1
|
Kanwal A, Zhang Z. Exploring common pathogenic association between Epstein Barr virus infection and long-COVID by integrating RNA-Seq and molecular dynamics simulations. Front Immunol 2024; 15:1435170. [PMID: 39391317 PMCID: PMC11464307 DOI: 10.3389/fimmu.2024.1435170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The term "Long-COVID" (LC) is characterized by the aftereffects of COVID-19 infection. Various studies have suggested that Epstein-Barr virus (EBV) reactivation is among the significant reported causes of LC. However, there is a lack of in-depth research that could largely explore the pathogenic mechanism and pinpoint the key genes in the EBV and LC context. This study mainly aimed to predict the potential disease-associated common genes between EBV reactivation and LC condition using next-generation sequencing (NGS) data and reported naturally occurring biomolecules as inhibitors. We applied the bulk RNA-Seq from LC and EBV-infected peripheral blood mononuclear cells (PBMCs), identified the differentially expressed genes (DEGs) and the Protein-Protein interaction (PPI) network using the STRING database, identified hub genes using the cytoscape plugins CytoHubba and MCODE, and performed enrichment analysis using ClueGO. The interaction analysis of a hub gene was performed against naturally occurring bioflavonoid molecules using molecular docking and the molecular dynamics (MD) simulation method. Out of 357 common genes, 22 genes (CCL2, CCL20, CDCA2, CEP55, CHI3L1, CKAP2L, DEPDC1, DIAPH3, DLGAP5, E2F8, FGF1, NEK2, PBK, TOP2A, CCL3, CXCL8, DEPDC1, IL6, RETN, MMP2, LCN2, and OLR1) were classified as hub genes, and the remaining ones were classified as neighboring genes. Enrichment analysis showed the role of hub genes in various pathways such as immune-signaling pathways, including JAK-STAT signaling, interleukin signaling, protein kinase signaling, and toll-like receptor pathways associated with the symptoms reported in the LC condition. ZNF and MYBL TF-family were predicted as abundant TFs controlling hub genes' transcriptional machinery. Furthermore, OLR1 (PDB: 7XMP) showed stable interactions with the five shortlisted refined naturally occurring bioflavonoids, i.e., apigenin, amentoflavone, ilexgenin A, myricetin, and orientin compounds. The total binding energy pattern was observed, with amentoflavone being the top docked molecule (with a binding affinity of -8.3 kcal/mol) with the lowest total binding energy of -18.48 kcal/mol. In conclusion, our research has predicted the hub genes, their molecular pathways, and the potential inhibitors between EBV and LC potential pathogenic association. The in vivo or in vitro experimental methods could be utilized to functionally validate our findings, which would be helpful to cure LC or to prevent EBV reactivation.
Collapse
Affiliation(s)
- Ayesha Kanwal
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhiyong Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
2
|
Venafra V, Sacco F, Perfetto L. SignalingProfiler 2.0 a network-based approach to bridge multi-omics data to phenotypic hallmarks. NPJ Syst Biol Appl 2024; 10:95. [PMID: 39179556 PMCID: PMC11343843 DOI: 10.1038/s41540-024-00417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024] Open
Abstract
Unraveling how cellular signaling is remodeled upon perturbation is crucial for understanding disease mechanisms and identifying potential drug targets. In this pursuit, computational tools generating mechanistic hypotheses from multi-omics data have invaluable potential. Here, we present a newly implemented version (2.0) of SignalingProfiler, a multi-step pipeline to draw mechanistic hypotheses on the signaling events impacting cellular phenotypes. SignalingProfiler 2.0 derives context-specific signaling networks by integrating proteogenomic data with the prior knowledge-causal network. This is a freely accessible and flexible tool that incorporates statistical, footprint-based, and graph algorithms to accelerate the integration and interpretation of multi-omics data. Through a benchmarking process on three proof-of-concept studies, we demonstrate the tool's ability to generate hierarchical mechanistic networks recapitulating novel and known perturbed signaling and phenotypic outcomes, in both human and mice contexts. In summary, SignalingProfiler 2.0 addresses the emergent need to derive biologically relevant information from complex multi-omics data by extracting interpretable networks.
Collapse
Affiliation(s)
- Veronica Venafra
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| | - Livia Perfetto
- Department of Biology and Biotechnologies 'C.Darwin', University of Rome 'La Sapienza', Rome, Italy.
| |
Collapse
|
3
|
Lapuente-Santana Ó, Sturm G, Kant J, Ausserhofer M, Zackl C, Zopoglou M, McGranahan N, Rieder D, Trajanoski Z, da Cunha Carvalho de Miranda NF, Eduati F, Finotello F. Multimodal analysis unveils tumor microenvironment heterogeneity linked to immune activity and evasion. iScience 2024; 27:110529. [PMID: 39161957 PMCID: PMC11331718 DOI: 10.1016/j.isci.2024.110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/03/2024] [Accepted: 07/13/2024] [Indexed: 08/21/2024] Open
Abstract
The cellular and molecular heterogeneity of tumors is a major obstacle to cancer immunotherapy. Here, we use a systems biology approach to derive a signature of the main sources of heterogeneity in the tumor microenvironment (TME) from lung cancer transcriptomics. We demonstrate that this signature, which we called iHet, is conserved in different cancers and associated with antitumor immunity. Through analysis of single-cell and spatial transcriptomics data, we trace back the cellular origin of the variability explaining the iHet signature. Finally, we demonstrate that iHet has predictive value for cancer immunotherapy, which can be further improved by disentangling three major determinants of anticancer immune responses: activity of immune cells, immune infiltration or exclusion, and cancer-cell foreignness. This work shows how transcriptomics data can be integrated to derive a holistic representation of the phenotypic heterogeneity of the TME and to predict its unfolding and fate during immunotherapy with immune checkpoint blockers.
Collapse
Affiliation(s)
- Óscar Lapuente-Santana
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Boehringer Ingelheim International Pharma GmbH & Co KG, 55216 Ingelheim am Rhein, Germany
| | - Joan Kant
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Markus Ausserhofer
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Constantin Zackl
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Maria Zopoglou
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6DD, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London WC1E 6DD, UK
| | - Dietmar Rieder
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Federica Eduati
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Francesca Finotello
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Burtscher ML, Gade S, Garrido-Rodriguez M, Rutkowska A, Werner T, Eberl HC, Petretich M, Knopf N, Zirngibl K, Grandi P, Bergamini G, Bantscheff M, Fälth-Savitski M, Saez-Rodriguez J. Network integration of thermal proteome profiling with multi-omics data decodes PARP inhibition. Mol Syst Biol 2024; 20:458-474. [PMID: 38454145 PMCID: PMC10987601 DOI: 10.1038/s44320-024-00025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Complex disease phenotypes often span multiple molecular processes. Functional characterization of these processes can shed light on disease mechanisms and drug effects. Thermal Proteome Profiling (TPP) is a mass-spectrometry (MS) based technique assessing changes in thermal protein stability that can serve as proxies of functional protein changes. These unique insights of TPP can complement those obtained by other omics technologies. Here, we show how TPP can be integrated with phosphoproteomics and transcriptomics in a network-based approach using COSMOS, a multi-omics integration framework, to provide an integrated view of transcription factors, kinases and proteins with altered thermal stability. This allowed us to recover consequences of Poly (ADP-ribose) polymerase (PARP) inhibition in ovarian cancer cells on cell cycle and DNA damage response as well as interferon and hippo signaling. We found that TPP offers a complementary perspective to other omics data modalities, and that its integration allowed us to obtain a more complete molecular overview of PARP inhibition. We anticipate that this strategy can be used to integrate functional proteomics with other omics to study molecular processes.
