1
|
Ferreira MM, Marins-Gonçalves L, De Souza D. An integrative review of analytical techniques used in food authentication: A detailed description for milk and dairy products. Food Chem 2024; 457:140206. [PMID: 38936134 DOI: 10.1016/j.foodchem.2024.140206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The use of suitable analytical techniques for the detection of adulteration, falsification, deliberate substitution, and mislabeling of foods has great importance in the industrial, scientific, legislative, and public health contexts. This way, this work reports an integrative review with a current analytical approach for food authentication, indicating the main analytical techniques to identify adulteration and perform the traceability of chemical components in processed and non-processed foods, evaluating the authenticity and geographic origin. This work presents results from a systematic search in Science Direct® and Scopus® databases using the keywords "authentication" AND "food", "authentication," AND "beverage", from published papers from 2013 to, 2024. All research and reviews published were employed in the bibliometric analysis, evaluating the advantages and disadvantages of analytical techniques, indicating the perspectives for direct, quick, and simple analysis, guaranteeing the application of quality standards, and ensuring food safety for consumers. Furthermore, this work reports the analysis of natural foods to evaluate the origin (traceability), and industrialized foods to detect adulterations and fraud. A focus on research to detect adulteration in milk and dairy products is presented due to the importance of these products in the nutrition of the world population. All analytical tools discussed have advantages and drawbacks, including sample preparation steps, the need for reference materials, and mathematical treatments. So, the main advances in modern analytical techniques for the identification and quantification of food adulterations, mainly milk and dairy products, were discussed, indicating trends and perspectives on food authentication.
Collapse
Affiliation(s)
- Mariana Martins Ferreira
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo Street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Lorranne Marins-Gonçalves
- Laboratory of Electroanalytical of Food and Environmental Contaminants (LECAA), Chemistry Institute, Uberlândia Federal University, João Naves de Ávila Street, 2121, 1D block, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical of Food and Environmental Contaminants (LECAA), Chemistry Institute, Uberlândia Federal University, João Naves de Ávila Street, 2121, 1D block, Santa Mônica, Uberlândia, MG, 38400-902, Brazil..
| |
Collapse
|
2
|
Sharma R, Nath PC, Lodh BK, Mukherjee J, Mahata N, Gopikrishna K, Tiwari ON, Bhunia B. Rapid and sensitive approaches for detecting food fraud: A review on prospects and challenges. Food Chem 2024; 454:139817. [PMID: 38805929 DOI: 10.1016/j.foodchem.2024.139817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Precise and reliable analytical techniques are required to guarantee food quality in light of the expanding concerns regarding food safety and quality. Because traditional procedures are expensive and time-consuming, quick food control techniques are required to ensure product quality. Various analytical techniques are used to identify and detect food fraud, including spectroscopy, chromatography, DNA barcoding, and inotrope ratio mass spectrometry (IRMS). Due to its quick findings, simplicity of use, high throughput, affordability, and non-destructive evaluations of numerous food matrices, NI spectroscopy and hyperspectral imaging are financially preferred in the food business. The applicability of this technology has increased with the development of chemometric techniques and near-infrared spectroscopy-based instruments. The current research also discusses the use of several multivariate analytical techniques in identifying food fraud, such as principal component analysis, partial least squares, cluster analysis, multivariate curve resolutions, and artificial intelligence.
Collapse
Affiliation(s)
- Ramesh Sharma
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India; Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu-641062, India.
| | - Pinku Chandra Nath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| | - Bibhab Kumar Lodh
- Department of Chemical Engineering, National Institute of Technology, Agartala-799046, India.
| | - Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Hyderabad- 501401, Telangana, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur-713209.
| | - Konga Gopikrishna
- SEED Division, Department of Science and Technology, New Delhi, 110016, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
3
|
Lee HT, Liao CH, Hsu TH. DNA metabarcoding unveils the hidden species composition in fish surimi: Implications for the management of unlabeled and mixed seafood products. Heliyon 2024; 10:e36287. [PMID: 39247285 PMCID: PMC11378893 DOI: 10.1016/j.heliyon.2024.e36287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Fish surimi products are traditional foods primarily made from fish meat and may contain a complex species composition. In Taiwan, the abundant fishery resources and diverse fish species lead to local catches being widely used as ingredients in fish surimi products. However, due to growing market demand and increasingly scarce resources, some surimi products contain sensitive species, such as sharks, posing potential threats to the ecological environment and biodiversity. In this study, by applying metabarcoding techniques, we analyzed 120 fish surimi product samples from different brands and types throughout the four seasons in Taiwan's market. The main fish species identified included milkfish (Chanos chanos), dolphinfish (Coryphaena hippurus), Pomfret (Taractes rubescens), swordfish (Istiophorus spp.) and cartilaginous. Moreover, at least 37 species of cartilaginous fish, including 26 endangered species, were found. Through comprehensive and accurate species identification of surimi product ingredients, we unveiled the usage of sensitive species in products on the market. This finding is important for the surimi industry's quality control and market supervision. Furthermore, it can promote the sustainable use of Taiwan's fishery resources and protect biodiversity.
