl-induced motor activity in isoflurane-anaesthetized pigs. STUDY DESIGN Randomized, blinded, prospective two-group study. ANIMALS A group of 12 crossbred pigs weighing 22-31 kg. METHODS Fentanyl was administered to isoflurane-anaesthetized pigs at 7.5 μg kg-1 hour-1 for 40 minutes intravenously, followed by an intravenous injection of naloxone 0.1 mg kg-1 or ketanserin 1 mg kg-1. Electromyography (EMG) and accelerometry were used to record motor unit activity and tremors, respectively. To test the effect of drug administration on motor activity, data from a 5 minute period at baseline, immediately before and after antagonist injection were compared in a mixed model; p < 0.05. RESULTS Results are reported with the median difference, 95% confidence intervals and corresponding p-values in brackets. Fentanyl significantly increased EMG activity [30.51 (1.84-81.02) μV, p = 0.004] and induced tremors [0.09 (0.02-0.18) m s-2, p < 0.001] in 10 of 12 pigs. Ketanserin significantly reduced EMG [32.22 (6.29-136.80) μV, p = 0.001] and tremor [0.10 (0.03-0.15) m s-2, p = 0.007] activity. No significant effect was found for naloxone on EMG [26.76 (-13.28-91.17) μV, p = 0.4] or tremors [0.08 (-0.01-0.19) m s-2, p = 0.08]. CONCLUSIONS AND CLINICAL RELEVANCE Fentanyl can induce motor activity in anaesthetized pigs, with a suggested link to the serotonergic system. This study shows that ketanserin can antagonize this activity, which supports the role of serotonin. This knowledge contributes to the general understanding of the motor effects of fentanyl and especially the problem of tremors in anaesthetized pigs.
Collapse
Affiliation(s)
- Nora Digranes
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Emma Hoeberg
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Aliaksandr Hubin
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Janicke Nordgreen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Henning A Haga
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
7
|
Saad M, Hefner S, Donovan S, Bernhard D, Tripathi R, Factor SA, Powell JM, Kwon H, Sameni R, Esper CD, McKay JL. Development of a Tremor Detection Algorithm for Use in an Academic Movement Disorders Center. SENSORS (BASEL, SWITZERLAND) 2024; 24:4960. [PMID: 39124007 PMCID: PMC11314995 DOI: 10.3390/s24154960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
Tremor, defined as an "involuntary, rhythmic, oscillatory movement of a body part", is a key feature of many neurological conditions including Parkinson's disease and essential tremor. Clinical assessment continues to be performed by visual observation with quantification on clinical scales. Methodologies for objectively quantifying tremor are promising but remain non-standardized across centers. Our center performs full-body behavioral testing with 3D motion capture for clinical and research purposes in patients with Parkinson's disease, essential tremor, and other conditions. The objective of this study was to assess the ability of several candidate processing pipelines to identify the presence or absence of tremor in kinematic data from patients with confirmed movement disorders and compare them to expert ratings from movement disorders specialists. We curated a database of 2272 separate kinematic data recordings from our center, each of which was contemporaneously annotated as tremor present or absent by a movement physician. We compared the ability of six separate processing pipelines to recreate clinician ratings based on F1 score, in addition to accuracy, precision, and recall. The performance across algorithms was generally comparable. The average F1 score was 0.84±0.02 (mean ± SD; range 0.81-0.87). The second highest performing algorithm (cross-validated F1=0.87) was a hybrid that used engineered features adapted from an algorithm in longstanding clinical use with a modern Support Vector Machine classifier. Taken together, our results suggest the potential to update legacy clinical decision support systems to incorporate modern machine learning classifiers to create better-performing tools.
Collapse
Affiliation(s)
- Mark Saad
- Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (M.S.)
| | - Sofia Hefner
- Department of Neuroscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Suzann Donovan
- Department of Neuroscience and Behavioral Biology, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Doug Bernhard
- Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (M.S.)
| | - Richa Tripathi
- Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (M.S.)
| | - Stewart A. Factor
- Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (M.S.)
| | - Jeanne M. Powell
- Department of Psychology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Hyeokhyen Kwon
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA (R.S.)
| | - Reza Sameni
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA (R.S.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Christine D. Esper
- Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (M.S.)
| | - J. Lucas McKay
- Jean and Paul Amos Parkinson’s Disease and Movement Disorders Program, Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (M.S.)
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA (R.S.)
| |
Collapse
|
8
|
Shaikh AG, Jinnah HA. Interdisciplinary insights into tremor in dystonia: Navigating clinical controversies, definitional challenges, and pathophysiological complexities. Parkinsonism Relat Disord 2024; 122:106068. [PMID: 38548571 DOI: 10.1016/j.parkreldis.2024.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 05/05/2024]
Abstract
This review delves into the historical evolution and ongoing controversy surrounding the relationship between tremor and dystonia. The Dystonia Consensus Panel and the International Parkinson's and Movement Disorders Society's Tremor Taskforce have attempted to define these entities, but the complexity arises when patients have a combination of both dystonia and tremor. The term "dystonic tremor" has sparked diverse interpretations, with debates over its clinical features and the need for more objectively defined characteristics. Logistic regression analyses in a large cohort of dystonia patients identified determinants such as body region affected by dystonia, dystonia severity, age, and recruitment site, with unexpected associations emphasizing the subjectivity in detecting and classifying tremor. The study further discovered diverse prevalence of "dystonic tremor" based on different definitions, revealing substantial variability among investigators. The recently convened Dystonia-Tremor panel aimed to address these challenges by proposing a more uniform nomenclature, emphasizing precise and descriptive terms. Despite the complexity, instrumented measures, such as electromyography, temporal discrimination threshold, blink reflex, and trajectory shape analysis, seem to be useful in distinguishing between tremor and dystonia. The pathophysiology debate centers around the involvement of the cerebello-thalamo-cortical and basal ganglia-thalamo-cortical circuits. Evidence supports the role of both circuits in driving the pathophysiology of dystonic tremor, challenging the notion of a clear dichotomy. The review concludes by emphasizing the need for a nuanced understanding, highlighting the intricate interplay between tremor and dystonia, and the potential of instrumental measures in advancing diagnostic accuracy.
Collapse
Affiliation(s)
- Aasef G Shaikh
- University Hospitals and Cleveland VA Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Bancel T, Béranger B, Daniel M, Didier M, Santin M, Rachmilevitch I, Shapira Y, Tanter M, Bardinet E, Fernandez Vidal S, Attali D, Galléa C, Dizeux A, Vidailhet M, Lehéricy S, Grabli D, Pyatigorskaya N, Karachi C, Hainque E, Aubry JF. Sustained reduction of essential tremor with low-power non-thermal transcranial focused ultrasound stimulations in humans. Brain Stimul 2024; 17:636-647. [PMID: 38734066 DOI: 10.1016/j.brs.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Transcranial ultrasound stimulation (TUS) is a non-invasive brain stimulation technique; when skull aberrations are compensated for, this technique allows, with millimetric accuracy, circumvention of the invasive surgical procedure associated with deep brain stimulation (DBS) and the limited spatial specificity of transcranial magnetic stimulation. OBJECTIVE /hypothesis: We hypothesize that MR-guided low-power TUS can induce a sustained decrease of tremor power in patients suffering from medically refractive essential tremor. METHODS The dominant hand only was targeted, and two anatomical sites were sonicated in this exploratory study: the ventral intermediate nucleus of the thalamus (VIM) and the dentato-rubro-thalamic tract (DRT). Patients (N = 9) were equipped with MR-compatible accelerometers attached to their hands to monitor their tremor in real-time during TUS. RESULTS VIM neurostimulations followed by a low-duty cycle (5 %) DRT stimulation induced a substantial decrease in the tremor power in four patients, with a minimum of 89.9 % reduction when compared with the baseline power a few minutes after the DRT stimulation. The only patient stimulated in the VIM only and with a low duty cycle (5 %) also experienced a sustained reduction of the tremor (up to 93.4 %). Four patients (N = 4) did not respond. The temperature at target was 37.2 ± 1.4 °C compared to 36.8 ± 1.4 °C for a 3 cm away control point. CONCLUSIONS MR-guided low power TUS can induce a substantial and sustained decrease of tremor power. Follow-up studies need to be conducted to reproduce the effect and better to understand the variability of the response amongst patients. MR thermometry during neurostimulations showed no significant thermal rise, supporting a mechanical effect.
Collapse
Affiliation(s)
- Thomas Bancel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France
| | - Benoît Béranger
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Maxime Daniel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France
| | - Mélanie Didier
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Mathieu Santin
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | | | | | - Mickael Tanter
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France
| | - Eric Bardinet
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Sara Fernandez Vidal
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - David Attali
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France; Université Paris Cité, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - Cécile Galléa
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Alexandre Dizeux
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France
| | - Marie Vidailhet
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France; Department of Neurology, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Stéphane Lehéricy
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France; Department of Neuroradiology, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - David Grabli
- Department of Neurology, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Nadya Pyatigorskaya
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France; Department of Neuroradiology, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Carine Karachi
- Department of Neurosurgery, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Elodie Hainque
- Department of Neurology, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France.
| |
Collapse
|
10
|
Panyakaew P, Phuenpathom W, Bhidayasiri R, Hallett M. Bedside clinical assessment of patients with common upper limb tremor and algorithmic approach. ASIAN BIOMED 2024; 18:37-52. [PMID: 38708334 PMCID: PMC11063083 DOI: 10.2478/abm-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The diagnostic approach for patients with tremor is challenging due to the complex and overlapping phenotypes among tremor syndromes. The first step in the evaluation of tremor is to identify the tremulous movement and exclude the tremor mimics. The second step is to classify the tremor syndrome based on the characteristics of tremor from historical clues and focused examination (Axis 1). Comprehensive tremor examinations involve the assessment of tremor in different conditions (rest, action or mixed, position or task-specific), distribution of tremor (upper limb, lower limb, head, jaw), positive signs for functional tremor (FT) if suspected (distractibility, entrainment, co-contraction), and associated neurological signs including parkinsonism, dystonic posture, cerebellar/brainstem signs, neuropathy, and cognitive impairment. A pivotal feature in this step is to determine any distinct feature of a specific isolated or combined tremor syndrome. In this review, we propose an algorithm to assess upper limb tremors. Ancillary testing should be performed if clinical evaluation is unclear. The choice of investigation depends on the types of tremors considered to narrow down the spectrum of etiology (Axis 2). Laboratory blood tests are considered for acute onset and acute worsening of tremors, while structural neuroimaging is indicated in unilateral tremors with acute onset, nonclassical presentations, and a combination of neurological symptoms. Neurophysiological study is an important tool that aids in distinguishing between tremor and myoclonus, etiology of tremor and document specific signs of FT. Treatment is mainly symptomatic based depending on the etiology of the tremor and the patient's disabilities.
