1
|
Kim NH, Sim SJ, Han HG, Yoon JH, Han YH. Immunosenescence and age-related immune cells: causes of age-related diseases. Arch Pharm Res 2024:10.1007/s12272-024-01529-7. [PMID: 39725853 DOI: 10.1007/s12272-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Immunosenescence is a weakening of the immune system due to aging, characterized by changes in immune cells and dysregulated immune function. Age-related immune cells are increasing with aging. They are associated with chronic prolonged inflammation, causing tissue dysfunction and age-related diseases. Here, we discuss increased pro-inflammatory activity of aged macrophages, accumulation of lymphocytes with an age-associated phenotype, and specific alterations in both functions and characteristics of these immune cells. These cellular changes are associated with development of age-related diseases. Additionally, we reviewed various therapeutic strategies targeting age-related immunosenescence, providing pathways to mitigate effects of age-related diseases.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - So-Jin Sim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hong-Gyu Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Jeong-Hyuk Yoon
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
- Multidimentional Genomics Research Center, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Wang X, Kong H, Chu B, Yang Q, Lin C, Liu R, Chen C, Gao Y, Wang G, Wang D, Qin C, Ye X, Yu L, Xu X, Jin J, Sun R, Chen H, Wu X, Zhang Z. Identification of a broad-inhibition influenza neuraminidase antibody from pre-existing memory B cells. Cell Host Microbe 2024:S1931-3128(24)00467-0. [PMID: 39740671 DOI: 10.1016/j.chom.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Identifying broadly reactive B precursor cells and conserved epitopes is crucial for developing a universal flu vaccine. In this study, using influenza neuraminidase (NA) mutant probes, we find that human pre-existing NA-specific memory B cells (MBCs) account for ∼0.25% of total MBCs, which are heterogeneous and dominated by class-unswitched MBCs. In addition, we identify three NA broad-inhibition monoclonal antibodies (mAbs) (BImAbs) that block the activity of NA derived from different influenza strains, including the recent cow H5N1. The cryoelectron microscopy (cryo-EM) structure shows that the BImAb targets the conserved NA enzymatic pocket and a separate epitope in the neighboring NA monomer. Furthermore, the NA BImAbs protect mice from the lethal challenge of the human pandemic H1N1 and H5N1. Our work demonstrates that the NA broad-inhibition precursor MBCs exist in healthy adults and could be targeted by the NA-based universal flu vaccine.
Collapse
Affiliation(s)
- Xin Wang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bingxin Chu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qian Yang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Chaohui Lin
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Rui Liu
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Changxu Chen
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Yang Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guojun Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; WHO Collaborating Center for Reference and Research on Influenza, Beijing, China
| | - Chen Qin
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaohua Ye
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Lifei Yu
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Xiangfei Xu
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jie Jin
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Ren Sun
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xudong Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Zeli Zhang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; School of Life Science, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Al-Aubodah TA, Piccirillo CA, Trachtman H, Takano T. The autoimmune architecture of childhood idiopathic nephrotic syndrome. Kidney Int 2024:S0085-2538(24)00804-4. [PMID: 39571906 DOI: 10.1016/j.kint.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 12/10/2024]
Abstract
Idiopathic nephrotic syndrome, the most common glomerular disorder in children, has long been considered an immune-mediated disease based on the efficacy of glucocorticoids at inducing remission. Nevertheless, the immune processes leading to podocytopathy have largely remained elusive. The success of B-cell depletion with rituximab, descriptions of B-cell dysregulation during active disease, and the most recent discovery of autoantibodies targeting the major podocyte antigen nephrin point to an autoimmune humoral etiology for idiopathic nephrotic syndrome. Investigations of the immune factors involved in idiopathic nephrotic syndrome pathogenesis have uncovered common features with other autoimmune disorders that will aid in prognostication and in guiding the expansion of our glucocorticoid-sparing therapeutic arsenal. In this review, we discuss the emerging autoimmune architecture of idiopathic nephrotic syndrome, with a specific focus on pediatric steroid-sensitive disease, including the podocyte-reactive B-cell response that causes anti-podocyte antibodies, the predisposing genetic factors that shape the podocyte-reactive immune landscape, and the immune triggers driving active disease.