Collapse
Affiliation(s)
- Hung-Tai Lee
- Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Cheng-Hsin Liao
- Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Te-Hua Hsu
- Department of Aquaculture, National Taiwan Ocean University, 20224, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, 20224, Keelung, Taiwan
| |
Collapse
|
4
|
Sabater C, Calvete I, Vázquez X, Ruiz L, Margolles A. Tracing the origin and authenticity of Spanish PDO honey using metagenomics and machine learning. Int J Food Microbiol 2024; 421:110789. [PMID: 38879955 DOI: 10.1016/j.ijfoodmicro.2024.110789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The Protected Designation of Origin (PDO) indication for foods intends to guarantee the conditions of production and the geographical origin of regional products within the European Union. Honey products are widely consumed due to their health-promoting properties and there is a general interest in tracing their authenticity. In this regard, metagenomics sequencing and machine learning (ML) have been proposed as complementary technologies to improve the traceability methods of foods. Therefore, the aim of this study was to analyze the metagenomic profiles of Spanish honeys from three different PDOs (Granada, Tenerife and Villuercas-Ibores), and compare them with non-PDO honeys using ML models (PLS, RF, LOGITBOOST, and NNET). According to the results obtained, non-PDO honeys and Granada PDO showed higher beta diversity values than Tenerife and Villuercas-Ibores PDOs. ML classification of honey products allowed the identification of different microbial biomarkers of the geographical origin of honeys: Lactobacillus kunkeei, Parasaccharibacter apium and Lactobacillus helsingborgensis for PDO honeys and Paenibacillus larvae, Lactobacillus apinorum and Klebsiella pneumoniae for non-PDO honeys. In addition, potential microbial biomarkers of some honey varieties including L. kunkeei for Albaida and Retama del Teide varieties, and P. apium for Tajinaste variety, were identified. ML models were validated on an independent set of samples leading to high accuracy rates (above 90 %). This work demonstrates the potential of ML to differentiate different types of honey using metagenome-based methods, leading to high performance metrics. In addition, ML models discriminate both the geographical origin and variety of products corresponding to different PDOs and non-PDO products. Results here presented may contribute to develop enhanced traceability and authenticity methods that could be applied to a wide range of foods.
Collapse
Affiliation(s)
- Carlos Sabater
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain.
| | - Inés Calvete
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Xenia Vázquez
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| |
Collapse
|
5
|
Zhang Z, Zhang X, Wang X, Guo X, Yan X, Li Z, Li W. Chemical constituents, pharmacological activities and quality evaluation methods of genus Hippocampus: A comprehensive review. CHINESE HERBAL MEDICINES 2024; 16:344-357. [PMID: 39072207 PMCID: PMC11283209 DOI: 10.1016/j.chmed.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 07/30/2024] Open
Abstract
The genus Hippocampus is a multi-origin animal species with high medicinal and healthcare values. About 57 species of Hippocampus spread worldwide, of which about 14 species can be used as medicine, showing anti-oxidation, anti-inflammation, anti-depressant, anti-hypertension, anti-prostatic hyperplasia, antivirus, anti-apoptotic, antifatigue, and so on. And those pharmacological effects are mainly related to their active ingredients, including amino acids, abundant proteins (peptides and oligopeptides), fatty acids, nucleosides, steroids, and other small molecular compounds. The main means of authentication of Hippocampus species are morphological identification, microscopic identification, thin layer chromatography method, fingerprint method and genomics method. This review will provide useful insight for exploration, further study and precise medication of Hippocampus in the future.
Collapse
Affiliation(s)
- Zhiyong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyang Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuting Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinhao Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
6
|
Bojang KP, Manchana V. Impact of vegetarianism on cognition and neuropsychological status among urban community-dwelling adults in Telangana, South India: a cross-sectional study. Eur J Nutr 2024; 63:1089-1101. [PMID: 38305863 DOI: 10.1007/s00394-024-03328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE The potential benefits of vegetarian diets in reducing cognitive impairment have garnered attention due to existing mixed results; hence, our study aims to examine the impact of vegetarianism on cognitive function and neuropsychological status among urban community-dwelling adults from Telangana. METHODS The dietary patterns were self-reported and dietary data collected using a Food Frequency Questionnaire while cognitive function was assessed using Mini-Mental State Examination (MMSE) and depression, anxiety, and stress (DASS-21) questionnaire for psychological measures. Adults (N = 304) aged 40 years and above, who followed either a vegetarian or non-vegetarian diet for at least 6 months prior to data collection, scored MMSE ≥ 19 indicating mild cognitive impairment, and were recruited using convenience sampling. RESULTS Among the participants, vegetarians (n = 155) exhibited significantly better mood states compared to non-vegetarians (n = 149), as indicated by lower scores on the DASS subscales for depression (10.0 ± 0.06 vs. 17.0 ± 0.07, p = < 0.001), anxiety (4.0 ± 0.05 vs. 6.0 ± 0.07, p = 0.005), and stress (8.0 ± 0.02 vs. 10.0 ± 0.05, p = 0.007). Vegetarians also demonstrated superior cognitive functioning compared to non-vegetarians, as indicated by higher MMSE scores (26.0 ± 0.04 vs. 24.0 ± 0.03, p = < 0.001). MMSE scores were inversely correlated with depression, anxiety, and stress for vegetarians (ρ = - 0.371, p = 0.000; ρ = - 0.027, p = 0.734; and ρ = - 0.105, p = 0.914), respectively. Similar to the vegetarians group, MMSE scores were negatively correlated with depression (ρ = - 0.059), but the correlation is not significant. CONCLUSION Vegetarianism exerted a positive influence on the cognitive and neuropsychological status of the investigated population. Nevertheless, additional research is required to comprehend the underlying mechanisms that elucidate the long-term effects of vegetarianism and plant-based nutritional interventions on brain health.
Collapse
Affiliation(s)
| | - Varalakshmi Manchana
- School of Medical Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Wang YC, Liu SH, Ho HC, Su HY, Chang CH. DNA mini-barcoding reveals the mislabeling rate of canned cat food in Taiwan. PeerJ 2024; 12:e16833. [PMID: 38406290 PMCID: PMC10893872 DOI: 10.7717/peerj.16833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
Background Domestic cats are important companion animals in modern society that live closely with their owners. Mislabeling of pet food can not only harm pets but also cause issues in areas such as religious beliefs and natural resource management. Currently, the cat food market is booming. However, despite the risk that mislabeling poses to cats and humans, few studies have focused on species misrepresentation in cat food products. Methods To address this issue, we used DNA barcoding, a highly effective identification methodology that can be applied to even highly processed products. We targeted a short segment (~85 basepairs) of the mitochondrial 16S rRNA (16S) gene as a barcode and employed Sanger or next generation sequencing (NGS) to inspect 138 canned cat food products in the Taiwanese market. Results We discovered that the majority of mislabeling incidents were related to replacement of tuna with other species. Moreover, our metabarcoding revealed that numerous undeclared ingredients were present in all examined canned products. One product contained CITES Appendix II-listed shortfin mako shark (Isurus oxyrinchus). Overall, we uncovered a mislabeling rate of at least 28.99%. To verify cases of mislabeling, an official standardized list of vernacular names, along with the corresponding scientific species names, as well as a dependable barcoding reference sequence database are necessary.
