1
|
Ahmad W, Sajjad W, Zhou Q, Ge Z. Nanomedicine for combination of chemodynamic therapy and immunotherapy of cancers. Biomater Sci 2024; 12:4607-4629. [PMID: 39115141 DOI: 10.1039/d3bm02133e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chemodynamic therapy (CDT), as a new type of therapy, has received more and more attention in the field of tumor therapy in recent years. By virtue of the characteristics of weak acidity and excess H2O2 in the tumor microenvironment, CDT uses the Fenton or Fenton-like reactions to catalyze the transformation of H2O2 into strongly oxidizing ˙OH, resulting in increased intracellular oxidative stress for lipid oxidation, protein inactivation, or DNA damage, and finally inducing apoptosis of cancer cells. In particular, CDT has the advantage of tumor specificity. However, the therapeutic efficacy of CDT frequently depends on the catalytic efficiency of the Fenton reaction, which needs the presence of sufficient H2O2 and catalytic metal ions. Relatively low concentrations of H2O2 and the lack of catalytic metal ions usually limit the final therapeutic effect. The combination of CDT with immunotherapy will be an effective means to improve the therapeutic effect. In this review paper, the recent progress related to nanomedicine for the combination of CDT and immunotherapy is summarized. Immunogenic death of tumor cells, immune checkpoint inhibitors, and stimulator of interferon gene (STING) activation as the main immunotherapy strategies to combine with CDT are discussed. Finally, the challenges and prospects for the clinical translation and future development direction are discussed.
Collapse
Affiliation(s)
- Waqas Ahmad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wasim Sajjad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
2
|
Müller JA, Schäffler N, Kellerer T, Schwake G, Ligon TS, Rädler JO. Kinetics of RNA-LNP delivery and protein expression. Eur J Pharm Biopharm 2024; 197:114222. [PMID: 38387850 DOI: 10.1016/j.ejpb.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Lipid nanoparticles (LNPs) employing ionizable lipids are the most advanced technology for delivery of RNA, most notably mRNA, to cells. LNPs represent well-defined core-shell particles with efficient nucleic acid encapsulation, low immunogenicity and enhanced efficacy. While much is known about the structure and activity of LNPs, less attention is given to the timing of LNP uptake, cytosolic transfer and protein expression. However, LNP kinetics is a key factor determining delivery efficiency. Hence quantitative insight into the multi-cascaded pathway of LNPs is of interest to elucidate the mechanism of delivery. Here, we review experiments as well as theoretical modeling of the timing of LNP uptake, mRNA-release and protein expression. We describe LNP delivery as a sequence of stochastic transfer processes and review a mathematical model of subsequent protein translation from mRNA. We compile probabilities and numbers obtained from time resolved microscopy. Specifically, live-cell imaging on single cell arrays (LISCA) allows for high-throughput acquisition of thousands of individual GFP reporter expression time courses. The traces yield the distribution of mRNA life-times, expression rates and expression onset. Correlation analysis reveals an inverse dependence of gene expression efficiency and transfection onset-times. Finally, we discuss why timing of mRNA release is critical in the context of codelivery of multiple nucleic acid species as in the case of mRNA co-expression or CRISPR/Cas gene editing.
Collapse
Affiliation(s)
- Judith A Müller
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | - Nathalie Schäffler
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | - Thomas Kellerer
- Multiphoton Imaging Lab, Munich University of Applied Sciences, Munich, Germany
| | - Gerlinde Schwake
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | | | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
| |
Collapse
|
3
|
Mohite P, Yadav V, Pandhare R, Maitra S, Saleh FM, Saleem RM, Al-malky HS, Kumarasamy V, Subramaniyan V, Abdel-Daim MM, Uti DE. Revolutionizing Cancer Treatment: Unleashing the Power of Viral Vaccines, Monoclonal Antibodies, and Proteolysis-Targeting Chimeras in the New Era of Immunotherapy. ACS OMEGA 2024; 9:7277-7295. [PMID: 38405458 PMCID: PMC10882662 DOI: 10.1021/acsomega.3c06501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024]
Abstract
In the realm of cancer immunotherapy, a profound evolution has ushered in sophisticated strategies that encompass both traditional cancer vaccines and emerging viral vaccines. This comprehensive Review offers an in-depth exploration of the methodologies, clinical applications, success stories, and future prospects of these approaches. Traditional cancer vaccines have undergone significant advancements utilizing diverse modalities such as proteins, peptides, and dendritic cells. More recent innovations have focused on the physiological mechanisms enabling the human body to recognize and combat precancerous and malignant cells, introducing specific markers like peptide-based anticancer vaccines targeting tumor-associated antigens. Moreover, cancer viral vaccines, leveraging engineered viruses to stimulate immune responses against specific antigens, exhibit substantial promise in inducing robust and enduring immunity. Integration with complementary therapeutic methods, including monoclonal antibodies, adjuvants, and radiation therapy, has not only improved survival rates but also deepened our understanding of viral virulence. Recent strides in vaccine design, encompassing oncolytic viruses, virus-like particles, and viral vectors, mark the frontier of innovation. While these advances hold immense potential, critical challenges must be addressed, such as strategies for immune evasion, potential off-target effects, and the optimization of viral genomes. In the landscape of immunotherapy, noteworthy innovations take the spotlight from the use of immunomodulatory agents for the enhancement of innate and adaptive immune collaboration. The emergence of proteolysis-targeting chimeras (PROTACs) as precision tools for cancer therapy is particularly exciting. With a focus on various cancers, from melanoma to formidable solid tumors, this Review critically assesses types of cancer vaccines, mechanisms, barriers in vaccine therapy, vaccine efficacy, safety profiles, and immune-related adverse events, providing a nuanced perspective on the underlying mechanisms involving cytotoxic T cells, natural killer cells, and dendritic cells. The Review also underscores the transformative potential of cutting-edge technologies such as clinical studies, molecular sequencing, and artificial intelligence in advancing the field of cancer vaccines. These tools not only expedite progress but also emphasize the multidimensional and rapidly evolving nature of this research, affirming its profound significance in the broader context of cancer therapy.
Collapse
Affiliation(s)
- Popat Mohite
- AETs
St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Vaishnavi Yadav
- AETs
St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Ramdas Pandhare
- MESs
College of Pharmacy, Sonai Tal-Newasa, Maharashtra 414105, India
| | - Swastika Maitra
- Center
for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
- Department
of Microbiology, Adamas University, Kolkata 700 126, West Bengal, India
| | - Fayez M. Saleh
- Department
of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rasha Mohammed Saleem
- Department
of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65431, Saudi Arabia
| | - Hamdan S. Al-malky
- Regional
Drug Information Center, Ministry of Health, Jeddah 11176, Saudi Arabia
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar
Sunway, 47500 Selangor
Darul Ehsan, Malaysia
- Center
for Transdisciplinary Research, Department of Pharmacology, Savetha
Dental College, Savetha Institute of Medical and Technical Sciences, Savetha University, Chennai, Tamil Nadu 600077, India
| | - Mohamed M. Abdel-Daim
- Department
of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box
6231, Jeddah 21442, Saudi Arabia
- Pharmacology
Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Daniel E. Uti
- Department
of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State 970001, Nigeria
| |
Collapse
|
4
|
Pascolo S. Nonreplicating synthetic mRNA vaccines: A journey through the European (Journal of Immunology) history. Eur J Immunol 2023; 53:e2249941. [PMID: 37029096 DOI: 10.1002/eji.202249941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
The first worldwide article reporting that injections of synthetic nonreplicating mRNA could be used as a vaccine, which originated from a French team located in Paris, was published in the European Journal of Immunology (EJI) in 1993. It relied on work conducted by several research groups in a handful of countries since the 1960s, which put forward the precise description of eukaryotic mRNA and the method to reproduce this molecule in vitro as well as how to transfect it into mammalian cells. Thereafter, the first industrial development of this technology began in Germany in 2000, with the founding of CureVac, which stemmed from another description of a synthetic mRNA vaccine published in EJI in 2000. The first clinical studies investigating mRNA vaccines in humans were performed as collaboration between CureVac and the University of Tübingen in Germany as early as 2003. Finally, the first worldwide approved mRNA vaccine (an anti-COVID-19 vaccine) is based on the mRNA technologies developed by BioNTech since its 2008 foundation in Mainz, Germany, and earlier by the pioneering academic work of its founders. In addition to the past, present, and future of mRNA-based vaccines, the article aims to present the geographical distribution of the early work, how the development of the technology was implemented by several independent and internationally distributed research teams, as well as the controversies on the optimal way to design or formulate and administer mRNA vaccines.
