1
|
Kaluskar P, Bharadwaj D, Iyer KS, Dy C, Zheng M, Brogan DM. A Systematic Review to Compare Electrical, Magnetic, and Optogenetic Stimulation for Peripheral Nerve Repair. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:722-739. [PMID: 39381397 PMCID: PMC11456630 DOI: 10.1016/j.jhsg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 10/10/2024] Open
Abstract
The purpose of this systematic review was to assess the currently available evidence for the use of external stimulation to modulate neural activity and promote peripheral nerve regeneration. The most common external stimulations are electrical stimulation (ES), optogenetic stimulation (OS), and magnetic stimulation (MS). Understanding the comparative effectiveness of these stimulation methods is pivotal in advancing therapeutic interventions for peripheral nerve injuries. This systematic review focused on these three external stimulation modalities as potential strategies to enhance peripheral nerve repair (PNR). We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework to systematically evaluate and compare the efficiency of ES, OS, and MS in PNR. The review included studies published between 2018 and 2023 using ES, OS, or MS for PNR focused on enhancing recovery of peripheral nerve injuries in rodent models identified through PubMed and Google Scholar. The search strategies and inclusion criteria identified 19 studies (13 ES, 4 OS, and 2 MS) for detailed analysis, focusing on critical parameters such as functional recovery, histological outcomes, and electrophysiological data. Although ES demonstrated a consistent improvement in all the analyses, high-frequency repetitive MS (HFr-MS) emerged as a promising modality. HFr-MS demonstrated accelerated PNR, as histological and electrophysiological evidence indicated. In contrast, OS exhibited superior functional recovery outcomes. Notable limitations include constrained MS and OS data sets and the challenge of comparing relative improvements because of methodological diversity in evaluation techniques. Our findings underscore the potential of HFr-MS and OS in PNR while emphasizing the critical need for standardized testing protocols to facilitate meaningful cross-study comparisons. External stimulations have the potential to improve functional recovery in patients with nerve injury.
Collapse
Affiliation(s)
- Priya Kaluskar
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
- ARC Training Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Melbourne, Australia
| | - Dhruv Bharadwaj
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, the University of Western Australia, Perth, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, the University of Western Australia, Perth, Australia
| | - Christopher Dy
- Orthopaedic Surgery Division of Hand and Microsurgery, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - David M. Brogan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
2
|
Cole ER, Eggers TE, Weiss DA, Connolly MJ, Gombolay MC, Laxpati NG, Gross RE. Irregular optogenetic stimulation waveforms can induce naturalistic patterns of hippocampal spectral activity. J Neural Eng 2024; 21:036039. [PMID: 38834054 DOI: 10.1088/1741-2552/ad5407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Objective. Therapeutic brain stimulation is conventionally delivered using constant-frequency stimulation pulses. Several recent clinical studies have explored how unconventional and irregular temporal stimulation patterns could enable better therapy. However, it is challenging to understand which irregular patterns are most effective for different therapeutic applications given the massively high-dimensional parameter space.Approach. Here we applied many irregular stimulation patterns in a single neural circuit to demonstrate how they can enable new dimensions of neural control compared to conventional stimulation, to guide future exploration of novel stimulation patterns in translational settings. We optogenetically excited the septohippocampal circuit with constant-frequency, nested pulse, sinusoidal, and randomized stimulation waveforms, systematically varying their amplitude and frequency parameters.Main results.We first found equal entrainment of hippocampal oscillations: all waveforms provided similar gamma-power increase, whereas no parameters increased theta-band power above baseline (despite the mechanistic role of the medial septum in driving hippocampal theta oscillations). We then compared each of the effects of each waveform on high-dimensional multi-band activity states using dimensionality reduction methods. Strikingly, we found that conventional stimulation drove predominantly 'artificial' (different from behavioral activity) effects, whereas all irregular waveforms induced activity patterns that more closely resembled behavioral activity.Significance. Our findings suggest that irregular stimulation patterns are not useful when the desired mechanism is to suppress or enhance a single frequency band. However, novel stimulation patterns may provide the greatest benefit for neural control applications where entraining a particular mixture of bands (e.g. if they are associated with different symptoms) or behaviorally-relevant activity is desired.
Collapse
Affiliation(s)
- Eric R Cole
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Thomas E Eggers
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - David A Weiss
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America
| | - Mark J Connolly
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Matthew C Gombolay
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Nealen G Laxpati
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, United States of America
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Newark, NJ 07103, United States of America
| |
Collapse
|
3
|
Kim SY, Afroz S, Gillespie H, Downey C. A Narrative Review of Chondrocalcinosis: Clinical Presentation, Diagnosis, and Therapies. Cureus 2024; 16:e60434. [PMID: 38882993 PMCID: PMC11179734 DOI: 10.7759/cureus.60434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Calcium pyrophosphate deposition disease is categorized into radiographic chondrocalcinosis, acute calcium pyrophosphate arthritis, chronic calcium pyrophosphate arthritis, and osteoarthritis with calcium pyrophosphate deposition. These entities collectively are characterized by the deposition of calcium into joints, which then may cause localized and systemic inflammation, resulting in pain and swelling in the affected joints. Patients with the ANKH gene are more susceptible to the development of CPP arthritis as are those with primary hyperparathyroidism, hypomagnesemia, and hemochromatosis. Radiographic chondrocalcinosis is asymptomatic. Acute calcium pyrophosphate arthritis results in self-limited periods of joint pain and swelling in the affected joint. Along with localized inflammation, there may also be systemic inflammation characterized by fever and elevated inflammatory markers. Chronic calcium pyrophosphate arthritis results in periods of quiescence interrupted by flares that are identical to acute periods of disease. Osteoarthritis associated calcium pyrophosphate arthritis presents with chronic pain well described in osteoarthritis with periods of acute flares. In 2023, a joint effort by the American College of Rheumatology and the European League Against Rheumatism developed guidelines meant to aid in the recognition of calcium pyrophosphate deposition diseases. The diagnosis is made if there is proof of either crowned dens syndrome or synovial fluid analysis demonstrating calcium pyrophosphate crystals or when more than 56 points are summed utilizing the criteria described in the guidelines. Radiographic chondrocalcinosis requires no therapy. Acute calcium pyrophosphate arthritis is treated with the goal of aborting the flare. Treatment options include nonsteroidal anti-inflammatory drugs (NSAIDs), colchicine, oral corticosteroids, parenteral corticosteroids, intraarticular corticosteroids, IL-1 inhibitors, or parenteral adrenocorticotropic hormone (ACTH). The goal in treatment for chronic calcium pyrophosphate arthritis is the suppression of acute flares. The drugs used for acute flare treatment may be given as maintenance therapy with the additional options of methotrexate and hydroxychloroquine.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Rheumatology, Loma Linda University Health, Loma Linda, USA
| | - Sana Afroz
- Rheumatology, Loma Linda University Health, Loma Linda, USA
| | | | | |
Collapse
|
4
|
Benbuk A, Gulick D, Moniz-Garcia D, Liu S, Quinones-Hinojosa A, Christen JB. Wireless Stimulation of Motor Cortex Through a Collagen Dura Substitute Using an Ultra-Thin Implant Fabricated on Parylene/PDMS. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:334-346. [PMID: 37910421 PMCID: PMC11080957 DOI: 10.1109/tbcas.2023.3329447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
We present the design, fabrication, and in vivo testing of an ultra-thin (100 μm) wireless and battery-free implant for stimulation of the brain's cortex. The implant is fabricated on a flexible and transparent parylene/PDMS substrate, and it is miniaturized to dimensions of 15.6 × 6.6 mm 2. The frequency and pulse width of the monophasic voltage pulses are determined through On-Off keying (OOK) modulation of a wireless transmission at 2.45 GHz. Furthermore, the implant triggered a motor response in vivo when tested in 6 rodents. Limb response was observed by wireless stimulation of the brain's motor cortex through an FDA-approved collagen dura substitute that was placed on the dura in the craniotomy site, with no direct contact between the implant's electrodes and the brain's cortical surface. Therefore, the wireless stimulation method reported herein enables the concept of an e-dura substitute, where wireless electronics can be integrated onto a conventional dura substitute to augment its therapeutic function and administer any desired stimulation protocol without the need for post-surgical intervention for battery replacement or reprogramming stimulation parameters.