Collapse
Affiliation(s)
- Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Howard Trachtman
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Tomoko Takano
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Essouma M, Noubiap JJ. Lupus and other autoimmune diseases: Epidemiology in the population of African ancestry and diagnostic and management challenges in Africa. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100288. [PMID: 39282618 PMCID: PMC11399606 DOI: 10.1016/j.jacig.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 09/19/2024]
Abstract
Autoimmune diseases are prevalent among people of African ancestry living outside Africa. However, the burden of autoimmune diseases in Africa is not well understood. This article provides a global overview of the current burden of autoimmune diseases in individuals of African descent. It also discusses the major factors contributing to autoimmune diseases in this population group, as well as the challenges involved in diagnosing and managing autoimmune diseases in Africa.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Cameroon
| | - Jean Jacques Noubiap
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, Calif
| |
Collapse
|
5
|
Reyes RA, Turner L, Ssewanyana I, Jagannathan P, Feeney ME, Lavstsen T, Greenhouse B, Bol S, Bunnik EM. Differences in phenotype between long-lived memory B cells against Plasmodium falciparum merozoite antigens and variant surface antigens. PLoS Pathog 2024; 20:e1012661. [PMID: 39466842 PMCID: PMC11542837 DOI: 10.1371/journal.ppat.1012661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/07/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Plasmodium falciparum infections elicit strong humoral immune responses to two main groups of antigens expressed by blood-stage parasites: merozoite antigens that are involved in the erythrocyte invasion process and variant surface antigens that mediate endothelial sequestration of infected erythrocytes. Long-lived B cells against both antigen classes can be detected in the circulation for years after exposure, but have not been directly compared. Here, we studied the phenotype of long-lived memory and atypical B cells to merozoite antigens (MSP1 and AMA1) and variant surface antigens (the CIDRα1 domain of PfEMP1) in ten Ugandan adults before and after local reduction of P. falciparum transmission. After a median of 1.7 years without P. falciparum infections, the percentage of antigen-specific activated B cells declined, but long-lived antigen-specific B cells were still detectable in all individuals. The majority of MSP1/AMA1-specific B cells were CD95+CD11c+ memory B cells, which are primed for rapid differentiation into antibody-secreting cells, and FcRL5-T-bet- atypical B cells. On the other hand, most CIDRα1-specific B cells were CD95-CD11c- memory B cells. CIDRα1-specific B cells were also enriched among a subset of atypical B cells that seem poised for antigen presentation. These results point to differences in how these antigens are recognized or processed by the immune system and how P. falciparum-specific B cells will respond upon re-infection.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, California, United States of America
- Department of Microbiology & Immunology, Stanford University, Stanford, California, United States of America
| | - Margaret E. Feeney
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sebastiaan Bol
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
6
|
Thawornpan P, Kochayoo P, Salsabila ZZ, Chootong P. Development and longevity of naturally acquired antibody and memory B cell responses against Plasmodium vivax infection. PLoS Negl Trop Dis 2024; 18:e0012600. [PMID: 39446698 PMCID: PMC11500939 DOI: 10.1371/journal.pntd.0012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Plasmodium vivax malaria causes significant public health problems in endemic regions. Considering the rapid spread of drug-resistant parasite strains and the development of hypnozoites in the liver with potential for relapse, development of a safe and effective vaccine for preventing, controlling, and eliminating the infection is critical. Immunity to malaria is mediated by antibodies that inhibit sporozoite or merozoite invasion into host cells and protect against clinical disease. Epidemiologic data from malaria endemic regions show the presence of naturally acquired antibodies to P. vivax antigens during and following infection. But data on the persistence of these antibodies, development of P. vivax-specific memory B cells (MBCs), and their relation to reduction of malaria severity and risk is limited. This review provides an overview of the acquisition and persistence of naturally acquired humoral immunity to P. vivax infection. Also, we summarize and discuss current progress in assessment of immune responses to candidate vaccine antigens in P. vivax patients from different transmission settings. Longitudinal studies of MBC and antibody responses to these antigens will open new avenues for developing vaccines against malaria infection and its transmission.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Zulfa Zahra Salsabila