Collapse
Affiliation(s)
- Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Patel HK, Zhang K, Utegg R, Stephens E, Salem S, Welch H, Grobe S, Schlereth J, Kuhn AN, Ryczek J, Cirelli DJ, Lerch TF. Characterization of BNT162b2 mRNA to Evaluate Risk of Off-Target Antigen Translation. J Pharm Sci 2023; 112:1364-1371. [PMID: 36642376 PMCID: PMC9836996 DOI: 10.1016/j.xphs.2023.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
mRNA vaccines have been established as a safe and effective modality, thanks in large part to the expedited development and approval of COVID-19 vaccines. In addition to the active, full-length mRNA transcript, mRNA fragment species can be present as a byproduct of the cell-free transcription manufacturing process or due to mRNA hydrolysis. In the current study, mRNA fragment species from BNT162b2 mRNA were isolated and characterized. The translational viability of intact and fragmented mRNA species was further explored using orthogonal expression systems to understand the risk of truncated spike protein or off-target antigen translation. The study demonstrates that mRNA fragments are primarily derived from premature transcriptional termination during manufacturing, and only full-length mRNA transcripts are viable for expression of the SARS-CoV-2 spike protein antigen.
Collapse
Affiliation(s)
- Himakshi K Patel
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | - Kun Zhang
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO 63017, USA
| | - Rachael Utegg
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | - Elaine Stephens
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | - Shauna Salem
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | - Heidi Welch
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | | | | | | | - Jeff Ryczek
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO 63017, USA
| | - David J Cirelli
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | - Thomas F Lerch
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO 63017, USA.
| |
Collapse
|
6
|
Chu W, Hall J, Gurrala A, Becsey A, Raman S, Okun MS, Flores CT, Giasson BI, Vaillancourt DE, Vedam-Mai V. Evaluation of an Adoptive Cellular Therapy-Based Vaccine in a Transgenic Mouse Model of α-synucleinopathy. ACS Chem Neurosci 2022; 14:235-245. [PMID: 36571847 PMCID: PMC9853504 DOI: 10.1021/acschemneuro.2c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aggregated α-synuclein, a major constituent of Lewy bodies plays a crucial role in the pathogenesis of α-synucleinopathies (SPs) such as Parkinson's disease (PD). PD is affected by the innate and adaptive arms of the immune system, and recently both active and passive immunotherapies targeted against α-synuclein are being trialed as potential novel treatment strategies. Specifically, dendritic cell-based vaccines have shown to be an effective treatment for SPs in animal models. Here, we report on the development of adoptive cellular therapy (ACT) for SP and demonstrate that adoptive transfer of pre-activated T-cells generated from immunized mice can improve survival and behavior, reduce brain microstructural impairment via magnetic resonance imaging (MRI), and decrease α-synuclein pathology burden in a peripherally induced preclinical SP model (M83) when administered prior to disease onset. This study provides preclinical evidence for ACT as a potential immunotherapy for LBD, PD and other related SPs, and future work will provide necessary understanding of the mechanisms of its action.
Collapse
Affiliation(s)
- Winston
T. Chu
- J.
Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida32611, United States,Department
of Applied Physiology and Kinesiology, University
of Florida, Gainesville, Florida32611, United States
| | - Jesse Hall
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Anjela Gurrala
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Alexander Becsey
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Shreya Raman
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Michael S. Okun
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States,Department
of Neurosurgery, University of Florida, Gainesville, Florida32611, United States,Norman
Fixel
Institute for Neurological Diseases, Gainesville, Florida32608, United States
| | - Catherine T. Flores
- Department
of Neurosurgery, University of Florida, Gainesville, Florida32611, United States
| | - Benoit I. Giasson
- Department
of Neuroscience, University of Florida, Gainesville, Florida32611, United States
| | - David E. Vaillancourt
- Department
of Applied Physiology and Kinesiology, University
of Florida, Gainesville, Florida32611, United States
| | - Vinata Vedam-Mai
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States,Norman
Fixel
Institute for Neurological Diseases, Gainesville, Florida32608, United States,. Phone: (352) 273-5557. Fax:(352) 273-5575
| |
Collapse
|
7
|
Domazet-Lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes (Basel) 2022; 13:719. [PMID: 35627104 PMCID: PMC9141755 DOI: 10.3390/genes13050719] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The major advantage of mRNA vaccines over more conventional approaches is their potential for rapid development and large-scale deployment in pandemic situations. In the current COVID-19 crisis, two mRNA COVID-19 vaccines have been conditionally approved and broadly applied, while others are still in clinical trials. However, there is no previous experience with the use of mRNA vaccines on a large scale in the general population. This warrants a careful evaluation of mRNA vaccine safety properties by considering all available knowledge about mRNA molecular biology and evolution. Here, I discuss the pervasive claim that mRNA-based vaccines cannot alter genomes. Surprisingly, this notion is widely stated in the mRNA vaccine literature but never supported by referencing any primary scientific papers that would specifically address this question. This discrepancy becomes even more puzzling if one considers previous work on the molecular and evolutionary aspects of retroposition in murine and human populations that clearly documents the frequent integration of mRNA molecules into genomes, including clinical contexts. By performing basic comparisons, I show that the sequence features of mRNA vaccines meet all known requirements for retroposition using L1 elements-the most abundant autonomously active retrotransposons in the human genome. In fact, many factors associated with mRNA vaccines increase the possibility of their L1-mediated retroposition. I conclude that is unfounded to a priori assume that mRNA-based therapeutics do not impact genomes and that the route to genome integration of vaccine mRNAs via endogenous L1 retroelements is easily conceivable. This implies that we urgently need experimental studies that would rigorously test for the potential retroposition of vaccine mRNAs. At present, the insertional mutagenesis safety of mRNA-based vaccines should be considered unresolved.
Collapse
Affiliation(s)
- Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
8
|
Abstract
Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany
| | - Jessica Pahle
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Zhao Y, Shu R, Liu J. The development and improvement of ribonucleic acid therapy strategies. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:997-1013. [PMID: 34540356 PMCID: PMC8437697 DOI: 10.1016/j.omtn.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological understanding of RNA has evolved since the discovery of catalytic RNAs in the early 1980s and the establishment of RNA interference (RNAi) in the 1990s. RNA is no longer seen as the simple mid-product between transcription and translation but as potential molecules to be developed as RNA therapeutic drugs. RNA-based therapeutic drugs have gained recognition because of their ability to regulate gene expression and perform cellular functions. Various nucleobase, backbone, and sugar-modified oligonucleotides have been synthesized, as natural oligonucleotides have some limitations such as poor low nuclease resistance, binding affinity, poor cellular uptake, and toxicity, which affect their use as RNA therapeutic drugs. In this review, we briefly discuss different RNA therapeutic drugs and their internal connections, including antisense oligonucleotides, small interfering RNAs (siRNAs) and microRNAs (miRNAs), aptamers, small activating RNAs (saRNAs), and RNA vaccines. We also discuss the important roles of RNA vaccines and their use in the fight against COVID-19. In addition, various chemical modifications and delivery systems used to improve the performance of RNA therapeutic drugs and overcome their limitations are discussed.
Collapse
Affiliation(s)
- Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author: Rui Shu, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author: Jiang Liu, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Steinle H, Weber J, Stoppelkamp S, Große-Berkenbusch K, Golombek S, Weber M, Canak-Ipek T, Trenz SM, Schlensak C, Avci-Adali M. Delivery of synthetic mRNAs for tissue regeneration. Adv Drug Deliv Rev 2021; 179:114007. [PMID: 34710530 DOI: 10.1016/j.addr.2021.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.
Collapse
Affiliation(s)
- Heidrun Steinle
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Josefin Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sandra Stoppelkamp
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Katharina Große-Berkenbusch
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sonia Golombek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Marbod Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Tuba Canak-Ipek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sarah-Maria Trenz
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Christian Schlensak
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Meltem Avci-Adali
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| |
Collapse
|
11
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
12
|
Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, Al-Wassiti H, Davis TP, Pouton CW, Kent SJ, Truong NP. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater 2021; 131:16-40. [PMID: 34153512 PMCID: PMC8272596 DOI: 10.1016/j.actbio.2021.06.023] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
Vaccination represents the best line of defense against infectious diseases and is crucial in curtailing pandemic spread of emerging pathogens to which a population has limited immunity. In recent years, mRNA vaccines have been proposed as the new frontier in vaccination, owing to their facile and rapid development while providing a safer alternative to traditional vaccine technologies such as live or attenuated viruses. Recent breakthroughs in mRNA vaccination have been through formulation with lipid nanoparticles (LNPs), which provide both protection and enhanced delivery of mRNA vaccines in vivo. In this review, current paradigms and state-of-the-art in mRNA-LNP vaccine development are explored through first highlighting advantages posed by mRNA vaccines, establishing LNPs as a biocompatible delivery system, and finally exploring the use of mRNA-LNP vaccines in vivo against infectious disease towards translation to the clinic. Furthermore, we highlight the progress of mRNA-LNP vaccine candidates against COVID-19 currently in clinical trials, with the current status and approval timelines, before discussing their future outlook and challenges that need to be overcome towards establishing mRNA-LNPs as next-generation vaccines. STATEMENT OF SIGNIFICANCE: With the recent success of mRNA vaccines developed by Moderna and BioNTech/Pfizer against COVID-19, mRNA technology and lipid nanoparticles (LNP) have never received more attention. This manuscript timely reviews the most advanced mRNA-LNP vaccines that have just been approved for emergency use and are in clinical trials, with a focus on the remarkable development of several COVID-19 vaccines, faster than any other vaccine in history. We aim to give a comprehensive introduction of mRNA and LNP technology to the field of biomaterials science and increase accessibility to readers with a new interest in mRNA-LNP vaccines. We also highlight current limitations and future outlook of the mRNA vaccine technology that need further efforts of biomaterials scientists to address.