Collapse
Affiliation(s)
- Mira L Burtscher
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
- Cellzome, a GSK company, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | - Martin Garrido-Rodriguez
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | - Katharina Zirngibl
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
- Cellzome, a GSK company, Heidelberg, Germany
| | | | | | | | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany.
| |
Collapse
|
5
|
Schäfer PSL, Dimitrov D, Villablanca EJ, Saez-Rodriguez J. Integrating single-cell multi-omics and prior biological knowledge for a functional characterization of the immune system. Nat Immunol 2024; 25:405-417. [PMID: 38413722 DOI: 10.1038/s41590-024-01768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
The immune system comprises diverse specialized cell types that cooperate to defend the host against a wide range of pathogenic threats. Recent advancements in single-cell and spatial multi-omics technologies provide rich information about the molecular state of immune cells. Here, we review how the integration of single-cell and spatial multi-omics data with prior knowledge-gathered from decades of detailed biochemical studies-allows us to obtain functional insights, focusing on gene regulatory processes and cell-cell interactions. We present diverse applications in immunology and critically assess underlying assumptions and limitations. Finally, we offer a perspective on the ongoing technological and algorithmic developments that promise to get us closer to a systemic mechanistic understanding of the immune system.
Collapse
Affiliation(s)
- Philipp Sven Lars Schäfer
- Institute for Computational Bioscience, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Daniel Dimitrov
- Institute for Computational Bioscience, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Julio Saez-Rodriguez
- Institute for Computational Bioscience, Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
6
|
Müller-Dott S, Tsirvouli E, Vazquez M, Ramirez Flores R, Badia-i-Mompel P, Fallegger R, Türei D, Lægreid A, Saez-Rodriguez J. Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities. Nucleic Acids Res 2023; 51:10934-10949. [PMID: 37843125 PMCID: PMC10639077 DOI: 10.1093/nar/gkad841] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Gene regulation plays a critical role in the cellular processes that underlie human health and disease. The regulatory relationship between transcription factors (TFs), key regulators of gene expression, and their target genes, the so called TF regulons, can be coupled with computational algorithms to estimate the activity of TFs. However, to interpret these findings accurately, regulons of high reliability and coverage are needed. In this study, we present and evaluate a collection of regulons created using the CollecTRI meta-resource containing signed TF-gene interactions for 1186 TFs. In this context, we introduce a workflow to integrate information from multiple resources and assign the sign of regulation to TF-gene interactions that could be applied to other comprehensive knowledge bases. We find that the signed CollecTRI-derived regulons outperform other public collections of regulatory interactions in accurately inferring changes in TF activities in perturbation experiments. Furthermore, we showcase the value of the regulons by examining TF activity profiles in three different cancer types and exploring TF activities at the level of single-cells. Overall, the CollecTRI-derived TF regulons enable the accurate and comprehensive estimation of TF activities and thereby help to interpret transcriptomics data.
Collapse
Affiliation(s)
- Sophia Müller-Dott
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Eirini Tsirvouli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ricardo O Ramirez Flores
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Pau Badia-i-Mompel
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Robin Fallegger
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Dénes Türei
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| |
Collapse
|
7
|
Baghdassarian H, Dimitrov D, Armingol E, Saez-Rodriguez J, Lewis NE. Combining LIANA and Tensor-cell2cell to decipher cell-cell communication across multiple samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538731. [PMID: 37162916 PMCID: PMC10168343 DOI: 10.1101/2023.04.28.538731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In recent years, data-driven inference of cell-cell communication has helped reveal coordinated biological processes across cell types. While multiple cell-cell communication tools exist, results are specific to the tool of choice, due to the diverse assumptions made across computational frameworks. Moreover, tools are often limited to analyzing single samples or to performing pairwise comparisons. As experimental design complexity and sample numbers continue to increase in single-cell datasets, so does the need for generalizable methods to decipher cell-cell communication in such scenarios. Here, we integrate two tools, LIANA and Tensor-cell2cell, which combined can deploy multiple existing methods and resources, to enable the robust and flexible identification of cell-cell communication programs across multiple samples. In this protocol, we show how the integration of our tools facilitates the choice of method to infer cell-cell communication and subsequently perform an unsupervised deconvolution to obtain and summarize biological insights. We explain how to perform the analysis step-by-step in both Python and R, and we provide online tutorials with detailed instructions available at https://ccc-protocols.readthedocs.io/. This protocol typically takes ~1.5h to complete from installation to downstream visualizations on a GPU-enabled computer, for a dataset of ~63k cells, 10 cell types, and 12 samples.
Collapse
Affiliation(s)
- Hratch Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Daniel Dimitrov
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, 69120, Heidelberg, Germany
| | - Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, 69120, Heidelberg, Germany
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Using a Network-Based Analysis Approach to Investigate the Involvement of S. aureus in the Pathogenesis of Granulomatosis with Polyangiitis. Int J Mol Sci 2023; 24:ijms24031822. [PMID: 36768148 PMCID: PMC9915048 DOI: 10.3390/ijms24031822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Chronic nasal carriage of Staphylococcus aureus (SA) has been shown to be significantly higher in GPA patients when compared to healthy subjects, as well as being associated with increased endonasal activity and disease relapse. The aim of this study was to investigate SA involvement in GPA by applying a network-based analysis (NBA) approach to publicly available nasal transcriptomic data. Using these data, our NBA pipeline generated a proteinase 3 (PR3) positive ANCA associated vasculitis (AAV) disease network integrating differentially expressed genes, dysregulated transcription factors (TFs), disease-specific genes derived from GWAS studies, drug-target and protein-protein interactions. The PR3+ AAV disease network captured genes previously reported to be dysregulated in AAV associated. A subnetwork focussing on interactions between SA virulence factors and enriched biological processes revealed potential mechanisms for SA's involvement in PR3+ AAV. Immunosuppressant treatment reduced differential expression and absolute TF activities in this subnetwork for patients with inactive nasal disease but not active nasal disease symptoms at the time of sampling. The disease network generated identified the key molecular signatures and highlighted the associated biological processes in PR3+ AAV and revealed potential mechanisms for SA to affect these processes.
