1
|
Lv P, Yang X, Du J. LKRSDH-dependent histone modifications of insulin-like peptide sites contribute to age-related circadian rhythm changes. Nat Commun 2024; 15:3336. [PMID: 38637528 PMCID: PMC11026460 DOI: 10.1038/s41467-024-47740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
To understand aging impact on the circadian rhythm, we screened for factors influencing circadian changes during aging. Our findings reveal that LKRSDH mutation significantly reduces rhythmicity in aged flies. RNA-seq identifies a significant increase in insulin-like peptides (dilps) in LKRSDH mutants due to the combined effects of H3R17me2 and H3K27me3 on transcription. Genetic evidence suggests that LKRSDH regulates age-related circadian rhythm changes through art4 and dilps. ChIP-seq analyzes whole genome changes in H3R17me2 and H3K27me3 histone modifications in young and old flies with LKRSDH mutation and controls. The results reveal a correlation between H3R17me2 and H3K27me3, underscoring the role of LKRSDH in regulating gene expression and modification levels during aging. Overall, our study demonstrates that LKRSDH-dependent histone modifications at dilps sites contribute to age-related circadian rhythm changes. This data offers insights and a foundational reference for aging research by unveiling the relationship between LKRSDH and H3R17me2/H3K27me3 histone modifications in aging.
Collapse
Affiliation(s)
- Pengfei Lv
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xingzhuo Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Qian Q, Niwa R. Endocrine Regulation of Aging in the Fruit Fly Drosophila melanogaster. Zoolog Sci 2024; 41:4-13. [PMID: 38587512 DOI: 10.2108/zs230056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 04/09/2024]
Abstract
The past few decades have witnessed increasing research clarifying the role of endocrine signaling in the regulation of aging in both vertebrates and invertebrates. Studies using the model organism fruit fly Drosophila melanogaster have largely advanced our understanding of evolutionarily conserved mechanisms in the endocrinology of aging and anti-aging. Mutations in single genes involved in endocrine signaling modify lifespan, as do alterations of endocrine signaling in a tissue- or cell-specific manner, highlighting a central role of endocrine signaling in coordinating the crosstalk between tissues and cells to determine the pace of aging. Here, we review the current landscape of research in D. melanogaster that offers valuable insights into the endocrine-governed mechanisms which influence lifespan and age-related physiology.
Collapse
Affiliation(s)
- Qingyin Qian
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,
| |
Collapse
|
3
|
Targeting the "hallmarks of aging" to slow aging and treat age-related disease: fact or fiction? Mol Psychiatry 2023; 28:242-255. [PMID: 35840801 PMCID: PMC9812785 DOI: 10.1038/s41380-022-01680-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023]
Abstract
Aging is a major risk factor for a number of chronic diseases, including neurodegenerative and cerebrovascular disorders. Aging processes have therefore been discussed as potential targets for the development of novel and broadly effective preventatives or therapeutics for age-related diseases, including those affecting the brain. Mechanisms thought to contribute to aging have been summarized under the term the "hallmarks of aging" and include a loss of proteostasis, mitochondrial dysfunction, altered nutrient sensing, telomere attrition, genomic instability, cellular senescence, stem cell exhaustion, epigenetic alterations and altered intercellular communication. We here examine key claims about the "hallmarks of aging". Our analysis reveals important weaknesses that preclude strong and definitive conclusions concerning a possible role of these processes in shaping organismal aging rate. Significant ambiguity arises from the overreliance on lifespan as a proxy marker for aging, the use of models with unclear relevance for organismal aging, and the use of study designs that do not allow to properly estimate intervention effects on aging rate. We also discuss future research directions that should be taken to clarify if and to what extent putative aging regulators do in fact interact with aging. These include multidimensional analytical frameworks as well as designs that facilitate the proper assessment of intervention effects on aging rate.