Collapse
|
5
|
Palopoli-Trojani K, Schmidt SL, Baringer KD, Slotkin TA, Peters JJ, Turner DA, Grill WM. Temporally non-regular patterns of deep brain stimulation (DBS) enhance assessment of evoked potentials while maintaining motor symptom management in Parkinson's disease (PD). Brain Stimul 2023; 16:1630-1642. [PMID: 37863388 PMCID: PMC10872419 DOI: 10.1016/j.brs.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Traditional deep brain stimulation (DBS) at fixed regular frequencies (>100 Hz) is effective in treating motor symptoms of Parkinson's disease (PD). Temporally non-regular patterns of DBS are a new parameter space that may help increase efficacy and efficiency. OBJECTIVE To compare the effects of temporally non-regular patterns of DBS to traditional regularly-spaced pulses. METHODS We simultaneously recorded local field potentials (LFP) and monitored motor symptoms (tremor and bradykinesia) in persons with PD during DBS in subthalamic nucleus (STN). We quantified both oscillatory activity and DBS local evoked potentials (DLEPs) from the LFP. RESULTS Temporally non-regular patterns were as effective as traditional pulse patterns in modulating motor symptoms, oscillatory activity, and DLEPs. Moreover, one of our novel patterns enabled recording of longer duration DLEPs during clinically effective stimulation. CONCLUSIONS Stimulation gaps of 50 ms can be used to increase efficiency and to enable regular assessment of long-duration DLEPs while maintaining effective symptom management. This may be a promising paradigm for closed-loop DBS with biomarker assessment during the gaps.
Collapse
Affiliation(s)
| | - Stephen L Schmidt
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Karley D Baringer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, USA
| | - Jennifer J Peters
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Dennis A Turner
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology and Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology and Department of Neurosurgery, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Jadidi AF, Jensen W, Zarei AA, Lontis ER, Atashzar SF. From pulse width modulated TENS to cortical modulation: based on EEG functional connectivity analysis. Front Neurosci 2023; 17:1239068. [PMID: 37600002 PMCID: PMC10433172 DOI: 10.3389/fnins.2023.1239068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Modulation in the temporal pattern of transcutaneous electrical nerve stimulation (TENS), such as Pulse width modulated (PWM), has been considered a new dimension in pain and neurorehabilitation therapy. Recently, the potentials of PWM TENS have been studied on sensory profiles and corticospinal activity. However, the underlying mechanism of PWM TENS on cortical network which might lead to pain alleviation is not yet investigated. Therefore, we recorded cortical activity using electroencephalography (EEG) from 12 healthy subjects and assessed the alternation of the functional connectivity at the cortex level up to an hour following the PWM TENS and compared that with the effect of conventional TENS. The connectivity between eight brain regions involved in sensory and pain processing was calculated based on phase lag index and spearman correlation. The alteration in segregation and integration of information in the network were investigated using graph theory. The proposed analysis discovered several statistically significant network changes between PWM TENS and conventional TENS, such as increased local strength and efficiency of the network in high gamma-band in primary and secondary somatosensory sources one hour following stimulation. Our findings regarding the long-lasting desired effects of PWM TENS support its potential as a therapeutic intervention in clinical research.
Collapse
Affiliation(s)
- Armita Faghani Jadidi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Ali Asghar Zarei
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Eugen Romulus Lontis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - S. Farokh Atashzar
- Department of Electrical and Computer Engineering, New York University, New York, NY, United States
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, United States
- Department of Biomedical Engineering, New York University, New York, NY, United States
- NYU WIRELESS, New York University (NYU), New York, NY, United States
- NYU Center for Urban Science and Progress (CUSP), New York University (NYU), New York, NY, United States
| |
Collapse
|
7
|
Cota VR, Cançado SAV, Moraes MFD. On temporal scale-free non-periodic stimulation and its mechanisms as an infinite improbability drive of the brain's functional connectogram. Front Neuroinform 2023; 17:1173597. [PMID: 37293579 PMCID: PMC10244597 DOI: 10.3389/fninf.2023.1173597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Rationalized development of electrical stimulation (ES) therapy is of paramount importance. Not only it will foster new techniques and technologies with increased levels of safety, efficacy, and efficiency, but it will also facilitate the translation from basic research to clinical practice. For such endeavor, design of new technologies must dialogue with state-of-the-art neuroscientific knowledge. By its turn, neuroscience is transitioning-a movement started a couple of decades earlier-into adopting a new conceptual framework for brain architecture, in which time and thus temporal patterns plays a central role in the neuronal representation of sampled data from the world. This article discusses how neuroscience has evolved to understand the importance of brain rhythms in the overall functional architecture of the nervous system and, consequently, that neuromodulation research should embrace this new conceptual framework. Based on such support, we revisit the literature on standard (fixed-frequency pulsatile stimuli) and mostly non-standard patterns of ES to put forward our own rationale on how temporally complex stimulation schemes may impact neuromodulation strategies. We then proceed to present a low frequency, on average (thus low energy), scale-free temporally randomized ES pattern for the treatment of experimental epilepsy, devised by our group and termed NPS (Non-periodic Stimulation). The approach has been shown to have robust anticonvulsant effects in different animal models of acute and chronic seizures (displaying dysfunctional hyperexcitable tissue), while also preserving neural function. In our understanding, accumulated mechanistic evidence suggests such a beneficial mechanism of action may be due to the natural-like characteristic of a scale-free temporal pattern that may robustly compete with aberrant epileptiform activity for the recruitment of neural circuits. Delivering temporally patterned or random stimuli within specific phases of the underlying oscillations (i.e., those involved in the communication within and across brain regions) could both potentiate and disrupt the formation of neuronal assemblies with random probability. The usage of infinite improbability drive here is obviously a reference to the "The Hitchhiker's Guide to the Galaxy" comedy science fiction classic, written by Douglas Adams. The parallel is that dynamically driving brain functional connectogram, through neuromodulation, in a manner that would not favor any specific neuronal assembly and/or circuit, could re-stabilize a system that is transitioning to fall under the control of a single attractor. We conclude by discussing future avenues of investigation and their potentially disruptive impact on neurotechnology, with a particular interest in NPS implications in neural plasticity, motor rehabilitation, and its potential for clinical translation.