Collapse
Affiliation(s)
- Pattamon Panyakaew
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Warongporn Phuenpathom
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok10330, Thailand
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892-1428, USA
| |
Collapse
|
11
|
Cabral AM, Lora-Millán JS, Pereira AA, Rocon E, Andrade ADO. On the Effect of Vibrotactile Stimulation in Essential Tremor. Healthcare (Basel) 2024; 12:448. [PMID: 38391822 PMCID: PMC10888095 DOI: 10.3390/healthcare12040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: Vibrotactile stimulation has been studied for tremor, but there is little evidence for Essential Tremor (ET). (2) Methods: This research employed a dataset from a previous study, with data collected from 18 individuals subjected to four vibratory stimuli. To characterise tremor changes before, during, and after stimuli, time and frequency domain features were estimated from the signals. Correlation and regression analyses verified the relationship between features and clinical tremor scores. (3) Results: Individuals responded differently to vibrotactile stimulation. The 250 Hz stimulus was the only one that reduced tremor amplitude after stimulation. Compared to the baseline, the 250 Hz and random frequency stimulation reduced tremor peak power. The clinical scores and amplitude-based features were highly correlated, yielding accurate regression models (mean squared error of 0.09). (4) Conclusions: The stimulation frequency of 250 Hz has the greatest potential to reduce tremors in ET. The accurate regression model and high correlation between estimated features and clinical scales suggest that prediction models can automatically evaluate and control stimulus-induced tremor. A limitation of this research is the relatively reduced sample size.
Collapse
Affiliation(s)
- Ariana Moura Cabral
- Centre for Innovation and Technology Assessment in Health, Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia 38400-902, Brazil
| | | | - Adriano Alves Pereira
- Centre for Innovation and Technology Assessment in Health, Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia 38400-902, Brazil
| | - Eduardo Rocon
- BioRobotics Group, Centre for Automation and Robotics (CAR), CSIC-UPM, 28500 Madrid, Spain
| | - Adriano de Oliveira Andrade
- Centre for Innovation and Technology Assessment in Health, Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia 38400-902, Brazil
| |
Collapse
|
12
|
Silsby M, Yiannikas C, Fois AF, Kiernan MC, Fung VSC, Vucic S. Upper and lower limb tremor in inflammatory neuropathies. Clin Neurophysiol 2024; 158:69-78. [PMID: 38194761 DOI: 10.1016/j.clinph.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVE The mechanisms underlying neuropathic tremor remain incompletely understood and a distinction has not been drawn between proximal and distal neuropathies. Lower limb tremor contributes to imbalance in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), but this is unexplored in other neuropathies. We characterized upper and lower limb tremor in chronic immune sensory polyradiculopathy (CISP) and distal acquired demyelinating neuropathy with anti-MAG antibodies (DADS-MAG), contrasted to CIDP. METHODS This was a cross-sectional study of 38 patients (CIDP [n = 25], CISP [n = 7], DADS-MAG [n = 6]). Clinical assessment, tremor study recordings, nerve conduction studies, and somatosensory evoked potentials were performed. Balance was measured by force platform. RESULTS Upper limb tremor was prevalent (CIDP 66%, CISP 70%, DADS-MAG 100%). Peak frequencies followed a gradient along the upper limb, unchanged by weight-loading. Lower limb tremor was also present (CIDP 32%, CISP 29%, DADS-MAG 66%) and associated with imbalance. Nerve conduction parameters correlated with upper limb tremor in DADS-MAG and CISP, and imbalance in CISP. CONCLUSIONS Upper limb tremor is mediated by peripheral and central mechanisms regardless of distal or proximal pathology. Lower limb tremor correlates with peripheral nerve function and contributes to imbalance. SIGNIFICANCE This study contributes to the understanding of neuropathic tremor. Addressing lower limb tremor may be of therapeutic importance for neuropathy-associated imbalance.
Collapse
Affiliation(s)
- Matthew Silsby
- Neurology Department, Westmead Hospital; Westmead Clinical School, University of Sydney, Australia; Brain and Nerve Research Centre, University of Sydney, Australia; Neurology Department, Concord Hospital Sydney, Australia
| | - Con Yiannikas
- Neurology Department, Concord Hospital Sydney, Australia; Neurology Department, Royal North Shore Hospital Sydney, Australia
| | - Alessandro F Fois
- Neurology Department, Westmead Hospital; Westmead Clinical School, University of Sydney, Australia
| | - Matthew C Kiernan
- Neurology Department, Royal Prince Alfred Hospital Sydney, Australia; Brain and Mind Centre, University of Sydney, Australia
| | - Victor S C Fung
- Neurology Department, Westmead Hospital; Westmead Clinical School, University of Sydney, Australia
| | - Steve Vucic
- Brain and Nerve Research Centre, University of Sydney, Australia; Neurology Department, Concord Hospital Sydney, Australia.
| |
Collapse
|
13
|
Rajan R, Anandapadmanabhan R, Vishnoi A, Latorre A, Thirugnanasambandam N, Dipani A, Biswas D, Radhakrishnan DM, Srivastava A, Bhatia KP. Essential Tremor and Essential Tremor Plus Are Essentially Similar Electrophysiologically. Mov Disord Clin Pract 2024; 11:136-142. [PMID: 38386479 PMCID: PMC10883406 DOI: 10.1002/mdc3.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The merits of classifying the heterogeneous group of essential tremors into essential tremor (ET) and essential tremor plus (ETP) are debated. OBJECTIVES We studied the electrophysiological and spiral characteristics of tremor in ET and ETP. METHODS We reviewed standardized videos from a tremor database and clinically classified patients into ET, ETP, or dystonic tremor (DT). The following variables were derived from combined tri-axial accelerometry-surface electromyography (EMG)-peak frequency, total power, peak power, full width half maximum, tremor stability index and EMG-coherence. We analyzed hand-drawn spirals to derive mean deviation, tremor variability, inter-, and intra-loop widths. We compared these variables among the groups. RESULTS We recruited 72 participants (81.9% male) with mean age 47.7 ± 16.1 years and Fahn-Tolosa-Marin Tremor Rating Scale total score 31.1 ± 14.1. Patients with ET were younger (P = 0.014) and had less severe tremor (P = 0.020) compared to ETP and DT. In ETP group, 48.6% had subtle dystonia. Peak frequency was greater in ETP (7.3 ± 0.3 Hz) compared to DT (6.1 ± 0.4 Hz; P = 0.024). Peak power was greater in ETP and DT for postural tremor. Rest tremor was recordable on accelerometry in 26.7% of ET. Other variables were similar among the groups. CONCLUSION Electrophysiological evaluation revealed postural tremor of frequency 6 to 7 Hz in ET, ETP, and DT with subtle differences more severe tremor in ETP and DT, and higher frequency in ETP compared to DT. Our findings suggest a similar tremor oscillator in these conditions, supporting the view that these entities are part of a spectrum of tremor disorders, rather than distinct etiological entities.
Collapse
Affiliation(s)
- Roopa Rajan
- All India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | | | - Aayushi Vishnoi
- All India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Anna Latorre
- University College London Hospitals (UCL)LondonUnited Kingdom
| | | | - Alish Dipani
- National Brain Research Centre (NBRC)ManesarIndia
| | - Deblina Biswas
- All India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | | | | | | |
Collapse
|
14
|
Edwards M, Koens L, Liepert J, Nonnekes J, Schwingenschuh P, van de Stouwe A, Morgante F. Clinical neurophysiology of functional motor disorders: IFCN Handbook Chapter. Clin Neurophysiol Pract 2024; 9:69-77. [PMID: 38352251 PMCID: PMC10862411 DOI: 10.1016/j.cnp.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Functional Motor Disorders are common and disabling. Clinical diagnosis has moved from one of exclusion of other causes for symptoms to one where positive clinical features on history and examination are used to make a "rule in" diagnosis wherever possible. Clinical neurophysiological assessments have developed increasing importance in assisting with this positive diagnosis, not being used simply to demonstrate normal sensory-motor pathways, but instead to demonstrate specific abnormalities that help to positively diagnose these disorders. Here we provide a practical review of these techniques, their application, interpretation and pitfalls. We also highlight particular areas where such tests are currently lacking in sensitivity and specificity, for example in people with functional dystonia and functional tic-like movements.
