1
|
Hirata K, Araki T. Formation dynamics of branching structure in the slippery DLCA model. J Chem Phys 2024; 160:234901. [PMID: 38885038 DOI: 10.1063/5.0197122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
We numerically investigated the aggregation dynamics and resulting network structures of colloidal gels using the slippery diffusion-limited cluster aggregation (DLCA) model. In this model, bonds are irreversibly formed upon the particle contacts, but the angles among them are not fixed, unlike the conventional DLCA. This allows clusters to be deformed in the process of aggregation. By characterizing the aggregation dynamics and using a reduced network scheme, our simulation revealed two distinct branching structure formation routes depending on the particle volume fraction ϕ. In lower volume fraction systems (ϕ ≤ 8%), the deformations of small-size clusters proceed prior to the percolation. When the Maxwell criterion is satisfied and the clusters become mechanically stable, the formation of the branching structure is nearly completed. After forming the branching structures, they aggregate and form a larger percolating network. Then, the aggregation proceeds through the elongation and straightening of the chain parts of the network. In higher volume fraction systems (ϕ > 8%), on the other hand, the clusters percolate, and a fine and homogeneous branching structure is formed at the early stage of the aggregation. In the aging stage, it collapses into a denser and more heterogeneous structure and becomes more stable. Our quantitative analyses of the branching structure will shed light on a new strategy for describing the network formation and elasticity of colloidal gels.
Collapse
Affiliation(s)
- Koichi Hirata
- Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan
| | - Takeaki Araki
- Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Schulz F, Jain A, Dallari F, Markmann V, Lehmkühler F. In situ aggregation and early states of gelation of gold nanoparticle dispersions. SOFT MATTER 2024; 20:3836-3844. [PMID: 38651356 DOI: 10.1039/d4sm00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The aggregation and onset of gelation of PEGylated gold nanoparticles dispersed in a glycerol-water mixture is studied by small-angle X-ray scattering and X-ray photon correlation spectroscopy. Tracking structural dynamics with sub-ms time resolution over a total experimental time of 8 hours corresponding to a time windows larger than 108 Brownian times and varying the temperature between 298 K and 266 K we can identify three regimes. First, while cooling to 275 K the particles show Brownian motion that slows down due to the increasing viscosity. Second, upon further cooling the static structure changes significantly, indicated by a broad structure factor peak. We attribute this to the formation of aggregates while the dynamics are still dominated by single-particle diffusion. Finally, the relaxation functions become more and more stretched accompanied by an increased slow down of the dynamics. At the same time the structure changes continuously indicating the onset of gelation. Our observations further suggest that the colloidal aggregation and gelation is characterized first by structural changes with a subsequent slowing down of the systems dynamics. The analysis also reveals that the details of the gelation process and the gel structure strongly depend on the thickness of the PEG-coating of the gold nanoparticles.
Collapse
Affiliation(s)
- Florian Schulz
- Institute of Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Avni Jain
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Francesco Dallari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Verena Markmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Felix Lehmkühler
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| |
Collapse
|
3
|
Yamamoto A, Inui T, Suzuki D, Urayama K. Stress-independent delay time in yielding of dilute colloidal gels. SOFT MATTER 2023; 19:9082-9091. [PMID: 37987474 DOI: 10.1039/d3sm01238g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
We investigate the yielding under shear for dilute poly(N-isopropyl acrylamide-co-fumaric acid) (PNIPAM-FAc) colloidal gels obtained above the volume phase transition temperature. In this temperature range, the microgel suspensions form colloidal gels due to hydrophobic interparticle interactions under appropriate pH and ionic strength conditions. Step-strain tests revealed that yielding occurs when the applied strain exceeds a specific threshold, requiring a finite, stress-independent delay time (tD). This is distinct from previous findings on delayed yielding in other colloidal gels, where tD decreases with increasing stress. In the start-up shear tests, yield strain (γy) at a higher strain rate () increases with escalating , while γy at lower remains constant. This characteristic γy- relationship is successfully explained by a simple model using the stress-independent tD value without an adjustable fitting parameter. The distinctive yielding behavior, underscored by a stress-independent tD, is expected to originate from strain-induced macroscopic phase separation into a dense colloidal gel and water, observable separately from rheological measurements.
Collapse
Affiliation(s)
- Atsushi Yamamoto
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takumi Inui
- Graduate School of Textile Science & Technology, Shinshu University, Ueda 386-8567, Japan.
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, Ueda 386-8567, Japan.
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda 386-8567, Japan
| | - Kenji Urayama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
4
|
Crothers RA, Orr NHP, van der Meer B, Dullens RPA, Yanagishima T. Characterization and Optimization of Fluorescent Organosilica Colloids for 3D Confocal Microscopy Prepared Under "Zero-Flow" Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5306-5314. [PMID: 37021809 DOI: 10.1021/acs.langmuir.2c03306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We optimize and characterize the preparation of 3-trimethoxysilyl propyl methacrylate (TPM) colloidal suspensions for three-dimensional confocal microscopy. We revisit a simple synthesis of TPM microspheres by nucleation of droplets from prehydrolyzed TPM oil in a "zero-flow" regime and demonstrate how precise and reproducible control of particle size may be achieved via single-step nucleation with a focus on how the reagents are mixed. We also revamp the conventional dyeing method for TPM particles to achieve uniform transfer of a fluorophore to the organosilica droplets, improving particle identification. Finally, we illustrate how a ternary mixture of tetralin, trichloroethylene, and tetrachloroethylene may be used as a suspension medium which matches the refractive index of these particles while allowing independent control of the density mismatch between particle and solvent.
Collapse
Affiliation(s)
- Ruth A Crothers
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Nicholas H P Orr
- Laboratoire Charles Coulomb UMR 5221, Université de Montpellier, F-34095 Montpellier, France
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Berend van der Meer
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Roel P A Dullens
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Taiki Yanagishima
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8224, Japan
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
5
|
Li Y, Royer JR, Sun J, Ness C. Impact of granular inclusions on the phase behavior of colloidal gels. SOFT MATTER 2023; 19:1342-1347. [PMID: 36723039 DOI: 10.1039/d2sm01648f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Colloidal gels formed from small attractive particles are commonly used in formulations to keep larger components in suspension. Despite extensive work characterising unfilled gels, little is known about how the larger inclusions alter the phase behavior and microstructure of the colloidal system. Here we use numerical simulations to examine how larger 'granular' particles can alter the gel transition phase boundaries. We find two distinct regimes depending on both the filler size and native gel structure: a 'passive' regime where the filler fits into already-present voids, giving little change in the transition, and an 'active' regime where the filler no longer fits in these voids and instead perturbs the native structure. In this second regime the phase boundary is controlled by an effective colloidal volume fraction given by the available free volume.