Collapse
Affiliation(s)
- Emily H Pilkington
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Estelle J A Suys
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Natalie L Trevaskis
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Danijela Zukancic
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Azizah Algarni
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Hareth Al-Wassiti
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Colin W Pouton
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Nghia P Truong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
13
|
To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov 2021; 16:1307-1317. [PMID: 34058918 DOI: 10.1080/17460441.2021.1935859] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Messenger RNA (mRNA)-based therapeutics and vaccines have emerged as a disruptive new drug class for various applications, including regenerative medicine, cancer treatment, and prophylactic and therapeutic vaccinations. AREAS COVERED This review provides an update about the rational structure-based design of various formats of mRNA-based therapeutics. The authors discuss the recent advances in the mRNA modifications that have been used to enhance stability, promote translation efficiency and regulate immunogenicity for specific applications. EXPERT OPINION Extensive research efforts have been made to optimize mRNA constructs and preparation procedures to unleash the full potential of mRNA-based therapeutics and vaccines. Sequence optimization (untranslated region and codon usage), chemical engineering of nucleotides and modified 5'cap, and optimization of in vitro transcription and mRNA purification protocols have overcome the major obstacles (instability, delivery, immunogenicity and safety) hindering the clinical applications of mRNA therapeutics and vaccines. The optimized design parameters should not be applied as default to different biological systems, but rather individually optimized for each mRNA sequence and intended application. Further advancement in the mRNA design and delivery technologies for achieving cell type- and organ site-specificity will broaden the scope and usefulness of this new class of drugs.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
14
|
Maiorano BA, Schinzari G, Ciardiello D, Rodriquenz MG, Cisternino A, Tortora G, Maiello E. Cancer Vaccines for Genitourinary Tumors: Recent Progresses and Future Possibilities. Vaccines (Basel) 2021; 9:623. [PMID: 34207536 PMCID: PMC8228524 DOI: 10.3390/vaccines9060623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In the last years, many new treatment options have widened the therapeutic scenario of genitourinary malignancies. Immunotherapy has shown efficacy, especially in the urothelial and renal cell carcinomas, with no particular relevance in prostate cancer. However, despite the use of immune checkpoint inhibitors, there is still high morbidity and mortality among these neoplasms. Cancer vaccines represent another way to activate the immune system. We sought to summarize the most recent advances in vaccine therapy for genitourinary malignancies with this review. METHODS We searched PubMed, Embase and Cochrane Database for clinical trials conducted in the last ten years, focusing on cancer vaccines in the prostate, urothelial and renal cancer. RESULTS Various therapeutic vaccines, including DNA-based, RNA-based, peptide-based, dendritic cells, viral vectors and modified tumor cells, have been demonstrated to induce specific immune responses in a variable percentage of patients. However, these responses rarely corresponded to significant survival improvements. CONCLUSIONS Further preclinical and clinical studies will improve the knowledge about cancer vaccines in genitourinary malignancies to optimize dosage, select targets with a driver role for tumor development and growth, and finally overcome resistance mechanisms. Combination strategies represent possibly more effective and long-lasting treatments.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
| | - Giovanni Schinzari
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
- Medical Oncology Unit, Comprehensive Cancer Center, Foundation A. Gemelli Policlinic IRCCS, 00168 Rome, Italy
| | - Davide Ciardiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
- Medical Oncology, Department of Precision Medicine, Luigi Vanvitelli University of Campania, 80131 Naples, Italy
| | - Maria Grazia Rodriquenz
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
| | - Antonio Cisternino
- Urology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy;
| | - Giampaolo Tortora
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
- Medical Oncology Unit, Comprehensive Cancer Center, Foundation A. Gemelli Policlinic IRCCS, 00168 Rome, Italy
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
| |
Collapse
|
15
|
Terenziani R, Zoppi S, Fumarola C, Alfieri R, Bonelli M. Immunotherapeutic Approaches in Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:2793. [PMID: 34199722 PMCID: PMC8200040 DOI: 10.3390/cancers13112793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignant disease affecting the mesothelium, commonly associated to asbestos exposure. The current therapeutic actions, based on cisplatin/pemetrexed treatment, are limited due to the late stage at which most patients are diagnosed and to the intrinsic chemo-resistance of the tumor. Another relevant point is the absence of approved therapies in the second line setting following progression of MPM after chemotherapy. Considering the poor prognosis of the disease and the fact that the incidence of this tumor is expected to increase in the next decade, novel therapeutic approaches are urgently needed. In the last few years, several studies have investigated the efficacy and safety of immune-checkpoint inhibitors (ICIs) in the treatment of unresectable advanced MPM, and a number of trials with immunotherapeutic agents are ongoing in both first line and second line settings. In this review, we describe the most promising emerging immunotherapy treatments for MPM (ICIs, engineered T cells to express chimeric antigen receptors (CARs), dendritic cells (DCs) vaccines), focusing on the biological and immunological features of this tumor as well as on the issues surrounding clinical trial design.
Collapse
Affiliation(s)
| | | | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (R.T.); (S.Z.); (C.F.)
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (R.T.); (S.Z.); (C.F.)
| |
Collapse
|
16
|
Attia YA, El-Saadony MT, Swelum AA, Qattan SYA, Al-Qurashi AD, Asiry KA, Shafi ME, Elbestawy AR, Gado AR, Khafaga AF, Hussein EOS, Ba-Awadh H, Tiwari R, Dhama K, Alhussaini B, Alyileili SR, El-Tarabily KA, Abd El-Hack ME. COVID-19: pathogenesis, advances in treatment and vaccine development and environmental impact-an updated review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22241-22264. [PMID: 33733422 PMCID: PMC7969349 DOI: 10.1007/s11356-021-13018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/15/2021] [Indexed: 05/08/2023]
Abstract
Diseases negatively impact the environment, causing many health risks and the spread of pollution and hazards. A novel coronavirus, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has led to a recent respiratory syndrome epidemic in humans. In December 2019, the sudden emergence of this new coronavirus and the subsequent severe disease it causes created a serious global health threat and hazards. This is in contrast to the two aforementioned coronaviruses, SARS-CoV-2 (in 2002) and middle east respiratory syndrome coronavirus MERS-CoV (in 2012), which were much more easily contained. The World Health Organization (WHO) dubbed this contagious respiratory disease an "epidemic outbreak" in March 2020. More than 80 companies and research institutions worldwide are working together, in cooperation with many governmental agencies, to develop an effective vaccine. To date, six authorized vaccines have been registered. Up till now, no approved drugs and drug scientists are racing from development to clinical trials to find new drugs for COVID-19. Wild animals, such as snakes, bats, and pangolins are the main sources of coronaviruses, as determined by the sequence homology between MERS-CoV and viruses in these animals. Human infection is caused by inhalation of respiratory droplets. To date, the only available treatment protocol for COVID-19 is based on the prevalent clinical signs. This review aims to summarize the current information regarding the origin, evolution, genomic organization, epidemiology, and molecular and cellular characteristics of SARS-CoV-2 as well as the diagnostic and treatment approaches for COVID-19 and its impact on global health, environment, and economy.
Collapse
Affiliation(s)
- Youssef A Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589, Saudi Arabia.
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia.
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Zagazig, 44519, Egypt.
| | - Shaza Y A Qattan
- Department of Biological Sciences, Microbiology, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Adel D Al-Qurashi
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589, Saudi Arabia
| | - Khalid A Asiry
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589, Saudi Arabia
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhur, 22511, Egypt
| | - Ahmed R Gado
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhur, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Alexandria, 22758, Egypt
| | - Elsayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar-243, Bareilly, Uttar Pradesh, 122, India
| | - Bakr Alhussaini
- Department of Pediatric, Faculty of Medicine, King Abdualziz University, Jeddah, Saudi Arabia
| | - Salem R Alyileili
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates.
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
17
|
Uebbing L, Ziller A, Siewert C, Schroer MA, Blanchet CE, Svergun DI, Ramishetti S, Peer D, Sahin U, Haas H, Langguth P. Investigation of pH-Responsiveness inside Lipid Nanoparticles for Parenteral mRNA Application Using Small-Angle X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13331-13341. [PMID: 33108188 DOI: 10.1021/acs.langmuir.0c02446] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Messenger ribonucleic acid (mRNA)-based nanomedicines have shown to be a promising new lead in a broad field of potential applications such as tumor immunotherapy. Of these nanomedicines, lipid-based mRNA nanoparticles comprising ionizable lipids are gaining increasing attention as versatile technologies for fine-tuning toward a given application, with proven potential for successful development up to clinical practice. Still, several hurdles have to be overcome to obtain a drug product that shows adequate mRNA delivery and clinical efficacy. In this study, pH-induced changes in internal molecular organization and overall physicochemical characteristics of lipoplexes comprising ionizable lipids were investigated using small-angle X-ray scattering and supplementary techniques. These changes were determined for different types of ionizable lipids, present at various molar fractions and N/P ratios inside the phospholipid membranes. The investigated systems showed a lamellar organization, allowing an accurate determination of pH-dependent structural changes. The differences in the pH responsiveness of the systems comprising different ionizable lipids and mRNA fractions could be clearly revealed from their structural evolution. Measurements of the degree of ionization and pH-dependent mRNA loading into the systems by fluorescence assays supported the findings from the structural investigation. Our approach allows for direct in situ determination of the structural response of the lipoplex systems to changes of the environmental pH similar to that observed for endosomal uptake. These data therefore provide valuable complementary information for understanding and fine-tuning of tailored mRNA delivery systems toward improved cellular uptake and endosomal processing.