Collapse
Affiliation(s)
- M.J. Edwards
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
- Department of Neuropsychiatry, Maudsley Hospital, London, UK
| | - L.H. Koens
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Neurology and Clinical Neurophysiology, Martini Ziekenhuis, Groningen, the Netherlands
| | - J. Liepert
- Kliniken Schmieder Allensbach, Allensbach, Germany
| | - J. Nonnekes
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
- Center of Expertise for Parkinson & Movement Disorders, Department of Rehabilitation, Nijmegen, the Netherlands
- Department of Rehabilitation, Sint Maartenskliniek, Ubbergen, the Netherlands
| | | | - A.M.M. van de Stouwe
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Neurology, Ommelander Ziekenhuis, Scheemda, the Netherlands
| | - F. Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
15
|
Kamble N, Pal PK. Electrophysiology in Functional Movement Disorders: An Update. Tremor Other Hyperkinet Mov (N Y) 2023; 13:49. [PMID: 38162980 PMCID: PMC10756160 DOI: 10.5334/tohm.793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024] Open
Abstract
Background Functional movement disorders (FMD) are a diagnostic and therapeutic challenge, both to the neurologist and psychiatrists. The phenomenology is varied and can present as tremors, dystonia, jerks/myoclonus, gait disorder, other abnormal movements or a combination. There has been an increase in the use of electrophysiological studies that are an important tool in the evaluation of FMDs. Methods We searched the database platforms of MEDLINE, Google scholar, Web of Sciences, Scopus using the Medical Subject Heading terms (MeSH) for all the articles from 1st January 1970 till November 2022. A total of 658 articles were obtained by the search mechanism. A total of 79 relevant articles were reviewed thoroughly, of which 26 articles that had electrophysiological data were included in the present review. Results Variability, distractibility and entertainability can be demonstrated in functional tremors by using multichannel surface electromyography. Voluntary ballistic movements tend to decrease the tremor, while loading the tremulous limb with weight causes the tremor amplitude to increase in functional tremor. Presence of Bereitschaftspotential demonstrates the functional nature of palatal tremor and myoclonus. Co-contraction testing may be helpful in differentiating functional from organic dystonia. The R2 blink reflex recovery cycle has been found to be abnormally enhanced in organic blepharospasm, whereas it is normal in presumed functional blepharospasm. Plasticity is found to be abnormally high in organic dystonia and normal in functional dystonia, in addition to enhanced facilitation in patients with organic dystonia. Conclusions Electrophysiological tests supplement clinical examination and helps in differentiating FMD from organic movement disorders.
Collapse
Affiliation(s)
- Nitish Kamble
- Departments of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Hosur Road, Bengaluru-560029, Karnataka, India
| | - Pramod Kumar Pal
- Departments of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Hosur Road, Bengaluru-560029, Karnataka, India
| |
Collapse
|
16
|
Angelini L, Terranova R, Lazzeri G, van den Berg KRE, Dirkx MF, Paparella G. The role of laboratory investigations in the classification of tremors. Neurol Sci 2023; 44:4183-4192. [PMID: 37814130 PMCID: PMC10641063 DOI: 10.1007/s10072-023-07108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Tremor is the most common movement disorder. Although clinical examination plays a significant role in evaluating patients with tremor, laboratory tests are useful to classify tremors according to the recent two-axis approach proposed by the International Parkinson and Movement Disorders Society. METHODS In the present review, we will discuss the usefulness and applicability of the various diagnostic methods in classifying and diagnosing tremors. We will evaluate a number of techniques, including laboratory and genetic tests, neurophysiology, and neuroimaging. The role of newly introduced innovative tremor assessment methods will also be discussed. RESULTS Neurophysiology plays a crucial role in tremor definition and classification, and it can be useful for the identification of specific tremor syndromes. Laboratory and genetic tests and neuroimaging may be of paramount importance in identifying specific etiologies. Highly promising innovative technologies are being developed for both clinical and research purposes. CONCLUSIONS Overall, laboratory investigations may support clinicians in the diagnostic process of tremor. Also, combining data from different techniques can help improve understanding of the pathophysiological bases underlying tremors and guide therapeutic management.
Collapse
Affiliation(s)
- Luca Angelini
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy.
| | - Roberta Terranova
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia," University of Catania, Catania, Italy
| | - Giulia Lazzeri
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Kevin R E van den Berg
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Michiel F Dirkx
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
17
|
Grippe T, Chen R. Utility of Neurophysiological Evaluation in Movement Disorders Clinical Practice. Mov Disord Clin Pract 2023; 10:1599-1610. [PMID: 38026509 PMCID: PMC10654828 DOI: 10.1002/mdc3.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Quantitative and objective neurophysiological assessment can help to define the predominant phenomenology and provide diagnoses that have prognostic and therapeutic implications for movement disorders. Objectives Evaluate the agreement between initial indications and final diagnoses after neurophysiological evaluations in a specialized movement disorders center. Methods Electrophysiological studies conducted for movement disorders from 2003 to 2021 were reviewed. The indications were classified according to predominant phenomenology and the diagnoses categorized in subgroups of phenomenology. Results A total of 509 studies were analyzed. 51% (259) of patients were female, with a mean age of 51 years (ranges 5 to 89 years). The most common reasons for referral were evaluation of functional movement disorders (FMD), followed by jerky movements, tremor and postural instability. Regarding FMD referrals, there was a diagnostic change in 13% of the patients after electrophysiological assessment. The patients with jerky movements as indication had a diagnosis other than myoclonus in 27% of them, and tremor was not confirmed in 20% of the cases. In patients with an electrophysiological diagnosis of FMD, it was not suspected in 30% of the referrals. Similarly, tremor was not mentioned in the referral of 17% of the patients with this electrophysiological diagnosis and myoclonus was not suspected in 13% of the cases. Conclusions Electrophysiological assessment has utility in the evaluation of movement disorders, even in patients evaluated by movement disorders neurologists. More studies are needed to standardize the protocols between centers and to promote the availability and use of these techniques among movement disorders clinics.
Collapse
Affiliation(s)
- Talyta Grippe
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHNTorontoOntarioCanada
- Division of NeurologyUniversity of TorontoTorontoOntarioCanada
- Neuroscience Graduate ProgramFederal University of Minas GeraisBelo HorizonteBrazil
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHNTorontoOntarioCanada
- Neuroscience Graduate ProgramFederal University of Minas GeraisBelo HorizonteBrazil
- Krembil Brain InstituteTorontoOntarioCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoOntarioCanada
| |
Collapse
|
18
|
Yang B, Brown A, McKeon A, Ahlskog JE, Tipton P, Guo Y, Lucchinetti C, Pittock SJ, Zekeridou A. Tenascin-R Autoimmunity: Isolated Tremor Reversed with Immunotherapy. Ann Neurol 2023; 94:502-507. [PMID: 37370243 PMCID: PMC10527205 DOI: 10.1002/ana.26730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/10/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Autoimmune movement disorders are increasingly recognized, but isolated tremor is extremely rare. We describe a 70-year-old male with rapidly progressive, severe postural and intention tremor and weight loss. His cerebrospinal fluid was inflammatory and harbored a neural tissue-restricted antibody. The autoantigen was identified by immunoprecipitation and mass spectrometry and confirmed by antigen-specific assays to be specific for tenascin-R. He was investigated for cancer and diagnosed with follicular lymphoma that expressed tenascin-R suggesting a paraneoplastic origin; cancer treatment and immunotherapy led to complete recovery. With this individualized patient approach and antibody discovery, we expand the spectrum of antibodies accompanying autoimmune hyperkinetic movement disorders. ANN NEUROL 2023;94:502-507.
Collapse
Affiliation(s)
- Binxia Yang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andrew Brown
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Philip Tipton
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Claudia Lucchinetti
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Vescio B, De Maria M, Crasà M, Nisticò R, Calomino C, Aracri F, Quattrone A, Quattrone A. Development of a New Wearable Device for the Characterization of Hand Tremor. Bioengineering (Basel) 2023; 10:1025. [PMID: 37760127 PMCID: PMC10525186 DOI: 10.3390/bioengineering10091025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Rest tremor (RT) is observed in subjects with Parkinson's disease (PD) and Essential Tremor (ET). Electromyography (EMG) studies have shown that PD subjects exhibit alternating contractions of antagonistic muscles involved in tremors, while the contraction pattern of antagonistic muscles is synchronous in ET subjects. Therefore, the RT pattern can be used as a potential biomarker for differentiating PD from ET subjects. In this study, we developed a new wearable device and method for differentiating alternating from a synchronous RT pattern using inertial data. The novelty of our approach relies on the fact that the evaluation of synchronous or alternating tremor patterns using inertial sensors has never been described so far, and current approaches to evaluate the tremor patterns are based on surface EMG, which may be difficult to carry out for non-specialized operators. This new device, named "RT-Ring", is based on a six-axis inertial measurement unit and a Bluetooth Low-Energy microprocessor, and can be worn on a finger of the tremulous hand. A mobile app guides the operator through the whole acquisition process of inertial data from the hand with RT, and the prediction of tremor patterns is performed on a remote server through machine learning (ML) models. We used two decision tree-based algorithms, XGBoost and Random Forest, which were trained on features extracted from inertial data and achieved a classification accuracy of 92% and 89%, respectively, in differentiating alternating from synchronous tremor segments in the validation set. Finally, the classification response (alternating or synchronous RT pattern) is shown to the operator on the mobile app within a few seconds. This study is the first to demonstrate that different electromyographic tremor patterns have their counterparts in terms of rhythmic movement features, thus making inertial data suitable for predicting the muscular contraction pattern of tremors.