Collapse
|
9
|
Schneider KM, Mohs A, Gui W, Galvez EJC, Candels LS, Hoenicke L, Muthukumarasamy U, Holland CH, Elfers C, Kilic K, Schneider CV, Schierwagen R, Strnad P, Wirtz TH, Marschall HU, Latz E, Lelouvier B, Saez-Rodriguez J, de Vos W, Strowig T, Trebicka J, Trautwein C. Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment. Nat Commun 2022; 13:3964. [PMID: 35803930 PMCID: PMC9270328 DOI: 10.1038/s41467-022-31312-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and therapeutic options for advanced HCC are limited. Here, we observe that intestinal dysbiosis affects antitumor immune surveillance and drives liver disease progression towards cancer. Dysbiotic microbiota, as seen in Nlrp6-/- mice, induces a Toll-like receptor 4 dependent expansion of hepatic monocytic myeloid-derived suppressor cells (mMDSC) and suppression of T-cell abundance. This phenotype is transmissible via fecal microbiota transfer and reversible upon antibiotic treatment, pointing to the high plasticity of the tumor microenvironment. While loss of Akkermansia muciniphila correlates with mMDSC abundance, its reintroduction restores intestinal barrier function and strongly reduces liver inflammation and fibrosis. Cirrhosis patients display increased bacterial abundance in hepatic tissue, which induces pronounced transcriptional changes, including activation of fibro-inflammatory pathways as well as circuits mediating cancer immunosuppression. This study demonstrates that gut microbiota closely shapes the hepatic inflammatory microenvironment opening approaches for cancer prevention and therapy.
Collapse
Affiliation(s)
- Kai Markus Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Antje Mohs
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Wenfang Gui
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Eric J C Galvez
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Hannover Medical School, Hannover, Germany
| | | | - Lisa Hoenicke
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Hannover Medical School, Hannover, Germany
| | - Uthayakumar Muthukumarasamy
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Hannover Medical School, Hannover, Germany
| | - Christian H Holland
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Carsten Elfers
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Konrad Kilic
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Carolin Victoria Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert Schierwagen
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), 08021, Barcelona, Spain
- Translational Hepatology, Department of Internal Medicine I, Goethe University Frankfurt, 60323, Frankfurt, Germany
| | - Pavel Strnad
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Theresa H Wirtz
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eicke Latz
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
| | | | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Willem de Vos
- Laboratory of Microbiology, Wageningen University, 6708 WE, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Till Strowig
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Hannover Medical School, Hannover, Germany
| | - Jonel Trebicka
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), 08021, Barcelona, Spain
- Translational Hepatology, Department of Internal Medicine I, Goethe University Frankfurt, 60323, Frankfurt, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
10
|
Garrido‐Rodriguez M, Zirngibl K, Ivanova O, Lobentanzer S, Saez‐Rodriguez J. Integrating knowledge and omics to decipher mechanisms via large-scale models of signaling networks. Mol Syst Biol 2022; 18:e11036. [PMID: 35880747 PMCID: PMC9316933 DOI: 10.15252/msb.202211036] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
Signal transduction governs cellular behavior, and its dysregulation often leads to human disease. To understand this process, we can use network models based on prior knowledge, where nodes represent biomolecules, usually proteins, and edges indicate interactions between them. Several computational methods combine untargeted omics data with prior knowledge to estimate the state of signaling networks in specific biological scenarios. Here, we review, compare, and classify recent network approaches according to their characteristics in terms of input omics data, prior knowledge and underlying methodologies. We highlight existing challenges in the field, such as the general lack of ground truth and the limitations of prior knowledge. We also point out new omics developments that may have a profound impact, such as single-cell proteomics or large-scale profiling of protein conformational changes. We provide both an introduction for interested users seeking strategies to study cell signaling on a large scale and an update for seasoned modelers.
Collapse
Affiliation(s)
- Martin Garrido‐Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, BioquantHeidelbergGermany
| | - Katharina Zirngibl
- Heidelberg University, Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, BioquantHeidelbergGermany
| | - Olga Ivanova
- Heidelberg University, Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, BioquantHeidelbergGermany
| | - Sebastian Lobentanzer
- Heidelberg University, Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, BioquantHeidelbergGermany
| | - Julio Saez‐Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, BioquantHeidelbergGermany
| |
Collapse
|
11
|
Terakawa A, Hu Y, Kokaji T, Yugi K, Morita K, Ohno S, Pan Y, Bai Y, Parkhitko AA, Ni X, Asara JM, Bulyk ML, Perrimon N, Kuroda S. Trans-omics analysis of insulin action reveals a cell growth subnetwork which co-regulates anabolic processes. iScience 2022; 25:104231. [PMID: 35494245 PMCID: PMC9044165 DOI: 10.1016/j.isci.2022.104231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Insulin signaling promotes anabolic metabolism to regulate cell growth through multi-omic interactions. To obtain a comprehensive view of the cellular responses to insulin, we constructed a trans-omic network of insulin action in Drosophila cells that involves the integration of multi-omic data sets. In this network, 14 transcription factors, including Myc, coordinately upregulate the gene expression of anabolic processes such as nucleotide synthesis, transcription, and translation, consistent with decreases in metabolites such as nucleotide triphosphates and proteinogenic amino acids required for transcription and translation. Next, as cell growth is required for cell proliferation and insulin can stimulate proliferation in a context-dependent manner, we integrated the trans-omic network with results from a CRISPR functional screen for cell proliferation. This analysis validates the role of a Myc-mediated subnetwork that coordinates the activation of genes involved in anabolic processes required for cell growth. A trans-omic network of insulin action in Drosophila cells was constructed Insulin co-regulates various anabolic processes in a time-dependent manner The trans-omic network and a CRISPR screen for cell proliferation were integrated A Myc-mediated subnetwork promoting anabolic processes is required for cell growth
Collapse
Affiliation(s)
- Akira Terakawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa, 252-8520, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yifei Pan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yunfan Bai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Andrey A. Parkhitko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaochun Ni
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02175, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Corresponding author
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Corresponding author
| |
Collapse
|
12
|
Polonikov A, Bocharova I, Azarova I, Klyosova E, Bykanova M, Bushueva O, Polonikova A, Churnosov M, Solodilova M. The Impact of Genetic Polymorphisms in Glutamate-Cysteine Ligase, a Key Enzyme of Glutathione Biosynthesis, on Ischemic Stroke Risk and Brain Infarct Size. Life (Basel) 2022; 12:life12040602. [PMID: 35455093 PMCID: PMC9032935 DOI: 10.3390/life12040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this pilot study was to explore whether polymorphisms in genes encoding the catalytic (GCLC) and modifier (GCLM) subunits of glutamate-cysteine ligase, a rate-limiting enzyme in glutathione synthesis, play a role in the development of ischemic stroke (IS) and the extent of brain damage. A total of 1288 unrelated Russians, including 600 IS patients and 688 age- and sex-matched healthy subjects, were enrolled for the study. Nine common single nucleotide polymorphisms (SNPs) of the GCLC and GCLM genes were genotyped using the MassArray-4 system. SNP rs2301022 of GCLM was strongly associated with a decreased risk of ischemic stroke regardless of sex and age (OR = 0.39, 95%CI 0.24−0.62, p < 0.0001). Two common haplotypes of GCLM possessed protective effects against ischemic stroke risk (p < 0.01), but exclusively in nonsmoker patients. Infarct size was increased by polymorphisms rs636933 and rs761142 of GCLC. The mbmdr method enabled identifying epistatic interactions of GCLC and GCLM gene polymorphisms with known IS susceptibility genes that, along with environmental risk factors, jointly contribute to the disease risk and brain infarct size. Understanding the impact of genes and environmental factors on glutathione metabolism will allow the development of effective strategies for the treatment of ischemic stroke and disease prevention.