Collapse
|
4
|
Hodge BA, Meyerhof GT, Katewa SD, Lian T, Lau C, Bar S, Leung NY, Li M, Li-Kroeger D, Melov S, Schilling B, Montell C, Kapahi P. Dietary restriction and the transcription factor clock delay eye aging to extend lifespan in Drosophila Melanogaster. Nat Commun 2022; 13:3156. [PMID: 35672419 PMCID: PMC9174495 DOI: 10.1038/s41467-022-30975-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/24/2022] [Indexed: 01/15/2023] Open
Abstract
Many vital processes in the eye are under circadian regulation, and circadian dysfunction has emerged as a potential driver of eye aging. Dietary restriction is one of the most robust lifespan-extending therapies and amplifies circadian rhythms with age. Herein, we demonstrate that dietary restriction extends lifespan in Drosophila melanogaster by promoting circadian homeostatic processes that protect the visual system from age- and light-associated damage. Altering the positive limb core molecular clock transcription factor, CLOCK, or CLOCK-output genes, accelerates visual senescence, induces a systemic immune response, and shortens lifespan. Flies subjected to dietary restriction are protected from the lifespan-shortening effects of photoreceptor activation. Inversely, photoreceptor inactivation, achieved via mutating rhodopsin or housing flies in constant darkness, primarily extends the lifespan of flies reared on a high-nutrient diet. Our findings establish the eye as a diet-sensitive modulator of lifespan and indicates that vision is an antagonistically pleiotropic process that contributes to organismal aging.
Collapse
Affiliation(s)
- Brian A Hodge
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Geoffrey T Meyerhof
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Subhash D Katewa
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
- NGM Biopharmaceuticals, 333 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Ting Lian
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
- Sichuan Agricultural University, 46 Xinkang Rd, Yucheng District, Ya'an, Sichuan, China
| | - Charles Lau
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Sudipta Bar
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Nicole Y Leung
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, USA
| | - Menglin Li
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - David Li-Kroeger
- Department of Neurology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Simon Melov
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
5
|
Jauregui-Lozano J, Hall H, Stanhope SC, Bakhle K, Marlin MM, Weake VM. The Clock:Cycle complex is a major transcriptional regulator of Drosophila photoreceptors that protects the eye from retinal degeneration and oxidative stress. PLoS Genet 2022; 18:e1010021. [PMID: 35100266 PMCID: PMC8830735 DOI: 10.1371/journal.pgen.1010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 01/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aging eye experiences physiological changes that include decreased visual function and increased risk of retinal degeneration. Although there are transcriptomic signatures in the aging retina that correlate with these physiological changes, the gene regulatory mechanisms that contribute to cellular homeostasis during aging remain to be determined. Here, we integrated ATAC-seq and RNA-seq data to identify 57 transcription factors that showed differential activity in aging Drosophila photoreceptors. These 57 age-regulated transcription factors include two circadian regulators, Clock and Cycle, that showed sustained increased activity during aging. When we disrupted the Clock:Cycle complex by expressing a dominant negative version of Clock (ClkDN) in adult photoreceptors, we observed changes in expression of 15-20% of genes including key components of the phototransduction machinery and many eye-specific transcription factors. Using ATAC-seq, we showed that expression of ClkDN in photoreceptors leads to changes in activity of 37 transcription factors and causes a progressive decrease in global levels of chromatin accessibility in photoreceptors. Supporting a key role for Clock-dependent transcription in the eye, expression of ClkDN in photoreceptors also induced light-dependent retinal degeneration and increased oxidative stress, independent of light exposure. Together, our data suggests that the circadian regulators Clock and Cycle act as neuroprotective factors in the aging eye by directing gene regulatory networks that maintain expression of the phototransduction machinery and counteract oxidative stress.
Collapse
Affiliation(s)
- Juan Jauregui-Lozano
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Hana Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Sarah C. Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Kimaya Bakhle
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Makayla M. Marlin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Vikki M. Weake
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
6
|
Jang HJ, Le MUT, Park JH, Chung CG, Shon JG, Lee GS, Moon JH, Lee SB, Choi JS, Lee TG, Yoon S. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Phospholipid Changes in a Drosophila Model of Early Amyotrophic Lateral Sclerosis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2536-2545. [PMID: 34448582 DOI: 10.1021/jasms.1c00167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative disease caused by motor neuron damage in the central nervous system, and it is difficult to diagnose early. Drosophila melanogaster is widely used to investigate disease mechanisms and discover biomarkers because it is easy to induce disease in Drosophila through genetic engineering. We performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to investigate changes in phospholipid distribution in the brain tissue of an ALS-induced Drosophila model. Fly brain tissues of several hundred micrometers or less were sampled using a fly collar to obtain reproducible tissue sections of similar sizes. MSI of brain tissues of Drosophila cultured for 1 or 10 days showed that the distribution of phospholipids, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), phosphatidylserine (PS), and phosphatidylinositol (PI), was significantly different between the control group and the ALS group. In addition, the lipid profile according to phospholipids differed as the culture time increased from 1 to 10 days. These results suggest that disease indicators based on lipid metabolites can be discovered by performing MALDI-MSI on very small brain tissue samples from the Drosophila disease model to ultimately assess the phospholipid changes that occur in early-stage ALS.