Collapse
Affiliation(s)
- Basilio Vescio
- Biotecnomed S.C.aR.L., Viale Europa, 88100 Catanzaro, Italy;
| | - Marida De Maria
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (M.D.M.); (M.C.); (R.N.); (C.C.); (F.A.); (A.Q.)
| | - Marianna Crasà
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (M.D.M.); (M.C.); (R.N.); (C.C.); (F.A.); (A.Q.)
| | - Rita Nisticò
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (M.D.M.); (M.C.); (R.N.); (C.C.); (F.A.); (A.Q.)
| | - Camilla Calomino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (M.D.M.); (M.C.); (R.N.); (C.C.); (F.A.); (A.Q.)
| | - Federica Aracri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (M.D.M.); (M.C.); (R.N.); (C.C.); (F.A.); (A.Q.)
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (M.D.M.); (M.C.); (R.N.); (C.C.); (F.A.); (A.Q.)
| | - Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
20
|
Martuscello RT, Chen ML, Reiken S, Sittenfeld LR, Ruff DS, Ni CL, Lin CC, Pan MK, Louis ED, Marks AR, Kuo SH, Faust PL. Defective cerebellar ryanodine receptor type 1 and endoplasmic reticulum calcium 'leak' in tremor pathophysiology. Acta Neuropathol 2023; 146:301-318. [PMID: 37335342 PMCID: PMC10350926 DOI: 10.1007/s00401-023-02602-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca2+) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca2+ release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca2+ leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca2+ leak via RyR1 may contribute to tremor pathophysiology.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Meng-Ling Chen
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Leah R Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - David S Ruff
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chun-Lun Ni
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Ming-Kai Pan
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
Bungay J, Emokpae O, Relton SD, Alty J, Williams S, Fang H, Wong DC. Contactless hand tremor amplitude measurement using smartphones: development and pilot evaluation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083026 DOI: 10.1109/embc40787.2023.10340420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Background - Physiological tremor is defined as an involuntary and rhythmic shaking. Tremor of the hand is a key symptom of multiple neurological diseases, and its frequency and amplitude differs according to both disease type and disease progression. In routine clinical practice, tremor frequency and amplitude are assessed by expert rating using a 0 to 4 integer scale. Such ratings are subjective and have poor inter-rater reliability. There is thus a clinical need for a practical and accurate method for objectively assessing hand tremor.Objective - to develop a proof-of-principle method to measure hand tremor amplitude from smartphone videos.Methods - We created a computer vision pipeline that automatically extracts salient points on the hand and produces a 1-D time series of movement due to tremor, in pixels. Using the smartphones' depth measurement, we convert this measure into real distance units. We assessed the accuracy of the method using 60 videos of simulated tremor of different amplitudes from two healthy adults. Videos were taken at distances of 50, 75 and 100 cm between hand and camera. The participants had skin tone II and VI on the Fitzpatrick scale. We compared our method to a gold-standard measurement from a slide rule. Bland-Altman methods agreement analysis indicated a bias of 0.04 cm and 95% limits of agreement from -1.27 to 1.20 cm. Furthermore, we qualitatively observed that the method was robust to limited occlusion.Clinical relevance - We have demonstrated how tremor amplitude can be measured from smartphone videos. In conjunction with tremor frequency, this approach could be used to help diagnose and monitor neurological diseases.
Collapse
|
22
|
Palani P, Sompur V, Thondiyath A. Characterisation of Physiological Tremor using Multivariate Empirical Mode Decomposition and Hilbert Transform. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083093 DOI: 10.1109/embc40787.2023.10341148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Fatigue-induced physiological tremor (FIPT) is undesirable when performing micromanipulation tasks that require high precision. It is important to characterise this form of tremor to aid in identifying and suppressing it from the intended micromanipulation task. Researchers have used surface electromyography (sEMG) and mechanomyography (MMG) separately or in combination to study tremor, which is further processed using Fourier transform-based techniques. The major drawback of using these techniques is that it assumes the signals are linear and stationary. On the contrary, Empirical Mode Decomposition (EMD) can provide localised information on energy of the non-linear and non-stationary signals at a particular time and frequency and hence is considered superior to the Fourier transform-based techniques when analysing signals like physiological tremor. This paper characterises physiological tremor by extracting the frequency band of interest using multivariate empirical mode decomposition (MEMD). The extracted frequency band is assessed using Hilbert spectral analysis for energy estimation. Energy Ratio (ER) is the parameter proposed in this study to indicate fatigue-induced physiological tremor. The linear regression of the ratio across task epoch (TE) showed an increasing trend with R2≈0.7 for sEMG signals and R2≈0.9 for accelerometer signals to indicate levels of fatigue increase.Clinical Relevance - This study presents an effective & versatile indicator of FIPT. The characterisation method discussed in this paper will form an integral part of creating control strategies that can eliminate undesired consequences of fatigue-induced tremor in prolonged surgical manipulation. In addition, in surgical training modules, it aids the learning rate of novice surgeons.
Collapse
|
23
|
Vial F, McGurrin P, Osterholt T, Ehrlich DJ, Iannacone ST, Donkervoort S, Neuhaus SB, Chao KC, Bönnemann CG, Haubenberger D, Hallett M. Electrophysiological Characterization of a MYH7 Variant with Tremor Phenotype. Mov Disord Clin Pract 2023; 10:646-651. [PMID: 37070061 PMCID: PMC10105099 DOI: 10.1002/mdc3.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Background The concept of a myopathy with associated tremor ("myogenic tremor") in humans has been previously described for specific MYBPC1 (Myosin-Binding Protein C) variants. Here we report for the first time an individual with tremor who was found to have a de-novo likely pathogenic variant in Myosin Heavy Chain 7 (MYH7). We provide a detailed electrophysiological characterization of the tremor syndrome in a human individual with a myopathy and this pathogenic MYH7 variant to provide further insight in the phenotypic spectrum and pathomechanism of myogenic tremors in skeletal sarcomeric myopathies. Methods Electromyographic recordings were obtained from facial muscles, as well as bilateral upper and lower extremities. Results 10 to 11 Hz activity was observed in the face and extremities during recordings with muscle activation. There were intermittent episodes of significant left-right coherence that would modulate across muscle groups throughout the recording, but no coherence between muscles at different levels of the neuraxis. Conclusions A possible explanation for this phenomenon is that the tremor originates at the sarcomere level within muscles, which is then picked up by muscle spindles and leads to activating input to the neuraxis segment. At the same time, the stability of the tremor frequency does suggest the presence of central oscillators at the segmental level. Thus, further studies will be needed to determine the origin of myogenic tremor and to better understand the pathomechanism.
Collapse
Affiliation(s)
- Felipe Vial
- Human Motor Control Section, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
- Facultad de Medicina Clínica Alemana Universidad del DesarrolloSantiagoChile
| | - Patrick McGurrin
- Human Motor Control Section, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Thomas Osterholt
- Human Motor Control Section, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Debra J. Ehrlich
- Parkinson's Disease Clinic, Office of the Clinical Director, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | | | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Sarah B. Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Katherine C. Chao
- Center for Mendelian Genomics, Program in Medical and Population GeneticsBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Dietrich Haubenberger
- Office of the Clinical DirectorNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
24
|
Lenka A, Jankovic J. Peripherally-induced Movement Disorders: An Update. Tremor Other Hyperkinet Mov (N Y) 2023; 13:8. [PMID: 37008994 PMCID: PMC10064913 DOI: 10.5334/tohm.758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Background Peripherally-induced movement disorders (PIMD) should be considered when involuntary or abnormal movements emerge shortly after an injury to a body part. A close topographic and temporal association between peripheral injury and onset of the movement disorders is crucial to diagnosing PIMD. PIMD is under-recognized and often misdiagnosed as functional movement disorder, although both may co-exist. Given the considerable diagnostic, therapeutic, and psychosocial-legal challenges associated with PIMD, it is crucial to update the clinical and scientific information about this important movement disorder. Methods A comprehensive PubMed search through a broad range of keywords and combinations was performed in February 2023 to identify relevant articles for this narrative review. Results The spectrum of the phenomenology of PIMD is broad and it encompasses both hyperkinetic and hypokinetic movements. Hemifacial spasm is probably the most common PIMD. Others include dystonia, tremor, parkinsonism, myoclonus, painful leg moving toe syndrome, tics, polyminimyoclonus, and amputation stump dyskinesia. We also highlight conditions such as neuropathic tremor, pseudoathetosis, and MYBPC1-associated myogenic tremor as examples of PIMD. Discussion There is considerable heterogeneity among PIMD in terms of severity and nature of injury, natural course, association with pain, and response to treatment. As some patients may have co-existing functional movement disorder, neurologists should be able to differentiate the two disorders. While the exact pathophysiology remains elusive, aberrant central sensitization after peripheral stimuli and maladaptive plasticity in the sensorimotor cortex, on a background of genetic (two-hit hypothesis) or other predisposition, seem to play a role in the pathogenesis of PIMD.
Collapse
Affiliation(s)
- Abhishek Lenka
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
25
|
Bureneva O, Safyannikov N. Strain Gauge Measuring System for Subsensory Micromotions Analysis as an Element of a Hybrid Human-Machine Interface. SENSORS (BASEL, SWITZERLAND) 2022; 22:9146. [PMID: 36501849 PMCID: PMC9737066 DOI: 10.3390/s22239146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The human central nervous system is the integrative basis for the functioning of the organism. The basis of such integration is provided by the fact that the same neurons are involved in various sets of sensory, cognitive, and motor functions. Therefore, the analysis of one set of integrative system components makes it possible to draw conclusions about the state and efficiency of the other components. Thus, to evaluate a person's cognitive properties, we can assess their involuntary motor acts, i.e., a person's subsensory reactions. To measure the parameters of involuntary motor acts, we have developed a strain gauge measuring system. This system provides measurement and estimation of the parameters of involuntary movements against the background of voluntary isometric efforts. The article presents the architecture of the system and shows the organization of the primary signal processing in analog form, in particular the separation of the signal taken from the strain-gauge sensor into frequency and smoothly varying components by averaging and subtracting the analog signals. This transfer to analog form simplifies the implementation of the digital part of the measuring system and allowed for minimizing the response time of the system while displaying the isometric forces in the visual feedback channel. The article describes the realization of the system elements and shows the results of its experimental research.