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Reyes RA, Turner L, Ssewanyana I, Jagannathan P, Feeney ME, Lavstsen T, Greenhouse B, Bol S, Bunnik EM. Differences in phenotype between long-lived memory B cells against Plasmodium falciparum merozoite antigens and variant surface antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596978. [PMID: 38895251 PMCID: PMC11185507 DOI: 10.1101/2024.06.01.596978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Plasmodium falciparum infections elicit strong humoral immune responses to two main groups of antigens expressed by blood-stage parasites: merozoite antigens that are involved in the erythrocyte invasion process and variant surface antigens that mediate endothelial sequestration of infected erythrocytes. Long-lived B cells against both antigen classes can be detected in the circulation for years after exposure, but have not been directly compared. Here, we studied the phenotype of long-lived memory and atypical B cells to merozoite antigens (MSP1 and AMA1) and variant surface antigens (the CIDRα1 domain of PfEMP1) in Ugandan adults before and after local reduction of P. falciparum transmission. After a median of 1.7 years without P. falciparum infections, the percentage of antigen-specific activated B cells declined, but long-lived antigen-specific B cells were still detectable in all individuals. The majority of MSP1/AMA1-specific B cells were CD95+CD11c+ memory B cells, which are primed for rapid differentiation into antibody-secreting cells, and FcRL5-T-bet- atypical B cells. On the other hand, most CIDRα1-specific B cells were CD95-CD11c- memory B cells. CIDRα1-specific B cells were also enriched among a subset of atypical B cells that seem poised for antigen presentation. These results point to differences in how these antigens are recognized or processed by the immune system and how P. falciparum-specific B cells will respond upon re-infection.
Collapse
Affiliation(s)
- Raphael A Reyes
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Margaret E. Feeney
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Evelien M Bunnik
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
8
|
Lindeman I, Høydahl LS, Christophersen A, Risnes LF, Jahnsen J, Lundin KEA, Sollid LM, Iversen R. Generation of circulating autoreactive pre-plasma cells fueled by naive B cells in celiac disease. Cell Rep 2024; 43:114045. [PMID: 38578826 DOI: 10.1016/j.celrep.2024.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.
Collapse
Affiliation(s)
- Ida Lindeman
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Lene S Høydahl
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Asbjørn Christophersen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Louise F Risnes
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Knut E A Lundin
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Rasmus Iversen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
9
|
Mitchell RA, Ubillos I, Requena P, Campo JJ, Ome-Kaius M, Hanieh S, Umbers A, Samol P, Barrios D, Jiménez A, Bardají A, Mueller I, Menéndez C, Rogerson S, Dobaño C, Moncunill G. Chronic malaria exposure is associated with inhibitory markers on T cells that correlate with atypical memory and marginal zone-like B cells. Clin Exp Immunol 2024; 216:172-191. [PMID: 38387476 PMCID: PMC11036110 DOI: 10.1093/cei/uxae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024] Open
Abstract