Collapse
Affiliation(s)
- Lukas Uebbing
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Antje Ziller
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Christian Siewert
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Martin A Schroer
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation c/o DESY, 22607 Hamburg, Germany
| | - Clement E Blanchet
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation c/o DESY, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation c/o DESY, 22607 Hamburg, Germany
| | - Srinivas Ramishetti
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, 55099 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Heinrich Haas
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany
| | - Peter Langguth
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| |
Collapse
|
18
|
Weng Y, Li C, Yang T, Hu B, Zhang M, Guo S, Xiao H, Liang XJ, Huang Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv 2020; 40:107534. [PMID: 32088327 DOI: 10.1016/j.biotechadv.2020.107534] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
Messenger RNA (mRNA)-based therapeutics hold the potential to cause a major revolution in the pharmaceutical industry because they can be used for precise and individualized therapy, and enable patients to produce therapeutic proteins in their own bodies without struggling with the comprehensive manufacturing issues associated with recombinant proteins. Compared with the current therapeutics, the production of mRNA is much cost-effective, faster and more flexible because it can be easily produced by in vitro transcription, and the process is independent of mRNA sequence. Moreover, mRNA vaccines allow people to develop personalized medications based on sequencing results and/or personalized conditions rapidly. Along with the great potential from bench to bedside, technical obstacles facing mRNA pharmaceuticals are also obvious. The stability, immunogenicity, translation efficiency, and delivery are all pivotal issues need to be addressed. In the recently published research results, these issues are gradually being overcome by state-of-the-art development technologies. In this review, we describe the structural properties and modification technologies of mRNA, summarize the latest advances in developing mRNA delivery systems, review the preclinical and clinical applications, and put forward our views on the prospect and challenges of developing mRNA into a new class of drug.
Collapse
Affiliation(s)
- Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Tongren Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
19
|
Hoo WPY, Siak PY, In LLA. Overview of Current Immunotherapies Targeting Mutated KRAS Cancers. Curr Top Med Chem 2019; 19:2158-2175. [PMID: 31483231 DOI: 10.2174/1568026619666190904163524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The occurrence of somatic substitution mutations of the KRAS proto-oncogene is highly prevalent in certain cancer types, which often leads to constant activation of proliferative pathways and subsequent neoplastic transformation. It is often seen as a gateway mutation in carcinogenesis and has been commonly deemed as a predictive biomarker for poor prognosis and relapse when conventional chemotherapeutics are employed. Additionally, its mutational status also renders EGFR targeted therapies ineffective owing to its downstream location. Efforts to discover new approaches targeting this menacing culprit have been ongoing for years without much success, and with incidences of KRAS positive cancer patients being on the rise, researchers are now turning towards immunotherapies as the way forward. In this scoping review, recent immunotherapeutic developments and advances in both preclinical and clinical studies targeting K-ras directly or indirectly via its downstream signal transduction machinery will be discussed. Additionally, some of the challenges and limitations of various K-ras targeting immunotherapeutic approaches such as vaccines, adoptive T cell therapies, and checkpoint inhibitors against KRAS positive cancers will be deliberated.
Collapse
Affiliation(s)
- Winfrey Pui Yee Hoo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Lionel L A In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Joshi A, Tandel N, Tyagi P, Dalai SK, Bisen PS, Tyagi RK. RNA-loaded dendritic cells: more than a tour de force in cancer therapeutics. Immunotherapy 2019; 11:1129-1147. [PMID: 31390917 DOI: 10.2217/imt-2019-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A wide array of therapeutic strategies has been implemented against cancers, yet their clinical benefit is limited. The lack of clinical efficacy of the conventional treatment options might be due to the inept immune competency of the patients. Dendritic cells (DCs) have a vital role in initiating and directing immune responses and have been frequently used as delivery vehicles in clinical research. The recent clinical data suggest the potential use of DCs pulsed with nucleic acid, especially with RNA holds a great potential as an immunotherapeutic measure with compare to other cancer therapeutics. This review mainly deals with the DCs and their role in transfection with RNA in cancer immunotherapy.
Collapse
Affiliation(s)
- Aishwarya Joshi
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| | - Priyanka Tyagi
- Department of Biological Sciences, School of Basic and Applied Sciences, GD Goenka University, Gurugram 122103, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| | - Prakash S Bisen
- School of Studies in Biotechnology, Jiwaji University, Gwalior 474001, India
| | - Rajeev K Tyagi
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| |
Collapse
|
21
|
Savelyeva N, Allen A, Chotprakaikiat W, Harden E, Jobsri J, Godeseth R, Wang Y, Stevenson F, Ottensmeier C. Linked CD4 T Cell Help: Broadening Immune Attack Against Cancer by Vaccination. Curr Top Microbiol Immunol 2019; 405:123-143. [PMID: 27704269 DOI: 10.1007/82_2016_500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last decade, immunotherapy with monoclonal antibodies targeting immunological check points has become a breakthrough therapeutic modality for solid cancers. However, only up to 50 % of patients benefit from this powerful approach. For others vaccination might provide a plausible addition or alternative. For induction of effective anticancer immunity CD4+ T cell help is required, which is often difficult to induce to self cancer targets because of tolerogenic mechanisms. Our approach for cancer vaccines has been to incorporate into the vaccine design sequences able to activate foreign T cell help, through genetically linking cancer targets to microbial sequences (King et al. in Nat Med 4(11):1281-1286, 1998; Savelyeva et al. in Nat Biotechnol 19(8):760-764, 2001). This harnesses the non-tolerized CD4 T cell repertoire available in patients to help induction of effective immunity against fused cancer antigens. Multiple immune effector mechanisms including antibody, CD8+ T cells as well as CD4 effector T cells can be activated using this strategy. Delivery via DNA vaccines has already indicated clinical efficacy. The same principle of linked T cell help has now been transferred to other novel vaccine modalities to further potentiate immunity against cancer targets.
Collapse
Affiliation(s)
- Natalia Savelyeva
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
| | - Alex Allen
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Warayut Chotprakaikiat
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
- Oral Biology Department, Naresuan University, Phitsanulok, Thailand
| | - Elena Harden
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Jantipa Jobsri
- Oral Biology Department, Naresuan University, Phitsanulok, Thailand
| | - Rosemary Godeseth
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Yidao Wang
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Freda Stevenson
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Christian Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
22
|
De Coen R, Nuhn L, De Geest BG. Engineering mannosylated nanogels with membrane-disrupting properties. Polym Chem 2019. [DOI: 10.1039/c9py00492k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, mannosylated core-cross-linked nanogels are designed that contain cationic moieties in their core.
Collapse
Affiliation(s)
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research
- Mainz
- Germany
| | | |
Collapse
|
23
|
Fröhlich F, Reiser A, Fink L, Woschée D, Ligon T, Theis FJ, Rädler JO, Hasenauer J. Multi-experiment nonlinear mixed effect modeling of single-cell translation kinetics after transfection. NPJ Syst Biol Appl 2018; 5:1. [PMID: 30564456 PMCID: PMC6288153 DOI: 10.1038/s41540-018-0079-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/09/2018] [Indexed: 11/10/2022] Open
Abstract
Single-cell time-lapse studies have advanced the quantitative understanding of cellular pathways and their inherent cell-to-cell variability. However, parameters retrieved from individual experiments are model dependent and their estimation is limited, if based on solely one kind of experiment. Hence, methods to integrate data collected under different conditions are expected to improve model validation and information content. Here we present a multi-experiment nonlinear mixed effect modeling approach for mechanistic pathway models, which allows the integration of multiple single-cell perturbation experiments. We apply this approach to the translation of green fluorescent protein after transfection using a massively parallel read-out of micropatterned single-cell arrays. We demonstrate that the integration of data from perturbation experiments allows the robust reconstruction of cell-to-cell variability, i.e., parameter densities, while each individual experiment provides insufficient information. Indeed, we show that the integration of the datasets on the population level also improves the estimates for individual cells by breaking symmetries, although each of them is only measured in one experiment. Moreover, we confirmed that the suggested approach is robust with respect to batch effects across experimental replicates and can provide mechanistic insights into the nature of batch effects. We anticipate that the proposed multi-experiment nonlinear mixed effect modeling approach will serve as a basis for the analysis of cellular heterogeneity in single-cell dynamics.