Collapse
Affiliation(s)
- Yankai Li
- School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3FG, UK.
| | - John R Royer
- SUPA, School of Physics and Astronomy, The University of Edinburgh, King's Buildings, Edinburgh EH9 3FD, UK
| | - Jin Sun
- School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3FG, UK.
| | - Christopher Ness
- School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3FG, UK.
| |
Collapse
|
6
|
Xu Y, Mason TG. Complex optical transport, dynamics, and rheology of intermediately attractive emulsions. Sci Rep 2023; 13:1791. [PMID: 36720895 PMCID: PMC9889356 DOI: 10.1038/s41598-023-28308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
Introducing short-range attractions in Brownian systems of monodisperse colloidal spheres can substantially impact their structures and consequently their optical transport and rheological properties. Here, for size-fractionated colloidal emulsions, we show that imposing an intermediate strength of attraction, well above but not much larger than thermal energy ([Formula: see text] [Formula: see text], through micellar depletion leads to a striking notch in the measured inverse mean free path of optical transport, [Formula: see text], as a function of droplet volume fraction, [Formula: see text]. This notch, which appears between the hard-sphere glass transition, [Formula: see text], and maximal random jamming, [Formula: see text], implies the existence of a greater population of compact dense clusters of droplets, as compared to tenuous networks of droplets in strongly attractive emulsion gels. We extend a prior decorated core-shell network model for strongly attractive colloidal systems to include dense non-percolating clusters that do not contribute to shear rigidity. By constraining this extended model using the measured [Formula: see text], we improve and expand the microrheological interpretation of diffusing wave spectroscopy (DWS) experiments made on attractive colloidal systems. Our measurements and modeling demonstrate richness and complexity in optical transport and shear rheological properties of dense, disordered colloidal systems having short-range intermediate attractions between moderately attractive glasses and strongly attractive gels.
Collapse
Affiliation(s)
- Yixuan Xu
- grid.19006.3e0000 0000 9632 6718Department of Materials Science and Engineering, University of California- Los Angeles, Los Angeles, CA 90095 USA
| | - Thomas G. Mason
- grid.19006.3e0000 0000 9632 6718Department of Chemistry and Biochemistry, University of California- Los Angeles, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Physics and Astronomy, University of California- Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
7
|
Hansen J, Moll CJ, López Flores L, Castañeda-Priego R, Medina-Noyola M, Egelhaaf SU, Platten F. Phase separation and dynamical arrest of protein solutions dominated by short-range attractions. J Chem Phys 2023; 158:024904. [PMID: 36641409 DOI: 10.1063/5.0128643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The interplay of liquid-liquid phase separation (LLPS) and dynamical arrest can lead to the formation of gels and glasses, which is relevant for such diverse fields as condensed matter physics, materials science, food engineering, and the pharmaceutical industry. In this context, protein solutions exhibit remarkable equilibrium and non-equilibrium behaviors. In the regime where attractive and repulsive forces compete, it has been demonstrated, for example, that the location of the dynamical arrest line seems to be independent of ionic strength, so that the arrest lines at different ionic screening lengths overlap, in contrast to the LLPS coexistence curves, which strongly depend on the salt concentration. In this work, we show that the same phenomenology can also be observed when the electrostatic repulsions are largely screened, and the range and strength of the attractions are varied. In particular, using lysozyme in brine as a model system, the metastable gas-liquid binodal and the dynamical arrest line as well as the second virial coefficient have been determined for various solution conditions by cloud-point measurements, optical microscopy, centrifugation experiments, and light scattering. With the aim of understanding this new experimental phenomenology, we apply the non-equilibrium self-consistent generalized Langevin equation theory to a simple model system with only excluded volume plus short-range attractions, to study the dependence of the predicted arrest lines on the range of the attractive interaction. The theoretical predictions find a good qualitative agreement with experiments when the range of the attraction is not too small compared with the size of the protein.
Collapse
Affiliation(s)
- Jan Hansen
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| | - Carolyn J Moll
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| | - Leticia López Flores
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | | | - Magdaleno Medina-Noyola
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| | - Florian Platten
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Physicochemical study of aqueous dispersions of organogel particles: Role of the ingredients and formulation process leading to colloidal hydrogels. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Barwich S, Möbius ME. The elastic response of graphene oxide gels as a crumpling phenomenon. SOFT MATTER 2022; 18:8223-8228. [PMID: 36317477 DOI: 10.1039/d2sm00918h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The broad spectrum of chemical and electronic properties of 2D nanomaterials makes them attractive in a wide range of applications, especially in the context of printed electronics. Therefore, understanding the rheological properties of nanosheet suspensions is crucial for many additive manufacturing techniques. Here, we study the viscoelastic properties of aqueous suspensions of graphene oxide nanosheets. We show that in the gel phase, the magnitude of the elastic response and its scaling with volume fraction is independent of the lateral size of the particles and the interaction strength between them. We explain this behavior by modelling the elasticity of these gels as a crumpling phenomenon where the magnitude of the response is determined by the bending stiffness and thickness of the sheets. Due to their low bending stiffness these nanosheets crumple upon deformation and may therefore be considered soft colloids. Furthermore, we provide an explanation why the yield strain decreases with packing fraction for these gels.
Collapse
Affiliation(s)
- Sebastian Barwich
- School of Physics, AMBER and CRANN Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| | - Matthias E Möbius
- School of Physics, AMBER and CRANN Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
10
|
Dagès N, Bouthier LV, Matthews L, Manneville S, Divoux T, Poulesquen A, Gibaud T. Interpenetration of fractal clusters drives elasticity in colloidal gels formed upon flow cessation. SOFT MATTER 2022; 18:6645-6659. [PMID: 36004507 DOI: 10.1039/d2sm00481j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Colloidal gels are out-of-equilibrium soft solids composed of attractive Brownian particles that form a space-spanning network at low volume fractions. The elastic properties of these systems result from the network microstructure, which is very sensitive to shear history. Here, we take advantage of such sensitivity to tune the viscoelastic properties of a colloidal gel made of carbon black nanoparticles. Starting from a fluidized state at an applied shear rate 0, we use an abrupt flow cessation to trigger a liquid-to-solid transition. We observe that the resulting gel is all the more elastic when the shear rate 0 is low and that the viscoelastic spectra can be mapped on a master curve. Moreover, coupling rheometry to small angle X-ray scattering allows us to show that the gel microstructure is different from gels solely formed by thermal agitation where only two length scales are observed: the dimension of the colloidal and the dimension of the fractal aggregates. Competition between shear and thermal energy leads to gels with three characteristic length scales. Such gels structure in a percolated network of fractal clusters that interpenetrate each other. Experiments on gels prepared with various shear histories reveal that cluster interpenetration increases with decreasing values of the shear rate 0 applied before flow cessation. These observations strongly suggest that cluster interpenetration drives the gel elasticity, which we confirm using a structural model. Our results, which are in stark contrast to previous literature, where gel elasticity was either linked to cluster connectivity or to bending modes, highlight a novel local parameter controlling the macroscopic viscoelastic properties of colloidal gels.