Chronic immune activation from persistent malaria infections can induce immunophenotypic changes associated with T-cell exhaustion. However, associations between T and B cells during chronic exposure remain undefined. We analyzed peripheral blood mononuclear cells from malaria-exposed pregnant women from Papua New Guinea and Spanish malaria-naïve individuals using flow cytometry to profile T-cell exhaustion markers phenotypically. T-cell lineage (CD3, CD4, and CD8), inhibitory (PD1, TIM3, LAG3, CTLA4, and 2B4), and senescence (CD28-) markers were assessed. Dimensionality reduction methods revealed increased PD1, TIM3, and LAG3 expression in malaria-exposed individuals. Manual gating confirmed significantly higher frequencies of PD1+CD4+ and CD4+, CD8+, and double-negative (DN) T cells expressing TIM3 in malaria-exposed individuals. Increased frequencies of T cells co-expressing multiple markers were also found in malaria-exposed individuals. T-cell data were analyzed with B-cell populations from a previous study where we reported an alteration of B-cell subsets, including increased frequencies of atypical memory B cells (aMBC) and reduction in marginal zone (MZ-like) B cells during malaria exposure. Frequencies of aMBC subsets and MZ-like B cells expressing CD95+ had significant positive correlations with CD28+PD1+TIM3+CD4+ and DN T cells and CD28+TIM3+2B4+CD8+ T cells. Frequencies of aMBC, known to associate with malaria anemia, were inversely correlated with hemoglobin levels in malaria-exposed women. Similarly, inverse correlations with hemoglobin levels were found for TIM3+CD8+ and CD28+PD1+TIM3+CD4+ T cells. Our findings provide further insights into the effects of chronic malaria exposure on circulating B- and T-cell populations, which could impact immunity and responses to vaccination.
Collapse
Affiliation(s)
- Robert A Mitchell
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Pilar Requena
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Joseph J Campo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Antigen Discovery Inc., Irvine, CA, USA
| | - Maria Ome-Kaius
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Sarah Hanieh
- University of Melbourne, Melbourne, VIC, Australia
| | - Alexandra Umbers
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Paula Samol
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Diana Barrios
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Azucena Bardají
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ivo Mueller
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Clara Menéndez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
10
|
Canderan G, Muehling LM, Kadl A, Ladd S, Bonham C, Cross CE, Lima SM, Yin X, Sturek JM, Wilson JM, Keshavarz B, Bryant N, Murphy DD, Cheon IS, McNamara CA, Sun J, Utz PJ, Dolatshahi S, Irish JM, Woodfolk JA. Distinct Type 1 Immune Networks Underlie the Severity of Restrictive Lung Disease after COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587929. [PMID: 38617217 PMCID: PMC11014603 DOI: 10.1101/2024.04.03.587929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.
Collapse
|
11
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
12
|
Olivieri G, Cotugno N, Palma P. Emerging insights into atypical B cells in pediatric chronic infectious diseases and immune system disorders: T(o)-bet on control of B-cell immune activation. J Allergy Clin Immunol 2024; 153:12-27. [PMID: 37890706 PMCID: PMC10842362 DOI: 10.1016/j.jaci.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Repetitive or persistent cellular stimulation in vivo has been associated with the development of a heterogeneous B-cell population that exhibits a distinctive phenotype and, in addition to classical B-cell markers, often expresses the transcription factor T-bet and myeloid marker CD11c. Research suggests that this atypical population consists of B cells with distinct B-cell receptor specificities capable of binding the antigens responsible for their development. The expansion of this population occurs in the presence of chronic inflammatory conditions and autoimmune diseases where different nomenclatures have been used to describe them. However, as a result of the diverse contexts in which they have been investigated, these cells have remained largely enigmatic, with much ambiguity remaining regarding their phenotype and function in humoral immune response as well as their role in autoimmunity. Atypical B cells have garnered considerable interest because of their ability to produce specific antibodies and/or autoantibodies and because of their association with key disease manifestations. Although they have been widely described in the context of adults, little information is present for children. Therefore, the aim of this narrative review is to describe the characteristics of this population, suggest their function in pediatric immune-related diseases and chronic infections, and explore their potential therapeutic avenues.
