1
|
Teli P, Soni S, Teli S, Agarwal S. Unveiling the catalytic potency of a novel hydrazone-linked covalent organic framework for the highly efficient one-pot synthesis of 1,2,4-triazolidine-3-thiones. NANOSCALE ADVANCES 2024:d4na00650j. [PMID: 39478999 PMCID: PMC11514329 DOI: 10.1039/d4na00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024]
Abstract
A novel hydrazone-linked covalent organic framework (TRIPOD-DHTH COF) was synthesized through the ultrasonic treatment of 2,5-dihydroxyterephthalohydrazide (DHTH) and 4,4',4''-[1,3,5-triazine-2,4,6-triyltris(oxy)]tris-benzaldehyde (TRIPOD). The COF was extensively analyzed using FT-IR, PXRD, SEM, TEM, BET, XPS, TGA, and DTA techniques. The characterization studies revealed the presence of mesoporous properties and high thermal stability, with a surface area measuring 2.78 m2 g-1 and an average pore size of 8.88 nm. The developed COF demonstrated exceptional catalytic activity in synthesizing 1,2,4-triazolidine-3-thiones from thiosemicarbazide and various ketones and aldehydes using a water : ethanol (1 : 2) medium at room temperature. A significant yield (80-98%) of 1,2,4-triazolidine-3-thiones was obtained in a low reaction time (4-20 min). The role of TRIPOD as a precursor in the synthesis of the COF and as a reactant in the synthesis of 1,2,4-triazolidine-3-thione (3l) was found to be fascinating. The synthesized COF maintained its catalytic activity over eight runs, underscoring its efficiency and reusability, highlighting its potential for sustainable chemical syntheses.
Collapse
Affiliation(s)
- Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Shivani Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Sunita Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| |
Collapse
|
2
|
Rathina Gesav VR, Geetha A, Vasugi S, Balachandran S, Ilangovar IGK. Emerging Two-Dimensional Ti3C2-BiOCl Nanoparticles for Excellent Antimicrobial and Antioxidant Properties. Cureus 2024; 16:e65080. [PMID: 39171070 PMCID: PMC11337143 DOI: 10.7759/cureus.65080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction MXenes (Ti3C2) represent a group of two-dimensional inorganic compounds, produced through a top-down exfoliation method. They comprise ultra-thin layers of transition metal carbides, or carbonitrides, and exhibit hydrophilic properties on their surfaces. Utilizing Ti3C2 BiOCl nanoparticles for their antimicrobial and antioxidant attributes involves enhancing synthesis, processing, and characterization techniques. Materials and method To prepare Ti3C2 MXene, dissolve 1.6 g of LiF in 20 ml of 9M HCl. Slowly add 1 g of Ti3AlC2 (titanium aluminum carbide) powder to the solution while stirring. Etch at 35°C for 24 h to remove Al layers from Ti3AlC2, leaving Ti3C2 layers. Wash the mixture with distilled water and ethanol until the pH is around 6. Collect the washed sediment by centrifugation and sonicate it in distilled water for 1 h. Centrifuge to remove unexfoliated particles. For BiOCl synthesis, dissolve 2 mmol of Bi(NO3)3·5H2O (bismuth nitrate pentahydrate) in 10 ml of 2M HCl (hydrochloric acid) with 0.5 g of PVP (polyvinylpyrrolidone). Transfer the solution to a Teflon-lined autoclave, fill it with distilled water up to 80%, and heat at 160°C for 24 h. Collect the precipitate by centrifugation, wash, and dry at 60°C for 12 h. Disperse BiOCl nanoparticles in distilled water, sonicate for 30 min, add Ti3C2 MXene dispersion, stir for 2 h, collect, wash, dry, and calcine at 400°C for 2 h. Result The Scanning Electron Microscope (SEM) utilizes electrons, rather than light, to generate highly magnified images. Energy Dispersive X-ray Spectroscopy (EDS) complements SEM by analyzing the X-ray spectrum emitted when a solid sample is bombarded with electrons, enabling localized chemical analysis. In SEM imaging, incorporating an X-ray spectrometer allows for both element mapping and point analysis. The SEM image of the prepared samples reveals accordion-like multilayer structures in BiOCl, characterized by thin sheet-like structures with numerous pores. EDS, relying on X-ray emissions from electron bombardment, facilitates detailed chemical analysis at specific locations within the sample. Conclusion Our research has shed light on the synthesis and characterization processes of two-dimensional Ti3C2 BiOCl nanoparticles, revealing their remarkable antimicrobial and antioxidant properties.