Collapse
Affiliation(s)
- Fabian Fröhlich
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764 Germany
- Center for Mathematics, Technische Universität München, Garching, 85748 Germany
| | - Anita Reiser
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, 80539 Germany
| | - Laura Fink
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, 80539 Germany
| | - Daniel Woschée
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, 80539 Germany
| | - Thomas Ligon
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, 80539 Germany
| | - Fabian Joachim Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764 Germany
- Center for Mathematics, Technische Universität München, Garching, 85748 Germany
| | - Joachim Oskar Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, 80539 Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764 Germany
- Center for Mathematics, Technische Universität München, Garching, 85748 Germany
- Faculty of Mathematics and Natural Sciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 53115 Germany
| |
Collapse
|
24
|
Trepotec Z, Aneja MK, Geiger J, Hasenpusch G, Plank C, Rudolph C. Maximizing the Translational Yield of mRNA Therapeutics by Minimizing 5'-UTRs. Tissue Eng Part A 2018; 25:69-79. [PMID: 29638193 DOI: 10.1089/ten.tea.2017.0485] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The 5'-untranslated region (5'-UTR) of mRNA contains structural elements, which are recognized by cell-specific RNA-binding proteins, thereby affecting the translation of the molecule. The activation of an innate immune response upon transfection of mRNA into cells is reduced when the mRNA comprises chemically modified nucleotides, putatively by altering the secondary structure of the molecule. Such alteration in the 5'-UTR in turn may affect the functionality of mRNA. In this study, we report on the impact of seven synthetic minimalistic 5'-UTR sequences on the translation of luciferase-encoding unmodified and different chemically modified mRNAs upon transfection in cell culture and in vivo. One minimalistic 5'-UTR, consisting of 14 nucleotides combining the T7 promoter with a Kozak consensus sequence, yielded similar or even higher expression than a 37 nucleotides human alpha-globin 5'-UTR containing mRNA in HepG2 and A549 cells. Furthermore, also the kind of modified nucleotides used in in vitro transcription, affected mRNA translation when using different translation regulators (Kozak vs. translation initiator of short UTRs). The in vitro data were confirmed by bioluminescence imaging of expression in mouse livers, 6 h postintravenous injection of a lipidoid nanoparticle-formulated RNA in female Balb/c mice. Luciferase measurements from liver and spleen showed that minimal 5'-UTRs (3 and 7) were either equally effective or better than human alpha-globin 5'-UTR. These findings were confirmed with a human erythropoietin (hEPO)-encoding mRNA. Significantly, higher levels of hEPO could be quantified in supernatants from A549 cells transfected with minimal 5'-UTR7 containing RNA when compared to commonly used benchmarks 5'-UTRs. Our results demonstrate the superior potential of synthetic minimalistic 5'-UTRs for use in transcript therapies.
Collapse
Affiliation(s)
- Zeljka Trepotec
- 1 Department of Pediatrics, Ludwig-Maximilian-University of Munich, Munich, Germany
| | | | | | | | - Christian Plank
- 2 Ethris GmbH, Planegg, Germany.,3 Institute of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Carsten Rudolph
- 1 Department of Pediatrics, Ludwig-Maximilian-University of Munich, Munich, Germany.,2 Ethris GmbH, Planegg, Germany
| |
Collapse
|
25
|
Lybaert L, Vermaelen K, De Geest BG, Nuhn L. Immunoengineering through cancer vaccines – A personalized and multi-step vaccine approach towards precise cancer immunity. J Control Release 2018; 289:125-145. [DOI: 10.1016/j.jconrel.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
26
|
Daneshmandi S, Pourfathollah AA, Forouzandeh-Moghaddam M. Enhanced CD40 and ICOSL expression on dendritic cells surface improve anti-tumor immune responses; effectiveness of mRNA/chitosan nanoparticles. Immunopharmacol Immunotoxicol 2018; 40:375-386. [PMID: 30265161 DOI: 10.1080/08923973.2018.1510959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objective: To improve dendritic cells (DCs) function, we targeted DCs to over express CD40 and inducible costimulator ligand (ICOSL) costimulatory molecules along with total messenger RNA (mRNA) of tumor cells to achieve a safe and effective system for treatment of tumor. Materials and methods: We generated CD40 and ICOSL mRNA in vitro and manipulated DCs using chitosan nanoparticles and also lipofectamine transfection system then examined in vitro and in vivo. Results: Mice bone marrow derived DCs pulsed with total tumor mRNA/CD40 mRNA or ICOSL mRNA showed higher expression of DCs maturation markers (CD40, ICOSL, CD86, and MHC-II) and accelerated secretion of pro-inflammatory cytokines. Co-culture of DCs with T cells enhanced proliferation of T cells and shift toward stronger Th1 cytokine responses especially in presence of CD40 over expressed DCs. Intra-tumor administration of manipulated DCs to 4T1 tumor mice model showed delay in growth of tumor volume, trend to increase in mice survival, and stronger anti-tumor cytokines production in splenocytes of mice model (with higher efficacy of mRNA/chitosan nanoparticle system). Conclusions: Hence, we suggest that targeting intra-tumor DCs to elicit expression of CD40 and ICOSL and present broad range of tumor antigens could yield effective anti-tumor responses. In this regard, CD40 molecule manipulation trigger stronger functions, while mRNA/chitosan nanoparticles system could provide a high potent tool for targeting strategies.
Collapse
Affiliation(s)
- Saeed Daneshmandi
- a Department of Immunology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Ali Akbar Pourfathollah
- a Department of Immunology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | | |
Collapse
|
27
|
Jiang Y, Gaudin A, Zhang J, Agarwal T, Song E, Kauffman AC, Tietjen GT, Wang Y, Jiang Z, Cheng CJ, Saltzman WM. A "top-down" approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery. Biomaterials 2018; 176:122-130. [PMID: 29879653 PMCID: PMC6038928 DOI: 10.1016/j.biomaterials.2018.05.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/26/2018] [Accepted: 05/25/2018] [Indexed: 01/05/2023]
Abstract
Gene delivery is known to be a complicated multi-step biological process. It has been observed that subtle differences in the structure and properties of polymeric materials used for gene delivery can lead to dramatic differences in transfection efficiency. Therefore, screening of properties is pivotal to optimizing the polymer. So far, most polymeric materials are built in a "bottom-up" manner, i.e. synthesized from monomers that allow modification of polymer composition or structural factors. With this method, we previously synthesized and screened a library of biodegradable poly(amine-co-ester) (PACE) terpolymers for optimized DNA delivery. However, it can be tedious and time consuming to synthesize a polymer library for screening, particularly when small changes of a factor need to be tested, when multiple factors are involved, and when the effects of different factors are synergistic. In the present work, we evaluate the potential of PACE to deliver mRNA. After observing that mRNA transfection efficiency was highly dependent on both end group composition and molecular weight (MW) of PACE in a synergistic manner, we developed a "top-down" process we called actuation, to simultaneously vary these two factors. Some of the actuated PACE (aPACE) materials presented superior mRNA delivery properties compared to regular PACE, with up to a 106-fold-increase in mRNA transfection efficiency in vitro. Moreover, when aPACE was used to deliver mRNA coding for erythropoietin (EPO) in vivo, it produced high levels of EPO in the blood for up to 48 h without inducing systemic toxicity. This polymer constitutes a new delivery vehicle for mRNA-based treatments that provides safe yet potent protein production.
Collapse
Affiliation(s)
- Yuhang Jiang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Alice Gaudin
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Junwei Zhang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06511, USA
| | - Tushar Agarwal
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Eric Song
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Amy C Kauffman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Gregory T Tietjen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Yongheng Wang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Zhaozhong Jiang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA; Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
28
|
Latest development on RNA-based drugs and vaccines. Future Sci OA 2018; 4:FSO300. [PMID: 29796303 PMCID: PMC5961404 DOI: 10.4155/fsoa-2017-0151] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/19/2018] [Indexed: 12/25/2022] Open
Abstract
Drugs and vaccines based on mRNA and RNA viruses show great potential and direct translation in the cytoplasm eliminates chromosomal integration. Limitations are associated with delivery and stability issues related to RNA degradation. Clinical trials on RNA-based drugs have been conducted in various disease areas. Likewise, RNA-based vaccines for viral infections and various cancers have been subjected to preclinical and clinical studies. RNA delivery and stability improvements include RNA structure modifications, targeting dendritic cells and employing self-amplifying RNA. Single-stranded RNA viruses possess self-amplifying RNA, which can provide extreme RNA replication in the cytoplasm to support RNA-based drug and vaccine development. Although oligonucleotide-based approaches have demonstrated potential, the focus here is on mRNA- and RNA virus-based methods. Drug development has suffered from inefficiency, side effects and high costs. For this reason novel approaches for drug discovery are of great importance. RNA-based methods provide the advantage of targeting ‘production’ of drugs to diseased cells and vaccines to immune response-stimulating cells. RNA drugs have demonstrated therapeutic efficacy in eye and heart diseases and in various cancers in clinical trials. Likewise, RNA-based vaccines have provided protection against challenges with lethal doses of viruses such as Ebola and cancer cells in animal models.