Collapse
Affiliation(s)
- Vinícius Rosa Cota
- Rehab Technologies - INAIL Lab, Istituto Italiano di Tecnologia, Genoa, Italy
- Laboratory of Neuroengineering and Neuroscience, Department of Electrical Engineering, Federal University of São João del-Rei, São João del Rei, Brazil
| | - Sérgio Augusto Vieira Cançado
- Núcleo Avançado de Tratamento das Epilepsias (NATE), Felício Rocho Hospital, Fundação Felice Rosso, Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Department of Physiology and Biophysics, Núcleo de Neurociências, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Madadi Asl M, Valizadeh A, Tass PA. Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity. PLoS Comput Biol 2023; 19:e1010853. [PMID: 36724144 PMCID: PMC9891531 DOI: 10.1371/journal.pcbi.1010853] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Abstract
The synaptic organization of the brain is constantly modified by activity-dependent synaptic plasticity. In several neurological disorders, abnormal neuronal activity and pathological synaptic connectivity may significantly impair normal brain function. Reorganization of neuronal circuits by therapeutic stimulation has the potential to restore normal brain dynamics. Increasing evidence suggests that the temporal stimulation pattern crucially determines the long-lasting therapeutic effects of stimulation. Here, we tested whether a specific pattern of brain stimulation can enable the suppression of pathologically strong inter-population synaptic connectivity through spike-timing-dependent plasticity (STDP). More specifically, we tested how introducing a time shift between stimuli delivered to two interacting populations of neurons can effectively decouple them. To that end, we first used a tractable model, i.e., two bidirectionally coupled leaky integrate-and-fire (LIF) neurons, to theoretically analyze the optimal range of stimulation frequency and time shift for decoupling. We then extended our results to two reciprocally connected neuronal populations (modules) where inter-population delayed connections were modified by STDP. As predicted by the theoretical results, appropriately time-shifted stimulation causes a decoupling of the two-module system through STDP, i.e., by unlearning pathologically strong synaptic interactions between the two populations. Based on the overall topology of the connections, the decoupling of the two modules, in turn, causes a desynchronization of the populations that outlasts the cessation of stimulation. Decoupling effects of the time-shifted stimulation can be realized by time-shifted burst stimulation as well as time-shifted continuous simulation. Our results provide insight into the further optimization of a variety of multichannel stimulation protocols aiming at a therapeutic reshaping of diseased brain networks.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
9
|
Hu Y, Feng Z, Zheng L, Xu Y, Wang Z. Adding a single pulse into high-frequency pulse stimulations can substantially alter the following episode of neuronal firing in rat hippocampus. J Neural Eng 2023; 20. [PMID: 36599161 DOI: 10.1088/1741-2552/acb013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Background. High-frequency stimulation (HFS) sequences of electrical pulses are commonly utilized in many types of neuromodulation therapies. The temporal pattern of pulse sequences characterized by varying inter-pulse intervals (IPI) has emerged as an adjustable dimension to generate diverse effects of stimulations to meet the needs for developing the therapies.Objective:To explore the hypothesis that a simple manipulation of IPI by inserting a pulse in HFS with a constant IPI can substantially change the neuronal responses.Approach. Antidromic HFS (A-HFS) and orthodromic HFS (O-HFS) sequences were respectively applied at the alveus (the efferent axons) and the Schaffer collaterals (the afferent axons) of hippocampal CA1 region in anesthetized ratsin-vivo. The HFS sequences lasted 120 s with a pulse frequency of 100 Hz and an IPI of 10 ms. In the late steady period (60-120 s) of the HFS, additional pulses were inserted into the original pulse sequences to investigate the alterations of neuronal responses to the changes in IPI. The amplitudes and latencies of antidromic/orthodromic population spikes (APS/OPS) evoked by pulses were measured to evaluate the alterations of the evoked firing of CA1 pyramidal neurons caused by the pulse insertions.Main Results. During the steady period of A-HFS at efferent axons, the evoked APSs were suppressed due to intermittent axonal block. Under this situation, inserting a pulse to shorten an IPI was able to redistribute the following neuronal firing thereby generating an episode of oscillation in the evoked APS sequence including APSs with significantly increased and decreased amplitudes. Also, during the steady period of O-HFS without obvious OPS, a pulse insertion was able to generate a large OPS, indicating a synchronized firing of a large population of post-synaptic neurons induced by a putative redistribution of activations at the afferent axons under O-HFS.Significance. This study firstly showed that under the situation of HFS-induced axonal block, changing an IPI by a single-pulse insertion can substantially redistribute the evoked neuronal responses to increase synchronized firing of neuronal populations during both antidromic and O-HFS with a constant IPI originally. The finding provides a potential way to enhance the HFS action on neuronal networks without losing some other functions of HFS such as generating axonal block.
Collapse
Affiliation(s)
- Yifan Hu
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhouyan Feng
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lvpiao Zheng
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yipeng Xu
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhaoxiang Wang
- Zhejiang Lab Nanhu Headquarters, Kechuang Avenue, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
10
|
Chiappalone M, Cota VR, Carè M, Di Florio M, Beaubois R, Buccelli S, Barban F, Brofiga M, Averna A, Bonacini F, Guggenmos DJ, Bornat Y, Massobrio P, Bonifazi P, Levi T. Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering. Brain Sci 2022; 12:1578. [PMID: 36421904 PMCID: PMC9688667 DOI: 10.3390/brainsci12111578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Neuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts. In this manuscript, after providing definitions of key concepts, we reviewed the first exploitation of a real-time hardware neuromorphic prosthesis to restore the bidirectional communication between two neuronal populations in vitro. Starting from that 'case-study', we provide perspectives on the technological improvements for real-time interfacing and processing of neural signals and their potential usage for novel in vitro and in vivo experimental designs. The development of innovative neuroprosthetics for translational purposes is also presented and discussed. In our understanding, the pursuit of neuromorphic-based closed-loop neuroprostheses may spur the development of novel powerful technologies, such as 'brain-prostheses', capable of rewiring and/or substituting the injured nervous system.
Collapse
Affiliation(s)
- Michela Chiappalone
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Vinicius R. Cota
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marta Carè
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Mattia Di Florio
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - Romain Beaubois
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| | - Stefano Buccelli
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Federico Barban
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - Alberto Averna
- Department of Neurology, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Francesco Bonacini
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - David J. Guggenmos
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Yannick Bornat
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- National Institute for Nuclear Physics (INFN), 16146 Genova, Italy
| | - Paolo Bonifazi
- IKERBASQUE, The Basque Fundation, 48009 Bilbao, Spain
- Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Timothée Levi
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| |
Collapse
|
11
|
Sui Y, Yu H, Zhang C, Chen Y, Jiang C, Li L. Deep brain-machine interfaces: sensing and modulating the human deep brain. Natl Sci Rev 2022; 9:nwac212. [PMID: 36644311 PMCID: PMC9834907 DOI: 10.1093/nsr/nwac212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 01/18/2023] Open
Abstract
Different from conventional brain-machine interfaces that focus more on decoding the cerebral cortex, deep brain-machine interfaces enable interactions between external machines and deep brain structures. They sense and modulate deep brain neural activities, aiming at function restoration, device control and therapeutic improvements. In this article, we provide an overview of multiple deep brain recording and stimulation techniques that can serve as deep brain-machine interfaces. We highlight two widely used interface technologies, namely deep brain stimulation and stereotactic electroencephalography, for technical trends, clinical applications and brain connectivity research. We discuss the potential to develop closed-loop deep brain-machine interfaces and achieve more effective and applicable systems for the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Yanan Sui
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Huiling Yu
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Chen Zhang
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Yue Chen
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | - Changqing Jiang
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
12
|
Okun MS, Hickey PT, Machado AG, Kuncel AM, Grill WM. Temporally optimized patterned stimulation (TOPS®) as a therapy to personalize deep brain stimulation treatment of Parkinson’s disease. Front Hum Neurosci 2022; 16:929509. [PMID: 36092643 PMCID: PMC9454097 DOI: 10.3389/fnhum.2022.929509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022] Open
Abstract
Deep brain stimulation (DBS) is a well-established therapy for the motor symptoms of Parkinson’s disease (PD), but there remains an opportunity to improve symptom relief. The temporal pattern of stimulation is a new parameter to consider in DBS therapy, and we compared the effectiveness of Temporally Optimized Patterned Stimulation (TOPS) to standard DBS at reducing the motor symptoms of PD. Twenty-six subjects with DBS for PD received three different patterns of stimulation (two TOPS and standard) while on medication and using stimulation parameters optimized for standard DBS. Side effects and motor symptoms were assessed after 30 min of stimulation with each pattern. Subjects experienced similar types of side effects with TOPS and standard DBS, and TOPS were well-tolerated by a majority of the subjects. On average, the most effective TOPS was as effective as standard DBS at reducing the motor symptoms of PD. In some subjects a TOPS pattern was the most effective pattern. Finally, the TOPS pattern with low average frequency was found to be as effective or more effective in about half the subjects while substantially reducing estimated stimulation energy use. TOPS DBS may provide a new programing option to improve DBS therapy for PD by improving symptom reduction and/or increasing energy efficiency. Optimizing stimulation parameters specifically for TOPS DBS may demonstrate further clinical benefit of TOPS DBS in treating the motor symptoms of Parkinson’s disease.