Collapse
Affiliation(s)
- Olga Bureneva
- Department of Computer Science and Engineering, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | | |
Collapse
|
26
|
Güney G, Jansen TS, Dill S, Schulz JB, Dafotakis M, Hoog Antink C, Braczynski AK. Video-Based Hand Movement Analysis of Parkinson Patients before and after Medication Using High-Frame-Rate Videos and MediaPipe. SENSORS (BASEL, SWITZERLAND) 2022; 22:7992. [PMID: 36298342 PMCID: PMC9611677 DOI: 10.3390/s22207992] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Tremor is one of the common symptoms of Parkinson's disease (PD). Thanks to the recent evolution of digital technologies, monitoring of PD patients' hand movements employing contactless methods gained momentum. Objective: We aimed to quantitatively assess hand movements in patients suffering from PD using the artificial intelligence (AI)-based hand-tracking technologies of MediaPipe. Method: High-frame-rate videos and accelerometer data were recorded from 11 PD patients, two of whom showed classical Parkinsonian-type tremor. In the OFF-state and 30 Minutes after taking their standard oral medication (ON-state), video recordings were obtained. First, we investigated the frequency and amplitude relationship between the video and accelerometer data. Then, we focused on quantifying the effect of taking standard oral treatments. Results: The data extracted from the video correlated well with the accelerometer-based measurement system. Our video-based approach identified the tremor frequency with a small error rate (mean absolute error 0.229 (±0.174) Hz) and an amplitude with a high correlation. The frequency and amplitude of the hand movement before and after medication in PD patients undergoing medication differ. PD Patients experienced a decrease in the mean value for frequency from 2.012 (±1.385) Hz to 1.526 (±1.007) Hz and in the mean value for amplitude from 8.167 (±15.687) a.u. to 4.033 (±5.671) a.u. Conclusions: Our work achieved an automatic estimation of the movement frequency, including the tremor frequency with a low error rate, and to the best of our knowledge, this is the first paper that presents automated tremor analysis before/after medication in PD, in particular using high-frame-rate video data.
Collapse
Affiliation(s)
- Gökhan Güney
- KIS*MED (AI Systems in Medicine), Technische Universität Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
| | - Talisa S. Jansen
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany
| | - Sebastian Dill
- KIS*MED (AI Systems in Medicine), Technische Universität Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
| | - Jörg B. Schulz
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany
- Jülich Aachen Research Alliance (JARA)–JARA-Institute Molecular Neuroscience and Neuroimaging, FZ Jülich and RWTH University, 52428 Jülich, Germany
| | - Manuel Dafotakis
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany
| | - Christoph Hoog Antink
- KIS*MED (AI Systems in Medicine), Technische Universität Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
| | - Anne K. Braczynski
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany
- Institut für Physikalische Biologie, Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Santos PSA, Santos EGR, Monteiro LCP, Santos-Lobato BL, Pinto GHL, Belgamo A, Cabral AS, de Athayde Costa E Silva A, Callegari B, Souza GS. The hand tremor spectrum is modified by the inertial sensor mass during lightweight wearable and smartphone-based assessment in healthy young subjects. Sci Rep 2022; 12:16808. [PMID: 36207392 PMCID: PMC9547012 DOI: 10.1038/s41598-022-21310-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
Tremors are common disorders characterized by an involuntary and relatively rhythmic oscillation that can occur in any part of the body and may be physiological or associated with some pathological condition. It is known that the mass loading can change the power spectral distribution of the tremor. Nowadays, many instruments have been used in the evaluation of tremors with bult-in inertial sensors, such as smartphones and wearables, which can significantly differ in the device mass. The aim of this study was to compare the quantification of hand tremor using Fourier spectral techniques obtained from readings of accelerometers built-in a lightweight handheld device and a commercial smartphone in healthy young subjects. We recruited 28 healthy right-handed subjects with ages ranging from 18 to 40 years. We tested hand tremors at rest and postural conditions using lightweight wearable device (5.7 g) and smartphone (169 g). Comparing both devices at resting tremor, we found with smartphone the power distribution of peak ranging 5 and 12 Hz in both hands. With wearable, the result was similar but less evident. When comparing both devices in postural tremor, there were significant differences in both frequency ranges in peak frequency and peak amplitude in both hands. Our main findings show that in resting condition the hand tremor spectrum had a higher peak amplitude in the 5–12 Hz range when the tremor was recorded with smartphones, and in postural condition there was a significantly (p < 0.05) higher peak power spectrum and peak frequency in the dominant hand tremors recorded with smartphones compared to those obtained with lightweight wearable device. Devices having different masses can alter the features of the hand tremor spectrum and their mutual comparisons can be prejudiced.
Collapse
Affiliation(s)
| | | | | | | | | | - Anderson Belgamo
- Departamento de Ciência da Computação, Instituto Federal de São Paulo, Piracicaba, Brazil
| | - André Santos Cabral
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Brazil
| | - Anselmo de Athayde Costa E Silva
- Programa de Pós-Graduação em Ciências do Movimento Humano, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - Bianca Callegari
- Programa de Pós-Graduação em Ciências do Movimento Humano, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Estudos da Motricidade Humana, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - Givago Silva Souza
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil. .,Núcleo de Medicina Tropical, Universidade Federal do Pará, Av Generalíssimo Deodoro 92, Umarizal, Belém, Pará, 66055240, Brazil.
| |
Collapse
|
28
|
Wagle Shukla A. Diagnosis and Treatment of Essential Tremor. Continuum (Minneap Minn) 2022; 28:1333-1349. [DOI: 10.1212/con.0000000000001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Zhou X, Huang H, He R, Zeng S, Liu Z, Xu Q, Guo J, Yan X, Duan R, Li J, Tang B, Xu Y, Sun Q. Clinical Features and Reclassification of Essential Tremor with
NOTCH2NLC
GGC
Repeat Expansions based on a long‐term follow‐up. Eur J Neurol 2022; 29:3600-3610. [DOI: 10.1111/ene.15552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xun Zhou
- Department of Geriatric Neurology, Xiangya Hospital Central South University Changsha Hunan China
| | - Hongyan Huang
- Department of Neurology, West China Hospital Sichuan University Chengdu China
| | - Runcheng He
- Department of Neurology, Xiangya Hospital Central South University Changsha Hunan China
| | - Sheng Zeng
- Department of Geriatric Neurology, The Second Xiangya Hospital Central South University Changsha Hunan China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital Central South University Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha Hunan China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders Central South University Changsha Hunan China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital Central South University Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha Hunan China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders Central South University Changsha Hunan China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital Central South University Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha Hunan China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders Central South University Changsha Hunan China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital Central South University Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha Hunan China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders Central South University Changsha Hunan China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences Central South University Changsha Hunan China
| | - Jinchen Li
- Department of Geriatric Neurology, Xiangya Hospital Central South University Changsha Hunan China
- Department of Neurology, Xiangya Hospital Central South University Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha Hunan China
- Center for Medical Genetics, School of Life Sciences Central South University Changsha Hunan China
| | - Beisha Tang
- Department of Geriatric Neurology, Xiangya Hospital Central South University Changsha Hunan China
- Department of Neurology, Xiangya Hospital Central South University Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha Hunan China
- Center for Medical Genetics, School of Life Sciences Central South University Changsha Hunan China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders Central South University Changsha Hunan China
| | - Yanming Xu
- Department of Neurology, West China Hospital Sichuan University Chengdu China
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital Central South University Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha Hunan China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders Central South University Changsha Hunan China
| |
Collapse
|
30
|
Vogelnik K, Koritnik B, Leonardis L, Dolenc Grošelj L, Saifee TA, Zidar J, Kojović M. Shaky hands are a part of motor neuron disease phenotype: clinical and electrophysiological study of 77 patients. J Neurol 2022; 269:4498-4509. [PMID: 35412152 DOI: 10.1007/s00415-022-11096-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In the sharp contrast with the existing literature, we frequently observe minipolymyoclonus, tremor and pseudodystonic thumb posturing in patients with motor neuron disease. We conducted a clinical and electrophysiological study to describe phenomenology, prevalence and pathophysiology of involuntary movements in motor neuron disease. METHODS We included 77 consecutive patients. Involuntary movements were assessed at rest and on action. Patients were videotaped. Arm muscle tone, power and deep tendon reflexes were evaluated. Accelerometry with electromyography was recorded in a subset of patients. RESULTS Involuntary movements were observed in 68.9% of patients and could be separated into rest minipolymyoclonus, thumb tremor, pseudodystonic thumb posture, action minipolymyoclonus, and action tremor. One-third of patients reported negative impact of involuntary movements on hand use. Logistic regression showed that rest minipolymyoclonus and thumb tremor were more likely to occur in patients with more prominent distal muscle weakness and less spasticity. Similarly, action involuntary movements were more likely to appear in weaker patients. Patients with brisk tendon reflexes were more likely to display action tremor than action minipolymyoclonus. Action tremor was characterized by accelerometer and corresponding electromyography peak frequency, which decreased with mass loading, suggesting a mechanical-reflex tremor. CONCLUSIONS Involuntary movements are common, but poorly recognized feature of motor neuron disease that may add to functional impairment. Results of our study suggest that involuntary movements are likely of peripheral origin, with a non-fused contraction of enlarged motor units being a common driving mechanism. Minipolymyoclonus appears if no synchronization of motor units occurs. When synchronization occurs via stretch reflex, mechanical-reflex tremor is generated.