Collapse
|
29
|
Incorporation of Synthetic mRNA in Injectable Chitosan-Alginate Hybrid Hydrogels for Local and Sustained Expression of Exogenous Proteins in Cells. Int J Mol Sci 2018; 19:ijms19051313. [PMID: 29702615 PMCID: PMC5983784 DOI: 10.3390/ijms19051313] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
The application of synthetic messenger RNA (mRNA) exhibits various advantages, such as expression of desired proteins in cells without genomic integration. In the field of tissue engineering, synthetic mRNAs could be also used to modulate the protein expression in implanted cells. Therefore, in this study, we incorporated synthetic humanized Gaussia luciferase (hGLuc) mRNA into alginate, chitosan, or chitosan-alginate hybrid hydrogels and analyzed the release of hGLuc mRNA from these hydrogels. After 3 weeks, 79% of the incorporated mRNA was released from alginate hydrogels, approximately 42% was released from chitosan hydrogels, and about 70% was released from chitosan-alginate hydrogels. Due to the injectability, chitosan-alginate hybrid hydrogels were selected for further investigation of the bioactivity of embedded hGLuc mRNA and the stability of these hydrogels was examined after the incorporation of synthetic mRNA by rheometric analysis. Therefore, HEK293 cells were incorporated into chitosan-alginate hydrogels containing mRNA transfection complexes and the luciferase activity in the supernatants was detected for up to 3 weeks. These results showed that the biodegradable chitosan-alginate hybrid hydrogels are promising delivery systems for sustained delivery of synthetic mRNAs into cells. Since chitosan-alginate hybrid hydrogels are injectable, the hydrogels can be simultaneously loaded with cells and the desired synthetic mRNA for exogenous protein synthesis and can be administered by minimally invasive local injection for tissue engineering applications.
Collapse
|
30
|
Therapeutic cancer vaccines: From initial findings to prospects. Immunol Lett 2018; 196:11-21. [DOI: 10.1016/j.imlet.2018.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/30/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
31
|
Ziller A, Nogueira SS, Hühn E, Funari SS, Brezesinski G, Hartmann H, Sahin U, Haas H, Langguth P. Incorporation of mRNA in Lamellar Lipid Matrices for Parenteral Administration. Mol Pharm 2018; 15:642-651. [PMID: 29232147 DOI: 10.1021/acs.molpharmaceut.7b01022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insertion of high molecular weight messenger RNA (mRNA) into lyotropic lipid phases as model systems for controlled release formulations for the mRNA was investigated. Low fractions of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were used as an anchor to load the mRNA into a lamellar lipid matrix. Dispersions of zwitterionic lipid in the aqueous phase in the presence of increasing fractions of mRNA and cationic lipid were prepared, and the molecular organization was investigated as a function of mRNA and cationic lipid fraction. Insertion of both cationic lipid and mRNA was clearly proven from the physicochemical characteristics. The d-spacing of the lipid bilayers, as determined by small-angle X-ray scattering (SAXS) measurements, responded sensitively to the amount of inserted DOTAP and mRNA. A concise model of the insertion of the mRNA in the lipid matrices was derived, indicating that the mRNA was accommodated in the aqueous slab between lipid bilayers. Depending on the DOTAP and mRNA fraction, a different excess of water was present in this slab. Results from further physicochemical characterization, including determination of free and bound mRNA, zeta potential, and calorimetry data, were in line with this assumption. The structure of these concentrated lipid/mRNA preparations was maintained upon dilution. The functionality of the inserted mRNA was proven by cell culture experiments using C2C12 murine myoblast cells with the luciferase-encoding mRNA. The described lipid phases as carriers for the mRNA may be applicable for different routes of local administration, where control of the release kinetics and the form of the released mRNA (bound or free) is required.
Collapse
Affiliation(s)
- Antje Ziller
- Department of Pharmaceutics and Biopharmaceutics, Johannes Gutenberg University Mainz , 55099 Mainz, Germany
| | - Sara S Nogueira
- Department of Pharmaceutics and Biopharmaceutics, Johannes Gutenberg University Mainz , 55099 Mainz, Germany.,BioNTech RNA Pharmaceuticals , 55131 Mainz, Germany
| | - Eva Hühn
- Department of Pharmaceutics and Biopharmaceutics, Johannes Gutenberg University Mainz , 55099 Mainz, Germany
| | | | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
| | - Hermann Hartmann
- Institute for Molecular Biophysics, Johannes Gutenberg University Mainz , 55099 Mainz, Germany
| | - Ugur Sahin
- BioNTech RNA Pharmaceuticals , 55131 Mainz, Germany
| | | | - Peter Langguth
- Department of Pharmaceutics and Biopharmaceutics, Johannes Gutenberg University Mainz , 55099 Mainz, Germany
| |
Collapse
|
32
|
Spontaneous Activation of Antigen-presenting Cells by Genes Encoding Truncated Homo-Oligomerizing Derivatives of CD40. J Immunother 2018; 40:39-50. [PMID: 28005579 DOI: 10.1097/cji.0000000000000150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interaction between the CD40 receptor on antigen-presenting cells (APCs) and its trimeric ligand on CD4 T cells is essential for the initiation and progression of the adaptive immune response. Here we undertook to endow CD40 with the capacity to trigger spontaneous APC activation through ligand-independent oligomerization. To this end we exploited the GCN4 yeast transcriptional activator, which contains a leucine zipper DNA-binding motif that induces homophilic interactions. We incorporated GCN4 variants forming homodimers, trimers, or tetramers at the intracellular domain of human and mouse CD40 and replaced the extracellular portion with peptide-β2m or other peptide tags. In parallel we examined similarly truncated CD40 monomers lacking a GCN4 motif. The oligomeric products appeared to arrange in high-molecular-weight aggregates and were considerably superior to the monomer in their ability to trigger nuclear factor kB signaling, substantiating the anticipated constitutively active (ca) phenotype. Cumulative results in human and mouse APC lines transfected with caCD40 mRNA revealed spontaneous upregulation of CD80, IL-1β, TNFα, IL-6, and IL-12, which could be further enhanced by caTLR4 mRNA. In mouse bone-marrow-derived dendritic cells caCD40 upregulated CD80, CD86, MHC-II, and IL-12 and in human monocyte-derived dendritic cells it elevated surface CD80, CD83 CD86, CCR7, and HLA-DR. Oligomeric products carrying the peptide-β2m extracellular portion could support MHC-I presentation of the linked peptide up to 4 days post-mRNA transfection. These findings demonstrate that the expression of a single caCD40 derivative in APCs can exert multiple immunostimulatory effects, offering a new powerful tool in the design of gene-based cancer vaccines.
Collapse
|
33
|
Obleukhova I, Kiryishina N, Falaleeva S, Lopatnikova J, Kurilin V, Kozlov V, Vitsin A, Cherkasov A, Kulikova E, Sennikov S. Use of antigen-primed dendritic cells for inducing antitumor immune responses in vitro in patients with non-small cell lung cancer. Oncol Lett 2017; 15:1297-1306. [PMID: 29399182 DOI: 10.3892/ol.2017.7403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer is associated with a reduction in immature and mature circulating dendritic cells (DCs), and with an impaired migratory capacity, compared with healthy donors. Therefore, modern approaches to the in vitro generation of DCs loaded with tumor antigens and their use for inducing antitumor immune responses in vivo are being investigated. The purpose of the present study was to investigate the phenotypic and functional characteristics of peripheral blood DC subsets in patients with non-small cell lung cancer (NSCLC), and the development of an antitumor cytotoxic response by mononuclear cells (MNCs) from patients using in vitro generated antigen-primed DCs. Heparinized peripheral venous blood samples were obtained from 10 healthy donors and 20 patients with a histologically verified diagnosis of NSCLC. The ability of antigen-activated DCs to stimulate the activity of MNCs against autologous tumor cells was evaluated using a cytotoxic test. Peripheral blood DC subsets from patients with NSCLC were identified to be decreased and to exhibit an impaired ability to mature, compared with healthy donors. Furthermore, DCs generated from MNCs from patients with NSCLC were able to stimulate a specific cytotoxic response when loaded with autologous tumor lysates or RNA and matured, in vitro. A perforin and granzyme B-dependent mode of cytotoxicity was primarily induced. The ability of DCs loaded with tumor antigens to increase the cytotoxic activity of MNCs against NSCLC cells in vitro indicates the effective induction and co-stimulation of T lymphocytes by the generated DCs.