Collapse
Affiliation(s)
- Yu-Chun Wang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
- Technical Service Division, Fisheries Research Institute, Keelung, Taiwan
| | - Shih-Hui Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsuan Ching Ho
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hsiao-Yin Su
- Department of Science Education, National Taipei University of Education, Taipei, Taiwan
| | - Chia-Hao Chang
- Department of Science Education, National Taipei University of Education, Taipei, Taiwan
| |
Collapse
|
8
|
Giusti A, Malloggi C, Magagna G, Filipello V, Armani A. Is the metabarcoding ripe enough to be applied to the authentication of foodstuff of animal origin? A systematic review. Compr Rev Food Sci Food Saf 2024; 23:e13256. [PMID: 38284609 DOI: 10.1111/1541-4337.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 01/30/2024]
Abstract
Food authentication using molecular techniques is of great importance to fight food fraud. Metabarcoding, based on the next-generation sequencing (NGS) technologies, allowing large-scale taxonomic identification of complex samples via massive parallel sequencing of fragments (called DNA barcodes) simultaneously, has become increasingly popular in many scientific fields. A systematic review to answer the question "Is the metabarcoding ripe enough to be applied to the authentication of foodstuff of animal origin?" is presented. The inclusion criteria were focused on the selection of scientific papers (SPs) only applying metabarcoding to foodstuff of animal origin collected on the market. The 23 included SPs were first analyzed with respect to the metabarcoding phases: library preparation (target genes, primer pairs, and fragment length), sequencing (NGS platforms), and final data analysis (bioinformatic pipelines). Given the importance of primer selection, the taxonomic coverage of the used primers was also evaluated. In addition, the SPs were scored based on the use of quality control measures (procedural blanks, positive controls, replicates, curated databases, and thresholds to filter the data). A lack of standardized protocols, especially with respect to the target barcode/s and the universal primer/s, and the infrequent application of the quality control measures, leads to answer that metabarcoding is not ripe enough for authenticating foodstuff of animal origin. However, the observed trend of the SP quality improvement over the years is encouraging. Concluding, a proper protocol standardization would allow a wider use of metabarcoding by both official and private laboratories, enabling this method to become the primary for the authentication of foodstuffs of animal origin.
Collapse
Affiliation(s)
- Alice Giusti
- FishLab, Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Chiara Malloggi
- FishLab, Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Giulia Magagna
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - Virginia Filipello
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - Andrea Armani
- FishLab, Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Giusti A, Ricci E, Tinacci L, Verdigi F, Narducci R, Gasperetti L, Armani A. Molecular authentication of mushroom products: First survey on the Italian market. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Carreiro AR, Ramos JA, Mata V, Almeida NM, Paiva VH, Lopes RJ. DNA sequencing shows that tropical tuna species misidentification can be an underestimated issue in fish landings. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Yin X, Yang H, Piao Y, Zhu Y, Zheng Q, Khan MR, Zhang Y, Busquets R, Hu B, Deng R, Cao J. CRISPR-Based Colorimetric Nucleic Acid Tests for Visual Readout of DNA Barcode for Food Authenticity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14052-14060. [PMID: 36278890 DOI: 10.1021/acs.jafc.2c05974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Food authenticity is a critical issue associated with the economy, religion, and food safety. Herein, we report a label-free and colorimetric nucleic acid assay for detecting DNA barcodes, enabling the determination of food authenticity with the naked eye. This method, termed the CRISPR-based colorimetric DNA barcoding (Cricba) assay, utilizes CRISPR/Cas12a (CRISPR = clustered regularly interspaced short palindromic repeats; Cas = CRISPR associated protein) to specifically recognize the polymerase chain reaction (PCR) products for further trans-cleavaging the peroxidase-mimicking G-quadruplex DNAzyme. Based on this principle, the presence of the cytochrome oxidase subunit I gene could be directly observed with the naked eye via the color change of 3,3',5,5'-tetramethylbenzidine sulfate (TMB). The whole detection process, including PCR amplification and TMB colorimetric analysis, can be completed within 90 min. The proposed assay can detect pufferfish concentrations diluted to 0.1% (w/w) in a raw pufferfish mixture, making it one of the most sensitive methods for food authenticity. The robustness of the assay was verified by testing four common species of pufferfish, including Lagocephalus inermis, Lagocephalus spadiceus, Takifugu bimaculatus, and Takifugu alboplumbeus. The assay is advantageous in easy signal readout, high sensitivity, and general applicability and thus could be a competitive candidate for food authenticity.
Collapse
Affiliation(s)
- Xinying Yin
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yongzhe Piao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yulin Zhu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, U.K
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
12
|
IoT-based food traceability system: Architecture, technologies, applications, and future trends. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Adapting Open Innovation Practices for the Creation of a Traceability System in a Meat-Producing Industry in Northwest Greece. SUSTAINABILITY 2022. [DOI: 10.3390/su14095111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Traceability is becoming an essential tool for both the industry and consumers to confirm the characteristics of food products, leading industries to implement traceability to their merchandise. In order for the Computer Technology Institute and Press “Diophantus” (CTI) to help small and medium-sized enterprises (SMEs) implement traceability systems based on open innovation, principles were introduced. This paper presents market research that was carried out in order to determine the significant concerns of the Greek consumers about pork meat and pork products, their opinion on traceability information, and their preferences regarding how they would like to receive this information. The survey was conducted online and took place from mid-February to mid-March 2021 on a sample of 224 participants. The market research showed a very high interest concerning traceability, especially on the expiry date of the meat (87.9%), while the way and conditions of transport of the meat products follow (79%). Furthermore, consumers showed that they believe that the quality and safety of pork products would be improved with traceability (70.1%) and (79%) would prefer to buy traceable compared with untraceable pork, signifying the importance of traceability for consumers. Additionally, it was found that consumers and SMEs have common concerns regarding traceability. The information gathered from this market research will be used to adapt the traceability system to consumers’ needs.