Collapse
Affiliation(s)
- Katarina Vogelnik
- Division of Neurology, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Blaž Koritnik
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc Grošelj
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tabish A Saifee
- UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Janez Zidar
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Division of Neurology, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
31
|
Hossen A, Anwar AR, Koirala N, Ding H, Budker D, Wickenbrock A, Heute U, Deuschl G, Groppa S, Muthuraman M. Machine learning aided classification of tremor in multiple sclerosis. EBioMedicine 2022; 82:104152. [PMID: 35834887 PMCID: PMC9287478 DOI: 10.1016/j.ebiom.2022.104152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
|
32
|
Sahin G, Halje P, Uzun S, Jakobsson A, Petersson P. Tremor evaluation using smartphone accelerometry in standardized settings. Front Neurosci 2022; 16:861668. [PMID: 35979340 PMCID: PMC9376601 DOI: 10.3389/fnins.2022.861668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Tremor can be highly incapacitating in everyday life and typically fluctuates depending on motor state, medication status as well as external factors. For tremor patients being treated with deep-brain stimulation (DBS), adapting the intensity and pattern of stimulation according the current needs therefore has the potential to generate better symptomatic relief. We here describe a procedure for how patients independently could perform self-tests in their home to generate sensor data for on-line adjustments of DBS parameters. Importantly, the inertia sensor technology needed exists in any standard smartphone, making the procedure widely accessible. Applying this procedure, we have characterized detailed features of tremor patterns displayed by both Parkinson’s disease and essential tremor patients and directly compared measured data against both clinical ratings (Fahn-Tolosa-Marin) and finger-attached inertia sensors. Our results suggest that smartphone accelerometry, when used in a standardized testing procedure, can provide tremor descriptors that are sufficiently detailed and reliable to be used for closed-loop control of DBS.
Collapse
Affiliation(s)
- Gürdal Sahin
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Internal Medicine, Hässleholm Hospital, Region Skåne, Hässleholm, Sweden
- Skåneuro Neurology Clinic, Lund, Sweden
| | - Pär Halje
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Sena Uzun
- Skåneuro Neurology Clinic, Lund, Sweden
- Department of Clinical Sciences of Malmö and Lund, Lund University, Lund, Sweden
| | - Andreas Jakobsson
- Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Lund, Sweden
| | - Per Petersson
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- *Correspondence: Per Petersson,
| |
Collapse
|
33
|
Evaluation of rest tremor in different positions in Parkinson’s disease and essential tremor plus. Neurol Sci 2022; 43:3621-3627. [DOI: 10.1007/s10072-022-05885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
|
34
|
Dineshkumar V, Dolly DRJ, Jagannath DJ, Peter JD. Assistive Methodologies for Parkinson's Disease Tremor Management-A Health Opinion. Front Public Health 2022; 10:850805. [PMID: 35558530 PMCID: PMC9087179 DOI: 10.3389/fpubh.2022.850805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- V. Dineshkumar
- Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - D. Raveena Judie Dolly
- Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - D. J. Jagannath
- Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - J. Dinesh Peter
- Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
35
|
Panyakaew P, Jinnah HA, Shaikh AG. Clinical features, pathophysiology, treatment, and controversies of tremor in dystonia. J Neurol Sci 2022; 435:120199. [PMID: 35259651 PMCID: PMC9100855 DOI: 10.1016/j.jns.2022.120199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 02/17/2022] [Indexed: 11/15/2022]
Abstract
Dystonia and tremor frequently co-occur. In some cases, they have shared biological mechanisms, while in others dystonia and tremor are two comorbid conditions. The term "dystonic tremor" is used to describe tremor in those who have dystonia. Two mutually exclusive definitions of "dystonic tremor" were proposed. According to one definition, dystonic tremor is the tremor in the dystonic body part. An alternate definition of dystonic tremor entails irregular and jerky oscillations that have saw tooth appearance with or without overt dystonia. This paper outlines the differences in two definitions of dystonic tremor and identifies their limitations. Given the diverse views defining "dystonic tremor", this paper will use the term "tremor in dystonia". In addition, we will outline different ways to separate the subtypes of tremor in dystonia. Then we will discuss pathophysiological mechanisms derived from the objective measures and single neuron physiology analyses of tremor in dystonia. This article is part of the Special Issue "Tremor" edited by Daniel D. Truong, Mark Hallett, and Aasef Shaikh.
Collapse
Affiliation(s)
- Pattamon Panyakaew
- Chulalongkorn Center of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand; Neurology Service, Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hyder A Jinnah
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Aasef G Shaikh
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
36
|
Cho HJ. Is essential tremor a degenerative or an electrical disorder? Electrical disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:103-128. [PMID: 35750360 DOI: 10.1016/bs.irn.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Essential tremor (ET) is one of the most common movement disorders, yet we do not have a complete understanding of its pathophysiology. From a phenomenology standpoint, ET is an isolated tremor syndrome of bilateral upper limb action tremor with or without tremor in other body locations. ET is a pathological tremor that arises from excessive oscillation in the central motor network. The tremor network comprises of multiple brain regions including the inferior olive, cerebellum, thalamus, and motor cortex, and there is evidence that a dynamic oscillatory disturbance within this network leads to tremor. ET is a chronic disorder, and the natural history shows a slow progression of tremor intensity with age. There are reported data suggesting that ET follows the disease model of a neurodegenerative disorder, however whether ET is a degenerative or electrical disorder has been a subject of debate. In this chapter, we will review cumulative evidence that ET as a syndrome is a fundamentally electric disorder. The etiology is likely heterogenous and may not be primarily neurodegenerative.
Collapse
Affiliation(s)
- Hyun Joo Cho
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
37
|
Schwingenschuh P, Espay AJ. Functional tremor. J Neurol Sci 2022; 435:120208. [DOI: 10.1016/j.jns.2022.120208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/02/2021] [Indexed: 10/18/2022]
|
38
|
Pan MK, Kuo SH. Essential tremor: Clinical perspectives and pathophysiology. J Neurol Sci 2022; 435:120198. [PMID: 35299120 PMCID: PMC10363990 DOI: 10.1016/j.jns.2022.120198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Essential tremor (ET) is one of the most common neurological disorders and can be highly disabling. In recent years, studies on the clinical perspectives and pathophysiology have advanced our understanding of ET. Specifically, clinical heterogeneity of ET, with co-existence of tremor and other neurological features such as dystonia, ataxia, and cognitive dysfunction, has been identified. The cerebellum has been found to be the key brain region for tremor generation, and structural alterations of the cerebellum have been extensively studied in ET. Finally, four main ET pathophysiologies have been proposed: 1) environmental exposures to β-carboline alkaloids and the consequent olivocerebellar hyper-excitation, 2) cerebellar GABA deficiency, 3) climbing fiber synaptic pathology with related cerebellar oscillatory activity, 4) extra-cerebellar oscillatory activity. While these four theories are not mutually exclusive, they can represent distinctive ET subtypes, indicating multiple types of abnormal brain circuitry can lead to action tremor. This article is part of the Special Issue "Tremor" edited by Daniel D. Truong, Mark Hallett, and Aasef Shaikh.
Collapse
|
39
|
Merchant SHI. Emerging role of clinical neurophysiology in the diagnosis of movement disorders. Clin Neurophysiol Pract 2022; 7:49-50. [PMID: 35243185 PMCID: PMC8867001 DOI: 10.1016/j.cnp.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
|
40
|
Deuschl G, Becktepe JS, Dirkx M, Haubenberger D, Hassan A, Helmich R, Muthuraman M, Panyakaew P, Schwingenschuh P, Zeuner KE, Elble RJ. The clinical and electrophysiological investigation of tremor. Clin Neurophysiol 2022; 136:93-129. [DOI: 10.1016/j.clinph.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
|
41
|
Williams S, Fang H, Relton SD, Wong DC, Alam T, Alty JE. Accuracy of Smartphone Video for Contactless Measurement of Hand Tremor Frequency. Mov Disord Clin Pract 2021; 8:69-75. [PMID: 34853806 DOI: 10.1002/mdc3.13119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/14/2020] [Accepted: 10/20/2020] [Indexed: 11/05/2022] Open
Abstract
Background Computer vision can measure movement from video without the time and access limitations of hospital accelerometry/electromyography or the requirement to hold or strap a smartphone accelerometer. Objective To compare computer vision measurement of hand tremor frequency from smartphone video with a gold standard measure accelerometer. Methods A total of 37 smartphone videos of hands, at rest and in posture, were recorded from 15 participants with tremor diagnoses (9 Parkinson's disease, 5 essential tremor, 1 functional tremor). Video pixel movement was measured using the computing technique of optical flow, with contemporaneous accelerometer recording. Fast Fourier transform and Bland-Altman analysis were applied. Tremor amplitude was scored by 2 clinicians. Results Bland-Altman analysis of dominant tremor frequency from smartphone video compared with accelerometer showed excellent agreement: 95% limits of agreement -0.38 Hz to +0.35 Hz. In 36 of 37 videos (97%), there was <0.5 Hz difference between computer vision and accelerometer measurement. There was no significant correlation between the level of agreement and tremor amplitude. Conclusion The study suggests a potential new, contactless point-and-press measure of tremor frequency within standard clinical settings, research studies, or telemedicine.