Collapse
Affiliation(s)
- Irina Obleukhova
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | | | - Svetlana Falaleeva
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Julia Lopatnikova
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Vasiliy Kurilin
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Vadim Kozlov
- Novosibirsk Regional Clinical Oncology Center, Novosibirsk 630108, Russia
| | | | | | - Ekaterina Kulikova
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Sergey Sennikov
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| |
Collapse
|
34
|
Uchida S, Yoshinaga N, Yanagihara K, Yuba E, Kataoka K, Itaka K. Designing immunostimulatory double stranded messenger RNA with maintained translational activity through hybridization with poly A sequences for effective vaccination. Biomaterials 2017; 150:162-170. [PMID: 29031816 DOI: 10.1016/j.biomaterials.2017.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Messenger (m)RNA vaccines require a safe and potent immunostimulatory adjuvant. In this study, we introduced immunostimulatory properties directly into mRNA molecules by hybridizing them with complementary RNA to create highly immunogenic double stranded (ds)RNAs. These dsRNA formulations, comprised entirely of RNA, are expected to be safe and highly efficient due to antigen expression and immunostimulation occurring simultaneously in the same antigen presenting cells. In this strategy, design of dsRNA is important. Indeed, hybridization using full-length antisense (as)RNA drastically reduced translational efficiency. In contrast, by limiting the hybridized portion to the mRNA poly A region, efficient translation and intense immunostimulation was simultaneously obtained. The immune response to the poly U-hybridized mRNAs (mRNA:pU) was mediated through Toll-like receptor (TLR)-3 and retinoic acid-inducible gene (RIG)-I. We also demonstrated that mRNA:pU activation of mouse and human dendritic cells was significantly more effective than activation using single stranded mRNA. In vivo mouse immunization experiments using ovalbumin showed that mRNA:pU significantly enhanced the intensity of specific cellular and humoral immune responses, compared to single stranded mRNA. Our novel mRNA:pU formulation can be delivered using a variety of mRNA carriers depending on the purpose and delivery route, providing a versatile platform for improving mRNA vaccine efficiency.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Naoto Yoshinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Kayoko Yanagihara
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
35
|
Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther 2017; 24:133-143. [DOI: 10.1038/gt.2017.5] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 10/28/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
|
36
|
Ferizi M, Aneja MK, Balmayor ER, Badieyan ZS, Mykhaylyk O, Rudolph C, Plank C. Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts. Sci Rep 2016; 6:39149. [PMID: 27974853 PMCID: PMC5156912 DOI: 10.1038/srep39149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/18/2016] [Indexed: 12/24/2022] Open
Abstract
Modified nucleotide chemistries that increase the half-life (T1/2) of transfected recombinant mRNA and the use of non-native 5'- and 3'-untranslated region (UTR) sequences that enhance protein translation are advancing the prospects of transcript therapy. To this end, a set of UTR sequences that are present in mRNAs with long cellular T1/2 were synthesized and cloned as five different recombinant sequence set combinations as upstream 5'-UTR and/or downstream 3'-UTR regions flanking a reporter gene. Initial screening in two different cell systems in vitro revealed that cytochrome b-245 alpha chain (CYBA) combinations performed the best among all other UTR combinations and were characterized in detail. The presence or absence of CYBA UTRs had no impact on the mRNA stability of transfected mRNAs, but appeared to enhance the productivity of transfected transcripts based on the measurement of mRNA and protein levels in cells. When CYBA UTRs were fused to human bone morphogenetic protein 2 (hBMP2) coding sequence, the recombinant mRNA transcripts upon transfection produced higher levels of protein as compared to control transcripts. Moreover, transfection of human adipose mesenchymal stem cells with recombinant hBMP2-CYBA UTR transcripts induced bone differentiation demonstrating the osteogenic and therapeutic potential for transcript therapy based on hybrid UTR designs.
Collapse
Affiliation(s)
- Mehrije Ferizi
- Institute of Molecular Immunology- Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Ethris GmbH, Planegg, 82152, Germany
| | | | - Elizabeth R. Balmayor
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Zohreh Sadat Badieyan
- Institute of Molecular Immunology- Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Olga Mykhaylyk
- Institute of Molecular Immunology- Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Ethris GmbH, Planegg, 82152, Germany
| | | | - Christian Plank
- Institute of Molecular Immunology- Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Ethris GmbH, Planegg, 82152, Germany
| |
Collapse
|
37
|
Yu L, Hu T, Zou T, Shi Q, Chen G. Chronic Myelocytic Leukemia (CML) Patient-Derived Dendritic Cells Transfected with Autologous Total RNA Induces CML-Specific Cytotoxicity. Indian J Hematol Blood Transfus 2016; 32:397-404. [PMID: 27812247 DOI: 10.1007/s12288-016-0643-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/12/2016] [Indexed: 01/18/2023] Open
Abstract
The oncogenic bcr/abl1 fusion gene is a chronic myelogenous leukemia (CML)-specific antigen which is absent in normal tissues. This makes bcr/abl1 a perfect target for developing CML vaccines that elicit specific immune responses against minimal residual disease while sparing normal tissue. The aim of this study was to use different methods to induce dendritic cells (DCs) derived from patients with CML (CML-DCs) and analyze them for CML-specific tumor cytotoxicity for immune therapy. Bone marrow-derived mononuclear cells from ten CML patients were studied to induce CML-DC differentiation in the presence of recombinant human interleukin-4, rh-granulocyte-macrophage-colony stimulating factor, and tumor necrosis factor-alpha with either a total RNA-lipofectamine complex, total RNA or CML tumor lysate (freeze-thawed). CML-DC maturation, confirmed by expression of CD1α, CD40, CD80, CD83, CD86 and by real-time polymerase chain reaction, validated the CML-origin of these DC cells. CML-DCs stimulated cytotoxic T-cell (CTL) apoptosis, high levels of IL-12 secretion, and had significant inhibitory effect on K562 tumorigenicity in nude mice. CML-DCs pulsed with total RNA by lipofectamine transfection produced the strongest effect in tumor-specific CTL functions. These results indicate that CML-DCs transfected with total RNA by lipofectamine induce the strongest CTL cytotoxicity and have the greatest potential for CML immune therapy. This study holds promise for a DC-based strategy for inducing anti-leukemia responses and establishes a foundation for developing RNA vaccination against CML.
Collapse
Affiliation(s)
- Li Yu
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Ting Hu
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Tian Zou
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Qingzhi Shi
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Guoan Chen
- Institute of Hematology, The First Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| |
Collapse
|
38
|
Grabbe S, Haas H, Diken M, Kranz LM, Langguth P, Sahin U. Translating nanoparticulate-personalized cancer vaccines into clinical applications: case study with RNA-lipoplexes for the treatment of melanoma. Nanomedicine (Lond) 2016; 11:2723-2734. [DOI: 10.2217/nnm-2016-0275] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The development of nucleic acid based vaccines against cancer has gained considerable momentum through the advancement of modern sequencing technologies and on novel RNA-based synthetic drug formats, which can be readily adapted following identification of every patient's tumor-specific mutations. Furthermore, affordable and individual ‘on demand’ production of molecularly optimized vaccines should allow their application in large groups of patients. This has resulted in the therapeutic concept of an active personalized cancer vaccine, which has been brought into clinical testing. Successful trials have been performed by intranodal administration of sterile isotonic solutions of synthetic RNA vaccines. The second generation of RNA vaccines which is currently being developed encompasses intravenously injectable RNA nanoparticle formulations (lipoplexes), made up from lipid excipients, denoted RNA(LIP). A first product that has made its way from bench to bedside is a therapeutic vaccine for intravenous administration based on a fixed set of four RNA lipoplex drug products, each encoding for one shared tumor antigen (Lipoplex Melanoma RNA Immunotherapy, ‘Lipo-MERIT’). This article describes the steps for translating these novel RNA nanomedicines into clinical trials.
Collapse
Affiliation(s)
- Stephan Grabbe
- Department of Dermatology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Heinrich Haas
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany
| | - Mustafa Diken
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany
- Translational Oncology (TRON), Freiligrathstraße 12, 55131 Mainz, Germany
| | - Lena M Kranz
- Translational Oncology (TRON), Freiligrathstraße 12, 55131 Mainz, Germany
- ResearchCenter for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr.1, 55131 Mainz, Germany
| | - Peter Langguth
- Instituteof Pharmacy and Biochemistry, Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany
- Translational Oncology (TRON), Freiligrathstraße 12, 55131 Mainz, Germany
- ResearchCenter for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr.1, 55131 Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, 55131 Mainz, Germany
| |
Collapse
|
39
|
Selmi A, Vascotto F, Kautz-Neu K, Türeci Ö, Sahin U, von Stebut E, Diken M, Kreiter S. Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunol Immunother 2016; 65:1075-83. [PMID: 27422115 PMCID: PMC11028682 DOI: 10.1007/s00262-016-1869-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
Abstract
Intradermal administration of antigen-encoding RNA has entered clinical testing for cancer vaccination. However, insight into the underlying mechanism of RNA uptake, translation and antigen presentation is still limited. Utilizing pharmacologically optimized naked RNA, the dose-response kinetics revealed a rise in reporter signal with increasing RNA amounts and a prolonged RNA translation of reporter protein up to 30 days after intradermal injection. Dendritic cells (DCs) in the dermis were shown to engulf RNA, and the signal arising from the reporter RNA was significantly diminished after DC depletion. Macropinocytosis was relevant for intradermal RNA uptake and translation in vitro and in vivo. By combining intradermal RNA vaccination and inhibition of macropinocytosis, we show that effective priming of antigen-specific CD8(+) T-cells also relies on this uptake mechanism. This report demonstrates that direct antigen translation by dermal DCs after intradermal naked RNA vaccination is relevant for efficient priming of antigen-specific T-cells.