Collapse
Affiliation(s)
- Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- *Correspondence: Michael S. Okun,
| | - Patrick T. Hickey
- Department of Neurology, Movement Disorders Center, Duke University Medical Center, Durham, NC, United States
| | - Andre G. Machado
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | - Warren M. Grill
- Deep Brain Innovations, Cleveland, OH, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Evaluating optimized temporal patterns of spinal cord stimulation (SCS). Brain Stimul 2022; 15:1051-1062. [DOI: 10.1016/j.brs.2022.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
|
14
|
Mori R, Mino H, Durand DM. Pulse-frequency-dependent resonance in a population of pyramidal neuron models. BIOLOGICAL CYBERNETICS 2022; 116:363-375. [PMID: 35303154 DOI: 10.1007/s00422-022-00925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/18/2022] [Indexed: 05/07/2023]
Abstract
Stochastic resonance is known as a phenomenon whereby information transmission of weak signal or subthreshold stimuli can be enhanced by additive random noise with a suitable intensity. Another phenomenon induced by applying deterministic pulsatile electric stimuli with a pulse frequency, commonly used for deep brain stimulation (DBS), was also shown to improve signal-to-noise ratio in neuron models. The objective of this study was to test the hypothesis that pulsatile high-frequency stimulation could improve the detection of both sub- and suprathreshold synaptic stimuli by tuning the frequency of the stimulation in a population of pyramidal neuron models. Computer simulations showed that mutual information estimated from a population of neural spike trains displayed a typical resonance curve with a peak value of the pulse frequency at 80-120 Hz, similar to those utilized for DBS in clinical situations. It is concluded that a "pulse-frequency-dependent resonance" (PFDR) can enhance information transmission over a broad range of synaptically connected networks. Since the resonance frequency matches that used clinically, PFDR could contribute to the mechanism of the therapeutic effect of DBS.
Collapse
Affiliation(s)
- Ryosuke Mori
- Department of Engineering, Graduate School of Engineering, Kanto Gakuin University, 1-50-1 Mutsuura E., Kanazawa-ku, Yokohama, 236-8501, Japan
| | - Hiroyuki Mino
- Department of Engineering, Graduate School of Engineering, Kanto Gakuin University, 1-50-1 Mutsuura E., Kanazawa-ku, Yokohama, 236-8501, Japan.
| | - Dominique M Durand
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
15
|
Ross B, Dobri S, Jamali S, Bartel L. Entrainment of somatosensory beta and gamma oscillations accompany improvement in tactile acuity after periodic and aperiodic repetitive sensory stimulation. Int J Psychophysiol 2022; 177:11-26. [DOI: 10.1016/j.ijpsycho.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
|
16
|
Wang Z, Feng Z, Yuan Y, Yang G, Hu Y, Zheng L. Bifurcations in the firing of neuronal population caused by a small difference in pulse parameters during sustained stimulations in rat hippocampus in vivo. IEEE Trans Biomed Eng 2022; 69:2893-2904. [PMID: 35254971 DOI: 10.1109/tbme.2022.3157342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The bifurcation of neuronal firing is one of important nonlinear phenomena in the nervous system and is characterized by a significant change in the rate or temporal pattern of neuronal firing on responding to a small disturbance from external inputs. Previous studies have reported firing bifurcations for individual neurons, not for a population of neurons. We hypothesized that the integrated firing of a neuronal population could also show a bifurcation behavior that should be important in certain situations such as deep brain stimulations. The hypothesis was verified by experiments of rat hippocampus in vivo. METHODS Stimulation sequences of paired-pulses with two different inter-pulse-intervals (IPIs) or with two different pulse intensities were applied on the alveus of hippocampal CA1 region in anaesthetized rats. The amplitude and area of antidromic population spike (APS) were used as indices to evaluate the differences in the responses of neuronal population to the different pulses in stimulations. RESULTS During sustained paired-pulse stimulations with a high mean pulse frequency such as ~130 Hz, a small difference of only a few percent in the two IPIs or in the two intensities was able to generate a sequence of evoked APSs with a substantial bifurcation in their amplitudes and areas. CONCLUSION Small differences in the excitatory inputs can cause nonlinearly enlarged differences in the induced firing of neuronal populations. SIGNIFICANCE The novel dynamics and bifurcation of neuronal responses to electrical stimulations provide important clues for developing new paradigms to extend neural stimulations to treat more diseases.
Collapse
|
17
|
Jadidi AF, Stevenson AJT, Zarei AA, Jensen W, Lontis R. Effect of Modulated TENS on Corticospinal Excitability in Healthy Subjects. Neuroscience 2022; 485:53-64. [PMID: 35031397 DOI: 10.1016/j.neuroscience.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
Conventional transcutaneous electrical nerve stimulation (TENS) has been reported to effectively alleviate chronic pain, including phantom limb pain (PLP). Recently, literature has focused on modulated TENS patterns, such as pulse width modulation (PWM) and burst modulation (BM), as alternatives to conventional, non-modulated (NM) sensory neurostimulation to increase the efficiency of rehabilitation. However, there is still limited knowledge of how these modulated TENS patterns affect corticospinal (CS) and motor cortex activity. Therefore, our aim was to first investigate the effect of modulated TENS patterns on CS activity and corticomotor map in healthy subjects. Motor evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) were recorded from three muscles before and after the application of TENS interventions. Four different TENS patterns (PWM, BM, NM 40 Hz, and NM 100 Hz) were applied. The results revealed significant facilitation of CS excitability following the PWM intervention. We also found an increase in the volume of the motor cortical map following the application of the PWM and NM (40 Hz). Although PLP alleviation has been reported to be associated with an enhancement of corticospinal excitability, the efficiency of the PWM intervention to induce pain alleviation should be validated in a future clinical study in amputees with PLP.
Collapse
Affiliation(s)
- Armita Faghani Jadidi
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark.
| | | | - Ali Asghar Zarei
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark
| | - Romulus Lontis
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark
| |
Collapse
|
18
|
Zheng L, Feng Z, Hu Y, Wang Z, Yuan Y, Yang G, Lu C. Adjust Neuronal Reactions to Pulses of High-Frequency Stimulation with Designed Inter-Pulse-Intervals in Rat Hippocampus In Vivo. Brain Sci 2021; 11:brainsci11040509. [PMID: 33923704 PMCID: PMC8073706 DOI: 10.3390/brainsci11040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Sequences of electrical pulses have been applied in the brain to treat certain disorders. In recent years, altering inter-pulse-interval (IPI) regularly or irregularly in real time has emerged as a promising way to modulate the stimulation effects. However, algorithms to design IPI sequences are lacking. This study proposed a novel strategy to design pulse sequences with varying IPI based on immediate neuronal reactions. Firstly, to establish the correlationship between the neuronal reactions with varying IPIs, high-frequency stimulations with varying IPI in the range of 5–10 ms were applied at the alveus of the hippocampal CA1 region of anesthetized rats in vivo. Antidromically-evoked population spikes (APS) following each IPI were recorded and used as a biomarker to evaluate neuronal reactions to each pulse. A linear mapping model was established to estimate the varied APS amplitudes by the two preceding IPIs. Secondly, the mapping model was used to derive an algorithm for designing an IPI sequence that would be applied for generating a desired neuronal reaction pre-defined by a particular APS distribution. Finally, examples of stimulations with different IPI sequences designed by the algorithm were verified by rat experiments. The results showed that the designed IPI sequences were able to reproduce the desired APS responses of different distributions in the hippocampal stimulations. The novel algorithm of IPI design provides a potential way to obtain various stimulation effects for brain stimulation therapies.