Collapse
Affiliation(s)
- V Ra Rathina Gesav
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - A Geetha
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - S Vasugi
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - S Balachandran
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - I G K Ilangovar
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Sadeghi M, Khoshnevisan B. DFT study of Ti 3C 2 MXene nanosheets as a drug delivery system for 5-fluorouracil. RSC Adv 2024; 14:20300-20311. [PMID: 38919286 PMCID: PMC11197842 DOI: 10.1039/d4ra02399d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we modeled a drug delivery system consisting of Ti3C2 MXene nanosheets as a carrier and 5-fluorouracil (FU) as a selected drug molecule using density functional theory (DFT) computations. During the adsorption procedure, electronic, magnetic and structural properties were calculated. Our results showed that the adsorption of FU drugs on the Ti3C2 surface is thermodynamically favorable. Our spin-polarized calculations also determined that the magnetization of Ti3C2 after FU adsorption does not change significantly, which is an important factor for magnetic hyperthermia and drug delivery. In addition, our calculations indicate that in the slightly acidic environment of tumor tissue, FU could start to be released (by increasing distance from the MXene surface and then instability of the complex) from the Ti3C2 surface without any substantial change in the structural properties. This study could provide a deep understanding of the interaction mechanism of 2-dimensional (2D) MXene materials with drugs at the atomistic scale and have an important contribution to the discovery and application of novel 2D materials as drug delivery systems.
Collapse
|
4
|
Manoharan AK, Batcha MIK, Mahalingam S, Raj B, Kim J. Recent Advances in Two-Dimensional Nanomaterials for Healthcare Monitoring. ACS Sens 2024; 9:1706-1734. [PMID: 38563358 DOI: 10.1021/acssensors.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.
Collapse
Affiliation(s)
- Arun Kumar Manoharan
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
| | - Mohamed Ismail Kamal Batcha
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai 600130, Tamil Nadu, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Balwinder Raj
- Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab 144011, India
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Taherpoor P, Farzad F, Zaboli A. Engineering of surface-modified CuBTC-MXene nanocarrier for adsorption and co-loading of curcumin/paclitaxel from aqueous solutions for synergistic multi-therapy of cancer. J Biomol Struct Dyn 2024; 42:1145-1156. [PMID: 37066617 DOI: 10.1080/07391102.2023.2201331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
Two-dimensional (2D) nanomaterials can improve drug delivery by reducing toxicity, increasing bioavailability and boosting efficacy. In this study, the simultaneous use of transition metal carbides and nitrides (MXenes) along with copper (II) benzene-1, 3, 5-tricarboxylate metal-organic framework (Cu - BTC/MOF) as attractive nanocarriers are investigated for loading and delivering curcumin (CUR) and paclitaxel (PTX) drugs to cancer cells. The efficiency of surface termination (bare and oxygen) in the adsorption of PTX and CUR drugs and the co-loading of these two drugs are evaluated. Our results show that the strongest interaction energy belongs to the adsorption of drug CUR on the MXNNO-Cu-BTC adsorbent, while the interaction of PTX drug with the MXNO- Cu-BTC in the MXNO-Cu-BTC/PTX&CUR system is the lowest due to the particular structure of the drug and the adsorbent. Our results show that at the beginning simulation, the interaction energy between the PTX drug and water in PTX/MXN system is -4645.48 kJ/mol, which reduces to -3848.71 kJ/mol after the system reaches equilibrium. Therefore, the inspected adsorbents have a good performance in adsorbing CUR and PTX drugs. The obtained results from this investigation provide valuable information about experimental studies by medical scientists in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Farzaneh Farzad
- Department of Chemistry, University of Birjand, Birjand, Iran
| | - Ameneh Zaboli
- Department of Chemistry, University of Birjand, Birjand, Iran
| |
Collapse
|
6
|
Rodrigo MJ, Cardiel MJ, Fraile JM, Mayoral JA, Pablo LE, Garcia-Martin E. Laponite for biomedical applications: An ophthalmological perspective. Mater Today Bio 2024; 24:100935. [PMID: 38239894 PMCID: PMC10794930 DOI: 10.1016/j.mtbio.2023.100935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024] Open
Abstract