Collapse
Affiliation(s)
- Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
- Correspondence:
| | - Iuliia Bocharova
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, 308015 Belgorod, Russia; (I.B.); (M.C.)
- Division of Neurosurgery, Kursk Regional Clinical Hospital, 45a Sumskaya, 305027 Kursk, Russia
| | - Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Elena Klyosova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Marina Bykanova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Olga Bushueva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Anna Polonikova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, 308015 Belgorod, Russia; (I.B.); (M.C.)
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (E.K.); (M.B.); (O.B.); (A.P.); (M.S.)
| |
Collapse
|
13
|
Barsi S, Papp H, Valdeolivas A, Tóth DJ, Kuczmog A, Madai M, Hunyady L, Várnai P, Saez-Rodriguez J, Jakab F, Szalai B. Computational drug repurposing against SARS-CoV-2 reveals plasma membrane cholesterol depletion as key factor of antiviral drug activity. PLoS Comput Biol 2022; 18:e1010021. [PMID: 35404937 PMCID: PMC9022874 DOI: 10.1371/journal.pcbi.1010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/21/2022] [Accepted: 03/15/2022] [Indexed: 01/09/2023] Open
Abstract
Comparing SARS-CoV-2 infection-induced gene expression signatures to drug treatment-induced gene expression signatures is a promising bioinformatic tool to repurpose existing drugs against SARS-CoV-2. The general hypothesis of signature-based drug repurposing is that drugs with inverse similarity to a disease signature can reverse disease phenotype and thus be effective against it. However, in the case of viral infection diseases, like SARS-CoV-2, infected cells also activate adaptive, antiviral pathways, so that the relationship between effective drug and disease signature can be more ambiguous. To address this question, we analysed gene expression data from in vitro SARS-CoV-2 infected cell lines, and gene expression signatures of drugs showing anti-SARS-CoV-2 activity. Our extensive functional genomic analysis showed that both infection and treatment with in vitro effective drugs leads to activation of antiviral pathways like NFkB and JAK-STAT. Based on the similarity-and not inverse similarity-between drug and infection-induced gene expression signatures, we were able to predict the in vitro antiviral activity of drugs. We also identified SREBF1/2, key regulators of lipid metabolising enzymes, as the most activated transcription factors by several in vitro effective antiviral drugs. Using a fluorescently labeled cholesterol sensor, we showed that these drugs decrease the cholesterol levels of plasma-membrane. Supplementing drug-treated cells with cholesterol reversed the in vitro antiviral effect, suggesting the depleting plasma-membrane cholesterol plays a key role in virus inhibitory mechanism. Our results can help to more effectively repurpose approved drugs against SARS-CoV-2, and also highlights key mechanisms behind their antiviral effect.
Collapse
Affiliation(s)
- Szilvia Barsi
- Semmelweis University, Faculty of Medicine, Department of Physiology, Budapest, Hungary
| | - Henrietta Papp
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Alberto Valdeolivas
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Dániel J. Tóth
- Semmelweis University, Faculty of Medicine, Department of Physiology, Budapest, Hungary
| | - Anett Kuczmog
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Mónika Madai
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - László Hunyady
- Semmelweis University, Faculty of Medicine, Department of Physiology, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Várnai
- Semmelweis University, Faculty of Medicine, Department of Physiology, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Bence Szalai
- Semmelweis University, Faculty of Medicine, Department of Physiology, Budapest, Hungary
| |
Collapse
|
14
|
Badia-i-Mompel P, Vélez Santiago J, Braunger J, Geiss C, Dimitrov D, Müller-Dott S, Taus P, Dugourd A, Holland CH, Ramirez Flores RO, Saez-Rodriguez J. decoupleR: ensemble of computational methods to infer biological activities from omics data. BIOINFORMATICS ADVANCES 2022; 2:vbac016. [PMID: 36699385 PMCID: PMC9710656 DOI: 10.1093/bioadv/vbac016] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023]
Abstract
Summary Many methods allow us to extract biological activities from omics data using information from prior knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here, we present decoupleR, a Bioconductor and Python package containing computational methods to extract these activities within a unified framework. decoupleR allows us to flexibly run any method with a given resource, including methods that leverage mode of regulation and weights of interactions, which are not present in other frameworks. Moreover, it leverages OmniPath, a meta-resource comprising over 100 databases of prior knowledge. Using decoupleR, we evaluated the performance of methods on transcriptomic and phospho-proteomic perturbation experiments. Our findings suggest that simple linear models and the consensus score across top methods perform better than other methods at predicting perturbed regulators. Availability and implementation decoupleR's open-source code is available in Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/decoupleR.html) for R and in GitHub (https://github.com/saezlab/decoupler-py) for Python. The code to reproduce the results is in GitHub (https://github.com/saezlab/decoupleR_manuscript) and the data in Zenodo (https://zenodo.org/record/5645208). Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Pau Badia-i-Mompel
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg 69120, Germany,Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg 69120, Germany
| | - Jesús Vélez Santiago
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg 69120, Germany,Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg 69120, Germany
| | - Jana Braunger
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg 69120, Germany,Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg 69120, Germany
| | - Celina Geiss
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg 69120, Germany,Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg 69120, Germany
| | - Daniel Dimitrov
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg 69120, Germany,Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg 69120, Germany
| | - Sophia Müller-Dott
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg 69120, Germany,Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg 69120, Germany
| | - Petr Taus
- Central European Institute of Technology, Masaryk University, Brno 601, Czechia
| | - Aurelien Dugourd
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg 69120, Germany,Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg 69120, Germany
| | - Christian H Holland
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg 69120, Germany,Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg 69120, Germany
| | - Ricardo O Ramirez Flores
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg 69120, Germany,Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg 69120, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg 69120, Germany,Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg 69120, Germany,To whom correspondence should be addressed.