Collapse
|
19
|
Urdaneta ME, Kunigk NG, Delgado F, Fried SI, Otto KJ. Layer-specific parameters of intracortical microstimulation of the somatosensory cortex. J Neural Eng 2021; 18. [PMID: 33706301 DOI: 10.1088/1741-2552/abedde] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022]
Abstract
Objective. Intracortical microstimulation of the primary somatosensory cortex (S1) has shown great progress in restoring touch sensations to patients with paralysis. Stimulation parameters such as amplitude, phase duration, and frequency can influence the quality of the evoked percept as well as the amount of charge necessary to elicit a response. Previous studies in V1 and auditory cortices have shown that the behavioral responses to stimulation amplitude and phase duration change across cortical depth. However, this depth-dependent response has yet to be investigated in S1. Similarly, to our knowledge, the response to microstimulation frequency across cortical depth remains unexplored.Approach. To assess these questions, we implanted rats in S1 with a microelectrode with electrode-sites spanning all layers of the cortex. A conditioned avoidance behavioral paradigm was used to measure detection thresholds and responses to phase duration and frequency across cortical depth.Main results. Analogous to other cortical areas, the sensitivity to charge and strength-duration chronaxies in S1 varied across cortical layers. Likewise, the sensitivity to microstimulation frequency was layer dependent.Significance. These findings suggest that cortical depth can play an important role in the fine-tuning of stimulation parameters and in the design of intracortical neuroprostheses for clinical applications.
Collapse
Affiliation(s)
- Morgan E Urdaneta
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Nicolas G Kunigk
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Gainesville, FL, United States of America
| | - Francisco Delgado
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Gainesville, FL, United States of America
| | - Shelley I Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.,Boston Veterans Affairs Healthcare System, Boston, MA, United States of America
| | - Kevin J Otto
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America.,J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Gainesville, FL, United States of America.,Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States of America.,Department of Neurology, University of Florida, Gainesville, FL, United States of America.,Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
20
|
Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, Davidson B, Grill WM, Hariz MI, Horn A, Schulder M, Mammis A, Tass PA, Volkmann J, Lozano AM. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 2020; 17:75-87. [PMID: 33244188 DOI: 10.1038/s41582-020-00426-z] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 01/20/2023]
Abstract
Deep brain stimulation (DBS) is a neurosurgical procedure that allows targeted circuit-based neuromodulation. DBS is a standard of care in Parkinson disease, essential tremor and dystonia, and is also under active investigation for other conditions linked to pathological circuitry, including major depressive disorder and Alzheimer disease. Modern DBS systems, borrowed from the cardiac field, consist of an intracranial electrode, an extension wire and a pulse generator, and have evolved slowly over the past two decades. Advances in engineering and imaging along with an improved understanding of brain disorders are poised to reshape how DBS is viewed and delivered to patients. Breakthroughs in electrode and battery designs, stimulation paradigms, closed-loop and on-demand stimulation, and sensing technologies are expected to enhance the efficacy and tolerability of DBS. In this Review, we provide a comprehensive overview of the technical development of DBS, from its origins to its future. Understanding the evolution of DBS technology helps put the currently available systems in perspective and allows us to predict the next major technological advances and hurdles in the field.
Collapse
Affiliation(s)
- Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Nir Lipsman
- Department of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Benjamin Davidson
- Department of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Marwan I Hariz
- Department of Clinical Neuroscience, University of Umea, Umea, Sweden
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | - Michael Schulder
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Antonios Mammis
- Department of Neurosurgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jens Volkmann
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.,Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Medeiros DDC, Cota VR, Oliveira ACP, Moreira FA, Moraes MFD. The Endocannabinoid System Activation as a Neural Network Desynchronizing Mediator for Seizure Suppression. Front Behav Neurosci 2020; 14:603245. [PMID: 33281577 PMCID: PMC7691588 DOI: 10.3389/fnbeh.2020.603245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023] Open
Abstract
The understanding that hyper-excitability and hyper-synchronism in epilepsy are indissociably bound by a cause-consequence relation has only recently been challenged. Thus, therapeutic strategies for seizure suppression have often aimed at inhibiting excitatory circuits and/or activating inhibitory ones. However, new approaches that aim to desynchronize networks or compromise abnormal coupling between adjacent neural circuitry have been proven effective, even at the cost of enhancing local neuronal activation. Although most of these novel perspectives targeting circuitry desynchronization and network coupling have been implemented by non-pharmacological devices, we argue that there may be endogenous neurochemical systems that act primarily in the desynchronization component of network behavior rather than dampening excitability of individual neurons. This review explores the endocannabinoid system as one such possible pharmacological landmark for mimicking a form of "on-demand" desynchronization analogous to those proposed by deep brain stimulation in the treatment of epilepsy. This essay discusses the evidence supporting the role of the endocannabinoid system in modulating the synchronization and/or coupling of distinct local neural circuitry; which presents obvious implications on the physiological setting of proper sensory-motor integration. Accordingly, the process of ictogenesis involves pathological circuit coupling that could be avoided, or at least have its spread throughout the containment of other areas, if such endogenous mechanisms of control could be activated or potentiated by pharmacological intervention. In addition, we will discuss evidence that supports not only a weaker role played on neuronal excitability but the potential of the endocannabinoid system strengthening its modulatory effect, only when circuitry coupling surpasses a level of activation.
Collapse
Affiliation(s)
- Daniel de Castro Medeiros
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinícius Rosa Cota
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica, Universidade Federal de São João Del-Rei, São João Del-Rei, Brazil
| | - Antonio Carlos P Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabricio A Moreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Eles JR, Stieger KC, Kozai TDY. The temporal pattern of Intracortical Microstimulation pulses elicits distinct temporal and spatial recruitment of cortical neuropil and neurons. J Neural Eng 2020; 18. [PMID: 33075762 DOI: 10.1088/1741-2552/abc29c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The spacing or distribution of stimulation pulses of therapeutic neurostimulation waveforms-referred to here as the Temporal Pattern (TP)-has emerged as an important parameter for tuning the response to deep-brain stimulation and intracortical microstimulation (ICMS). While it has long been assumed that modulating the TP of ICMS may be effective by altering the rate coding of the neural response, it is unclear how it alters the neural response at the neural network level. The present study is designed to elucidate the neural response to TP at the network level. APPROACH We use in vivo two-photon imaging of ICMS in mice expressing the calcium sensor Thy1-GCaMP or the glutamate sensor hSyn-iGluSnFr to examine the layer II/III neural response to stimulations with different TPs. We study the neuronal calcium and glutamate response to TPs with the same average frequency (10Hz) and same total charge injection, but varying degrees of bursting. We also investigate one control pattern with an average frequency of 100Hz and 10X the charge injection. MAIN RESULTS Stimulation trains with the same average frequency (10 Hz) and same total charge injection but distinct temporal patterns recruits distinct sets of neurons. More-than-half (60% of 309 cells) prefer one temporal pattern over the other. Despite their distinct spatial recruitment patterns, both cells exhibit similar ability to follow 30s trains of both TPs without failing, and they exhibit similar levels of glutamate release during stimulation. Both neuronal calcium and glutamate release train to the bursting TP pattern (~21-fold increase in relative power at the frequency of bursting. Bursting also results in a statistically significant elevation in the correlation between somatic calcium activity and neuropil activity, which we explore as a metric for inhibitory-excitatory tone. Interestingly, soma-neuropil correlation during the bursting pattern is a statistically significant predictor of cell preference for TP, which exposes a key link between inhibitory-excitatory tone. Finally, using mesoscale imaging, we show that both TPs result in distal inhibition during stimulation, which reveals complex spatial and temporal interactions between temporal pattern and inhibitory-excitatory tone in ICMS. SIGNIFICANCE Our results may ultimately suggest that TP is a valuable parameter space to modulate inhibitory-excitatory tone as well as distinct network activity in ICMS. This presents a broader mechanism of action than rate coding, as previously thought. By implicating these additional mechanisms, TP may have broader utility in the clinic and should be pursued to expand the efficacy of ICMS therapies.