Collapse
Affiliation(s)
- Hyun Jun Jang
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minh Uyen Thi Le
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Jeong Hyang Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Jin Gyeong Shon
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Ga Seul Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae Geol Lee
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Sohee Yoon
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Zhao J, Warman G, Cheeseman J. The Development and Decay of the Circadian Clock in Drosophila melanogaster. Clocks Sleep 2020; 1:489-500. [PMID: 33089181 PMCID: PMC7445846 DOI: 10.3390/clockssleep1040037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
The way in which the circadian clock mechanism develops and decays throughout life is interesting for a number of reasons and may give us insight into the process of aging itself. The Drosophila model has been proven invaluable for the study of the circadian clock and development and aging. Here we review the evidence for how the Drosophila clock develops and changes throughout life, and present a new conceptual model based on the results of our recent work. Firefly luciferase lines faithfully report the output of known clock genes at the central clock level in the brain and peripherally throughout the whole body. Our results show that the clock is functioning in embryogenesis far earlier than previously thought. This central clock in the fly remains robust throughout the life of the animal and only degrades immediately prior to death. However, at the peripheral (non-central oscillator level) the clock shows weakened output as the animal ages, suggesting the possibility of the breakdown in the cohesion of the circadian network.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.Z.); (G.W.)
| | - Guy Warman
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.Z.); (G.W.)
| | - James Cheeseman
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.Z.); (G.W.)
| |
Collapse
|
8
|
Brenman-Suttner DB, Yost RT, Frame AK, Robinson JW, Moehring AJ, Simon AF. Social behavior and aging: A fly model. GENES BRAIN AND BEHAVIOR 2019; 19:e12598. [PMID: 31286644 DOI: 10.1111/gbb.12598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.
Collapse
Affiliation(s)
- Dova B Brenman-Suttner
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Ryley T Yost
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Ariel K Frame
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - J Wesley Robinson
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Amanda J Moehring
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Anne F Simon
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Zhao J, Warman GR, Cheeseman JF. The functional changes of the circadian system organization in aging. Ageing Res Rev 2019; 52:64-71. [PMID: 31048031 DOI: 10.1016/j.arr.2019.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 01/12/2023]
Abstract
The circadian clock drives periodic oscillations at different levels of an organism from genes to behavior. This timing system is highly conserved across species from insects to mammals and human beings. The question of how the circadian clock is involved in the aging process continues to attract more attention. We aim to characterize the detrimental impact of aging on the circadian clock organization. We review studies on different components of the circadian clock at the central and periperal levels, and their changes in aged rodents and humans, and the fruit fly Drosophila. Intracellular signaling, cellular activity and intercellular coupling in the central pacemaker have been found to decline with advancing age. Evidence of degradation of the molecular clockwork reflected by clock gene expression in both central and peripheral oscillators due to aging is inadequate. The findings on age-associated molecular and functional changes of peripheral clocks are mixed. We conclude that aging can affect the circadian clock organization at various levels, and the impairment of the central network may be a fundamental mechanism of circadian disruption seen in aged species.
Collapse
|
10
|
Duncan MJ. Interacting influences of aging and Alzheimer's disease on circadian rhythms. Eur J Neurosci 2019; 51:310-325. [DOI: 10.1111/ejn.14358] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Marilyn J. Duncan
- Department of NeuroscienceUniversity of Kentucky Medical School Lexington Kentucky
| |
Collapse
|
11
|
Zhao J, Warman GR, Cheeseman JF. Clock gene expression and locomotor activity predict death in the last days of life in Drosophila melanogaster. Sci Rep 2018; 8:11923. [PMID: 30093652 PMCID: PMC6085321 DOI: 10.1038/s41598-018-30323-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
The importance of the circadian clock for the regulation of behaviour and physiology, and the molecular control of these rhythms by a set of clock genes are well defined. The circadian clock deteriorates with advancing age but the mechanism underlying is unclear. Here we recorded the expression of two key clock genes in young, middle-aged and old Drosophila using transgenic luciferase lines reporting period and timeless in vivo. We report a novel marker of imminent death in the expression of TIMELESS. In the days immediately preceding death TIMELESS expression increased to at least 150% of previous acrophase values (88.0% of n = 217) and lost circadian rhythmicity, which predicted death equally well in flies of different ages and under light and temperature cycles. We suggest this transient aberrant clock-gene expression is central to the mechanism of the disturbance in circadian behaviour before death (82.7% of n = 342). We also find that PERIOD expression in central-clock neurons remained robust with age, however PERIOD and TIMELESS in peripheral clocks showed a reduction in both expression level and rhythmicity. In conclusion, as flies age the molecular clock gradually declines at the peripheral level but continues to function at the central until days before death.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Anaesthesiology, School of Medicine, the University of Auckland, Park Road, Grafton, Auckland, 1023, New Zealand
| | - Guy Robert Warman
- Department of Anaesthesiology, School of Medicine, the University of Auckland, Park Road, Grafton, Auckland, 1023, New Zealand
| | - James Frederick Cheeseman
- Department of Anaesthesiology, School of Medicine, the University of Auckland, Park Road, Grafton, Auckland, 1023, New Zealand.