Collapse
|
14
|
Eldemerdash MM, El-Sayed ASA, Hussein HA, Teleb SS, Shehata RS. Molecular and metabolic traits of some Egyptian species of Cassia L. and Senna Mill (Fabaceae-Caesalpinioideae). BMC PLANT BIOLOGY 2022; 22:205. [PMID: 35443606 PMCID: PMC9020050 DOI: 10.1186/s12870-022-03543-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/15/2022] [Indexed: 06/01/2023]
Abstract
The genus Cassia and Senna have been classified under subfamily Caesalpinioideae of family Fabaceae (Leguminosae) of order Fabales. There is a scarce taxonomical studies of the genus Cassia and Senna inhabiting Egyptian environments, thus, the main objective of the current was to revise and authenticate the phylogenetic relationship between studied taxa of the species of the genera Cassia and Senna in Egypt using the recent tools of ITS barcoding, RAPD analysis and metabolic profiling, in comparing to the traditional taxonomical features. From the cluster analysis of the traditional 27 morphological characters, the studied taxa were categorized into two major clades with an average taxonomic distance of 4.3. The clade I include Cassia fistula, C. renigera, C. javanica L subsp. nodosa and C. roughiia that belongs to series Obolospermae, and C. grandis that belongs to series Grandes. The clade (II) includes Senna surattensis and S. alata at taxonomic level 3.6. The taxonomical description of the studied taxa was confirmed from the molecular analysis of ITS sequences and RAPD analysis. The ITS sequences of the tested plants species C. fistula L, C. grandis MD4, C. javanica subsp. nodosa MD7, C. roxburghii MD5, C. renigera MD5 were deposited at genbank with accession numbers MW367973, MZ960447, MW386305, MW326753 and MW32685, respectively. While, the ITS sequences of the S. surrattensis and S. alata were deposited into genbank accession # MD14 MW367670 and MD20 MW412635, respectively. Thus, from the molecular analysis, two clades were clearly separated into Clade I of Cassia and Clade II of Senna. The cluster I represented by C. fistula, C. renigera, C. roxburghii, and C. javanica sub nodosa, and the cluster II represented by S. alata and S. surattensis. From the PCA of RAPD, a clearly discrimination between the two Taxa was observed revealing the characteristic grouping of Cassia and Senna. The species Senna alata and Senna surattensis were grouped together, but the species of C. renigera, C. javanica, C. roxburghii and C. grandis was grouped on a distinct group. The separation of Cassia and Senna species into two clusters verify the segregation of the genus Cassia L. senso lato into two distinct genera namely Senna P. and Cassia L. The morphological, molecular traits of the studied plants were authenticated from the metabolic profiling by GC-MS analysis. Among the 23 identified metabolites, four compounds namely hexadecanoic acid, methyl ester, 9-Octadecenoic acid (Z)-ethyl ester and Vitamin E were detected with fluctuated concentrations, among C. fistula, C. grandis, C. javanica subsp. nodosa and C. roxburghii. Conclusively, the traditional morphological features, molecular barcoding using ITS sequences, RAPD analysis and metabolic traits by GC-MS analysis, authenticates the taxonomical diversity of the genus Cassia and Senna.
Collapse
Affiliation(s)
- Marwa M. Eldemerdash
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Ashraf S. A. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Hussein A. Hussein
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Samir S. Teleb
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Rania S. Shehata
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
15
|
Dobrovolny S, Uhlig S, Frost K, Schlierf A, Nichani K, Simon K, Cichna-Markl M, Hochegger R. Interlaboratory Validation of a DNA Metabarcoding Assay for Mammalian and Poultry Species to Detect Food Adulteration. Foods 2022; 11:foods11081108. [PMID: 35454695 PMCID: PMC9027865 DOI: 10.3390/foods11081108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Meat species authentication in food is most commonly based on the detection of genetic variations. Official food control laboratories frequently apply single and multiplex real-time polymerase chain reaction (PCR) assays and/or DNA arrays. However, in the near future, DNA metabarcoding, the generation of PCR products for DNA barcodes, followed by massively parallel sequencing by next generation sequencing (NGS) technologies, could be an attractive alternative. DNA metabarcoding is superior to well-established methodologies since it allows simultaneous identification of a wide variety of species not only in individual foodstuffs but even in complex mixtures. We have recently published a DNA metabarcoding assay for the identification and differentiation of 15 mammalian species and six poultry species. With the aim to harmonize analytical methods for food authentication across EU Member States, the DNA metabarcoding assay has been tested in an interlaboratory ring trial including 15 laboratories. Each laboratory analyzed 16 anonymously labelled samples (eight samples, two subsamples each), comprising six DNA extract mixtures, one DNA extract from a model sausage, and one DNA extract from maize (negative control). Evaluation of data on repeatability, reproducibility, robustness, and measurement uncertainty indicated that the DNA metabarcoding method is applicable for meat species authentication in routine analysis.