Collapse
Affiliation(s)
- Stefan Williams
- Leeds Institute of Health Science, University of Leeds Leeds UK.,Department of Neurology Leeds Teaching Hospitals National Health Service (NHS) Trust Leeds UK
| | - Hui Fang
- Department of Computer Science Loughborough University Loughborough UK
| | - Samuel D Relton
- Leeds Institute of Health Science, University of Leeds Leeds UK
| | - David C Wong
- Division of Informatics, Imaging and Data Science University of Manchester Manchester UK
| | - Taimour Alam
- Department of Neurology Leeds Teaching Hospitals National Health Service (NHS) Trust Leeds UK
| | - Jane E Alty
- Department of Neurology Leeds Teaching Hospitals National Health Service (NHS) Trust Leeds UK.,Wicking Dementia Research and Education Centre University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
42
|
Utility of tremor electrophysiology studies. Clin Park Relat Disord 2021; 5:100108. [PMID: 34632367 PMCID: PMC8487973 DOI: 10.1016/j.prdoa.2021.100108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/20/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To determine the utility of tremor electrophysiology testing in differentiating clinically indeterminate tremor due to organic, functional, and mixed tremor types. Background Prior studies have shown that electrophysiological studies increase diagnostic sensitivity of tremor syndromes; however, few have examined mixed organic and functional tremors. Methods Patients referred for tremor to the Mayo Clinic, Rochester movement disorders lab were consecutively selected and retrospectively reviewed. Surface electromyography (EMG) recordings of upper limb muscles were performed at rest, posture, with action and distractibility tasks. Results Of 116 patients, all were clinically described as having either a resting tremor, postural tremor, action tremor, postural and action tremor, mixed resting, postural, and action tremor, or nonspecific tremulousness. Based on electrophysiological features, patients were diagnosed with organic tremor (parkinsonian, essential, mixed, rubral, cerebellar, non-specific tremulousness), functional tremor, or mixed functional and organic tremors. The median disease duration at electrophysiological confirmation of diagnosis was shorter for functional tremor at 1.5 years (IQR 1-9.3), and organic tremor at 3 years (IQR 1-15), versus mixed organic and functional tremor at 11 years (IQR 2-15) (p = 0.0422). The electrophysiology study clarified the referral/clinical diagnosis in 87 patients (75%), 26 (29.5%) of whom had functional tremor, and 61 (70.1%) had organic tremor or mixed organic/functional tremor. Variability of tremor during electrophysiology testing was associated with a change in diagnosis (p = 0.0286). Conclusion Our findings show that electrophysiological assessment of tremor can be helpful in the clinical diagnosis of patients with both organic and functional tremor.
Collapse
|
43
|
Hallett M, DelRosso LM, Elble R, Ferri R, Horak FB, Lehericy S, Mancini M, Matsuhashi M, Matsumoto R, Muthuraman M, Raethjen J, Shibasaki H. Evaluation of movement and brain activity. Clin Neurophysiol 2021; 132:2608-2638. [PMID: 34488012 PMCID: PMC8478902 DOI: 10.1016/j.clinph.2021.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/07/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022]
Abstract
Clinical neurophysiology studies can contribute important information about the physiology of human movement and the pathophysiology and diagnosis of different movement disorders. Some techniques can be accomplished in a routine clinical neurophysiology laboratory and others require some special equipment. This review, initiating a series of articles on this topic, focuses on the methods and techniques. The methods reviewed include EMG, EEG, MEG, evoked potentials, coherence, accelerometry, posturography (balance), gait, and sleep studies. Functional MRI (fMRI) is also reviewed as a physiological method that can be used independently or together with other methods. A few applications to patients with movement disorders are discussed as examples, but the detailed applications will be the subject of other articles.
Collapse
Affiliation(s)
- Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | | | - Rodger Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | - Fay B Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Stephan Lehericy
- Paris Brain Institute (ICM), Centre de NeuroImagerie de Recherche (CENIR), Team "Movement, Investigations and Therapeutics" (MOV'IT), INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate, School of Medicine, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Japan
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jan Raethjen
- Neurology Outpatient Clinic, Preusserstr. 1-9, 24105 Kiel, Germany
| | | |
Collapse
|
44
|
Ralston JD, Raina A, Benson BW, Peters RM, Roper JM, Ralston AB. Physiological Vibration Acceleration (Phybrata) Sensor Assessment of Multi-System Physiological Impairments and Sensory Reweighting Following Concussion. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2020; 13:411-438. [PMID: 33324120 PMCID: PMC7733539 DOI: 10.2147/mder.s279521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
Objective To assess the utility of a head-mounted wearable inertial motion unit (IMU)-based physiological vibration acceleration (“phybrata”) sensor to support the clinical diagnosis of concussion, classify and quantify specific concussion-induced physiological system impairments and sensory reweighting, and track individual patient recovery trajectories. Methods Data were analyzed from 175 patients over a 12-month period at three clinical sites. Comprehensive clinical concussion assessments were first completed for all patients, followed by testing with the phybrata sensor. Phybrata time series data and spatial scatter plots, eyes open (Eo) and eyes closed (Ec) phybrata powers, average power (Eo+Ec)/2, Ec/Eo phybrata power ratio, time-resolved phybrata spectral density (TRPSD) distributions, and receiver operating characteristic (ROC) curves are compared for individuals with no objective impairments and those clinically diagnosed with concussions and accompanying vestibular impairment, other neurological impairment, or both vestibular and neurological impairments. Finally, pre- and post-injury phybrata case report results are presented for a participant who was diagnosed with a concussion and subsequently monitored during treatment, rehabilitation, and return-to-activity clearance. Results Phybrata data demonstrate distinct features and patterns for individuals with no discernable clinical impairments, diagnosed vestibular pathology, and diagnosed neurological pathology. ROC curves indicate that the average power (Eo+Ec)/2 may be utilized to support clinical diagnosis of concussion, while Eo and Ec/Eo may be utilized as independent measures to confirm accompanying neurological and vestibular impairments, respectively. All 3 measures demonstrate area under the curve (AUC), sensitivity, and specificity above 90% for their respective diagnoses. Phybrata spectral analyses demonstrate utility for quantifying the severity of concussion-induced physiological impairments, sensory reweighting, and subsequent monitoring of improvements throughout treatment and rehabilitation. Conclusion Phybrata testing assists with objective concussion diagnosis and provides an important adjunct to standard concussion assessment tools by objectively ascertaining neurological and vestibular impairments, guiding targeted rehabilitation strategies, monitoring recovery, and assisting with return-to-sport/work/learn decision-making.
Collapse
Affiliation(s)
| | - Ashutosh Raina
- Center of Excellence for Pediatric Neurology, Rocklin, CA 95765, USA.,Concussion Medical Clinic, Rocklin, CA 95765, USA
| | - Brian W Benson
- Benson Concussion Institute, Calgary, Alberta T3B 6B7, Canada.,Canadian Sport Institute Calgary, Calgary, Alberta T3B 5R5, Canada
| | - Ryan M Peters
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
45
|
Mcgurrin P, Mcnames J, Wu T, Hallett M, Haubenberger D. Quantifying Tremor in Essential Tremor Using Inertial Sensors-Validation of an Algorithm. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2020; 9:2700110. [PMID: 33150096 PMCID: PMC7608862 DOI: 10.1109/jtehm.2020.3032924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/29/2020] [Accepted: 10/17/2020] [Indexed: 11/29/2022]
Abstract
Background Assessment of essential tremor is often done by a trained clinician who observes the limbs during different postures and actions and subsequently rates the tremor. While this method has been shown to be reliable, the inter- and intra-rater reliability and need for training can make the use of this method for symptom progression difficult. Many limitations of clinical rating scales can potentially be overcome by using inertial sensors, but to date many algorithms designed to quantify tremor have key limitations. Methods We propose a novel algorithm to characterize tremor using inertial sensors. It uses a two-stage approach that 1) estimates the tremor frequency of a subject and only quantifies tremor near that range; 2) estimates the tremor amplitude as the portion of signal power above baseline activity during recording, allowing tremor estimation even in the presence of other activity; and 3) estimates tremor amplitude in physical units of translation (cm) and rotation (°), consistent with current tremor rating scales. We validated the algorithm technically using a robotic arm and clinically by comparing algorithm output with data reported by a trained clinician administering a tremor rating scale to a cohort of essential tremor patients. Results Technical validation demonstrated rotational amplitude accuracy better than ±0.2 degrees and position amplitude accuracy better than ±0.1 cm. Clinical validation revealed that both rotation and position components were significantly correlated with tremor rating scale scores. Conclusion We demonstrate that our algorithm can quantify tremor accurately even in the presence of other activities, perhaps providing a step forward for at-home monitoring.