Collapse
Affiliation(s)
- Abderraouf Selmi
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Fulvia Vascotto
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany
| | - Kordula Kautz-Neu
- Department of Dermatology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Özlem Türeci
- Cluster for Individualized Immune Intervention (CI3), Mainz, Germany
| | - Ugur Sahin
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of Johannes Gutenberg University, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | - Esther von Stebut
- Department of Dermatology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany.
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany.
| | - Sebastian Kreiter
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany.
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany.
| |
Collapse
|
40
|
Pereira P, Barreira M, Queiroz JA, Veiga F, Sousa F, Figueiras A. Smart micelleplexes as a new therapeutic approach for RNA delivery. Expert Opin Drug Deliv 2016; 14:353-371. [DOI: 10.1080/17425247.2016.1214567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci U S A 2016; 113:E4133-42. [PMID: 27382155 DOI: 10.1073/pnas.1600299113] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vaccines have had broad medical impact, but existing vaccine technologies and production methods are limited in their ability to respond rapidly to evolving and emerging pathogens, or sudden outbreaks. Here, we develop a rapid-response, fully synthetic, single-dose, adjuvant-free dendrimer nanoparticle vaccine platform wherein antigens are encoded by encapsulated mRNA replicons. To our knowledge, this system is the first capable of generating protective immunity against a broad spectrum of lethal pathogen challenges, including H1N1 influenza, Toxoplasma gondii, and Ebola virus. The vaccine can be formed with multiple antigen-expressing replicons, and is capable of eliciting both CD8(+) T-cell and antibody responses. The ability to generate viable, contaminant-free vaccines within days, to single or multiple antigens, may have broad utility for a range of diseases.
Collapse
|
42
|
Schott JW, Morgan M, Galla M, Schambach A. Viral and Synthetic RNA Vector Technologies and Applications. Mol Ther 2016; 24:1513-27. [PMID: 27377044 DOI: 10.1038/mt.2016.143] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Use of RNA is an increasingly popular method to transiently deliver genetic information for cell manipulation in basic research and clinical therapy. In these settings, viral and nonviral RNA platforms are employed for delivery of small interfering RNA and protein-coding mRNA. Technological advances allowing RNA modification for increased stability, improved translation and reduced immunogenicity have led to increased use of nonviral synthetic RNA, which is delivered in naked form or upon formulation. Alternatively, highly efficient viral entry pathways are exploited to transfer genes of interest as RNA incorporated into viral particles. Current viral RNA transfer technologies are derived from Retroviruses, nonsegmented negative-strand RNA viruses or positive-stranded Alpha- and Flaviviruses. In retroviral particles, the genes of interest can either be incorporated directly into the viral RNA genome or as nonviral RNA. Nonsegmented negative-strand virus-, Alpha- and Flavivirus-derived vectors support prolonged expression windows through replication of viral RNA encoding genes of interest. Mixed technologies combining viral and nonviral components are also available. RNA transfer is ideal for all settings that do not require permanent transgene expression and excludes potentially detrimental DNA integration into the target cell genome. Thus, RNA-based technologies are successfully applied for reprogramming, transdifferentiation, gene editing, vaccination, tumor therapy, and gene therapy.
Collapse
Affiliation(s)
- Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Affinity approaches in RNAi-based therapeutics purification. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:45-56. [DOI: 10.1016/j.jchromb.2016.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
|
44
|
Abstract
INTRODUCTION This review presents recent developments in the use of nonviral vectors and transfer technologies in cancer gene therapy. Tremendous progress has been made in developing cancer gene therapy in ways that could be applicable to treatments. Numerous efforts are focused on methods of attacking known and novel targets more efficiently and specifically. In parallel to progress in nonviral vector design and delivery technologies, important achievements have been accomplished for suicide, gene replacement, gene suppression and immunostimulatory therapies. New nonviral cancer gene therapies have been developed based on emerging RNAi (si/shRNA-, miRNA) or ODN. AREAS COVERED This review provides an overview of recent gene therapeutic strategies in which nonviral vectors have been used experimentally and in clinical trials. Furthermore, we present current developments in nonviral vector systems in association with important chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION Nonviral gene therapy has maintained its position as an approach for treating cancer. This is reflected by the fact that more than 17% of all gene therapy trials employ nonviral approaches. Thus, nonviral vectors have emerged as a clinical alternative to viral vectors for the appropriate expression and delivery of therapeutic genes.
Collapse
Affiliation(s)
- Jessica Pahle
- a Experimental and Clinical Research Center , Charité University Medicine Berlin and Max-Delbrück-Center for Moelcular Medicine , Berlin , Germany
| | - Wolfgang Walther
- a Experimental and Clinical Research Center , Charité University Medicine Berlin and Max-Delbrück-Center for Moelcular Medicine , Berlin , Germany
| |
Collapse
|
45
|
Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity. J Immunol Res 2016; 2016:9540975. [PMID: 27057556 PMCID: PMC4736447 DOI: 10.1155/2016/9540975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022] Open
Abstract
Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard 51Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT) RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the 51Cr release and further confirmed the assay's ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay's combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies.
Collapse
|
46
|
Abstract
Intranodal immunization with antigen-encoding naked mRNA has proven to be an efficacious and safe approach to induce antitumor immunity. Thanks to its unique characteristics, mRNA can act not only as a source for antigen but also as an adjuvant for activation of the immune system. The search for additional adjuvants that can be combined with mRNA to further improve the potency of the immunization revealed Fms-like tyrosine kinase 3 (FLT3) ligand as a potent candidate. Systemic administration of the dendritic cell-activating FLT3 ligand prior to or along with mRNA immunization-enhanced priming and expansion of antigen-specific CD8(+) T cells in lymphoid organs, T-cell homing into melanoma tumors, and therapeutic activity of the intranodally administered mRNA. Both compounds demonstrate a successful combination in terms of boosting the immune response. This chapter describes methods for intranodal immunization with naked mRNA by co-administration of FLT3 ligand, which leads to strong synergistic effects.
Collapse
|
47
|
Park HJ, Ko HL, Jung SY, Jo HB, Nam JH. The Characteristics of RNA Vaccine; its Strengths and Weaknesses. ACTA ACUST UNITED AC 2016. [DOI: 10.4167/jbv.2016.46.3.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hyo-Jung Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Hae Li Ko
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Seo-Yeon Jung
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Han-Byeol Jo
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| |
Collapse
|
48
|
Electroporated Antigen-Encoding mRNA Is Not a Danger Signal to Human Mature Monocyte-Derived Dendritic Cells. J Immunol Res 2015; 2015:952184. [PMID: 26824052 PMCID: PMC4707322 DOI: 10.1155/2015/952184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022] Open
Abstract
For therapeutic cancer vaccination, the adoptive transfer of mRNA-electroporated dendritic cells (DCs) is frequently performed, usually with monocyte-derived, cytokine-matured DCs (moDCs). However, DCs are rich in danger-sensing receptors which could recognize the exogenously delivered mRNA and induce DC activation, hence influencing the DCs' immunogenicity. Therefore, we examined whether electroporation of mRNA with a proper cap and a poly-A tail of at least 64 adenosines had any influence on cocktail-matured moDCs. We used 16 different RNAs, encoding tumor antigens (MelanA, NRAS, BRAF, GNAQ, GNA11, and WT1), and variants thereof. None of those RNAs induced changes in the expression of CD25, CD40, CD83, CD86, and CD70 or the secretion of the cytokines IL-8, IL-6, and TNFα of more than 1.5-fold compared to the control condition, while an mRNA encoding an NF-κB-activation protein as positive control induced massive secretion of the cytokines. To determine whether mRNA electroporation had any effect on the whole transcriptome of the DCs, we performed microarray analyses of DCs of 6 different donors. None of 60,000 probes was significantly different between mock-electroporated DCs and MelanA-transfected DCs. Hence, we conclude that no transcriptional programs were induced within cocktail-matured DCs by electroporation of single tumor-antigen-encoding mRNAs.
Collapse
|
49
|
Critical considerations for developing nucleic acid macromolecule based drug products. Drug Discov Today 2015; 21:430-44. [PMID: 26674130 DOI: 10.1016/j.drudis.2015.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 11/02/2015] [Accepted: 11/25/2015] [Indexed: 01/02/2023]
Abstract
Protein expression therapy using nucleic acid macromolecules (NAMs) as a new paradigm in medicine has recently gained immense therapeutic potential. With the advancement of nonviral delivery it has been possible to target NAMs against cancer, immunodeficiency and infectious diseases. Owing to the complex and fragile structure of NAMs, however, development of a suitable, stable formulation for a reasonable product shelf-life and efficacious delivery is indeed challenging to achieve. This review provides a synopsis of challenges in the formulation and stability of DNA/m-RNA based medicines and probable mitigation strategies including a brief summary of delivery options to the target cells. Nucleic acid based drugs at various stages of ongoing clinical trials are compiled.
Collapse
|
50
|
RNA-Based Vaccines in Cancer Immunotherapy. J Immunol Res 2015; 2015:794528. [PMID: 26665011 PMCID: PMC4668311 DOI: 10.1155/2015/794528] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 12/21/2022] Open
Abstract
RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s) of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.
Collapse
|