Collapse
Affiliation(s)
- Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
13
|
Paardekooper LM, Fillié-Grijpma YE, van der Sluijs-Gelling AJ, Zlei M, van Doorn R, Vermeer MH, Paunovic M, Titulaer MJ, van der Maarel SM, van Dongen JJM, Verschuuren JJ, Huijbers MG. Autoantibody subclass predominance is not driven by aberrant class switching or impaired B cell development. Clin Immunol 2023; 257:109817. [PMID: 37925120 DOI: 10.1016/j.clim.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment-related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.
Collapse
Affiliation(s)
| | | | | | - Mihaela Zlei
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manuela Paunovic
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Jacques J M van Dongen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands; Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
14
|
Al-Aubodah TA, Aoudjit L, Pascale G, Perinpanayagam MA, Langlais D, Bitzan M, Samuel SM, Piccirillo CA, Takano T. The extrafollicular B cell response is a hallmark of childhood idiopathic nephrotic syndrome. Nat Commun 2023; 14:7682. [PMID: 37996443 PMCID: PMC10667257 DOI: 10.1038/s41467-023-43504-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The efficacy of the B cell-targeting drug rituximab (RTX) in childhood idiopathic nephrotic syndrome (INS) suggests that B cells may be implicated in disease pathogenesis. However, B cell characterization in children with INS remains limited. Here, using single-cell RNA sequencing, we demonstrate that a B cell transcriptional program poised for effector functions represents the major immune perturbation in blood samples from children with active INS. This transcriptional profile was associated with an extrafollicular B cell response marked by the expansion of atypical B cells (atBCs), marginal zone-like B cells, and antibody-secreting cells (ASCs). Flow cytometry of blood from 13 children with active INS and 24 healthy donors confirmed the presence of an extrafollicular B cell response denoted by the expansion of proliferating RTX-sensitive extrafollicular (CXCR5-) CD21low T-bet+ CD11c+ atBCs and short-lived T-bet+ ASCs in INS. Together, our study provides evidence for an extrafollicular origin for humoral immunity in active INS.
Collapse
Affiliation(s)
- Tho-Alfakar Al-Aubodah
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Lamine Aoudjit
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Giuseppe Pascale
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Maneka A Perinpanayagam
- Section of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David Langlais
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University Genome Centre, Montréal, Québec, Canada
| | - Martin Bitzan
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Kidney Centre of Excellence, Al Jalila Children's Hospital, and Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Susan M Samuel
- Section of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Tomoko Takano
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
15
|
Steuten J, Bos AV, Kuijper LH, Claireaux M, Olijhoek W, Elias G, Duurland MC, Jorritsma T, Marsman C, Paul AGA, Garcia Vallejo JJ, van Gils MJ, Wieske L, Kuijpers TW, Eftimov F, van Ham SM, Ten Brinke A. Distinct dynamics of antigen-specific induction and differentiation of different CD11c +Tbet + B-cell subsets. J Allergy Clin Immunol 2023; 152:689-699.e6. [PMID: 36858158 DOI: 10.1016/j.jaci.2023.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND CD11c+Tbet+ B cells are enriched in autoimmunity and chronic infections and also expand on immune challenge in healthy individuals. CD11c+Tbet+ B cells remain an enigmatic B-cell population because of their intrinsic heterogeneity. OBJECTIVES We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-specific development and differentiation properties of 3 separate CD11c+ B-cell subsets-age-associated B cells (ABCs), double-negative 2 (DN2) B cells, and activated naive B cells-and compared them to their canonical CD11c- counterparts. METHODS Dynamics of the response of the 3 CD11c+ B-cell subsets were assessed at SARS-CoV-2 vaccination in healthy donors by spectral flow cytometry. Distinct CD11c+ B-cell subsets were functionally characterized by optimized in vitro cultures. RESULTS In contrast to a durable expansion of antigen-specific CD11c- memory B cells over time, both ABCs and DN2 cells were strongly expanded shortly after second vaccination and subsequently contracted. Functional characterization of antibody-secreting cell differentiation dynamics revealed that CD11c+Tbet+ B cells were primed for antibody-secreting cell differentiation compared to relevant canonical CD11c- counterparts. CONCLUSION Overall, CD11c+Tbet+ B cells encompass heterogeneous subpopulations, of which primarily ABCs as well as DN2 B cells respond early to immune challenge and display a pre-antibody-secreting cell phenotype.