Collapse
Affiliation(s)
- Patrick Mcgurrin
- National Institute for Neurological Disorders and Stroke, National Institutes of HealthBethesdaMD20892USA
| | - James Mcnames
- Department of Electrical and Computer EngineeringPortland State UniversityPortlandOR97201USA
| | - Tianxia Wu
- Office of the Clinical DirectorNational Institute for Neurological Disorders and Stroke, National Institutes of HealthBethesdaMD20892USA
| | - Mark Hallett
- National Institute for Neurological Disorders and Stroke, National Institutes of HealthBethesdaMD20892USA
| | - Dietrich Haubenberger
- Office of the Clinical DirectorNational Institute for Neurological Disorders and Stroke, National Institutes of HealthBethesdaMD20892USA
| |
Collapse
|
46
|
Williams S, Fang H, Relton SD, Graham CD, Alty JE. Seeing the unseen: Could Eulerian video magnification aid clinician detection of subclinical Parkinson's tremor? J Clin Neurosci 2020; 81:101-104. [PMID: 33222895 DOI: 10.1016/j.jocn.2020.09.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/26/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Eulerian magnification amplifies very small movements in video, revealing otherwise invisible motion. This raises the possibility that it could enable clinician visualisation of subclinical tremor using a standard camera. We tested whether Eulerian magnification of apparently atremulous hands reveals a Parkinsonian tremor more frequently in Parkinson's than in controls. METHOD We applied Eulerian magnification to smartphone video of 48 hands that appeared atremulous during recording (22 hands from 11 control participants, 26 hands from 17 idiopathic Parkinson's participants). Videos were rated for Parkinsonian tremor appearance (yes/no) before and after Eulerian magnification by three movement disorder specialist neurologists. RESULTS The proportion of hands correctly classified as Parkinsonian or not by clinicians was significantly higher after Eulerian magnification (OR = 2.67; CI = [1.39, 5.17]; p < 0.003). Parkinsonian-appearance tremors were seen after magnification in a number of control hands, but the proportion was greater in the Parkinson's hands. CONCLUSION Eulerian magnification slightly improves clinician ability to identify apparently atremulous hands as Parkinsonian. This suggests that some of the apparent tremor revealed may be subclinical Parkinson's (pathological) tremor, and Eulerian magnification may represent a first step towards contactless visualisation of such tremor. However, the technique also reveals apparent tremor in control hands. Therefore, our method needs additional elaboration and would not be of direct clinical use in its current iteration.
Collapse
Affiliation(s)
- Stefan Williams
- University of Leeds, Leeds Institute of Health Science, Leeds, UK; Leeds Teaching Hospitals NHS Trust, UK.
| | - Hui Fang
- Loughborough University, Department of Computer Science, Loughborough, UK
| | - Samuel D Relton
- University of Leeds, Leeds Institute of Health Science, Leeds, UK
| | | | - Jane E Alty
- University of Tasmania, Hobart, Australia; Leeds Teaching Hospitals NHS Trust, UK
| |
Collapse
|
47
|
Sepúlveda Soto MC, Fasano A. Tremor: so common, so difficult. J Neurol Neurosurg Psychiatry 2020; 91:809-810. [PMID: 32457088 DOI: 10.1136/jnnp-2020-323189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/04/2022]
Affiliation(s)
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Toronto, Ontario, Canada .,Division of Neurology, University of Toronto, Toronto, ON, Canada.,Krembil Brain Institute, Toronto, ON, Canada.,The Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| |
Collapse
|
48
|
van de Wardt J, van der Stouwe AMM, Dirkx M, Elting JWJ, Post B, Tijssen MA, Helmich RC. Systematic clinical approach for diagnosing upper limb tremor. J Neurol Neurosurg Psychiatry 2020; 91:822-830. [PMID: 32457087 PMCID: PMC7402459 DOI: 10.1136/jnnp-2019-322676] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 12/18/2022]
Abstract
Tremor is the most common movement disorder worldwide, but diagnosis is challenging. In 2018, the task force on tremor of the International Parkinson and Movement Disorder Society published a consensus statement that proposes a tremor classification along two independent axes: a clinical tremor syndrome and its underlying aetiology. In line with this statement, we here propose a stepwise diagnostic approach that leads to the correct clinical and aetiological classification of upper limb tremor. We also describe the typical clinical signs of each clinical tremor syndrome. A key feature of our algorithm is the distinction between isolated and combined tremor syndromes, in which tremor is accompanied by bradykinesia, cerebellar signs, dystonia, peripheral neuropathy or brainstem signs. This distinction subsequently informs the selection of appropriate diagnostic tests, such as neurophysiology, laboratory testing, structural and dopaminergic imaging and genetic testing. We highlight treatable metabolic causes of tremor, as well as drugs and toxins that can provoke tremor. The stepwise approach facilitates appropriate diagnostic testing and avoids unnecessary investigations. We expect that the approach offered in this article will reduce diagnostic uncertainty and increase the diagnostic yield in patients with tremor.
Collapse
Affiliation(s)
- Jaron van de Wardt
- Department of Neurology, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - A M Madelein van der Stouwe
- Department of Neurology, University Medical Centre Groningen (UMCG), Groningen, The Netherlands .,Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Michiel Dirkx
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan Willem J Elting
- Department of Neurology, University Medical Centre Groningen (UMCG), Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.,Department of Clinical Neurophysiology, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Bart Post
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Marina Aj Tijssen
- Department of Neurology, University Medical Centre Groningen (UMCG), Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Rick C Helmich
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Leodori G, Belvisi D, De Bartolo MI, Fabbrini A, Costanzo M, Vial F, Conte A, Hallett M, Berardelli A. Re-emergent Tremor in Parkinson's Disease: The Role of the Motor Cortex. Mov Disord 2020; 35:1002-1011. [PMID: 32175656 PMCID: PMC8448579 DOI: 10.1002/mds.28022] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Parkinson's disease patients may show a tremor that appears after a variable delay while the arms are kept outstretched (re-emergent tremor). The objectives of this study were to investigate re-emergent tremor pathophysiology by studying the role of the primary motor cortex in this tremor and making a comparison with rest tremor. METHODS We enrolled 10 Parkinson's disease patients with both re-emergent and rest tremor. Tremor was assessed by spectral analysis, corticomuscular coherence and tremor-resetting produced by transcranial magnetic stimulation over the primary motor cortex. We also recorded transcranial magnetic stimulation-evoked potentials generated by motor cortex stimulation during rest tremor, tremor suppression during wrist extension, and re-emergent tremor. Spectral analysis, corticomuscular coherence, and tremor resetting were compared between re-emergent tremor and rest tremor. RESULTS Re-emergent tremor showed significant corticomuscular coherence, causal relation between motor cortex activity and tremor muscle and tremor resetting. The P60 component of transcranial magnetic stimulation-evoked potentials reduced in amplitude during tremor suppression, recovered before re-emergent tremor, was facilitated at re-emergent tremor onset, and returned to values similar to those of rest tremor during re-emergent tremor. Compared with rest tremor, re-emergent tremor showed similar corticomuscular coherence and tremor resetting, but slightly higher frequency. CONCLUSIONS Re-emergent tremor is causally related with the activity of the primary motor cortex, which is likely a convergence node in the network that generates re-emergent tremor. Re-emergent tremor and rest tremor share common pathophysiological mechanisms in which the motor cortex plays a crucial role. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | | | | | - Matteo Costanzo
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Felipe Vial
- Human Motor Control Section, NINDS, NIH, Bethesda, Maryland, USA
- Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Bío Bío, Chile
| | - Antonella Conte
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Bethesda, Maryland, USA
| | - Alfredo Berardelli
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
50
|
Wang KL, Burns M, Xu D, Hu W, Fan SY, Han CL, Wang Q, Michitomo S, Xia XT, Zhang JG, Wang F, Meng FG. Electromyography Biomarkers for Quantifying the Intraoperative Efficacy of Deep Brain Stimulation in Parkinson's Patients With Resting Tremor. Front Neurol 2020; 11:142. [PMID: 32161571 PMCID: PMC7054231 DOI: 10.3389/fneur.2020.00142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Deep brain stimulation (DBS) is an effective therapy for resting tremor in Parkinson's disease (PD). However, quick and objective biomarkers for quantifying the efficacy of DBS intraoperatively are lacking. Therefore, we aimed to study how DBS modulates the intraoperative neuromuscular pattern of resting tremor in PD patients and to find predictive surface electromyography (sEMG) biomarkers for quantifying the intraoperative efficacy of DBS. Methods: Intraoperative sEMG of 39 PD patients with resting tremor was measured with the DBS on and off, respectively, during the intraoperative DBS testing stage. Twelve signal features (time and frequency domains) were extracted from the intraoperative sEMG data. These sEMG features were associated with the clinical outcome to evaluate the efficacy of intraoperative DBS. Also, an sEMG-based prediction model was established to predict the clinical improvement rate (IR) of resting tremor with DBS therapy. Results: A typical resting tremor with a peak frequency of 4.93 ± 0.98 Hz (mean ± SD) was measured. Compared to the baseline, DBS modulated significant neuromuscular pattern changes in most features except for the peak frequency, by decreasing the motor unit firing rate, amplitude, or power and by changing the regularity pattern. Three sEMG features were detected with significant associations with the clinical improvement rate (IR) of the tremor scale: peak frequency power (R = 0.37, p = 0.03), weighted root mean square (R = 0.42, p = 0.01), and modified mean amplitude power (R = 0.48, p = 0.003). These were adopted to train a Gaussian process regression model with a leave-one-out cross-validation procedure. The prediction values from the trained sEMG prediction model (1,000 permutations, p = 0.003) showed a good correlation (r = 0.47, p = 0.0043) with the true IR of the tremor scale. Conclusion: DBS acutely modulated the intraoperative resting tremor, mainly by suppressing the amplitude and motor unit firing rate and by changing the regularity pattern, but not by modifying the frequency pattern. Three features showed strong robustness and could be used as quick intraoperative biomarkers to quantify and predict the efficacy of DBS in PD patients with resting tremor.
Collapse
Affiliation(s)
- Kai-Liang Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurology, Fixel Center for Neurological Diseases, Program in Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Mathew Burns
- Department of Neurology, Fixel Center for Neurological Diseases, Program in Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Dan Xu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wei Hu
- Department of Neurology, Fixel Center for Neurological Diseases, Program in Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Shi-Ying Fan
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chun-Lei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Qiao Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Shimabukuro Michitomo
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xiao-Tong Xia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fan-Gang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|