Collapse
Affiliation(s)
- Stefanie Dobrovolny
- Austrian Agency for Health and Food Safety (AGES), Department for Molecular Biology and Microbiology, Institute for Food Safety Vienna, Spargelfeldstrasse 191, 1220 Vienna, Austria;
| | - Steffen Uhlig
- QuoData GmbH, Prellerstrasse 14, 01309 Dresden, Germany; (S.U.); (K.F.); (A.S.); (K.N.); (K.S.)
| | - Kirstin Frost
- QuoData GmbH, Prellerstrasse 14, 01309 Dresden, Germany; (S.U.); (K.F.); (A.S.); (K.N.); (K.S.)
| | - Anja Schlierf
- QuoData GmbH, Prellerstrasse 14, 01309 Dresden, Germany; (S.U.); (K.F.); (A.S.); (K.N.); (K.S.)
| | - Kapil Nichani
- QuoData GmbH, Prellerstrasse 14, 01309 Dresden, Germany; (S.U.); (K.F.); (A.S.); (K.N.); (K.S.)
| | - Kirsten Simon
- QuoData GmbH, Prellerstrasse 14, 01309 Dresden, Germany; (S.U.); (K.F.); (A.S.); (K.N.); (K.S.)
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
- Correspondence: (M.C.-M.); (R.H.)
| | - Rupert Hochegger
- Austrian Agency for Health and Food Safety (AGES), Department for Molecular Biology and Microbiology, Institute for Food Safety Vienna, Spargelfeldstrasse 191, 1220 Vienna, Austria;
- Correspondence: (M.C.-M.); (R.H.)
| |
Collapse
|
16
|
Etzi R, Girondini M, Massetti G, Gallace A. A preliminary study on the impact of contextual information regarding the origin of food on consumers’ judgments and skin conductance responses. Curr Res Food Sci 2022; 5:423-431. [PMID: 35243355 PMCID: PMC8866495 DOI: 10.1016/j.crfs.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Explicit and implicit responses to food and beverage are known to be modulated by expectations generated by contextual factors. Among these, labelling regarding the country of origin has been systematically shown to impact on consumers' evaluations of products. However, it is not clear yet whether the presence of food origin biases also affects humans’ physiological (i.e., implicit) responses, as well as whether different conditions of sensory appreciation of products are equally influenced. The present preliminary study investigated the psychophysiological responses to food samples paired to labels of declared (i.e., Italy, Spain/Germany, EU) or undeclared origins. Food items (i.e., olives and cracker) were presented in visual or taste conditions to thirty Italian participants, whose behavioral (i.e., liking, willingness to buy, and estimated cost) and physiological (i.e., skin conductance responses) responses were collected. The results indicated that the food samples elicited stronger liking and willingness to buy responses by participants and were estimated as more expensive, when being firstly experienced through vision than taste. No differences in the physiological arousal state were found as a function of food origin or sensory condition of presentation. Explicit choices related to food are modulated by expectation generated by contextual factors. Labelling regarding the country-of-origin impacts the consumer evaluations of products. The study investigated the behavioral and psychophysiological responses to food products comparing different labelling. Food items were presented in visual or taste conditions. The sensory modalities and the labeling information affect the behavioral choice (but not the physiological response).
Collapse
Affiliation(s)
- Roberta Etzi
- Mind and Behavior Technological Center, Department of Psychology, Università Milano-Bicocca, Italy
- Department of Psychology, Università Milano-Bicocca, Italy
| | - Matteo Girondini
- Mind and Behavior Technological Center, Department of Psychology, Università Milano-Bicocca, Italy
- Department of Psychology, Università Milano-Bicocca, Italy
- Corresponding author. Mind and Behavior Technological Center, Department of Psychology, Università Milano-Bicocca, Italy.
| | - Gemma Massetti
- Mind and Behavior Technological Center, Department of Psychology, Università Milano-Bicocca, Italy
- Department of Medicine and Surgery, Università Milano-Bicocca, Italy
| | - Alberto Gallace
- Mind and Behavior Technological Center, Department of Psychology, Università Milano-Bicocca, Italy
- Best 4 Food, Università Milano-Bicocca, Italy
- Department of Psychology, Università Milano-Bicocca, Italy
| |
Collapse
|
17
|
Development of a DNA Metabarcoding Method for the Identification of Bivalve Species in Seafood Products. Foods 2021; 10:foods10112618. [PMID: 34828894 PMCID: PMC8617786 DOI: 10.3390/foods10112618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
The production of bivalve species has been increasing in the last decades. In spite of strict requirements for species declaration, incorrect labelling of bivalve products has repeatedly been detected. We present a DNA metabarcoding method allowing the identification of bivalve species belonging to the bivalve families Mytilidae (mussels), Pectinidae (scallops), and Ostreidae (oysters) in foodstuffs. The method, developed on Illumina instruments, targets a 150 bp fragment of mitochondrial 16S rDNA. We designed seven primers (three primers for mussel species, two primers for scallop species and a primer pair for oyster species) and combined them in a triplex PCR assay. In each of eleven reference samples, the bivalve species was identified correctly. In ten DNA extract mixtures, not only the main component (97.0-98.0%) but also the minor components (0.5-1.5%) were detected correctly, with only a few exceptions. The DNA metabarcoding method was found to be applicable to complex and processed foodstuffs, allowing the identification of bivalves in, e.g., marinated form, in sauces, in seafood mixes and even in instant noodle seafood. The method is highly suitable for food authentication in routine analysis, in particular in combination with a DNA metabarcoding method for mammalian and poultry species published recently.
Collapse
|
18
|
DNA-Based Herbal Teas' Authentication: An ITS2 and psbA-trnH Multi-Marker DNA Metabarcoding Approach. PLANTS 2021; 10:plants10102120. [PMID: 34685929 PMCID: PMC8539046 DOI: 10.3390/plants10102120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
Medicinal plants have been widely used in traditional medicine due to their therapeutic properties. Although they are mostly used as herbal infusion and tincture, employment as ingredients of food supplements is increasing. However, fraud and adulteration are widespread issues. In our study, we aimed at evaluating DNA metabarcoding as a tool to identify product composition. In order to accomplish this, we analyzed fifteen commercial products with DNA metabarcoding, using two barcode regions: psbA-trnH and ITS2. Results showed that on average, 70% (44-100) of the declared ingredients have been identified. The ITS2 marker appears to identify more species (n = 60) than psbA-trnH (n = 35), with an ingredients' identification rate of 52% versus 45%, respectively. Some species are identified only by one marker rather than the other. Additionally, in order to evaluate the quantitative ability of high-throughput sequencing (HTS) to compare the plant component to the corresponding assigned sequences, in the laboratory, we created six mock mixtures of plants starting both from biomass and gDNA. Our analysis also supports the application of DNA metabarcoding for a relative quantitative analysis. These results move towards the application of HTS analysis for studying the composition of herbal teas for medicinal plants' traceability and quality control.