Clay minerals have been applied in biomedicine for thousands of years. Laponite is a nanostructured synthetic clay with the capacity to retain and progressively release drugs. In recent years there has been a resurgence of interest in Laponite application in various biomedical areas. This is the first paper to review the potential biomedical applications of Laponite in ophthalmology. The introduction briefly covers the physical, chemical, rheological, and biocompatibility features of different routes of administration. After that, emphasis is placed on 1) drug delivery for antibiotics, anti-inflammatories, growth factors, other proteins, and cancer treatment; 2) bleeding prevention or treatment; and 3) tissue engineering through regenerative medicine using scaffolds in intraocular and extraocular tissue. Although most scientific research is not performed on the eye, both the findings and the new treatments resulting from that research are potentially applicable in ophthalmology since many of the drugs used are the same, the tissue evaluated in vitro or in vivo is also present in the eye, and the pathologies treated also occur in the eye. Finally, future prospects for this emerging field are discussed.
Collapse
Affiliation(s)
- Maria J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
| | - Maria J. Cardiel
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
- Department of Pathology, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Jose M. Fraile
- Institute for Chemical Synthesis and Homogeneous Catalysis (ISQCH), Faculty of Sciences, University of Zaragoza–CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jose A. Mayoral
- Institute for Chemical Synthesis and Homogeneous Catalysis (ISQCH), Faculty of Sciences, University of Zaragoza–CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luis E. Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
- Biotech Vision SLP (spin-off Company), University of Zaragoza, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
| |
Collapse
|
7
|
Lukin I, Erezuma I, Desimone MF, Zhang YS, Dolatshahi-Pirouz A, Orive G. Nanomaterial-based drug delivery of immunomodulatory factors for bone and cartilage tissue engineering. BIOMATERIALS ADVANCES 2023; 154:213637. [PMID: 37778293 DOI: 10.1016/j.bioadv.2023.213637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
As life expectancy continues to increase, so do disorders related to the musculoskeletal system. Orthopedics-related impairments remain a challenge, with nearly 325 thousand and 120 thousand deaths recorded in 2019. Musculoskeletal system, including bone and cartilage tissue, is a living system in which cells constantly interact with the immune system, which plays a key role in the tissue repair process. An alternative to bridge the gap between these two systems is exploiting nanomaterials, as they have proven to serve as delivery agents of an array of molecules, including immunomodulatory agents (anti-inflammatory drugs, cytokines), as well as having the ability to mimic tissue by their nanoscopic structure and promote tissue repair per se. Therefore, this review outlooks nanomaterials and immunomodulatory factors widely employed in the area of bone and cartilage tissue engineering. Emerging developments in nanomaterials for delivery of immunomodulatory agents for bone and cartilage tissue engineering applications have also been discussed. It can be concluded that latest progress in nanotechnology have enabled to design intricate systems with the ability to deliver biologically active agents, promoting tissue repair and regeneration; thus, nanomaterials studied herein have shown great potential to serve as immunomodulatory agents in the area of tissue engineering.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
8
|
Stealey ST, Gaharwar AK, Zustiak SP. Laponite-Based Nanocomposite Hydrogels for Drug Delivery Applications. Pharmaceuticals (Basel) 2023; 16:821. [PMID: 37375768 DOI: 10.3390/ph16060821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Hydrogels are widely used for therapeutic delivery applications due to their biocompatibility, biodegradability, and ability to control release kinetics by tuning swelling and mechanical properties. However, their clinical utility is hampered by unfavorable pharmacokinetic properties, including high initial burst release and difficulty in achieving prolonged release, especially for small molecules (<500 Da). The incorporation of nanomaterials within hydrogels has emerged as viable option as a method to trap therapeutics within the hydrogel and sustain release kinetics. Specifically, two-dimensional nanosilicate particles offer a plethora of beneficial characteristics, including dually charged surfaces, degradability, and enhanced mechanical properties within hydrogels. The nanosilicate-hydrogel composite system offers benefits not obtainable by just one component, highlighting the need for detail characterization of these nanocomposite hydrogels. This review focuses on Laponite, a disc-shaped nanosilicate with diameter of 30 nm and thickness of 1 nm. The benefits of using Laponite within hydrogels are explored, as well as examples of Laponite-hydrogel composites currently being investigated for their ability to prolong the release of small molecules and macromolecules such as proteins. Future work will further characterize the interplay between nanosilicates, hydrogel polymer, and encapsulated therapeutics, and how each of these components affect release kinetics and mechanical properties.