Collapse
Affiliation(s)
- Noémie Dagès
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F69342 Lyon, France.
| | - Louis V Bouthier
- Groupe CFL, CEMEF, Mines Paristech, 1 Rue Claude Daunesse, 06904 Sophia Antipolis, France
| | - Lauren Matthews
- ESRF - The European Synchrotron, 38043 Grenoble Cedex, France
| | - Sébastien Manneville
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F69342 Lyon, France.
| | - Thibaut Divoux
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F69342 Lyon, France.
| | - Arnaud Poulesquen
- CEA, DES, ISEC, DE2D, SEAD, LCBC, Université of Montpellier, Marcoule, France
| | - Thomas Gibaud
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F69342 Lyon, France.
| |
Collapse
|
11
|
Jiang Y, Makino S, Royer JR, Poon WCK. Flow-Switched Bistability in a Colloidal Gel with Non-Brownian Grains. PHYSICAL REVIEW LETTERS 2022; 128:248002. [PMID: 35776445 DOI: 10.1103/physrevlett.128.248002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/11/2022] [Indexed: 05/28/2023]
Abstract
We show that mixing a colloidal gel with larger, non-Brownian grains generates novel flow-switched bistability. Using a combination of confocal microscopy and rheology, we find that prolonged moderate shear results in liquefaction by collapsing the gel into disjoint globules, whereas fast shear gives rise to a yield-stress gel with granular inclusions upon flow cessation. We map out the state diagram of this new "mechanorheological material" with varying granular content and demonstrate that its behavior is also found in separate mixture using different particles and solvents.
Collapse
Affiliation(s)
- Yujie Jiang
- SUPA, School of Physics and Astronomy, The University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Soichiro Makino
- SUPA, School of Physics and Astronomy, The University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - John R Royer
- SUPA, School of Physics and Astronomy, The University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Wilson C K Poon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
12
|
Ferreira A, Abbas M, Carvin P, Bacchin P. Colloid dynamics near phase transition: A model for the relaxation of concentrated layers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Torres-Carbajal A, Ramírez-González PE. On the dynamically arrested states of equilibrium and non-equilibrium gels: a comprehensive Brownian dynamics study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:224002. [PMID: 35263718 DOI: 10.1088/1361-648x/ac5c23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
In this work a systematic study over a wide number of final thermodynamic states for two gel-forming liquids was performed. Such two kind of gel formers are distinguished by their specific interparticle interaction potential. We explored several thermodynamic states determining the thermodynamic, structural and dynamic properties of both liquids after a sudden temperature change. The thermodynamic analysis allows to identify that the liquid with short range attraction and long range repulsion lacks of a stable gas-liquid phase separation liquid, in contrast with the liquid with short range attractions. Thus, although for some thermodynamic states the structural behavior, measured by the static structure factor, is similar to and characteristic of the gel phase, for the short range attractive fluid the gel phase is a consequence of a spinodal decomposition process. In contrast, gelation in the short range attraction and long range repulsion liquid is not due to a phase separation. We also analyze the similarities and differences of the dynamic behavior of both systems through the analysis of the mean square displacement, the self part of the intermediate scattering function, the diffusion coefficient and theαrelaxation time. Finally, using one of the main results of the non-equilibrium self-consistent generalized Langevin equation theory (NE-SCGLE), we determine the dynamic arrest phase diagram in the volume fraction and temperature (φvsT) plane.
Collapse
Affiliation(s)
- Alexis Torres-Carbajal
- Instituto de Física 'Manuel Sandoval Vallarta', Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, Mexico
- Tecnológico Nacional de México-Instituto Tecnológico de León, Léon, Guanajuato 37290, Mexico
| | - Pedro E Ramírez-González
- Investigadores CONACYT-Instituto de Física 'Manuel Sandoval Vallarta', Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, Mexico
| |
Collapse
|
14
|
Zhang XN, Du C, Wei Z, Du M, Zheng Q, Wu ZL. Stretchable Sponge-like Hydrogels with a Unique Colloidal Network Produced by Polymerization-Induced Microphase Separation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Ning Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Cong Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhou Wei
- Hangzhou Toka Ink Co., Ltd., Hangzhou 310018, China
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Elastic and Dynamic Heterogeneity in Aging Alginate Gels. Polymers (Basel) 2021; 13:polym13213618. [PMID: 34771174 PMCID: PMC8587450 DOI: 10.3390/polym13213618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anomalous aging in soft glassy materials has generated a great deal of interest because of some intriguing features of the underlying relaxation process, including the emergence of "ultra-long-range" dynamical correlations. An intriguing possibility is that such a huge correlation length is reflected in detectable ensemble fluctuations of the macroscopic material properties. We tackle this issue by performing replicated mechanical and dynamic light scattering (DLS) experiments on alginate gels, which recently emerged as a good model-system of anomalous aging. Here we show that some of the monitored quantities display wide variability, including large fluctuations in the stress relaxation and the occasional presence of two-step decay in the DLS decorrelation functions. By quantifying elastic fluctuation through the standard deviation of the elastic modulus and dynamic heterogeneities through the dynamic susceptibility, we find that both quantities do increase with the gel age over a comparable range. Our results suggest that large elastic fluctuations are closely related to ultra-long-range dynamical correlation, and therefore may be a general feature of anomalous aging in gels.
Collapse
|
16
|
Immink JN, Maris JJE, Capellmann RF, Egelhaaf SU, Schurtenberger P, Stenhammar J. ArGSLab: a tool for analyzing experimental or simulated particle networks. SOFT MATTER 2021; 17:8354-8362. [PMID: 34550148 PMCID: PMC8457054 DOI: 10.1039/d1sm00692d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Microscopy and particle-based simulations are both powerful techniques to study aggregated particulate matter such as colloidal gels. The data provided by these techniques often contains information on a wide array of length scales, but structural analysis methods typically focus on the local particle arrangement, even though the data also contains information about the particle network on the mesoscopic length scale. In this paper, we present a MATLAB software package for quantifying mesoscopic network structures in colloidal samples. ArGSLab (Arrested and Gelated Structures Laboratory) extracts a network backbone from the input data, which is in turn transformed into a set of nodes and links for graph theory-based analysis. The routines can process both image stacks from microscopy as well as explicit coordinate data, and thus allows quantitative comparison between simulations and experiments. ArGSLab furthermore enables the accurate analysis of microscopy data where, e.g., an extended point spread function prohibits the resolution of individual particles. We demonstrate the resulting output for example datasets from both microscopy and simulation of colloidal gels, in order to showcase the capability of ArGSLab to quantitatively analyze data from various sources. The freely available software package can be used either with a provided graphical user interface or directly as a MATLAB script.