| |
Collapse
|
15
|
Hernansaiz-Ballesteros R, Holland CH, Dugourd A, Saez-Rodriguez J. OUP accepted manuscript. Bioinformatics 2022; 38:2075-2076. [PMID: 35134857 PMCID: PMC8963329 DOI: 10.1093/bioinformatics/btac055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Motivation Omics data are broadly used to get a snapshot of the molecular status of cells. In particular, changes in omics can be used to estimate the activity of pathways, transcription factors and kinases based on known regulated targets, that we call footprints. Then the molecular paths driving these activities can be estimated using causal reasoning on large signalling networks. Results We have developed FUNKI, a FUNctional toolKIt for footprint analysis. It provides a user-friendly interface for an easy and fast analysis of transcriptomics, phosphoproteomics and metabolomics data, either from bulk or single-cell experiments. FUNKI also features different options to visualize the results and run post-analyses, and is mirrored as a scripted version in R. Availability and implementation FUNKI is a free and open-source application built on R and Shiny, available at https://github.com/saezlab/ShinyFUNKI and https://saezlab.shinyapps.io/funki/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rosa Hernansaiz-Ballesteros
- Institute for Computational Biomedicine, Heidelberg University, Heidelberg University Hospital, Faculty of Medicine, Bioquant, Heidelberg 69120, Germany
| | - Christian H Holland
- Institute for Computational Biomedicine, Heidelberg University, Heidelberg University Hospital, Faculty of Medicine, Bioquant, Heidelberg 69120, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Heidelberg University, Heidelberg University Hospital, Faculty of Medicine, Bioquant, Heidelberg 69120, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | | |
Collapse
|
16
|
Ostaszewski M, Niarakis A, Mazein A, Kuperstein I, Phair R, Orta‐Resendiz A, Singh V, Aghamiri SS, Acencio ML, Glaab E, Ruepp A, Fobo G, Montrone C, Brauner B, Frishman G, Monraz Gómez LC, Somers J, Hoch M, Kumar Gupta S, Scheel J, Borlinghaus H, Czauderna T, Schreiber F, Montagud A, Ponce de Leon M, Funahashi A, Hiki Y, Hiroi N, Yamada TG, Dräger A, Renz A, Naveez M, Bocskei Z, Messina F, Börnigen D, Fergusson L, Conti M, Rameil M, Nakonecnij V, Vanhoefer J, Schmiester L, Wang M, Ackerman EE, Shoemaker JE, Zucker J, Oxford K, Teuton J, Kocakaya E, Summak GY, Hanspers K, Kutmon M, Coort S, Eijssen L, Ehrhart F, Rex DAB, Slenter D, Martens M, Pham N, Haw R, Jassal B, Matthews L, Orlic‐Milacic M, Senff Ribeiro A, Rothfels K, Shamovsky V, Stephan R, Sevilla C, Varusai T, Ravel J, Fraser R, Ortseifen V, Marchesi S, Gawron P, Smula E, Heirendt L, Satagopam V, Wu G, Riutta A, Golebiewski M, Owen S, Goble C, Hu X, Overall RW, Maier D, Bauch A, Gyori BM, Bachman JA, Vega C, Grouès V, Vazquez M, Porras P, Licata L, Iannuccelli M, Sacco F, Nesterova A, Yuryev A, de Waard A, Turei D, Luna A, Babur O, Soliman S, Valdeolivas A, Esteban‐Medina M, Peña‐Chilet M, Rian K, Helikar T, Puniya BL, Modos D, Treveil A, Olbei M, De Meulder B, Ballereau S, Dugourd A, Naldi A, Noël V, Calzone L, Sander C, Demir E, Korcsmaros T, Freeman TC, Augé F, Beckmann JS, Hasenauer J, Wolkenhauer O, Wilighagen EL, Pico AR, Evelo CT, Gillespie ME, Stein LD, Hermjakob H, D'Eustachio P, Saez‐Rodriguez J, Dopazo J, Valencia A, Kitano H, Barillot E, Auffray C, Balling R, Schneider R. COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms. Mol Syst Biol 2021; 17:e10387. [PMID: 34664389 PMCID: PMC8524328 DOI: 10.15252/msb.202110387] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
Collapse
Affiliation(s)
- Marek Ostaszewski
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Anna Niarakis
- Université Paris‐SaclayLaboratoire Européen de Recherche pour la Polyarthrite rhumatoïde ‐ GenhotelUniv EvryEvryFrance
- Lifeware GroupInria Saclay‐Ile de FrancePalaiseauFrance
| | - Alexander Mazein
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Inna Kuperstein
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Robert Phair
- Integrative Bioinformatics, Inc.Mountain ViewCAUSA
| | - Aurelio Orta‐Resendiz
- Institut PasteurUniversité de Paris, Unité HIVInflammation et PersistanceParisFrance
- Bio Sorbonne Paris CitéUniversité de ParisParisFrance
| | - Vidisha Singh
- Université Paris‐SaclayLaboratoire Européen de Recherche pour la Polyarthrite rhumatoïde ‐ GenhotelUniv EvryEvryFrance
| | - Sara Sadat Aghamiri
- Inserm‐ Institut national de la santé et de la recherche médicaleParisFrance
| | - Marcio Luis Acencio
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Andreas Ruepp
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Gisela Fobo
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Corinna Montrone
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Barbara Brauner
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Goar Frishman
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Luis Cristóbal Monraz Gómez
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Julia Somers
- Department of Molecular and Medical GeneticsOregon Health & Sciences UniversityPortlandORUSA
| | - Matti Hoch
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | | | - Julia Scheel
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | - Hanna Borlinghaus
- Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
| | - Tobias Czauderna
- Faculty of Information TechnologyDepartment of Human‐Centred ComputingMonash UniversityClaytonVic.Australia
| | - Falk Schreiber
- Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
- Faculty of Information TechnologyDepartment of Human‐Centred ComputingMonash UniversityClaytonVic.Australia
| | | | | | - Akira Funahashi
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Yusuke Hiki
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Noriko Hiroi
- Graduate School of Media and GovernanceResearch Institute at SFCKeio UniversityKanagawaJapan
| | - Takahiro G Yamada
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial‐Resistant PathogensInstitute for Bioinformatics and Medical Informatics (IBMI)University of TübingenTübingenGermany
- Department of Computer ScienceUniversity of TübingenTübingenGermany
- German Center for Infection Research (DZIF), partner siteTübingenGermany
| | - Alina Renz
- Computational Systems Biology of Infections and Antimicrobial‐Resistant PathogensInstitute for Bioinformatics and Medical Informatics (IBMI)University of TübingenTübingenGermany
- Department of Computer ScienceUniversity of TübingenTübingenGermany
| | - Muhammad Naveez
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
- Institute of Applied Computer SystemsRiga Technical UniversityRigaLatvia
| | - Zsolt Bocskei
- Sanofi R&DTranslational SciencesChilly‐MazarinFrance
| | - Francesco Messina
- Dipartimento di Epidemiologia Ricerca Pre‐Clinica e Diagnostica AvanzataNational Institute for Infectious Diseases 'Lazzaro Spallanzani' I.R.C.C.S.RomeItaly
- COVID‐19 INMI Network Medicine for IDs Study GroupNational Institute for Infectious Diseases 'Lazzaro Spallanzani' I.R.C.C.SRomeItaly
| | - Daniela Börnigen
- Bioinformatics Core FacilityUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Liam Fergusson
- Royal (Dick) School of Veterinary MedicineThe University of EdinburghEdinburghUK
| | - Marta Conti
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Marius Rameil
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Vanessa Nakonecnij
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Jakob Vanhoefer
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Leonard Schmiester
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
- Center for MathematicsChair of Mathematical Modeling of Biological SystemsTechnische Universität MünchenGarchingGermany
| | - Muying Wang
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
| | - Emily E Ackerman
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
| | - Jason E Shoemaker
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | | | | | | | | | | | - Kristina Hanspers
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | - Martina Kutmon
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtThe Netherlands
| | - Susan Coort
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Lars Eijssen
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht University Medical CentreMaastrichtThe Netherlands
| | | | - Denise Slenter