Collapse
Affiliation(s)
- James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Kevin C Stieger
- Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Takashi D Yoshida Kozai
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave, 5059-BST3, Pittsburgh, PA 15213, USA, Pittsburgh, Pennsylvania, UNITED STATES
| |
Collapse
|
23
|
Jadidi AF, Asghar Zarei A, Lontis R, Jensen W. Modulation of Corticospinal Excitability by Two Different Somatosensory Stimulation Patterns; A Pilot Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3573-3576. [PMID: 33018775 DOI: 10.1109/embc44109.2020.9175393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Following amputation, almost two-thirds of amputees experience unpleasant to painful sensations in the area of the missing limb. Whereas the mechanism of phantom limb pain (PLP) remains unknown, it has been shown that maladaptive cortical plasticity plays a major role in PLP. Transcutaneous electrical nerve stimulation (TENS) generating sensory input is believed to be beneficial for PLP relief. TENS effect may be caused by possible reversing reorganization at the cortical level that can be evaluated by changes in the excitability of the corticospinal (CS) pathway. Excitability changes are dependent on the chosen stimulation patterns and parameters. The aim of this study was to investigate the effect of two TENS patterns on the excitability of the CS tract among healthy subjects. We compared a non-modulated TENS as a conventional pattern with pulse width modulated TENS pattern. Motor evoked potentials (MEPs) from APB muscles of stimulated arm (TENS-APB) and contralateral arm (Control-APB) were recorded. We applied single TMS pulses on two subjects for each TENS pattern. The results showed that both patterns increase the CS excitability, while the effects of the conventional TENS is stronger. However, the amplitude of MEPs from control-APB after TENS delivery remained almost the same.Clinical Relevance- The primary results revealed changes in the activity of CS pathway for both patterns. A future study on a larger population is needed to provide strong evidence on the changes in CS excitability. The evaluation part with more factors such as changes in intracortical inhibition (ICI) may be beneficial to find an optimal modulated TENS pattern to enhance pain alleviation process in PLP.
Collapse
|
24
|
Nurmikko A. Challenges for Large-Scale Cortical Interfaces. Neuron 2020; 108:259-269. [DOI: 10.1016/j.neuron.2020.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
|
25
|
Willsey MS, Lu CW, Nason SR, Malaga KA, Lempka SF, Chestek CA, Patil PG. Distinct perceptive pathways selected with tonic and bursting patterns of thalamic stimulation. Brain Stimul 2020; 13:1436-1445. [PMID: 32712343 PMCID: PMC10788093 DOI: 10.1016/j.brs.2020.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Novel patterns of electrical stimulation of the brain and spinal cord hold tremendous promise to improve neuromodulation therapies for diverse disorders, including tremor and pain. To date, there are limited numbers of experimental studies in human subjects to help explain how stimulation patterns impact the clinical response, especially with deep brain stimulation. We propose using novel stimulation patterns during electrical stimulation of somatosensory thalamus in awake deep brain stimulation surgeries and hypothesize that stimulation patterns will influence the sensory percept without moving the electrode. METHODS In this study of 15 fully awake patients, the threshold of perception as well as perceptual characteristics were compared for tonic (trains of regularly-repeated pulses) and bursting stimulation patterns. RESULTS In a majority of subjects, tonic and burst percepts were located in separate, non-overlapping body regions (i.e., face vs. hand) without moving the stimulating electrode (p < 0.001; binomial test). The qualitative features of burst percepts also differed from those of tonic-evoked percepts as burst patterns were less likely to evoke percepts described as tingling (p = 0.013; Fisher's exact test). CONCLUSIONS Because somatosensory thalamus is somatotopically organized, percept location can be related to anatomic thalamocortical pathways. Thus, stimulation pattern may provide a mechanism to select for different thalamocortical pathways. This added control could lead to improvements in neuromodulation - such as improved efficacy and side effect attenuation - and may also improve localization for sensory prostheses.
Collapse
Affiliation(s)
- Matthew S Willsey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Charles W Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sam R Nason
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Karlo A Malaga
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, Bucknell University, Lewisburg, PA, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Robotics Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Parag G Patil
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Howard CW, Toossi A, Mushahwar VK. Variety Is the Spice of Life: Positive and Negative Effects of Noise in Electrical Stimulation of the Nervous System. Neuroscientist 2020; 27:529-543. [DOI: 10.1177/1073858420951155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Noisy stimuli may hold the key for optimal electrical stimulation of the nervous system. Possible mechanisms of noise’s impact upon neuronal function are discussed, including intracellular, extracellular, and systems-level mechanisms. Specifically, channel resonance, stochastic resonance, high conductance states, and network binding are investigated. These mechanisms are examined and possible directions of growth for the field are discussed, with examples of applications provided from the fields of deep brain stimulation or spinal cord injury. Together, this review highlights the theoretical basis and evidence base for the use of noise to enhance current stimulation paradigms of the nervous system.
Collapse
Affiliation(s)
- Calvin W. Howard
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - Amirali Toossi
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vivian K. Mushahwar
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Ng KKW, Olausson C, Vickery RM, Birznieks I. Temporal patterns in electrical nerve stimulation: Burst gap code shapes tactile frequency perception. PLoS One 2020; 15:e0237440. [PMID: 32790784 PMCID: PMC7425972 DOI: 10.1371/journal.pone.0237440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
We have previously described a novel temporal encoding mechanism in the somatosensory system, where mechanical pulses grouped into periodic bursts create a perceived tactile frequency based on the duration of the silent gap between bursts, rather than the mean rate or the periodicity. This coding strategy may offer new opportunities for transmitting information to the brain using various sensory neural prostheses and haptic interfaces. However, it was not known whether the same coding mechanisms apply when using electrical stimulation, which recruits a different spectrum of afferents. Here, we demonstrate that the predictions of the burst gap coding model for frequency perception apply to burst stimuli delivered with electrical pulses, re-emphasising the importance of the temporal structure of spike patterns in neural processing and perception of tactile stimuli. Reciprocally, the electrical stimulation data confirm that the results observed with mechanical stimulation do indeed depend on neural processing mechanisms in the central nervous system, and are not due to skin mechanical factors and resulting patterns of afferent activation.
Collapse
Affiliation(s)
- Kevin K. W. Ng
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
- * E-mail:
| | - Christoffer Olausson
- Neuroscience Research Australia, Sydney, Australia
- Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Richard M. Vickery
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Ingvars Birznieks
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
28
|
Malde S, Marcelissen T, Vrijens D, Apostilidis A, Rahnama'I S, Cardozo L, Lovick T. Sacral nerve stimulation for refractory OAB and idiopathic urinary retention: Can phenotyping improve the outcome for patients: ICI-RS 2019? Neurourol Urodyn 2020; 39 Suppl 3:S96-S103. [PMID: 32662561 DOI: 10.1002/nau.24204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/20/2019] [Indexed: 11/09/2022]
Abstract
AIMS Sacral nerve stimulation (SNS) is widely used to treat refractory idiopathic overactive bladder (OAB) and idiopathic urinary retention. However, clinical outcomes are variable and understanding predictive factors for success or side-effects would enable personalization of therapy and optimization of outcomes. At the International Consultation on Incontinence-Research Society meeting 2019, a Think Tank was convened to discuss how advances in the basic science study of SNS may be translatable into clinical practice to improve outcomes of patients undergoing SNS treatment. METHODS We conducted a literature review and expert consensus meeting focusing on current methods of phenotyping patients and specifically, how advances in basic science research of the mechanism of action of SNS can be translated into clinical practice to improve patient selection for therapy. RESULTS The terms "Idiopathic OAB" and "idiopathic urinary retention" encompass several underlying pathophysiological phenotypes. Commonly, phenotyping is based on clinical and urodynamic factors. Animal studies have demonstrated that high-frequency stimulation can produce rapid onset, reversible conduction block in peripheral nerves. Altering stimulation parameters may potentially enable personalization of therapy depending upon the clinical indication in the future. Similarly, advances in conditional and closed-loop stimulation may offer greater efficacy for certain patients. Phenotyping based on psychological comorbidity requires further study to potentially optimize patient selection for therapy. CONCLUSIONS Idiopathic OAB and idiopathic urinary retention are heterogenous conditions with multiple potential underlying phenotypes. Tailoring stimulation parameters to the needs of each individual according to phenotype could optimize outcomes. Assessing psychological comorbidity may improve patient selection. Areas for further research are proposed.