Collapse
Affiliation(s)
- Jasper N Immink
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | - J J Erik Maris
- Inorganic Chemistry and Catalysis Group, Utrecht University, Utrecht, The Netherlands
| | - Ronja F Capellmann
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Peter Schurtenberger
- Division of Physical Chemistry, Lund University, Lund, Sweden
- Lund Institute of advanced Neutron and X-ray Science (LINXS), Lund University, Lund, Sweden
| | | |
Collapse
|
17
|
Rocklin DZ, Hsiao L, Szakasits M, Solomon MJ, Mao X. Elasticity of colloidal gels: structural heterogeneity, floppy modes, and rigidity. SOFT MATTER 2021; 17:6929-6934. [PMID: 34180465 DOI: 10.1039/d0sm00053a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rheological measurements of model colloidal gels reveal that large variations in the shear moduli as colloidal volume-fraction changes are not reflected by simple structural parameters such as the coordination number, which remains almost a constant. We resolve this apparent contradiction by conducting a normal-mode analysis of experimentally measured bond networks of gels of colloidal particles with short-ranged attraction. We find that structural heterogeneity of the gels, which leads to floppy modes and a nonaffine-affine crossover as frequency increases, evolves as a function of the volume fraction and is key to understanding the frequency-dependent elasticity. Without any free parameters, we achieve good qualitative agreement with the measured mechanical response. Furthermore, we achieve universal collapse of the shear moduli through a phenomenological spring-dashpot model that accounts for the interplay between fluid viscosity, particle dissipation, and contributions from the affine and non-affine network deformation.
Collapse
Affiliation(s)
- D Zeb Rocklin
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA. and School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA.
| | - Lilian Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27606, USA
| | - Megan Szakasits
- Department of Chemical Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, Michigan 48109, USA
| | - Michael J Solomon
- Department of Chemical Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, Michigan 48109, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
18
|
Soto-Bustamante F, Valádez-Pérez NE, Castañeda-Priego R, Laurati M. Potential-invariant network structures in Asakura-Oosawa mixtures with very short attraction range. J Chem Phys 2021; 155:034903. [PMID: 34293895 DOI: 10.1063/5.0052273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We systematically investigated the structure and aggregate morphology of gel networks formed by colloid-polymer mixtures with a moderate colloid volume fraction and different values of the polymer-colloid size ratio, always in the limit of short-range attraction. Using the coordinates obtained from confocal microscopy experiments, we determined the radial, angular, and nearest-neighbor distribution functions together with the cluster radius of gyration as a function of size ratio and polymer concentration. The analysis of the structural correlations reveals that the network structure becomes increasingly less sensitive to the potential strength with the decreasing polymer-colloid size ratio. For the larger size ratios, compact clusters are formed at the onset of network formation and become progressively more branched and elongated with increasing polymer concentration/attraction strength. For the smallest size ratios, we observe that the aggregate structures forming the gel network are characterized by similar morphological parameters for different values of the size ratio and the polymer concentration, indicating a limited evolution of the gel structure with variations of the parameters that determine the interaction potential between colloids.
Collapse
Affiliation(s)
- Fernando Soto-Bustamante
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150 León, Mexico
| | - Néstor E Valádez-Pérez
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Carretera Emiliano Zapata km 8, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ramón Castañeda-Priego
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150 León, Mexico
| | - Marco Laurati
- Dipartimento di Chimica and CSGI, Università di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Nabizadeh M, Jamali S. Life and death of colloidal bonds control the rate-dependent rheology of gels. Nat Commun 2021; 12:4274. [PMID: 34257286 PMCID: PMC8277829 DOI: 10.1038/s41467-021-24416-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Colloidal gels exhibit rich rheological responses under flowing conditions. A clear understanding of the coupling between the kinetics of the formation/rupture of colloidal bonds and the rheological response of attractive gels is lacking. In particular, for gels under different flow regimes, the correlation between the complex rheological response, the bond kinetics, microscopic forces, and an overall micromechanistic view is missing in previous works. Here, we report the bond dynamics in short-range attractive particles, microscopically measured stresses on individual particles and the spatiotemporal evolution of the colloidal structures in different flow regimes. The interplay between interparticle attraction and hydrodynamic stresses is found to be the key to unraveling the physical underpinnings of colloidal gel rheology. Attractive stresses, mostly originating from older bonds dominate the response at low Mason number (the ratio of shearing to attractive forces) while hydrodynamic stresses tend to control the rheology at higher Mason numbers, mostly arising from short-lived bonds. Finally, we present visual mapping of particle bond numbers, their life times and their borne stresses under different flow regimes.
Collapse
Affiliation(s)
- Mohammad Nabizadeh
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
20
|
Bin Sintang MD, Danthine S, Tavernier I, Van de Walle D, Doan CD, Aji Muhammad DR, Rimaux T, Dewettinck K. Polymer coated fat crystals as oil structuring agents: Fabrication and oil-structuring properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Machlus S, Zhang S, Mao X. Correlated rigidity percolation in fractal lattices. Phys Rev E 2021; 103:012104. [PMID: 33601532 DOI: 10.1103/physreve.103.012104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
Rigidity percolation (RP) is the emergence of mechanical stability in networks. Motivated by the experimentally observed fractal nature of materials like colloidal gels and disordered fiber networks, we study RP in a fractal network where intrinsic correlations in particle positions is controlled by the fractal iteration. Specifically, we calculate the critical packing fractions of site-diluted lattices of Sierpiński gaskets (SG's) with varying degrees of fractal iteration. Our results suggest that although the correlation length exponent and fractal dimension of the RP of these lattices are identical to that of the regular triangular lattice, the critical volume fraction is dramatically lower due to the fractal nature of the network. Furthermore, we develop a simplified model for an SG lattice based on the fragility analysis of a single SG. This simplified model provides an upper bound for the critical packing fractions of the full fractal lattice, and this upper bound is strictly obeyed by the disorder averaged RP threshold of the fractal lattices. Our results characterize rigidity in ultralow-density fractal networks.
Collapse
Affiliation(s)
- Shae Machlus
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Shang Zhang
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
22
|
Mandal MK, Barai M, Sultana H, Manna E, Musib D, Maiti DK, Panda AK. Interfacial and Aggregation Behaviour of Sodium Dodecyl Sulphate Induced by Ionic Liquids. J Oleo Sci 2021; 70:185-194. [PMID: 33456012 DOI: 10.5650/jos.ess20303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aggregation studies of anionic surfactant sodium dodecyl sulphate (SDS) was investigated in aqueous 1-butyl-3-methylimidazolium chloride [bmim]Cl and N-butyl-N-methyl pyrrolidinium tetrafluoroborate [bmp]BF4 ionic liquid (IL) solutions respectively. Systems were studied by surface tension, conductance, UV-VIS absorption/emission spectroscopy and dynamic light scattering. Critical micelle concentration (CMC) values gradually decreased with increasing IL concentration which indicates synergistic interaction between ILs and SDS. Gibbs free energy change results demonstrated spontaneous micellization induced by ILs; however the effect of ILs were not similar to the corresponding regular salts (NaCl and NaBF4). Aggregation number (n) of micelles, determined by fluorescence quenching method, indicate that the 'n' values increase with increasing ILs concentration, induced by the oppositely charged IL cation. Size of the micelles, determined by dynamic light scattering studies, increased with increasing ILs concentration, which were due to the formation of larger aggregates; the aggregates are considered to be comprised of the anionic surfactant with a substantial proportion of ILs cation as the bound counter ions. Such studies are considered to shed further light in the fundamentals of IL induced micellization as well as in different practical applications.