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Marvin Martens
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Nhung Pham
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Robin Haw
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | - Bijay Jassal
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | | | | | - Andrea Senff Ribeiro
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- Universidade Federal do ParanáCuritibaBrasil
| | - Karen Rothfels
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | | | - Ralf Stephan
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | - Cristoffer Sevilla
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Thawfeek Varusai
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Jean‐Marie Ravel
- INSERM UMR_S 1256Nutrition, Genetics, and Environmental Risk Exposure (NGERE)Faculty of Medicine of NancyUniversity of LorraineNancyFrance
- Laboratoire de génétique médicaleCHRU NancyNancyFrance
| | - Rupsha Fraser
- Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Vera Ortseifen
- Senior Research Group in Genome Research of Industrial MicroorganismsCenter for BiotechnologyBielefeld UniversityBielefeldGermany
| | - Silvia Marchesi
- Department of Surgical ScienceUppsala UniversityUppsalaSweden
| | - Piotr Gawron
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Ewa Smula
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Laurent Heirendt
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Venkata Satagopam
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Guanming Wu
- Department of Medical Informatics and Clinical EpidemiologyOregon Health & Science UniversityPortlandORUSA
| | - Anders Riutta
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | | | - Stuart Owen
- Department of Computer ScienceThe University of ManchesterManchesterUK
| | - Carole Goble
- Department of Computer ScienceThe University of ManchesterManchesterUK
| | - Xiaoming Hu
- Heidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Technische Universität DresdenDresdenGermany
- Institute for BiologyHumboldt University of BerlinBerlinGermany
| | | | | | - Benjamin M Gyori
- Harvard Medical SchoolLaboratory of Systems PharmacologyBostonMAUSA
| | - John A Bachman
- Harvard Medical SchoolLaboratory of Systems PharmacologyBostonMAUSA
| | - Carlos Vega
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Valentin Grouès
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | | | - Pablo Porras
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Luana Licata
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | | | - Francesca Sacco
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | | | | | | | - Denes Turei
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Augustin Luna
- cBio Center, Divisions of Biostatistics and Computational BiologyDepartment of Data SciencesDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Ozgun Babur
- Computer Science DepartmentUniversity of Massachusetts BostonBostonMAUSA
| | | | - Alberto Valdeolivas
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Marina Esteban‐Medina
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
| | - Maria Peña‐Chilet
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
- Bioinformatics in Rare Diseases (BiER)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)FPS, Hospital Virgen del RocíoSevillaSpain
| | - Kinza Rian
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
| | - Tomáš Helikar
- Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | | | - Dezso Modos
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Agatha Treveil
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Marton Olbei
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | | | - Stephane Ballereau
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Aurélien Dugourd
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Institute of Experimental Medicine and Systems BiologyFaculty of Medicine, RWTHAachen UniversityAachenGermany
| | | | - Vincent Noël
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Laurence Calzone
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Chris Sander
- cBio Center, Divisions of Biostatistics and Computational BiologyDepartment of Data SciencesDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Emek Demir
- Department of Molecular and Medical GeneticsOregon Health & Sciences UniversityPortlandORUSA
| | | | - Tom C Freeman
- The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Franck Augé
- Sanofi R&DTranslational SciencesChilly‐MazarinFrance
| | | | - Jan Hasenauer
- Helmholtz Zentrum München – German Research Center for Environmental HealthInstitute of Computational BiologyNeuherbergGermany
- Interdisciplinary Research Unit Mathematics and Life SciencesUniversity of BonnBonnGermany
| | - Olaf Wolkenhauer
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | - Egon L Wilighagen
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Alexander R Pico
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | - Chris T Evelo
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtThe Netherlands
| | - Marc E Gillespie
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- St. John’s University College of Pharmacy and Health SciencesQueensNYUSA
| | - Lincoln D Stein
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Henning Hermjakob
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | | | | | - Joaquin Dopazo
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
- Bioinformatics in Rare Diseases (BiER)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)FPS, Hospital Virgen del RocíoSevillaSpain
- FPS/ELIXIR‐esHospital Virgen del RocíoSevillaSpain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Hiroaki Kitano
- Systems Biology InstituteTokyoJapan
- Okinawa Institute of Science and Technology Graduate SchoolOkinawaJapan
| | - Emmanuel Barillot
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Charles Auffray
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Rudi Balling
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | | |
Collapse
|
17
|
Rodrigues D, de Souza T, Coyle L, Di Piazza M, Herpers B, Ferreira S, Zhang M, Vappiani J, Sévin DC, Gabor A, Lynch A, Chung SW, Saez-Rodriguez J, Jennen DGJ, Kleinjans JCS, de Kok TM. New insights into the mechanisms underlying 5-fluorouracil-induced intestinal toxicity based on transcriptomic and metabolomic responses in human intestinal organoids. Arch Toxicol 2021; 95:2691-2718. [PMID: 34151400 PMCID: PMC8298376 DOI: 10.1007/s00204-021-03092-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
5-Fluorouracil (5-FU) is a widely used chemotherapeutical that induces acute toxicity in the small and large intestine of patients. Symptoms can be severe and lead to the interruption of cancer treatments. However, there is limited understanding of the molecular mechanisms underlying 5-FU-induced intestinal toxicity. In this study, well-established 3D organoid models of human colon and small intestine (SI) were used to characterize 5-FU transcriptomic and metabolomic responses. Clinically relevant 5-FU concentrations for in vitro testing in organoids were established using physiologically based pharmacokinetic simulation of dosing regimens recommended for cancer patients, resulting in exposures to 10, 100 and 1000 µM. After treatment, different measurements were performed: cell viability and apoptosis; image analysis of cell morphological changes; RNA sequencing; and metabolome analysis of supernatant from organoids cultures. Based on analysis of the differentially expressed genes, the most prominent molecular pathways affected by 5-FU included cell cycle, p53 signalling, mitochondrial ATP synthesis and apoptosis. Short time-series expression miner demonstrated tissue-specific mechanisms affected by 5-FU, namely biosynthesis and transport of small molecules, and mRNA translation for colon; cell signalling mediated by Rho GTPases and fork-head box transcription factors for SI. Metabolomic analysis showed that in addition to the effects on TCA cycle and oxidative stress in both organoids, tissue-specific metabolic alterations were also induced by 5-FU. Multi-omics integration identified transcription factor E2F1, a regulator of cell cycle and apoptosis, as the best key node across all samples. These results provide new insights into 5-FU toxicity mechanisms and underline the relevance of human organoid models in the safety assessment in drug development.