| |
Collapse
|
12
|
Giebultowicz JM. Circadian regulation of metabolism and healthspan in Drosophila. Free Radic Biol Med 2018; 119:62-68. [PMID: 29277395 PMCID: PMC5910265 DOI: 10.1016/j.freeradbiomed.2017.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022]
Abstract
Circadian clocks generate daily rhythms in gene expression, cellular functions, physiological processes and behavior. The core clock mechanism consists of transcriptional-translational negative feedback loops that turn over with an endogenous circa 24h period. Classical genetic experiments in the fly Drosophila melanogaster played an essential role in identification of clock genes that turned out to be largely conserved between flies and mammals. Like in mammals, circadian clocks in flies generate transcriptional rhythms in a variety of metabolic pathways related to feeding and detoxification. Given that rhythms pervade metabolism and the loss of metabolic homeostasis is involved in aging and disease, there is increasing interest in understanding how the clocks and the rhythms they control change during aging. The importance of circadian clocks for healthy aging is supported by studies reporting that genetic or environmental clock disruptions are associated with reduced healthspan and lifespan. For example, arrhythmia caused by mutations in core clock genes lead to symptoms of accelerated aging in both flies and mammals, including neurodegenerative phenotypes. Despite the wealth of descriptive data, the mechanisms by which functional clocks confer healthspan and lifespan benefits are poorly understood. Studies in Drosophila discussed here are beginning to unravel causative relationships between the circadian system and aging. In particular, recent data suggest that clocks may be involved in inducing rhythmic expression of specific genes late in life in response to age-related increase in oxidative stress. This review will summarize insights into links between circadian system and aging in Drosophila, which were obtained using powerful genetics tools available for this model organism and taking advantage of the short adult lifespan in flies that is measured in days rather than years.
Collapse
|
13
|
Long DM, Giebultowicz JM. Age-Related Changes in the Expression of the Circadian Clock Protein PERIOD in Drosophila Glial Cells. Front Physiol 2018; 8:1131. [PMID: 29375400 PMCID: PMC5767304 DOI: 10.3389/fphys.2017.01131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/21/2017] [Indexed: 01/11/2023] Open
Abstract
Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into “circa” 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demonstrated that the expression of the core clock protein PERIOD (PER) declines in the heads of aged Drosophila melanogaster flies. This age-related decline in PER does not occur in the central pacemaker neurons but has been demonstrated so far in retinal photoreceptors. Besides photoreceptors, clock proteins are also expressed in fly glia, which play important roles in neuronal homeostasis and are further categorized into subtypes based on morphology and function. While previous studies of mammalian glial cells have demonstrated the presence of functional clocks in astrocytes and microglia, it is not known which glial cell types in Drosophila express clock proteins and how their expression may change in aged individuals. Here, we conducted immunocytochemistry experiments to identify which glial subtypes express PER protein suggestive of functional circadian clocks. Glial cell subtypes that showed night-time accumulation and day-time absence in PER consistent with oscillations reported in the pacemaker neurons were selected to compare the level of PER protein between young and old flies. Our data demonstrate that some glial subtypes show rhythmic PER expression and the relative PER levels become dampened with advanced age. Identification of glial cell types that display age-related dampening of PER levels may help to understand the cellular changes that contribute to the loss of homeostasis in the aging brain.