Collapse
Affiliation(s)
| | - Manas Barai
- Department of Chemistry, Vidyasagar University
| | | | - Emili Manna
- Department of Chemistry, Vidyasagar University
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur
| | | | | |
Collapse
|
23
|
Xu Y, Scheffold F, Mason TG. Diffusing wave microrheology of strongly attractive dense emulsions. Phys Rev E 2020; 102:062610. [PMID: 33466019 DOI: 10.1103/physreve.102.062610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/30/2020] [Indexed: 11/07/2022]
Abstract
We advance the microrheological interpretation of optical diffusing wave spectroscopy (DWS) measurements of strongly attractive emulsions at dense droplet volume fractions, ϕ. Beyond accounting for collective scattering, we show that measuring the mean free path of optical transport over a wide range of ϕ is necessary to quantify the effective size of the DWS probes, which we infer to be local dense clusters of droplets through a decorated core-shell network model. This approach yields microrheological elastic shear moduli that are in quantitative agreement with mechanical rheometry.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA
| | - Frank Scheffold
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA and Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
24
|
Chen Y, Rogers SA, Narayanan S, Harden JL, Leheny RL. Microscopic ergodicity breaking governs the emergence and evolution of elasticity in glass-forming nanoclay suspensions. Phys Rev E 2020; 102:042619. [PMID: 33212706 DOI: 10.1103/physreve.102.042619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/10/2020] [Indexed: 11/07/2022]
Abstract
We report a study combining x-ray photon correlation spectroscopy (XPCS) with in situ rheology to investigate the microscopic dynamics and mechanical properties of aqueous suspensions of the synthetic hectorite clay Laponite, which is composed of charged, nanometer-scale, disk-shaped particles. The suspensions, with particle concentrations ranging from 3.25 to 3.75 wt %, evolve over time from a fluid to a soft glass that displays aging behavior. The XPCS measurements characterize the localization of the particles during the formation and aging of the soft-glass state. The fraction of localized particles, f_{0}, increases rapidly during the early formation stage and grows more slowly during subsequent aging, while the characteristic localization length r_{loc} steadily decreases. Despite the strongly varying rates of aging at different concentrations, both f_{0} and r_{loc} scale with the elastic shear modulus G^{'} in a manner independent of concentration. During the later aging stage, the scaling between r_{loc} and G^{'} agrees quantitatively with a prediction of naive mode coupling theory. Breakdown of agreement with the theory during the early formation stage indicates the prevalence of dynamic heterogeneity, suggesting the soft solid forms through precursors of dynamically localized clusters.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Suresh Narayanan
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - James L Harden
- Department of Physics & CAMaR, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
25
|
Wu Q, Higler R, Kodger TE, van der Gucht J. Particle Dynamics in Colloid-Polymer Mixtures with Different Polymer Architectures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42041-42047. [PMID: 32812728 PMCID: PMC7503516 DOI: 10.1021/acsami.0c07153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Nonadsorbing polymers are widely used as thickening agents for colloids. A quantitative description of the structure and dynamics of such colloid-polymer mixtures is crucial to reveal the mechanisms accounting for the desired mechanical properties. We use confocal microscopy to study colloids with three types of commonly used polymers with different architectures: linear, subgranular cross-linked, and branched microgels. All three thickeners give rise to heterogeneous colloidal dynamics, characterized by non-Gaussian displacement distributions. However, while the ensemble-averaged particle dynamics in these materials are very similar, the underlying individual particle dynamics are not. Linear polymers give rise to depletion attraction and the formation of colloidal gels, in which the majority of particles are immobilized, while a few weakly bound particles have much higher mobility. By contrast, the branched and cross-linked polymers thicken the continuous phase of the colloid, squeezing the particles into dense pockets, where the mobility is reduced and requires more cooperative rearrangements.
Collapse
|
26
|
|
27
|
Rüter A, Kuczera S, Gentile L, Olsson U. Arrested dynamics in a model peptide hydrogel system. SOFT MATTER 2020; 16:2642-2651. [PMID: 32119019 DOI: 10.1039/c9sm02244a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report here on a peptide hydrogel system, which in contrast to most other such systems, is made up of relatively short fibrillar aggregates, discussing resemblance with colloidal rods. The synthetic model peptides A8K and A10K, where A denotes alanine and K lysine, self-assemble in aqueous solutions into ribbon-like aggregates having an average length 〈L〉 on the order of 100 nm and with a diameter d≈ 6 nm. The aggregates can be seen as weakly charged rigid rods and they undergo an isotropic to nematic phase transition at higher concentrations. Translational motion perpendicular to the rod axis gets strongly hindered when the concentration is increased above the overlap concentration. Similarly, the rotational motion is hindered, leading to very long stress relaxation times. The peptide self-assembly is driven by hydrophobic interactions and due to a net peptide charge the system is colloidally stable. However, at the same time short range, presumably hydrophobic, attractive interactions appear to affect the rheology of the system. Upon screening the long range electrostatic repulsion, with the addition of salt, the hydrophobic attraction becomes more dominant and we observe a transition from a repulsive glassy state to an attractive gel-state of the rod-like peptide aggregates.
Collapse
Affiliation(s)
- Axel Rüter
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden.
| | | | | | | |
Collapse
|
28
|
Nigro V, Ruzicka B, Ruta B, Zontone F, Bertoldo M, Buratti E, Angelini R. Relaxation Dynamics, Softness, and Fragility of Microgels with Interpenetrated Polymer Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Valentina Nigro
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Barbara Ruzicka
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Beatrice Ruta
- France Univ Lyon, Universitè Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69100 Villeurbanne, France
- ESRF The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Federico Zontone
- ESRF The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Monica Bertoldo
- Istituto per la Sintesi Organica e la Fotoreattività del Consiglio Nazionale delle Ricerche (ISOF-CNR), via P. Gobetti
101, 40129 Bologna, Italy
| | - Elena Buratti
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
| | - Roberta Angelini
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| |
Collapse
|
29
|
Pastore R, Siviello C, Greco F, Larobina D. Anomalous Aging and Stress Relaxation in Macromolecular Physical Gels: The Case of Strontium Alginate. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raffaele Pastore
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Ciro Siviello
- Institute for Polymers, Composites, and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, 80055 Portici, NA, Italy
| | - Francesco Greco
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Domenico Larobina
- Institute for Polymers, Composites, and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, 80055 Portici, NA, Italy
| |
Collapse
|
30
|
Stradner A, Schurtenberger P. Potential and limits of a colloid approach to protein solutions. SOFT MATTER 2020; 16:307-323. [PMID: 31830196 DOI: 10.1039/c9sm01953g] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Looking at globular proteins with the eyes of a colloid scientist has a long tradition, in fact a significant part of the early colloid literature was focused on protein solutions. However, it has also been recognized that proteins are much more complex than the typical hard sphere-like synthetic model colloids. Proteins are not perfect spheres, their interaction potentials are in general not isotropic, and using theories developed for such particles are thus clearly inadequate in many cases. In this perspective article, we now take a closer look at the field. In particular, we reflect on the fact that modern colloid science has been undergoing a tremendous development, where a multitude of novel systems have been developed in the lab and in silico. During the last decade we have seen a rapidly increasing number of reports on the synthesis of anisotropic, patchy and/or responsive synthetic colloids, that start to resemble their complex biological counterparts. This experimental development is also reflected in a corresponding theoretical and simulation effort. The experimental and theoretical toolbox of colloid science has thus rapidly expanded, and there is obviously an enormous potential for an application of these new concepts to protein solutions, which has already been realized and harvested in recent years. In this perspective article we make an attempt to critically discuss the exploitation of colloid science concepts to better understand protein solutions. We not only consider classical applications such as the attempt to understand and predict solution stability and phase behaviour, but also discuss new challenges related to the dynamics, flow behaviour and liquid-solid transitions found in concentrated or crowded protein solutions. It not only aims to provide an overview on the progress in experimental and theoretical (bio)colloid science, but also discusses current shortcomings in our ability to correctly reproduce and predict the structural and dynamic properties of protein solutions based on such a colloid approach.