Collapse
Affiliation(s)
- Daniela Rodrigues
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Terezinha de Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Luke Coyle
- Departmnet of Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Matteo Di Piazza
- Departmnet of Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
- F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Bram Herpers
- OcellO B.V., BioPartner Center, Leiden, the Netherlands
| | - Sofia Ferreira
- Certara UK Limited, Simcyp Division, Sheffield, S1 2BJ, UK
| | - Mian Zhang
- Certara UK Limited, Simcyp Division, Sheffield, S1 2BJ, UK
| | | | - Daniel C Sévin
- GSK Functional Genomics/Cellzome, 69117, Heidelberg, Germany
| | - Attila Gabor
- Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | | | - Seung-Wook Chung
- Departmnet of Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Julio Saez-Rodriguez
- GSK Non-Clinical Safety, Ware, SG12 0DP, UK
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg University, Heidelberg, Germany
| | - Danyel G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Theo M de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Jang G, Park S, Lee S, Kim S, Park S, Kang J. Predicting mechanism of action of novel compounds using compound structure and transcriptomic signature coembedding. Bioinformatics 2021; 37:i376-i382. [PMID: 34252937 PMCID: PMC8275331 DOI: 10.1093/bioinformatics/btab275] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
MOTIVATION Identifying mechanism of actions (MoA) of novel compounds is crucial in drug discovery. Careful understanding of MoA can avoid potential side effects of drug candidates. Efforts have been made to identify MoA using the transcriptomic signatures induced by compounds. However, these approaches fail to reveal MoAs in the absence of actual compound signatures. RESULTS We present MoAble, which predicts MoAs without requiring compound signatures. We train a deep learning-based coembedding model to map compound signatures and compound structure into the same embedding space. The model generates low-dimensional compound signature representation from the compound structures. To predict MoAs, pathway enrichment analysis is performed based on the connectivity between embedding vectors of compounds and those of genetic perturbation. Results show that MoAble is comparable to the methods that use actual compound signatures. We demonstrate that MoAble can be used to reveal MoAs of novel compounds without measuring compound signatures with the same prediction accuracy as that with measuring them. AVAILABILITY AND IMPLEMENTATION MoAble is available at https://github.com/dmis-lab/moable. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gwanghoon Jang
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sungjoon Park
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sanghoon Lee
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sunkyu Kim
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sejeong Park
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea.,Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Alam MA, Qiu C, Shen H, Wang YP, Deng HW. A generalized kernel machine approach to identify higher-order composite effects in multi-view datasets, with application to adolescent brain development and osteoporosis. J Biomed Inform 2021; 120:103854. [PMID: 34237438 DOI: 10.1016/j.jbi.2021.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/28/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
In recent years, a comprehensive study of complex disease with multi-view datasets (e.g., multi-omics and imaging scans) has been a focus and forefront in biomedical research. State-of-the-art biomedical technologies are enabling us to collect multi-view biomedical datasets for the study of complex diseases. While all the views of data tend to explore complementary information of disease, analysis of multi-view data with complex interactions is challenging for a deeper and holistic understanding of biological systems. In this paper, we propose a novel generalized kernel machine approach to identify higher-order composite effects in multi-view biomedical datasets (GKMAHCE). This generalized semi-parametric (a mixed-effect linear model) approach includes the marginal and joint Hadamard product of features from different views of data. The proposed kernel machine approach considers multi-view data as predictor variables to allow a more thorough and comprehensive modeling of a complex trait. We applied GKMAHCE approach to both synthesized datasets and real multi-view datasets from adolescent brain development and osteoporosis study. Our experiments demonstrate that the proposed method can effectively identify higher-order composite effects and suggest that corresponding features (genes, region of interests, and chemical taxonomies) function in a concerted effort. We show that the proposed method is more generalizable than existing ones. To promote reproducible research, the source code of the proposed method is available at.
Collapse
Affiliation(s)
- Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, USA; Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA 70112, USA.
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, USA; Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, USA; Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yu-Ping Wang
- Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, USA; Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, USA; Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Trairatphisan P, de Souza TM, Kleinjans J, Jennen D, Saez-Rodriguez J. Contextualization of causal regulatory networks from toxicogenomics data applied to drug-induced liver injury. Toxicol Lett 2021; 350:40-51. [PMID: 34229068 DOI: 10.1016/j.toxlet.2021.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
In recent years, network-based methods have become an attractive analytical approach for toxicogenomics studies. They can capture not only the global changes of regulatory gene networks but also the relationships between their components. Among them, a causal reasoning approach depicts the mechanisms of regulation that connect upstream regulators in signaling networks to their downstream gene targets. In this work, we applied CARNIVAL, a causal network contextualisation tool, to infer upstream signaling networks deregulated in drug-induced liver injury (DILI) from gene expression microarray data from the TG-GATEs database. We focussed on six compounds that induce observable histopathologies linked to DILI from repeated dosing experiments in rats. We compared responses in vitro and in vivo to identify potential cross-platform concordances in rats as well as network preservations between rat and human. Our results showed similarities of enriched pathways and network motifs between compounds. These pathways and motifs induced the same pathology in rats but not in humans. In particular, the causal interactions "LCK activates SOCS3, which in turn inhibits TFDP1" was commonly identified as a regulatory path among the fibrosis-inducing compounds. This potential pathology-inducing regulation illustrates the value of our approach to generate hypotheses that can be further validated experimentally.
Collapse
Affiliation(s)
- Panuwat Trairatphisan
- Heidelberg University, Faculty of Medicine, Institute of Computational Biomedicine, 69120, Heidelberg, Germany.
| | - Terezinha Maria de Souza
- Department of Toxicogenomics (TGX), GROW School for Oncology and Developmental Biology, Maastricht University, 6200 MD, Maastricht, the Netherlands.
| | - Jos Kleinjans
- Department of Toxicogenomics (TGX), GROW School for Oncology and Developmental Biology, Maastricht University, 6200 MD, Maastricht, the Netherlands.
| | - Danyel Jennen
- Department of Toxicogenomics (TGX), GROW School for Oncology and Developmental Biology, Maastricht University, 6200 MD, Maastricht, the Netherlands.
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, Institute of Computational Biomedicine, 69120, Heidelberg, Germany; RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), 52074, Aachen, Germany.
| |
Collapse
|
21
|
Ren Y, Sivaganesan S, Clark NA, Zhang L, Biesiada J, Niu W, Plas DR, Medvedovic M. Predicting mechanism of action of cellular perturbations with pathway activity signatures. Bioinformatics 2021; 36:4781-4788. [PMID: 32653926 DOI: 10.1093/bioinformatics/btaa590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
MOTIVATION Misregulation of signaling pathway activity is etiologic for many human diseases, and modulating activity of signaling pathways is often the preferred therapeutic strategy. Understanding the mechanism of action (MOA) of bioactive chemicals in terms of targeted signaling pathways is the essential first step in evaluating their therapeutic potential. Changes in signaling pathway activity are often not reflected in changes in expression of pathway genes which makes MOA inferences from transcriptional signatures (TSeses) a difficult problem. RESULTS We developed a new computational method for implicating pathway targets of bioactive chemicals and other cellular perturbations by integrated analysis of pathway network topology, the Library of Integrated Network-based Cellular Signature TSes of genetic perturbations of pathway genes and the TS of the perturbation. Our methodology accurately predicts signaling pathways targeted by the perturbation when current pathway analysis approaches utilizing only the TS of the perturbation fail. AVAILABILITY AND IMPLEMENTATION Open source R package paslincs is available at https://github.com/uc-bd2k/paslincs. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yan Ren
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA
| | - Siva Sivaganesan
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA
| | - Nicholas A Clark
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA
| | - Lixia Zhang
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA
| | - Wen Niu
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Mario Medvedovic
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA
| |
Collapse
|
22
|
Paran Y, Liron Y, Batsir S, Mabjeesh N, Geiger B, Kam Z. Multi-parametric characterization of drug effects on cells. F1000Res 2021; 9. [PMID: 33363713 PMCID: PMC7737707 DOI: 10.12688/f1000research.26254.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
We present here a novel multi-parametric approach for the characterization of multiple cellular features, using images acquired by high-throughput and high-definition light microscopy. We specifically used this approach for deep and unbiased analysis of the effects of a drug library on five cultured cell lines. The presented method enables the acquisition and analysis of millions of images, of treated and control cells, followed by an automated identification of drugs inducing strong responses, evaluating the median effect concentrations and those cellular properties that are most highly affected by the drug. The tools described here provide standardized quantification of multiple attributes for systems level dissection of complex functions in normal and diseased cells, using multiple perturbations. Such analysis of cells, derived from pathological samples, may help in the diagnosis and follow-up of treatment in patients.