Collapse
Affiliation(s)
- Juulke Steuten
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Amélie V Bos
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter Olijhoek
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - George Elias
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariel C Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Casper Marsman
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Zhao X, Zhang M, Jia Y, Liu W, Li S, Gao C, Zhang L, Ni B, Ruan Z, Dong R. Featured immune characteristics of COVID-19 and systemic lupus erythematosus revealed by multidimensional integrated analyses. Inflamm Res 2023; 72:1877-1894. [PMID: 37725104 DOI: 10.1007/s00011-023-01791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) shares similar immune characteristics with autoimmune diseases like systemic lupus erythematosus (SLE). However, such associations have not yet been investigated at the single-cell level. METHODS We integrated and analyzed RNA sequencing results from different patients and normal controls from the GEO database and identified subsets of immune cells that might involve in the pathogenesis of SLE and COVID- 19. We also disentangled the characteristic alterations in cell and molecular subset proportions as well as gene expression patterns in SLE patients compared with COVID-19 patients. RESULTS Key immune characteristic genes (such as CXCL10 and RACK1) and multiple immune-related pathways (such as the coronavirus disease-COVID-19, T-cell receptor signaling, and MIF-related signaling pathways) were identified. We also highlighted the differences in peripheral blood mononuclear cells (PBMCs) between SLE and COVID-19 patients. Moreover, we provided an opportunity to comprehensively probe underlying B-cell‒cell communication with multiple ligand-receptor pairs (MIF-CD74+CXCR4, MIF-CD74+CD44) and the differentiation trajectory of B-cell clusters that is deemed to promote cell state transitions in COVID-19 and SLE. CONCLUSIONS Our results demonstrate the immune response differences and immune characteristic similarities, such as the cytokine storm, between COVID-19 and SLE, which might pivotally function in the pathogenesis of the two diseases and provide potential intervention targets for both diseases.
Collapse
Affiliation(s)
- Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuying Jia
- Department of Dermatology, The 901th Hospital of the Joint Logistics Support Force of PLA, Affiliated to Anhui Medical University, Hefei, Anhui, China
- Division of Life Sciences and Medicine, Dermatology Department of the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Wenying Liu
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shifei Li
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Cuie Gao
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Lian Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhihua Ruan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Rui Dong
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
- Chongqing International Institute for Immunology, Chongqing, 401320, China.
| |
Collapse
|
17
|
Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat Rev Nephrol 2023; 19:558-572. [PMID: 37438615 DOI: 10.1038/s41581-023-00732-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/14/2023]
Abstract
The past few years have provided important insights into the genetic architecture of systemic autoimmunity through aggregation of findings from genome-wide association studies (GWAS) and whole-exome or whole-genome sequencing studies. In the prototypic systemic autoimmune disease systemic lupus erythematosus (SLE), monogenic disease accounts for a small fraction of cases but has been instrumental in the elucidation of disease mechanisms. Defects in the clearance or digestion of extracellular or intracellular DNA or RNA lead to increased sensing of nucleic acids, which can break B cell tolerance and induce the production of type I interferons leading to tissue damage. Current data suggest that multiple GWAS SLE risk alleles act in concert with rare functional variants to promote SLE development. Moreover, introduction of orthologous variant alleles into mice has revealed that pathogenic X-linked dominant and recessive SLE can be caused by novel variants in TLR7 and SAT1, respectively. Such bespoke models of disease help to unravel pathogenic pathways and can be used to test targeted therapies. Cell type-specific expression data revealed that most GWAS SLE risk genes are highly expressed in age-associated B cells (ABCs), which supports the view that ABCs produce lupus autoantibodies and contribute to end-organ damage by persisting in inflamed tissues, including the kidneys. ABCs have thus emerged as key targets of promising precision therapeutics.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK.