Collapse
Affiliation(s)
- Anna Stradner
- Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
31
|
Minami S, Suzuki D, Urayama K. Rheological aspects of colloidal gels in thermoresponsive microgel suspensions: formation, structure, and linear and nonlinear viscoelasticity. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Verweij JE, Leermakers FAM, Sprakel J, van der Gucht J. Plasticity in colloidal gel strands. SOFT MATTER 2019; 15:6447-6454. [PMID: 31328199 DOI: 10.1039/c9sm00686a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Colloidal gels are space-spanning networks of aggregated particles. The mechanical response of colloidal gels is governed, to a large extent, by the properties of the individual gel strands. To study how colloidal gels respond to repeated deformations, we perform Brownian dynamics simulations on single strands of aggregated colloidal particles. While current models assume that gel failure is due to the brittle rupture of gel strands, our simulations show that gel strands undergo large plastic deformations prior to breaking. Rearrangement of particles within the strands leads to plastic lengthening and softening of the strands, which may ultimately lead to strand necking and ductile failure. This failure mechanism occurs irrespective of the thickness and length of the strands and the range and strength of the interaction potential. Rupture of gel strands is more likely for long and thin strands and for a long-ranged interaction potential.
Collapse
Affiliation(s)
- Joanne E Verweij
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Frans A M Leermakers
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
33
|
Arjmand M, Sadeghi S, Otero Navas I, Zamani Keteklahijani Y, Dordanihaghighi S, Sundararaj U. Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites. Polymers (Basel) 2019; 11:polym11061064. [PMID: 31226743 PMCID: PMC6632034 DOI: 10.3390/polym11061064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022] Open
Abstract
The similar molecular structure but different geometries of the carbon nanotube (CNT) and graphene nanoribbon (GNR) create a genuine opportunity to assess the impact of nanofiller geometry (tube vs. ribbon) on the electromagnetic interference (EMI) shielding of polymer nanocomposites. In this regard, GNR and its parent CNT were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a miniature melt mixer at various nanofiller loadings, i.e., 0.3, 0.5, 1.0 and 2.0 wt%, and then compression molded. Molecular simulations showed that CNT would have a better interaction with the PVDF matrix in any configuration. Rheological results validated that CNTs feature a far stronger network (mechanical interlocking) than GNRs. Despite lower powder conductivity and a comparable dispersion state, it was interestingly observed that CNT nanocomposites indicated a highly superior electrical conductivity and EMI shielding at higher nanofiller loadings. For instance, at 2.0 wt%, CNT/PVDF nanocomposites showed an electrical conductivity of 0.77 S·m−1 and an EMI shielding effectiveness of 11.60 dB, which are eight orders of magnitude and twofold higher than their GNR counterparts, respectively. This observation was attributed to their superior conductive network formation and the interlocking ability of the tubular nanostructure to the ribbon-like nanostructure, verified by molecular simulations and rheological assays.
Collapse
Affiliation(s)
- Mohammad Arjmand
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | - Soheil Sadeghi
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Ivonne Otero Navas
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | | | - Sara Dordanihaghighi
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
34
|
Koeze DJ, Tighe BP. Sticky Matters: Jamming and Rigid Cluster Statistics with Attractive Particle Interactions. PHYSICAL REVIEW LETTERS 2018; 121:188002. [PMID: 30444395 DOI: 10.1103/physrevlett.121.188002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 06/09/2023]
Abstract
While the large majority of theoretical and numerical studies of the jamming transition consider athermal packings of purely repulsive spheres, real complex fluids and soft solids generically display attraction between particles. By studying the statistics of rigid clusters in simulations of soft particles with an attractive shell, we present evidence for two distinct jamming scenarios. Strongly attractive systems undergo a continuous transition in which rigid clusters grow and ultimately diverge in size at a critical packing fraction. Purely repulsive and weakly attractive systems jam via a first-order transition, with no growing cluster size. We further show that the weakly attractive scenario is a finite size effect, so that for any nonzero attraction strength, a sufficiently large system will fall in the strongly attractive universality class. We therefore expect attractive jamming to be generic in the laboratory and in nature.
Collapse
Affiliation(s)
- Dion J Koeze
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
35
|
Konno S, Banno T, Takagi H, Honda S, Toyota T. Irreversible aggregation of alternating tetra-block-like amphiphile in water. PLoS One 2018; 13:e0202816. [PMID: 30148887 PMCID: PMC6110477 DOI: 10.1371/journal.pone.0202816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/09/2018] [Indexed: 11/18/2022] Open
Abstract
As a frontier topic of soft condensed matter physics, irreversible aggregation has drawn attention for a better understanding of the complex behavior of biomaterials. In this study, we have described the synthesis of an artificial amphiphilic molecule, an alternating tetra-block-like amphiphile, which was able to diversify its aggregate structure in water. The aggregated state of its aqueous dispersion was obtained by slow evaporation of the organic solvent at room temperature, and it collapsed irreversibly at ~ 50°C. By using a cryo-transmission electron microscope and a differential scanning calorimeter, it was revealed that two types of molecular nanostructures were formed and developed into submicro- and micrometer-sized fibrils in the aggregated material.