Collapse
Affiliation(s)
- Sachin Malde
- Department of Urology, Guy's Hospital, London, UK
| | - Tom Marcelissen
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Desiree Vrijens
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Sajjad Rahnama'I
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Urology, Uniklinik Aachen RWTH, Aachen, Germany
| | - Linda Cardozo
- Department of Urogynaecology, King's College Hospital, London, UK
| | - Thelma Lovick
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
29
|
Stieger KC, Eles JR, Ludwig KA, Kozai TDY. In vivo microstimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice. J Neurosci Res 2020; 98:2072-2095. [PMID: 32592267 DOI: 10.1002/jnr.24676] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Electrical stimulation has been critical in the development of an understanding of brain function and disease. Despite its widespread use and obvious clinical potential, the mechanisms governing stimulation in the cortex remain largely unexplored in the context of pulse parameters. Modeling studies have suggested that modulation of stimulation pulse waveform may be able to control the probability of neuronal activation to selectively stimulate either cell bodies or passing fibers depending on the leading polarity. Thus, asymmetric waveforms with equal charge per phase (i.e., increasing the leading phase duration and proportionately decreasing the amplitude) may be able to activate a more spatially localized or distributed population of neurons if the leading phase is cathodic or anodic, respectively. Here, we use two-photon and mesoscale calcium imaging of GCaMP6s expressed in excitatory pyramidal neurons of male mice to investigate the role of pulse polarity and waveform asymmetry on the spatiotemporal properties of direct neuronal activation with 10-Hz electrical stimulation. We demonstrate that increasing cathodic asymmetry effectively reduces neuronal activation and results in a more spatially localized subpopulation of activated neurons without sacrificing the density of activated neurons around the electrode. Conversely, increasing anodic asymmetry increases the spatial spread of activation and highly resembles spatiotemporal calcium activity induced by conventional symmetric cathodic stimulation. These results suggest that stimulation polarity and asymmetry can be used to modulate the spatiotemporal dynamics of neuronal activity thus increasing the effective parameter space of electrical stimulation to restore sensation and study circuit dynamics.
Collapse
Affiliation(s)
- Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI, USA.,Department of Neurological Surgery, University of Wisconsin Madison, Madison, WI, USA.,Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Zheng L, Feng Z, Hu H, Wang Z, Yuan Y, Wei X. The Appearance Order of Varying Intervals Introduces Extra Modulation Effects on Neuronal Firing Through Non-linear Dynamics of Sodium Channels During High-Frequency Stimulations. Front Neurosci 2020; 14:397. [PMID: 32528237 PMCID: PMC7263357 DOI: 10.3389/fnins.2020.00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
Electrical pulse stimulation in the brain has shown success in treating several brain disorders with constant pulse frequency or constant inter-pulse interval (IPI). Varying IPI may offer a variety of novel stimulation paradigms and may extend the clinical applications. However, a lack of understanding of neuronal responses to varying IPI limits its informed applications. In this study, to investigate the effects of varying IPI, we performed both rat experiments and computational modeling by applying high-frequency stimulation (HFS) to efferent axon fibers of hippocampal pyramidal cells. Antidromically evoked population spikes (PSs) were used to evaluate the neuronal responses to pulse stimulations with different IPI patterns including constant IPI, gradually varying IPI, and randomly varying IPI. All the varying IPI sequences were uniformly distributed in the same interval range of 10 to 5 ms (i.e., 100 to 200 Hz). The experimental results showed that the mean correlation coefficient of PS amplitudes to the lengths of preceding IPI during HFS with random IPI (0.72 ± 0.04, n = 7 rats) was significantly smaller than the corresponding correlation coefficient during HFS with gradual IPI (0.92 ± 0.03, n = 7 rats, P < 0.001, t-test). The PS amplitudes induced by the random IPI covered a wider range, over twice as much as that induced by the gradual IPI, indicating additional effects induced by merely changing the appearance order of IPI. The computational modeling reproduced these experimental results and provided insights into these modulatory effects through the mechanism of non-linear dynamics of sodium channels and potassium accumulation in the narrow peri-axonal space. The simulation results showed that the HFS-induced increase of extracellular potassium ([K+] o ) elevated the membrane potential of axons, delayed the recovery course of sodium channels that were repeatedly activated and inactivated during HFS, and resulted in intermittent neuronal firing. Because of non-linear membrane dynamics, random IPI recruited more neurons to fire together following specific sub-sequences of pulses than gradual IPI, thereby widening the range of PS amplitudes. In conclusion, the study demonstrated novel HFS effects of neuronal modulation induced by merely changing the appearance order of the same group of IPI of pulses, which may inform the development of new stimulation patterns to meet different demands for treating various brain diseases.
Collapse
Affiliation(s)
- Lvpiao Zheng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhouyan Feng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hanhan Hu
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhaoxiang Wang
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yue Yuan
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xuefeng Wei
- Department of Biomedical Engineering, The College of New Jersey, Ewing, NJ, United States
| |
Collapse
|
31
|
Khadka N, Harmsen IE, Lozano AM, Bikson M. Bio-Heat Model of Kilohertz-Frequency Deep Brain Stimulation Increases Brain Tissue Temperature. Neuromodulation 2020; 23:489-495. [PMID: 32058634 DOI: 10.1111/ner.13120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Early clinical trials suggest that deep brain stimulation at kilohertz frequencies (10 kHz-DBS) may be effective in improving motor symptoms in patients with movement disorders. The 10 kHz-DBS can deliver significantly more power in tissue compared to conventional frequency DBS, reflecting increased pulse compression (duty cycle). We hypothesize that 10 kHz-DBS modulates neuronal function through moderate local tissue heating, analogous to kilohertz spinal cord stimulation (10 kHz-SCS). To establish the role of tissue heating in 10 kHz-DBS (30 μs, 10 kHz, at intensities of 3-7 mApeak ), a decisive first step is to characterize the range of temperature changes during clinical kHz-DBS protocols. MATERIALS AND METHODS We developed a high-resolution magnetic resonance imaging-derived DBS model incorporating joule-heat coupled bio-heat multi-physics to establish the role of tissue heating. Volume of tissue activated (VTA) under assumptions of activating function (for 130 Hz) or heating (for 10 kHz) based neuromodulation are contrasted. RESULTS DBS waveform power (waveform RMS) determined joule heating at the deep brain tissues. Peak heating was supralinearly dependent on stimulation RMS. The 10 kHz-DBS stimulation with 2.3 to 5.4 mARMS (corresponding to 3 to 7 mApeak ) produced 0.10 to 1.38°C heating at the subthalamic nucleus (STN) target under standard tissue parameters. Maximum temperature increases were predicted inside the electrode encapsulation layer (enCAP) with 2.3 to 5.4 mARMS producing 0.13 to 1.87°C under standard tissue parameters. Tissue parameter analysis predicted STN heating was especially sensitive (ranging from 0.44 to 1.35°C at 3.8 mARMS ) to decreasing enCAP electrical conductivity and decreasing STN thermal conductivity. CONCLUSIONS Subject to validation with in vivo measurements, neuromodulation through a heating mechanism of action by 10 kHz-DBS can indicate novel therapeutic pathways and strategies for dose optimization.