- University College London, London, UK.
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Aetiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Thuvaraka Ware
- The Francis Crick Institute, London, UK
- University College London, London, UK
| |
Collapse
|
18
|
Hermanussen L, Lampalzer S, Bockmann JH, Ziegler AE, Piecha F, Dandri M, Pischke S, Haag F, Lohse AW, Lütgehetmann M, Weiler-Normann C, zur Wiesch JS. Non-organ-specific autoantibodies with unspecific patterns are a frequent para-infectious feature of chronic hepatitis D. Front Med (Lausanne) 2023; 10:1169096. [PMID: 37387781 PMCID: PMC10300640 DOI: 10.3389/fmed.2023.1169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Infections with hepatotropic viruses are associated with various immune phenomena. Hepatitis D virus (HDV) causes the most severe form of viral hepatitis. However, few recent data are available on non-disease-specific and non-organ-specific antibody (NOSA) titers and immunoglobulin G (IgG) levels in chronic hepatitis D (CHD) patients. Here, we examined the NOSA titers and IgG levels of 40 patients with CHD and different disease courses and compared them to 70 patients with chronic hepatitis B (CHB) infection. 43% of CHD patients had previously undergone treatment with pegylated interferon-α (IFN-α). The antibody display of 46 untreated patients diagnosed with autoimmune hepatitis (AIH) was used as a reference. The frequency of elevated NOSA titers (CHD 69% vs. CHB 43%, p < 0.01), and the median IgG levels (CHD 16.9 g/L vs. CHB 12.7 g/L, p < 0.01) were significantly higher in CHD patients than in patients with CHB, and highest in patients with AIH (96%, 19.5 g/L). Also, the antinuclear antibody pattern was homogeneous in many patients with AIH and unspecific in patients with viral hepatitis. Additionally, f-actin autoantibodies were only detectable in patients with AIH (39% of SMA). In CHD patients, IgG levels correlated with higher HDV viral loads, transaminases, and liver stiffness values. IgG levels and NOSA were similar in CHD patients irrespective of a previous IFN-α treatment. In summary, autoantibodies with an unspecific pattern are frequently detected in CHD patients with unclear clinical relevance.
Collapse
Affiliation(s)
- Lennart Hermanussen
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sibylle Lampalzer
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jan-Hendrik Bockmann
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Annerose E. Ziegler
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felix Piecha
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Maura Dandri
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Sven Pischke
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W. Lohse
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Christina Weiler-Normann
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Medicine and Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- Department of Medicine (Gastroenterology, Hepatology, Infectious diseases, and Tropical Medicine), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Tangye SG, Pathmanandavel K, Ma CS. Cytokine-mediated STAT-dependent pathways underpinning human B-cell differentiation and function. Curr Opin Immunol 2023; 81:102286. [PMID: 36764056 DOI: 10.1016/j.coi.2023.102286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
B cells are fundamental to host defence against infectious diseases; indeed, the ability of humans to elicit robust antibody responses following exposure to foreign antigens underpins long-lived humoral immunity and serological memory, as well as the success of most currently administered vaccines. However, B cells also have a dark side - they can cause myriad diseases, including autoimmunity, atopy, allergy and malignancy. Thus, it is critical to understand the molecular requirements for generating effective, high-affinity, specific immune responses following natural infection or vaccination, as well as for constraining B-cell function to mitigate B-cell-mediated immune dyscrasias. In this review, we discuss recent developments that have been derived from the identification and detailed analysis of individuals with inborn errors of immunity that disrupt cytokine signalling, resulting in immune dysregulatory conditions. These studies have defined fundamental cytokine/cytokine receptor/signal transducer and activator of transcription (STAT) signalling pathways that are critical for the generation and maintenance of human memory B-cell and plasma cell subsets during host defence, as well as revealed mechanisms of disease pathogenesis causing immune deficiency, autoimmunity and atopy. More importantly, these studies have identified molecules that could be targeted to either enhance humoral immunity in the settings of infection or vaccination, or attenuate humoral immunity that contributes to antibody-mediated autoimmunity or allergy.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia.