Collapse
Affiliation(s)
- Shota Konno
- Department of Basic Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Japan
| | - Hideaki Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki, Japan
| | - Satoshi Honda
- Department of Basic Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Taro Toyota
- Department of Basic Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
36
|
Harden JL, Guo H, Bertrand M, Shendruk TN, Ramakrishnan S, Leheny RL. Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction. J Chem Phys 2018; 148:044902. [DOI: 10.1063/1.5007038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James L. Harden
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Hongyu Guo
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Martine Bertrand
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Tyler N. Shendruk
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32312, USA
| | - Robert L. Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
37
|
Cheng LC, Hsiao LC, Doyle PS. Multiple particle tracking study of thermally-gelling nanoemulsions. SOFT MATTER 2017; 13:6606-6619. [PMID: 28914324 DOI: 10.1039/c7sm01191a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We perform multiple particle tracking (MPT) on a thermally-gelling oil-in-water nanoemulsion system. Carboxylated and plain polystyrene probes are used to investigate the role of colloidal probe size and surface chemistry on MPT in the nanoemulsion system. As temperature increases, hydrophobic groups of PEG-based gelators (PEGDA) partition into the oil/water interface and bridge droplets. This intercolloidal attraction generates a wide variety of microstructures consisting of droplet-rich and droplet-poor phases. By tailoring the MPT colloidal probe surface chemistry, we can control the residence of probes in each domain, thus allowing us to independently probe each phase. Our results show stark differences in probe dynamics in each domain. For certain conditions, the mean squared displacement (MSD) can differ by over four orders of magnitude for the same probe size but different surface chemistry. Carboxylated probe surface chemistries result in "slippery" probes while plain polystyrene probes appear to tether to the nanoemulsion gel network. We also observe probe hopping between pores in the gel for carboxylated probes. Our approach demonstrates that probes with different surface chemistries are useful in probing the local regions of a colloidal gel and allows the measurement of local properties within structurally heterogeneous hydrogels.
Collapse
Affiliation(s)
- Li-Chiun Cheng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
38
|
Nigro V, Angelini R, Bertoldo M, Bruni F, Ricci MA, Ruzicka B. Dynamical behavior of microgels of interpenetrated polymer networks. SOFT MATTER 2017; 13:5185-5193. [PMID: 28664963 PMCID: PMC5898610 DOI: 10.1039/c7sm00739f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Microgel suspensions of an interpenetrated Polymer Network (IPN) of PNIPAM and PAAc in D2O have been investigated through dynamic light scattering as a function of temperature, pH and concentration across the Volume Phase Transition (VPT). The dynamics of the system is slowed down under H/D isotopic substitution due to different balance states between polymer/polymer and polymer/solvent interactions suggesting the crucial role played by H-bonding. The swelling behavior, reduced with respect to PNIPAM and water, has been described by the Flory-Rehner theory, tested for PNIPAM microgel and successfully expanded to higher order for IPN microgels. Moreover the concentration dependence of the relaxation time at neutral pH has highlighted two different routes to approach the glass transition: Arrhenius and super-Arrhenius (Vogel Fulcher Tammann) respectively below and above the VPT and a fragility plot has been derived. Fragility can be tuned by changing temperature: across the VPT particles undergo a transition from soft-strong to stiff-fragile.
Collapse
Affiliation(s)
- Valentina Nigro
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Kohl M, Schmiedeberg M. Shear-induced slab-like domains in a directed percolated colloidal gel. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:71. [PMID: 28785865 DOI: 10.1140/epje/i2017-11560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
We explore the structural changes of a gel-forming colloid polymer mixture under shear by employing Brownian dynamics simulations of a colloidal system with short-ranged attractive depletion interaction in a linear flow profile. While the structure of unpercolated systems changes only slightly under shearing, we discover the formation of slab-like clusters in sheared directed percolated gel networks that are confined between two walls. These gel-slabs are stable over a long time and seem to be related to the syneresis phenomena that can be observed in directed percolated colloidal gels. Only at large shear strength the slabs are destroyed and a homogeneous state with many unbounded particles can be observed. We also quantitatively analyze our results by determining void volumes.
Collapse
Affiliation(s)
- Matthias Kohl
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Michael Schmiedeberg
- Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany.
| |
Collapse
|
40
|
Trompette JL. Influence of Co-Ion Nature on the Gelation Kinetics of Colloidal Silica Suspensions. J Phys Chem B 2017; 121:5654-5659. [PMID: 28541689 DOI: 10.1021/acs.jpcb.7b03007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of the nature of three representative monovalent co-ions on the gelation kinetics of Ludox suspensions has been investigated. At a given Ludox volume fraction and for the same concentration of potassium salt, the gelation time is longer as the studied anion presents a more pronounced kosmotrope character. As the screening of the silica surface charge is similar since the same cationic counterion is taken, these results highlight the unexpected role played by hydration effects imparted by the co-ions when particles are pushed together as gelation proceeds. This reveals that jamming transitions of nanoparticle fluids may be finely tuned by changing the co-ion nature in spite of the fact that the cationic counterion is the same.
Collapse
Affiliation(s)
- Jean-Luc Trompette
- Laboratoire de Génie Chimique, UMR 5503 , 4 allée Emile Monso, BP 84234, Toulouse 31432, France
| |
Collapse
|
41
|
van Doorn JM, Bronkhorst J, Higler R, van de Laar T, Sprakel J. Linking Particle Dynamics to Local Connectivity in Colloidal Gels. PHYSICAL REVIEW LETTERS 2017; 118:188001. [PMID: 28524696 DOI: 10.1103/physrevlett.118.188001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 06/07/2023]
Abstract
Colloidal gels are a prototypical example of a heterogeneous network solid whose complex properties are governed by thermally activated dynamics. In this Letter we experimentally establish the connection between the intermittent dynamics of individual particles and their local connectivity. We interpret our experiments with a model that describes single-particle dynamics based on highly cooperative thermal debonding. The model, in quantitative agreement with experiments, provides a microscopic picture for the structural origin of dynamical heterogeneity in colloidal gels and sheds new light on the link between structure and the complex mechanics of these heterogeneous solids.
Collapse
Affiliation(s)
- Jan Maarten van Doorn
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jochem Bronkhorst
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ruben Higler
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ties van de Laar
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
42
|
Sadeghi S, Arjmand M, Otero Navas I, Zehtab Yazdi A, Sundararaj U. Effect of Nanofiller Geometry on Network Formation in Polymeric Nanocomposites: Comparison of Rheological and Electrical Properties of Multiwalled Carbon Nanotube and Graphene Nanoribbon. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00702] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Soheil Sadeghi
- Department of Chemical and
Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, Canada
| | - Mohammad Arjmand
- Department of Chemical and
Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, Canada
| | - Ivonne Otero Navas
- Department of Chemical and
Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, Canada
| | - Alireza Zehtab Yazdi
- Department of Chemical and
Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, Canada
| | - Uttandaraman Sundararaj
- Department of Chemical and
Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, Canada
| |
Collapse
|
43
|
Segovia-Gutiérrez JP, de Vicente J, Puertas AM, Hidalgo-Alvarez R. Describing magnetorheology under a colloidal glass approach. Phys Rev E 2017; 95:052601. [PMID: 28618613 DOI: 10.1103/physreve.95.052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 06/07/2023]
Abstract
The equilibrium structure and dynamics of magnetorheological (MR) fluids are studied in this work by simulations, where particles are modeled as dipoles with a quasihard spherical core. Upon increasing the interaction strength, controlled experimentally by the magnetic field, elongated clusters grow and, for intense fields, thick columns form, aligned with the field. The dynamics of the system is monitored by the mean-squared displacement and density correlation functions, which show an increasing slowing down with the attraction strength. The correlation function shows a two-step decay, with a separation between microscopic and long time dynamics, a typical hallmark of undercooled fluids. We have therefore analyzed the dynamics of this MR fluid using the typical concepts for undercooled fluids. Thus, the second decay of the density correlation function is fitted with a stretched exponential, and the wave-vector dependence of the fitting parameters studied. Both the amplitude and the time scale oscillate in phase with the structure factor. Our results support the idea that the magnetorheological effect is in fact the manifestation of a colloidal system approaching an attractive glass transition (or gel transition).