Collapse
|
19
|
Harnessing the Power of Metabarcoding in the Ecological Interpretation of Plant-Pollinator DNA Data: Strategies and Consequences of Filtering Approaches. DIVERSITY 2021. [DOI: 10.3390/d13090437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although DNA metabarcoding of pollen mixtures has been increasingly used in the field of pollination biology, methodological and interpretation issues arise due to its high sensitivity. Filtering or maintaining false positives, contaminants, and rare taxa or molecular features could lead to different ecological results. Here, we reviewed how this choice has been addressed in 43 studies featuring pollen DNA metabarcoding, which highlighted a very high heterogeneity of filtering methods. We assessed how these strategies shaped pollen assemblage composition, species richness, and interaction networks. To do so, we compared four processing methods: unfiltering, filtering with a proportional 1% of sample reads, a fixed threshold of 100 reads, and the ROC approach (Receiver Operator Characteristic). The results indicated that filtering impacted species composition and reduced species richness, with ROC emerging as a conservative approach. Moreover, in contrast to unfiltered networks, filtering decreased network Connectance and Entropy, and it increased Modularity and Connectivity, indicating that using cut-off thresholds better describes interactions. Overall, unfiltering might compromise reliable ecological interpretations, unless a study targets rare species. We discuss the suitability of each filtering type, plead for justifying filtering strategies on biological or methodological bases and for developing shared approaches to make future studies more comparable.
Collapse
|
20
|
Derossi A, Bhandari B, Bommel K, Noort M, Severini C. Could 3D food printing help to improve the food supply chain resilience against disruptions such as caused by pandemic crises? Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Antonio Derossi
- Department of Agriculture, Food Natural resources and Engineering (DAFNE) – University of Foggia Italy
| | - Bhesh Bhandari
- School of Agriculture and Food Science University of Queensland Brisbane QLD Australia
| | - Kjeld Bommel
- Netherlands Organisation for Applied Scientific Research (TNO) The Hague The Netherlands
| | - Martijn Noort
- Wageningen Food & Biobased Research Wageningen The Netherlands
| | - Carla Severini
- Department of Agriculture, Food Natural resources and Engineering (DAFNE) – University of Foggia Italy
| |
Collapse
|
21
|
Fanelli V, Mascio I, Miazzi MM, Savoia MA, De Giovanni C, Montemurro C. Molecular Approaches to Agri-Food Traceability and Authentication: An Updated Review. Foods 2021; 10:1644. [PMID: 34359514 PMCID: PMC8306823 DOI: 10.3390/foods10071644] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decades, the demand for molecular tools for authenticating and tracing agri-food products has significantly increased. Food safety and quality have gained an increased interest for consumers, producers, and retailers, therefore, the availability of analytical methods for the determination of food authenticity and the detection of major adulterations takes on a fundamental role. Among the different molecular approaches, some techniques such as the molecular markers-based methods are well established, while some innovative approaches such as isothermal amplification-based methods and DNA metabarcoding have only recently found application in the agri-food sector. In this review, we provide an overview of the most widely used molecular techniques for fresh and processed agri-food authentication and traceability, showing their recent advances and applications and discussing their main advantages and limitations. The application of these techniques to agri-food traceability and authentication can contribute a great deal to the reassurance of consumers in terms of transparency and food safety and may allow producers and retailers to adequately promote their products.
Collapse
Affiliation(s)
- Valentina Fanelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Michele Antonio Savoia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Claudio De Giovanni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
- Spin off Sinagri s.r.l., University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Institute for Sustainable Plant Protection–Support Unit Bari, National Research Council of Italy (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
22
|
Abstract
Over the last two decades, the use of DNA barcodes has transformed our ability to identify and assess life on our planet. Both strengths and weaknesses of the method have been exemplified through thousands of peer-reviewed scientific articles. Given the novel sequencing approaches, currently capable of generating millions of reads at low cost, we reflect on the questions: What will the future bring for DNA barcoding? Will identification of species using short, standardized fragments of DNA stand the test of time? We present reflected opinions of early career biodiversity researchers in the form of a SWOT analysis and discuss answers to these questions.
Collapse
|
23
|
Shadrin DM. DNA Barcoding: Applications. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542104013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Aghayeva P, Cozzolino S, Cafasso D, Ali-Zade V, Fineschi S, Aghayeva D. DNA barcoding of native Caucasus herbal plants: potentials and limitations in complex groups and implications for phylogeographic patterns. Biodivers Data J 2021; 9:e61333. [PMID: 33551655 PMCID: PMC7858560 DOI: 10.3897/bdj.9.e61333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 11/12/2022] Open
Abstract
DNA barcoding has rapidly become a useful complementary tool in floristic investigations particularly for identifying specimens that lack diagnostic characters. Here, we assess the capability of three DNA barcode markers (chloroplast rpoB, accD and nuclear ITS) for correct species assignment in a floristic survey on the Caucasus. We focused on two herbal groups with potential for ornamental applications, namely orchids and asterids. On these two plant groups, we tested whether our selection of barcode markers allows identification of the “barcoding gap” in sequence identity and to distinguish between monophyletic species when employing distance-based methods. All markers successfully amplified most specimens, but we found that the rate of species-level resolution amongst selected markers largely varied in the two plant groups. Overall, for both lineages, plastid markers had a species-level assignment success rate lower than the nuclear ITS marker. The latter confirmed, in orchids, both the existence of a barcoding gap and that all accessions of the same species clustered together in monophyletic groups. Further, it also allowed the detection of a phylogeographic signal.The ITS marker resulted in its being the best performing barcode for asterids; however, none of the three tested markers showed high discriminatory ability. Even if ITS were revealed as the most promising plant barcode marker, we argue that the ability of this barcode for species assignment is strongly dependent on the evolutionary history of the investigated plant lineage.