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| |
Collapse
|
20
|
T-bet highCD21 low B cells: the need to unify our understanding of a distinct B cell population in health and disease. Curr Opin Immunol 2023; 82:102300. [PMID: 36931129 DOI: 10.1016/j.coi.2023.102300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
After many years of a niche research in a few laboratories of the world, T-bethighCD21low B cells have entered the limelight during the last years after the discovery of T-bet as common transcription factor of this unconventional B cell population and the increasing awareness of the expansion of these cells in autoimmune and infectious diseases. This population consists of different subsets which share large parts of their transcriptome, essential phenotypic markers, and reduced B cell receptor (BCR) signaling capacity. Inborn errors of immunity have helped to delineate essential signals for their differentiation. While our comprehension of their origin has improved, future research will hopefully profit from a common definition of the different T-bethighCD21low subpopulations in order to better define their specific roles during normal and aberrant immune responses.
Collapse
|
21
|
SoRelle ED, Reinoso-Vizcaino NM, Horn GQ, Luftig MA. Epstein-Barr virus perpetuates B cell germinal center dynamics and generation of autoimmune-associated phenotypes in vitro. Front Immunol 2022; 13:1001145. [PMID: 36248899 PMCID: PMC9554744 DOI: 10.3389/fimmu.2022.1001145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 02/03/2023] Open
Abstract
Human B cells encompass functionally diverse lineages and phenotypic states that contribute to protective as well as pathogenic responses. Epstein-Barr virus (EBV) provides a unique lens for studying heterogeneous B cell responses, given its adaptation to manipulate intrinsic cell programming. EBV promotes the activation, proliferation, and eventual outgrowth of host B cells as immortalized lymphoblastoid cell lines (LCLs) in vitro, which provide a foundational model of viral latency and lymphomagenesis. Although cellular responses and outcomes of infection can vary significantly within populations, investigations that capture genome-wide perspectives of this variation at single-cell resolution are in nascent stages. We have recently used single-cell approaches to identify EBV-mediated B cell heterogeneity in de novo infection and within LCLs, underscoring the dynamic and complex qualities of latent infection rather than a singular, static infection state. Here, we expand upon these findings with functional characterizations of EBV-induced dynamic phenotypes that mimic B cell immune responses. We found that distinct subpopulations isolated from LCLs could completely reconstitute the full phenotypic spectrum of their parental lines. In conjunction with conserved patterns of cell state diversity identified within scRNA-seq data, these data support a model in which EBV continuously drives recurrent B cell entry, progression through, and egress from the Germinal Center (GC) reaction. This "perpetual GC" also generates tangent cell fate trajectories including terminal plasmablast differentiation, which constitutes a replicative cul-de-sac for EBV from which lytic reactivation provides escape. Furthermore, we found that both established EBV latency and de novo infection support the development of cells with features of atypical memory B cells, which have been broadly associated with autoimmune disorders. Treatment of LCLs with TLR7 agonist or IL-21 was sufficient to generate an increased frequency of IgD-/CD27-/CD23-/CD38+/CD138+ plasmablasts. Separately, de novo EBV infection led to the development of CXCR3+/CD11c+/FCRL4+ B cells within days, providing evidence for possible T cell-independent origins of a recently described EBV-associated neuroinvasive CXCR3+ B cell subset in patients with multiple sclerosis. Collectively, this work reveals unexpected virus-driven complexity across infected cell populations and highlights potential roles of EBV in mediating or priming foundational aspects of virus-associated immune cell dysfunction in disease.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, United States
| | | | - Gillian Q. Horn
- Department of Immunology, Duke University, Durham, NC, United States
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|