Collapse
Affiliation(s)
- Samuel T Stealey
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77433, USA
| | | |
Collapse
|
9
|
Nomicisio C, Ruggeri M, Bianchi E, Vigani B, Valentino C, Aguzzi C, Viseras C, Rossi S, Sandri G. Natural and Synthetic Clay Minerals in the Pharmaceutical and Biomedical Fields. Pharmaceutics 2023; 15:pharmaceutics15051368. [PMID: 37242610 DOI: 10.3390/pharmaceutics15051368] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Clay minerals are historically among the most used materials with a wide variety of applications. In pharmaceutical and biomedical fields, their healing properties have always been known and used in pelotherapy and therefore attractive for their potential. In recent decades, the research has therefore focused on the systematic investigation of these properties. This review aims to describe the most relevant and recent uses of clays in the pharmaceutical and biomedical field, especially for drug delivery and tissue engineering purposes. Clay minerals, which are biocompatible and non-toxic materials, can act as carriers for active ingredients while controlling their release and increasing their bioavailability. Moreover, the combination of clays and polymers is useful as it can improve the mechanical and thermal properties of polymers, as well as induce cell adhesion and proliferation. Different types of clays, both of natural (such as montmorillonite and halloysite) and synthetic origin (layered double hydroxides and zeolites), were considered in order to compare them and to assess their advantages and different uses.
Collapse
Affiliation(s)
- Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
10
|
Relvas CM, Santos SG, Oliveira MJ, Magalhães FD, Pinto AM. Nanomaterials for Skin Cancer Photoimmunotherapy. Biomedicines 2023; 11:biomedicines11051292. [PMID: 37238966 DOI: 10.3390/biomedicines11051292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Skin cancer is one of the most common types of cancer, and its incidence continues to increase. It is divided into two main categories, melanoma and non-melanoma. Treatments include surgery, radiation therapy, and chemotherapy. The relatively high mortality in melanoma and the existing recurrence rates, both for melanoma and non-melanoma, create the need for studying and developing new approaches for skin cancer management. Recent studies have focused on immunotherapy, photodynamic therapy, photothermal therapy, and photoimmunotherapy. Photoimmunotherapy has gained much attention due to its excellent potential outcomes. It combines the advantages of photodynamic and/or photothermal therapy with a systemic immune response, making it ideal for metastatic cancer. This review critically discusses different new nanomaterials' properties and mechanisms of action for skin cancer photoimmunotherapy and the main results obtained in the field.