Collapse
Affiliation(s)
- J P Segovia-Gutiérrez
- Department of Applied Physics, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071-Granada, Spain
| | - J de Vicente
- Department of Applied Physics, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071-Granada, Spain
| | - Antonio M Puertas
- Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, 04120 Almería, Spain
| | - R Hidalgo-Alvarez
- Department of Applied Physics, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071-Granada, Spain
| |
Collapse
|
44
|
Marques FADM, Angelini R, Ruocco G, Ruzicka B. Isotopic Effect on the Gel and Glass Formation of a Charged Colloidal Clay: Laponite. J Phys Chem B 2017; 121:4576-4582. [PMID: 28376301 DOI: 10.1021/acs.jpcb.6b12596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time evolution of both dynamic and static structure factors of a charged colloidal clay, Laponite, dispersed in both H2O and D2O solvents has been investigated through multiangle dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) as a function of weight concentration. The aging phenomenology and the formation of arrested states, both gel and glass, are preserved in D2O, while the dynamics is slowed down with respect to water. These findings are important to understand the role played by the solvent in the interparticle interactions and for techniques such as neutron scattering and nuclear magnetic resonance that allow for the extension of the accessible scattering vectors and time scales.
Collapse
Affiliation(s)
| | - Roberta Angelini
- ISC-CNR, Sede Sapienza , I-00185 Roma, Italy.,Dipartimento di Fisica, Sapienza Università di Roma , I-00185 Roma, Italy
| | - Giancarlo Ruocco
- Dipartimento di Fisica, Sapienza Università di Roma , I-00185 Roma, Italy.,Center for Life Nano Science, IIT@Sapienza, Istituto Italiano di Tecnologia , Viale Regina Elena 291, 00161 Roma, Italy
| | - Barbara Ruzicka
- ISC-CNR, Sede Sapienza , I-00185 Roma, Italy.,Dipartimento di Fisica, Sapienza Università di Roma , I-00185 Roma, Italy
| |
Collapse
|
45
|
Guzman-Sepulveda JR, Argueta-Morales R, DeCampli WM, Dogariu A. Real-time intraoperative monitoring of blood coagulability via coherence-gated light scattering. Nat Biomed Eng 2017. [DOI: 10.1038/s41551-017-0028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Rechberger F, Niederberger M. Synthesis of aerogels: from molecular routes to 3-dimensional nanoparticle assembly. NANOSCALE HORIZONS 2017; 2:6-30. [PMID: 32260673 DOI: 10.1039/c6nh00077k] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal nanocrystals are extensively used as building blocks in nanoscience, and amazing results have been achieved in assembling them into ordered, close-packed structures. But in spite of great efforts, the size of these structures is typically restricted to a few micrometers, and it is very hard to extend them into the macroscopic world. In comparison, aerogels are macroscopic materials, highly porous, disordered, ultralight and with immense surface areas. With these distinctive characteristics, they are entirely contrary to common nanoparticle assemblies such as superlattices or nanocrystal solids, and therefore cover a different range of applications. While aerogels are traditionally synthesized by molecular routes based on aqueous sol-gel chemistry, in the last few years the gelation of nanoparticle dispersions became a viable alternative to improve the crystallinity and to widen the structural, morphological and compositional complexity of aerogels. In this Review, the different approaches to inorganic non-siliceous and non-carbon aerogels are addressed. We start our discussion with wet chemical routes involving molecular precursors, followed by processing methods using nanoparticles as building blocks. A unique feature of many of these routes is the fact that a macroscopic, often monolithic body is produced by pure self-assembly of nanosized colloids without the need for any templates.
Collapse
Affiliation(s)
- Felix Rechberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland.
| | | |
Collapse
|
47
|
Microstructure of colloid-polymer mixtures containing charged colloidal disks and weakly-adsorbing polymers. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
|
49
|
Luo J, Yuan G, Han CC. Tuning the bridging attraction between large hard particles by the softness of small microgels. SOFT MATTER 2016; 12:7863-7872. [PMID: 27714350 DOI: 10.1039/c6sm01519k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, the attraction between large hard polystyrene (PS) spheres is studied by using three types of small microgels as bridging agents. One is a purely soft poly(N-isopropylacrylamide) (PNIPAM) microgel, the other two have a non-deformable PS hard core surrounded by a soft PNIPAM shell but are different in the core-shell ratio. The affinity for bridging the large PS spheres is provided and thus affected by the PNIPAM constituent in the microgels. The bridging effects caused by the microgels can be indirectly incorporated into their influence on the effective attraction interaction between the large hard spheres, since the size of the microgels is very small in comparison to the size of the PS hard spheres. At a given volume fraction of large PS spheres, they behave essentially as hard spheres in the absence of small microgels. By gradually adding the microgels, the large spheres are connected to each other through the bridging of small particles until the attraction strength reaches a maximum value, after which adding more small particles slowly decreases the effective attraction strength and eventually the large particles disperse individually when saturated adsorption is achieved. The aggregation and gelation behaviors triggered by these three types of small microgels are compared and discussed. A way to tune the strength and range of the short-range attractive potential via changing the softness of bridging microgels (which can be achieved either by using core-shell microgels or by changing the temperature) is proposed.
Collapse
Affiliation(s)
- Junhua Luo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangcui Yuan
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA. and Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA
| | - Charles C Han
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
50
|
Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states. Nat Commun 2016; 7:11817. [PMID: 27279005 PMCID: PMC4906224 DOI: 10.1038/ncomms11817] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/03/2016] [Indexed: 11/25/2022] Open
Abstract
The macroscopic properties of gels arise from their slow dynamics and load-bearing network structure, which are exploited by nature and in numerous industrial products. However, a link between these structural and dynamical properties has remained elusive. Here we present confocal microscopy experiments and simulations of gel-forming colloid–polymer mixtures. They reveal that gel formation is preceded by continuous and directed percolation. Both transitions lead to system-spanning networks, but only directed percolation results in extremely slow dynamics, ageing and a shrinking of the gel that resembles synaeresis. Therefore, dynamical arrest in gels is found to be linked to a structural transition, namely directed percolation, which is quantitatively associated with the mean number of bonded neighbours. Directed percolation denotes a universality class of transitions. Our study hence connects gel formation to a well-developed theoretical framework, which now can be exploited to achieve a detailed understanding of arrested gels. Gels exhibit very slow dynamics, for which a structural reason remains elusive. Here, Kohl et al. show the gel formation is accompanied by a succession of continuous and directed percolation, with only the latter found to lead to the arrested dynamics.
Collapse
|