Collapse
Affiliation(s)
- Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
32
|
Eles JR, Kozai TDY. In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. Biomaterials 2020; 234:119767. [PMID: 31954232 DOI: 10.1016/j.biomaterials.2020.119767] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/22/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Intracortical microelectrode implants can generate a tissue response hallmarked by glial scarring and neuron cell death within 100-150 μm of the biomaterial device. Many have proposed that any performance decline in intracortical microstimulation (ICMS) due to this foreign body tissue response could be offset by increasing the stimulation amplitude. The mechanisms of this approach are unclear, however, as there has not been consensus on how increasing amplitude affects the spatial and temporal recruitment patterns of ICMS. APPROACH We clarify these unknowns using in vivo two-photon imaging of mice transgenically expressing the calcium sensor GCaMP6s in Thy1 neurons or virally expressing the glutamate sensor iGluSnFr in neurons. Calcium and neurotransmitter activity are tracked in the neuronal somas and neuropil during long-train stimulation in Layer II/III of somatosensory cortex. MAIN RESULTS Neural calcium activity and glutamate release are dense and strongest within 20-40 μm around the electrode, falling off with distance from the electrode. Neuronal calcium increases with higher amplitude stimulations. During prolonged stimulation trains, a sub-population of somas fail to maintain calcium activity. Interestingly, neuropil calcium activity is 3-fold less correlated to somatic calcium activity for cells that drop-out during the long stimulation train compared to cells that sustain activity throughout the train. Glutamate release is apparent only within 20 μm of the electrode and is sustained for at least 10s after cessation of the 15 and 20 μA stimulation train, but not lower amplitudes. SIGNIFICANCE These results demonstrate that increasing amplitude can increase the radius and intensity of neural recruitment, but it also alters the temporal response of some neurons. Further, dense glutamate release is highest within the first 20 μm of the electrode site even at high amplitudes, suggesting that there may be spatial limitations to the amplitude parameter space. The glutamate elevation outlasts stimulation, suggesting that high-amplitude stimulation may affect neurotransmitter re-uptake. This ultimately suggests that increasing the amplitude of ICMS device stimulation may fundamentally alter the temporal neural response, which could have implications for using amplitude to improve the ICMS effect or "offset" the effects of glial scarring.
Collapse
Affiliation(s)
- James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Swan BD, Brocker DT, Gross RE, Turner DA, Grill WM. Effects of ramped-frequency thalamic deep brain stimulation on tremor and activity of modeled neurons. Clin Neurophysiol 2019; 131:625-634. [PMID: 31978847 DOI: 10.1016/j.clinph.2019.11.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We conducted intraoperative measurements of tremor to quantify the effects of temporally patterned ramped-frequency DBS trains on tremor. METHODS Seven patterns of stimulation were tested in nine subjects with thalamic DBS for essential tremor: stimulation 'off', three ramped-frequency stimulation (RFS) trains from 130 → 50 Hz, 130 → 60 Hz, and 235 → 90 Hz, and three constant frequency stimulation (CFS) trains at 72, 82, and 130 Hz. The same patterns were applied to a computational model of the thalamic neural network. RESULTS Temporally patterned 130 → 60 Hz ramped-frequency trains suppressed tremor relative to stimulation 'off,' but 130 → 50 Hz, 130 → 60 Hz, and 235 → 90 Hz ramped-frequency trains were no more effective than constant frequency stimulation with the same mean interpulse interval (IPI). Computational modeling revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but long IPIs, concurrent with pauses in afferent cerebellar and cortical firing, allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. CONCLUSION Frequency-ramped DBS produced equivalent tremor suppression as constant frequency thalamic DBS. Tremor-related thalamic burst activity may result from burst-driver input, rather than by an intrinsic rebound mechanism. SIGNIFICANCE Ramping stimulation frequency may exacerbate thalamic burst firing by introducing consecutive pauses of increasing duration to the stimulation pattern.
Collapse
Affiliation(s)
- Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA, USA
| | - Dennis A Turner
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
34
|
Su F, Kumaravelu K, Wang J, Grill WM. Model-Based Evaluation of Closed-Loop Deep Brain Stimulation Controller to Adapt to Dynamic Changes in Reference Signal. Front Neurosci 2019; 13:956. [PMID: 31551704 PMCID: PMC6746932 DOI: 10.3389/fnins.2019.00956] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is effective in suppressing the motor symptoms of Parkinson's disease (PD). Current clinically-deployed DBS technology operates in an open-loop fashion, i.e., fixed parameter high-frequency stimulation is delivered continuously, invariant to the needs or status of the patient. This poses two major challenges: (1) depletion of the stimulator battery due to the energy demands of continuous high-frequency stimulation, (2) high-frequency stimulation-induced side-effects. Closed-loop deep brain stimulation (CL DBS) may be effective in suppressing parkinsonian symptoms with stimulation parameters that require less energy and evoke fewer side effects than open loop DBS. However, the design of CL DBS comes with several challenges including the selection of an appropriate biomarker reflecting the symptoms of PD, setting a suitable reference signal, and implementing a controller to adapt to dynamic changes in the reference signal. Dynamic changes in beta oscillatory activity occur during the course of voluntary movement, and thus there may be a performance advantage to tracking such dynamic activity. We addressed these challenges by studying the performance of a closed-loop controller using a biophysically-based network model of the basal ganglia. The model-based evaluation consisted of two parts: (1) we implemented a Proportional-Integral (PI) controller to compute optimal DBS frequencies based on the magnitude of a dynamic reference signal, the oscillatory power in the beta band (13-35 Hz) recorded from model globus pallidus internus (GPi) neurons. (2) We coupled a linear auto-regressive model based mapping function with the Routh-Hurwitz stability analysis method to compute the parameters of the PI controller to track dynamic changes in the reference signal. The simulation results demonstrated successful tracking of both constant and dynamic beta oscillatory activity by the PI controller, and the PI controller followed dynamic changes in the reference signal, something that cannot be accomplished by constant open-loop DBS.
Collapse
Affiliation(s)
- Fei Su
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.,School of Mechanical and Electrical Engineering, Shandong Agricultural University, Tai'an, China.,School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Karthik Kumaravelu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
35
|
Santos-Valencia F, Almazán-Alvarado S, Rubio-Luviano A, Valdés-Cruz A, Magdaleno-Madrigal VM, Martínez-Vargas D. Temporally irregular electrical stimulation to the epileptogenic focus delays epileptogenesis in rats. Brain Stimul 2019; 12:1429-1438. [PMID: 31378602 DOI: 10.1016/j.brs.2019.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Variation in the temporal patterns of electrical pulses in stimulation trains has opened a new field of opportunity for the treatment of neurological disorders, such as pharmacoresistant temporal lobe epilepsy. Whether this novel type of stimulation affects epileptogenesis remains to be investigated. OBJECTIVE The purpose of this study was to analyze the effects of temporally irregular deep brain stimulation on kindling-induced epileptogenesis in rats. METHODS Temporally irregular deep brain stimulation was delivered at different times with respect to the kindling stimulation. Behavioral and electrographic changes on kindling acquisition were compared with a control group and a temporally regular deep brain stimulation-treated group. The propagation of epileptiform activity was analyzed with wavelet cross-correlation analysis, and interictal epileptiform discharge ratios were obtained. RESULTS Temporally irregular deep brain stimulation delivered in the epileptogenic focus during the interictal period shortened the daily afterdischarge duration, slowed the progression of seizure stages, diminished the generalized seizure duration and interfered with the propagation of epileptiform activity from the seizure onset zone to the ipsi- and contralateral motor cortex. We also found a negative correlation between seizure severity and interictal epileptiform discharges in rats stimulated with temporally irregular deep brain stimulation. CONCLUSION These results provide evidence that temporally irregular deep brain stimulation interferes with the establishment of epilepsy by delaying epileptogenesis by almost twice as long in kindling animals. Thus, temporally irregular deep brain stimulation could be a preventive approach against epilepsy.
Collapse
Affiliation(s)
- Fernando Santos-Valencia
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Ciudad de México, Mexico
| | - Salvador Almazán-Alvarado
- Laboratorio de Bioelectrónica, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Ciudad de México, Mexico
| | - Alejandro Rubio-Luviano
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Ciudad de México, Mexico
| | - Alejandro Valdés-Cruz
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Ciudad de México, Mexico
| | - Victor Manuel Magdaleno-Madrigal
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Ciudad de México, Mexico
| | - David Martínez-Vargas
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Ciudad de México, Mexico.
| |
Collapse
|
36
|
Editorial overview: Neuromodulation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|