Collapse
Affiliation(s)
- Carlota M Relvas
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Susana G Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Maria J Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernão D Magalhães
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Artur M Pinto
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| |
Collapse
|
11
|
Liu Z, Tang Q, Liu RT, Yu MZ, Peng H, Zhang CQ, Zhu ZZ, Wei XJ. Laponite intercalated biomimetic multilayer coating prevents glucocorticoids induced orthopedic implant failure. Bioact Mater 2023; 22:60-73. [PMID: 36203962 PMCID: PMC9519439 DOI: 10.1016/j.bioactmat.2022.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
|
12
|
Ma H, Qiao X, Han L. Advances of Mussel-Inspired Nanocomposite Hydrogels in Biomedical Applications. Biomimetics (Basel) 2023; 8:biomimetics8010128. [PMID: 36975358 PMCID: PMC10046294 DOI: 10.3390/biomimetics8010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels, with 3D hydrophilic polymer networks and excellent biocompatibilities, have emerged as promising biomaterial candidates to mimic the structure and properties of biological tissues. The incorporation of nanomaterials into a hydrogel matrix can tailor the functions of the nanocomposite hydrogels to meet the requirements for different biomedical applications. However, most nanomaterials show poor dispersion in water, which limits their integration into the hydrophilic hydrogel network. Mussel-inspired chemistry provides a mild and biocompatible approach in material surface engineering due to the high reactivity and universal adhesive property of catechol groups. In order to attract more attention to mussel-inspired nanocomposite hydrogels, and to promote the research work on mussel-inspired nanocomposite hydrogels, we have reviewed the recent advances in the preparation of mussel-inspired nanocomposite hydrogels using a variety of nanomaterials with different forms (nanoparticles, nanorods, nanofibers, nanosheets). We give an overview of each nanomaterial modified or hybridized by catechol or polyphenol groups based on mussel-inspired chemistry, and the performances of the nanocomposite hydrogel after the nanomaterial's incorporation. We also highlight the use of each nanocomposite hydrogel for various biomedical applications, including drug delivery, bioelectronics, wearable/implantable biosensors, tumor therapy, and tissue repair. Finally, the challenges and future research direction in designing mussel-inspired nanocomposite hydrogels are discussed.
Collapse
Affiliation(s)
- Haohua Ma
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| | - Xin Qiao
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| | - Lu Han
- Laboratory for Marine Drugs and Bioproducts, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266005, China
| |
Collapse
|
13
|
Chen SH, Bell DR, Luan B. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Adv Drug Deliv Rev 2022; 186:114336. [PMID: 35597306 PMCID: PMC9212071 DOI: 10.1016/j.addr.2022.114336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 12/28/2022]
Abstract
Two-dimensional (2D) nanomaterials such as graphene are increasingly used in research and industry for various biomedical applications. Extensive experimental and theoretical studies have revealed that 2D nanomaterials are promising drug delivery vehicles, yet certain materials exhibit toxicity under biological conditions. So far, it is known that 2D nanomaterials possess strong adsorption propensities for biomolecules. To mitigate potential toxicity and retain favorable physical and chemical properties of 2D nanomaterials, it is necessary to explore the underlying mechanisms of interactions between biomolecules and nanomaterials for the subsequent design of biocompatible 2D nanomaterials for nanomedicine. The purpose of this review is to integrate experimental findings with theoretical observations and facilitate the study of 2D nanomaterial interaction with biomolecules at the molecular level. We discuss the current understanding and progress of 2D nanomaterial interaction with proteins, lipid membranes, and DNA based on molecular dynamics (MD) simulation. In this review, we focus on the 2D graphene nanosheet and briefly discuss other 2D nanomaterials. With the ever-growing computing power, we can image nanoscale processes using MD simulation that are otherwise not observable in experiment. We expect that molecular characterization of the complex behavior between 2D nanomaterials and biomolecules will help fulfill the goal of designing effective 2D nanomaterials as drug delivery platforms.
Collapse
Affiliation(s)
- Serena H Chen
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - David R Bell
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, USA.