Collapse
Affiliation(s)
- Dani M Long
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Jadwiga M Giebultowicz
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
14
|
De Nobrega AK, Mellers AP, Lyons LC. Aging and circadian dysfunction increase alcohol sensitivity and exacerbate mortality in Drosophila melanogaster. Exp Gerontol 2017; 97:49-59. [PMID: 28750752 DOI: 10.1016/j.exger.2017.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Abstract
Alcohol abuse is a rising problem in middle-aged and older individuals resulting in serious health, family and economic consequences. Effective treatment necessitates the identification of factors influencing alcohol toxicity with aging. We investigated the interaction between aging, alcohol toxicity and circadian function using Drosophila as a model system. We found as wild type flies age, sensitivity to alcohol increases and circadian regulation of alcohol-induced behaviors weakens. Decreased circadian modulation is correlated with significantly greater alcohol sensitivity during the subjective day. The circadian clock modulates alcohol-induced mortality in younger flies with increased mortality following alcohol exposure at night. Older flies exhibit significantly longer recovery times following alcohol-induced sedation and increased mortality following binge-like or chronic alcohol exposure. Flies rendered arrhythmic either genetically or environmentally exhibit significantly increased alcohol sensitivity, longer recovery times and increased mortality. We hypothesize that the circadian clock phase specifically buffers behavioral and cellular alcohol sensitivity with this protection diminishing as the circadian clock weakens with age.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - Alana P Mellers
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
15
|
Allen CN, Nitabach MN, Colwell CS. Membrane Currents, Gene Expression, and Circadian Clocks. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027714. [PMID: 28246182 DOI: 10.1101/cshperspect.a027714] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neuronal circadian oscillators in the mammalian and Drosophila brain express a circadian clock comprised of interlocking gene transcription feedback loops. The genetic clock regulates the membrane electrical activity by poorly understood signaling pathways to generate a circadian pattern of action potential firing. During the day, Na+ channels contribute an excitatory drive for the spontaneous activity of circadian clock neurons. Multiple types of K+ channels regulate the action potential firing pattern and the nightly reduction in neuronal activity. The membrane electrical activity possibly signaling by changes in intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) regulates the activity of the gene clock. A decline in the signaling pathways that link the gene clock and neural activity during aging and disease may weaken the circadian output and generate significant impacts on human health.
Collapse
Affiliation(s)
- Charles N Allen
- Oregon Institute of Occupational Health Sciences and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology and Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| |
Collapse
|
16
|
Li D, Ma S, Guo D, Cheng T, Li H, Tian Y, Li J, Guan F, Yang B, Wang J. Environmental Circadian Disruption Worsens Neurologic Impairment and Inhibits Hippocampal Neurogenesis in Adult Rats After Traumatic Brain Injury. Cell Mol Neurobiol 2016; 36:1045-55. [PMID: 26886755 DOI: 10.1007/s10571-015-0295-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022]
Abstract
Circadian rhythms modulate many physiologic processes and behaviors. Therefore, their disruption causes a variety of potential adverse effects in humans and animals. Circadian disruption induced by constant light exposure has been discovered to produce pathophysiologic consequences after brain injury. However, the underlying mechanisms that lead to more severe impairment and disruption of neurophysiologic processes are not well understood. Here, we evaluated the effect of constant light exposure on the neurobehavioral impairment and survival of neurons in rats after traumatic brain injury (TBI). Sixty adult male Sprague-Dawley rats were subjected to a weight-drop model of TBI and then exposed to either a standard 12-/12-h light/dark cycle or a constant 24-h light/light cycle for 14 days. Our results showed that 14 days of constant light exposure after TBI significantly worsened the sensorimotor and cognitive deficits, which were associated with decreased body weight, impaired water and food intake, increased cortical lesion volume, and decreased neuronal survival. Furthermore, environmental circadian disruption inhibited cell proliferation and newborn cell survival and decreased immature cell production in rats subjected to the TBI model. We conclude that circadian disruption induced by constant light exposure worsens histologic and neurobehavioral impairment and inhibits neurogenesis in adult TBI rats. Our novel findings suggest that light exposure should be decreased and circadian rhythm reestablished in hospitalized TBI patients and that drugs and strategies that maintain circadian rhythm would offer a novel therapeutic option.
Collapse
Affiliation(s)
- Dongpeng Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.,Henan Province Red Cross Blood Center, Zhengzhou, Henan, 450014, People's Republic of China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Dewei Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Tian Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yi Tian
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jianbin Li
- Henan Province Red Cross Blood Center, Zhengzhou, Henan, 450014, People's Republic of China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|