Collapse
Affiliation(s)
- Parvin Aghayeva
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, Azerbaijan Institute of Botany, Azerbaijan National Academy of Sciences Baku Azerbaijan
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Napoli, Italy Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo Napoli Italy
| | - Donata Cafasso
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Napoli, Italy Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo Napoli Italy
| | - Valida Ali-Zade
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, Azerbaijan Institute of Botany, Azerbaijan National Academy of Sciences Baku Azerbaijan
| | - Silvia Fineschi
- CNR - Istituto di Scienze del Patrimonio Culturale, Sesto Fiorentino, Italy CNR - Istituto di Scienze del Patrimonio Culturale Sesto Fiorentino Italy
| | - Dilzara Aghayeva
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, Azerbaijan Institute of Botany, Azerbaijan National Academy of Sciences Baku Azerbaijan
| |
Collapse
|
25
|
Nehal N, Choudhary B, Nagpure A, Gupta RK. DNA barcoding: a modern age tool for detection of adulteration in food. Crit Rev Biotechnol 2021; 41:767-791. [PMID: 33530758 DOI: 10.1080/07388551.2021.1874279] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Globalization of the food trade requires precise and exact information about the origin, methods of production, transformation technologies, authentication, and the traceability of foodstuffs. New challenges in food supply chains such as deliberate fraudulent substitution, tampering or mislabeling of food and its ingredients or food packaging incapacitates the market and eventually the national economy. Currently, no proper standards have been established for the authentication of most of the food materials. However, in order to control food fraud, various robust and cost-effective technologies have been employed, like a spectrophotometer, GC-MS, HPLC, and DNA barcoding. Among these techniques, DNA barcoding is a biotechnology advantage with the principle of using 400-800 bp long standardized unique DNA sequences of mitochondrial (e.g. COI) or plastidial (e.g. rbcL) of nuclear origin (e.g. ITS) to analyze and classify the food commodities. This review covers several traded food commodities like legumes, seafood, oils, herbal products, spices, fruits, cereals, meat, and their unique barcodes which are critically analyzed to detect adulteration or fraud. DNA barcoding is a global initiative and it is being accepted as a global standard/marker for species identification or authentication. The research laboratories and industries should collaborate to realize its potential in setting standards for quality assurance, quality control, and food safety for different food products.
Collapse
Affiliation(s)
- Nazish Nehal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, India
| | - Bharti Choudhary
- School of Studies in Biotechnology, Pt. Ravi Shankar Shukla University, Raipur, India
| | - Anand Nagpure
- Biology Division, State Forensic Science Laboratory, Bhopal, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
26
|
Tatulli G, Cecere P, Maggioni D, Galimberti A, Pompa PP. A Rapid Colorimetric Assay for On-Site Authentication of Cephalopod Species. BIOSENSORS-BASEL 2020; 10:bios10120190. [PMID: 33255443 PMCID: PMC7760856 DOI: 10.3390/bios10120190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
A colorimetric assay, exploiting the combination of loop-mediated isothermal amplification (LAMP) with DNA barcoding, was developed to address the authentication of some cephalopod species, a relevant group in the context of seafood traceability, due to the intensive processing from the fishing sites to the shelf. The discriminating strategy relies on accurate design of species-specific LAMP primers within the conventional 5' end of the mitochondrial COI DNA barcode region and allows for the identification of Loligo vulgaris among two closely related and less valuable species. The assay, coupled to rapid genomic DNA extraction, is suitable for large-scale screenings and on-site applications due to its easy procedures, with fast (30 min) and visual readout.
Collapse
Affiliation(s)
- Giuseppina Tatulli
- Istituto Italiano di Tecnologia, Nanobiointeractions&Nanodiagnostics, Via Morego 30, 16163 Genova, Italy; (G.T.); (P.C.)
| | - Paola Cecere
- Istituto Italiano di Tecnologia, Nanobiointeractions&Nanodiagnostics, Via Morego 30, 16163 Genova, Italy; (G.T.); (P.C.)
| | - Davide Maggioni
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, P.za Della Scienza 1, 20126 Milan, Italy;
- Marine Research and High Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo 12030, Maldives
| | - Andrea Galimberti
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.za Della Scienza 2, 20126 Milan, Italy
- Correspondence: (A.G.); (P.P.P.)
| | - Pier Paolo Pompa
- Istituto Italiano di Tecnologia, Nanobiointeractions&Nanodiagnostics, Via Morego 30, 16163 Genova, Italy; (G.T.); (P.C.)
- Correspondence: (A.G.); (P.P.P.)
| |
Collapse
|
27
|
Frigerio J, Agostinetto G, Galimberti A, De Mattia F, Labra M, Bruno A. Tasting the differences: Microbiota analysis of different insect-based novel food. Food Res Int 2020; 137:109426. [DOI: 10.1016/j.foodres.2020.109426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 01/04/2023]
|
28
|
NGS-based barcoding with mini-COI gene target is useful for pet food market surveys aimed at mislabelling detection. Sci Rep 2020; 10:17767. [PMID: 33082418 PMCID: PMC7575603 DOI: 10.1038/s41598-020-74918-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/16/2020] [Indexed: 11/08/2022] Open
Abstract
Pet food industry has grown considerably in the last few years and it is expected to continue with this rate. Despite the economic impact of this sector and the consumer concerns for the increasing number of food and feed adulteration cases, few studies have been published on mislabelling in pet foods. We therefore investigated the capability of a next generation sequencing-based mini-barcoding approach to identify animal species in pet food products. In a preliminary analysis, a 127 bp fragment of the COI gene was tested on both individual specimens and ad hoc mixed fresh samples used as testers, to evaluate its discrimination power and primers effectiveness. Eighteen pet food products of different price categories and forms available on the market (i.e. kibbles, bites, pâté and strips) were analysed through an NGS approach in biological replicates. At least one of the species listed in the ingredients was not detected in half of the products, while seven products showed supplementary species in addition to those stated on the label. Due to the accuracy, sensitivity and specificity demonstrated, this method can be proposed as food genetic traceability system to evaluate both the feed and food quality timely along the supply chain.