| |
Collapse
|
14
|
Jampilek J, Kralova K. Advances in Biologically Applicable Graphene-Based 2D Nanomaterials. Int J Mol Sci 2022; 23:6253. [PMID: 35682931 PMCID: PMC9181547 DOI: 10.3390/ijms23116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Climate change and increasing contamination of the environment, due to anthropogenic activities, are accompanied with a growing negative impact on human life. Nowadays, humanity is threatened by the increasing incidence of difficult-to-treat cancer and various infectious diseases caused by resistant pathogens, but, on the other hand, ensuring sufficient safe food for balanced human nutrition is threatened by a growing infestation of agriculturally important plants, by various pathogens or by the deteriorating condition of agricultural land. One way to deal with all these undesirable facts is to try to develop technologies and sophisticated materials that could help overcome these negative effects/gloomy prospects. One possibility is to try to use nanotechnology and, within this broad field, to focus also on the study of two-dimensional carbon-based nanomaterials, which have excellent prospects to be used in various economic sectors. In this brief up-to-date overview, attention is paid to recent applications of graphene-based nanomaterials, i.e., graphene, graphene quantum dots, graphene oxide, graphene oxide quantum dots, and reduced graphene oxide. These materials and their various modifications and combinations with other compounds are discussed, regarding their biomedical and agro-ecological applications, i.e., as materials investigated for their antineoplastic and anti-invasive effects, for their effects against various plant pathogens, and as carriers of bioactive agents (drugs, pesticides, fertilizers) as well as materials suitable to be used in theranostics. The negative effects of graphene-based nanomaterials on living organisms, including their mode of action, are analyzed as well.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
15
|
Roy S, Deo KA, Singh KA, Lee HP, Jaiswal A, Gaharwar AK. Nano-bio interactions of 2D molybdenum disulfide. Adv Drug Deliv Rev 2022; 187:114361. [PMID: 35636569 DOI: 10.1016/j.addr.2022.114361] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022]
Abstract
Two-dimensional (2D) molybdenum disulfide (MoS2) is an ultrathin nanomaterial with a high degree of anisotropy, surface-to-volume ratio, chemical functionality and mechanical strength. These properties together enable MoS2 to emerge as a potent nanomaterial for diverse biomedical applications including drug delivery, regenerative medicine, biosensing and bioelectronics. Thus, understanding the interactions of MoS2 with its biological interface becomes indispensable. These interactions, referred to as "nano-bio" interactions, play a key role in determining the biocompatibility and the pathways through which the nanomaterial influences molecular, cellular and biological function. Herein, we provide a critical overview of the nano-bio interactions of MoS2 and emphasize on how these interactions dictate its biomedical applications including intracellular trafficking, biodistribution and biodegradation. Also, a critical evaluation of the interactions of MoS2 with proteins and specific cell types such as immune cells and progenitor/stem cells is illustrated which governs the short-term and long-term compatibility of MoS2-based biomedical devices.
Collapse
|
16
|
Bhunia S, Jaiswal MK, Singh KA, Deo KA, Gaharwar AK. 2D Covalent Organic Framework Direct Osteogenic Differentiation of Stem Cells. Adv Healthc Mater 2022; 11:e2101737. [PMID: 35104392 PMCID: PMC9354911 DOI: 10.1002/adhm.202101737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/08/2021] [Indexed: 12/14/2022]
Abstract
2D covalent organic frameworks (COFs) are an emerging class of crystalline porous organic polymers with a wide-range of potential applications. However, poor processability, aqueous instability, and low water dispersibility greatly limit their practical biomedical implementation. Herein, a new class of hydrolytically stable 2D COFs for sustained delivery of drugs to direct stem cell fate is reported. Specifically, a boronate-based COF (COF-5) is stabilized using amphiphilic polymer Pluronic F127 (PLU) to produce COF-PLU nanoparticles with thickness of ≈25 nm and diameter ≈200 nm. These nanoparticles are internalized via clathrin-mediated endocytosis and have high cytocompatibility (half-inhibitory concentration ≈1 mg mL-1 ). Interestingly, the 2D COFs induce osteogenic differentiation in human mesenchymal stem cells, which is unique. In addition, an osteogenic agent-dexamethasone-is able to be loaded within the porous structure of COFs for sustained delivery which further enhances the osteoinductive ability. These results demonstrate for the first time the fabrication of hydrolytically stable 2D COFs for sustained delivery of dexamethasone and demonstrate its osteoinductive characteristics.
Collapse
Affiliation(s)
- Sukanya Bhunia
- Biomedical Engineering College of Engineering Texas A&M University College Station TX 77843 USA
| | - Manish K. Jaiswal
- Biomedical Engineering College of Engineering Texas A&M University College Station TX 77843 USA
| | - Kanwar Abhay Singh
- Biomedical Engineering College of Engineering Texas A&M University College Station TX 77843 USA
| | - Kaivalya A. Deo
- Biomedical Engineering College of Engineering Texas A&M University College Station TX 77843 USA
| | - Akhilesh K. Gaharwar
- Biomedical Engineering College of Engineering Texas A&M University College Station TX 77843 USA
- Interdisciplinary Program in Genetics Texas A&M University College Station TX 77843 USA
- Material Science and Engineering College of Engineering Texas A&M University College Station TX 77843 USA
- Center for Remote Health Technologies and Systems Texas A&M University College Station TX 77843 USA
| |
Collapse
|