Collapse
|
29
|
Galimberti A, Cena H, Campone L, Ferri E, Dell'Agli M, Sangiovanni E, Belingheri M, Riva MA, Casiraghi M, Labra M. Rethinking Urban and Food Policies to Improve Citizens Safety After COVID-19 Pandemic. Front Nutr 2020; 7:569542. [PMID: 33134308 PMCID: PMC7578405 DOI: 10.3389/fnut.2020.569542] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
The ongoing pandemic caused by the coronavirus disease 2019 (COVID-19) is literally changing the world. From December 2019 to date, more than 22 million cases have been reported worldwide and global health institutions are acting to slow down the virus transmission and are looking for possible prevention strategies in case of a new outbreak. As in other endemic or pandemic phenomena, the issues mostly covered by scientific and media attention are related to the diagnostic and therapeutic approach of COVID-19. However, a still neglected issue regards the adoption of a more systemic approach considering the close connection among the infection, the environment, and human behaviors, including the role of diet and urban management. To shed light on this issue, we brought together a faculty group involving experts in environment and biodiversity, food safety, human nutrition, and behavior, bioprospecting, as well as medical doctors having a deep knowledge of the complex historical relationship between humanity and vector-borne infections. Two main aspects emerged from the integrative overview of the current COVID-19 pandemic: (i) the scientific community should start sharing social actions and policy advocacy based on the assumption that human health strongly depends upon a sustainable exploitation of natural resources in populated areas; (ii) the specific strategic role of the cities in developing sustainable food systems and promoting healthy dietary patterns. Definitely, some priority issues should be addressed to achieve these goals, such as global efforts to increase food safety and security, which would benefit from urban and peri-urban agriculture enhancement, smallholder food producers support, and ecosystem services and local biodiversity maintenance.
Collapse
Affiliation(s)
- Andrea Galimberti
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri Istituti di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| | - Emanuele Ferri
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Michael Belingheri
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | | | - Maurizio Casiraghi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
30
|
Shi R, Huang M, Wang J, He C, Ying X, Xiong X, Xiong X. Molecular identification of dried squid products sold in China using DNA barcoding and SYBR green real time PCR. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1061-1074. [DOI: 10.1080/19440049.2020.1746411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rongzhen Shi
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Manhong Huang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Jing Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Chuhan He
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Department of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
31
|
Seah A, Lim MC, McAloose D, Prost S, Seimon TA. MinION-Based DNA Barcoding of Preserved and Non-Invasively Collected Wildlife Samples. Genes (Basel) 2020; 11:genes11040445. [PMID: 32325704 PMCID: PMC7230362 DOI: 10.3390/genes11040445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/14/2023] Open
Abstract
The ability to sequence a variety of wildlife samples with portable, field-friendly equipment will have significant impacts on wildlife conservation and health applications. However, the only currently available field-friendly DNA sequencer, the MinION by Oxford Nanopore Technologies, has a high error rate compared to standard laboratory-based sequencing platforms and has not been systematically validated for DNA barcoding accuracy for preserved and non-invasively collected tissue samples. We tested whether various wildlife sample types, field-friendly methods, and our clustering-based bioinformatics pipeline, SAIGA, can be used to generate consistent and accurate consensus sequences for species identification. Here, we systematically evaluate variation in cytochrome b sequences amplified from scat, hair, feather, fresh frozen liver, and formalin-fixed paraffin-embedded (FFPE) liver. Each sample was processed by three DNA extraction protocols. For all sample types tested, the MinION consensus sequences matched the Sanger references with 99.29%-100% sequence similarity, even for samples that were difficult to amplify, such as scat and FFPE tissue extracted with Chelex resin. Sequencing errors occurred primarily in homopolymer regions, as identified in previous MinION studies. We demonstrate that it is possible to generate accurate DNA barcode sequences from preserved and non-invasively collected wildlife samples using portable MinION sequencing, creating more opportunities to apply portable sequencing technology for species identification.
Collapse
Affiliation(s)
- Adeline Seah
- Zoological Health Program, Wildlife Conservation Society, Bronx Zoo, 2300 Southern Blvd, Bronx, NY 10460, USA; (A.S.); (D.M.); (T.A.S.)
| | - Marisa C.W. Lim
- Zoological Health Program, Wildlife Conservation Society, Bronx Zoo, 2300 Southern Blvd, Bronx, NY 10460, USA; (A.S.); (D.M.); (T.A.S.)
- Correspondence:
| | - Denise McAloose
- Zoological Health Program, Wildlife Conservation Society, Bronx Zoo, 2300 Southern Blvd, Bronx, NY 10460, USA; (A.S.); (D.M.); (T.A.S.)
| | - Stefan Prost
- LOEWE-Centre for Translational Biodiversity Genomics, Senckenberg Nature Research Society, 60325 Frankfurt, Germany;
- South African National Biodiversity Institute, National Zoological Garden, Pretoria 0001, South Africa
| | - Tracie A. Seimon
- Zoological Health Program, Wildlife Conservation Society, Bronx Zoo, 2300 Southern Blvd, Bronx, NY 10460, USA; (A.S.); (D.M.); (T.A.S.)
| |
Collapse
|
32
|
From DNA barcoding to nanoparticle-based colorimetric testing: a new frontier in cephalopod authentication. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01249-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|