Collapse
Affiliation(s)
- Yael Paran
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel.,IDEA Biomedical Ltd., Rehovot, 76705, Israel
| | - Yuvalal Liron
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Sarit Batsir
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nicola Mabjeesh
- Department of Urology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Zvi Kam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
23
|
Dugourd A, Kuppe C, Sciacovelli M, Gjerga E, Gabor A, Emdal KB, Vieira V, Bekker‐Jensen DB, Kranz J, Bindels E, Costa AS, Sousa A, Beltrao P, Rocha M, Olsen JV, Frezza C, Kramann R, Saez‐Rodriguez J. Causal integration of multi-omics data with prior knowledge to generate mechanistic hypotheses. Mol Syst Biol 2021; 17:e9730. [PMID: 33502086 PMCID: PMC7838823 DOI: 10.15252/msb.20209730] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/07/2023] Open
Abstract
Multi-omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates phosphoproteomics, transcriptomics, and metabolomics datasets. COSMOS combines extensive prior knowledge of signaling, metabolic, and gene regulatory networks with computational methods to estimate activities of transcription factors and kinases as well as network-level causal reasoning. COSMOS provides mechanistic hypotheses for experimental observations across multi-omics datasets. We applied COSMOS to a dataset comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and cancerous tissue from eleven clear cell renal cell carcinoma (ccRCC) patients. COSMOS was able to capture relevant crosstalks within and between multiple omics layers, such as known ccRCC drug targets. We expect that our freely available method will be broadly useful to extract mechanistic insights from multi-omics studies.
Collapse
Affiliation(s)
- Aurelien Dugourd
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
| | - Christoph Kuppe
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
- Department of Internal Medicine, Nephrology and TransplantationErasmus Medical CenterRotterdamThe Netherlands
| | - Marco Sciacovelli
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Enio Gjerga
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
| | - Attila Gabor
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Kristina B. Emdal
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Vitor Vieira
- Centre of Biological EngineeringUniversity of Minho ‐ Campus de GualtarBragaPortugal
| | - Dorte B. Bekker‐Jensen
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Jennifer Kranz
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Department of Urology and Pediatric UrologySt. Antonius Hospital EschweilerAcademic Teaching Hospital of RWTH AachenEschweilerGermany
- Department of Urology and Kidney TransplantationMartin Luther UniversityHalle (Saale)Germany
| | | | - Ana S.H. Costa
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
- Present address:
Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Abel Sousa
- Institute for Research and Innovation in Health (i3s)PortoPortugal
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Pedro Beltrao
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Miguel Rocha
- Centre of Biological EngineeringUniversity of Minho ‐ Campus de GualtarBragaPortugal
| | - Jesper V. Olsen
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Christian Frezza
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Rafael Kramann
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
- Department of Internal Medicine, Nephrology and TransplantationErasmus Medical CenterRotterdamThe Netherlands
| | - Julio Saez‐Rodriguez
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
- Molecular Medicine Partnership Unit, European Molecular Biology LaboratoryHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
24
|
Szalai B, Saez-Rodriguez J. Why do pathway methods work better than they should? FEBS Lett 2020; 594:4189-4200. [PMID: 33270910 DOI: 10.1002/1873-3468.14011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022]
Abstract
Pathway analysis methods are frequently applied to cancer gene expression data to identify dysregulated pathways. These methods often infer pathway activity based on the expression of genes belonging to a given pathway, even though the proteins ultimately determine the activity of a given pathway. Furthermore, the association between gene expression levels and protein activities is not well-characterized. Here, we posit that pathway-based methods are effective not because of the correlation between expression and activity of members of a given pathway, but because pathway gene sets overlap with the genes regulated by transcription factors (TFs). Thus, pathway-based methods do not inform about the activity of the pathway of interest but rather reflect changes in TF activities.
Collapse
Affiliation(s)
- Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Julio Saez-Rodriguez
- Institute of Computational Biomedicine, Faculty of Medicine, Heidelberg University, Germany.,Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, Germany
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize the state of big data analyses in the study of heart failure (HF). We discuss the use of big data in the HF space, focusing on "omics" and clinical data. We address some limitations of this data, as well as their future potential. RECENT FINDINGS Omics are providing insight into plasmal and myocardial molecular profiles in HF patients. The introduction of single cell and spatial technologies is a major advance that will reshape our understanding of cell heterogeneity and function as well as tissue architecture. Clinical data analysis focuses on HF phenotyping and prognostic modeling. Big data approaches are increasingly common in HF research. The use of methods designed for big data, such as machine learning, may help elucidate the biology underlying HF. However, important challenges remain in the translation of this knowledge into improvements in clinical care.
Collapse
Affiliation(s)
- Jan D Lanzer
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Internal Medicine II, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Leuschner
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rebecca T Levinson
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
- Internal Medicine II, Heidelberg University Hospital, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany.
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
26
|
Holland CH, Tanevski J, Perales-Patón J, Gleixner J, Kumar MP, Mereu E, Joughin BA, Stegle O, Lauffenburger DA, Heyn H, Szalai B, Saez-Rodriguez J. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol 2020; 21:36. [PMID: 32051003 PMCID: PMC7017576 DOI: 10.1186/s13059-020-1949-z] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Many functional analysis tools have been developed to extract functional and mechanistic insight from bulk transcriptome data. With the advent of single-cell RNA sequencing (scRNA-seq), it is in principle possible to do such an analysis for single cells. However, scRNA-seq data has characteristics such as drop-out events and low library sizes. It is thus not clear if functional TF and pathway analysis tools established for bulk sequencing can be applied to scRNA-seq in a meaningful way. RESULTS To address this question, we perform benchmark studies on simulated and real scRNA-seq data. We include the bulk-RNA tools PROGENy, GO enrichment, and DoRothEA that estimate pathway and transcription factor (TF) activities, respectively, and compare them against the tools SCENIC/AUCell and metaVIPER, designed for scRNA-seq. For the in silico study, we simulate single cells from TF/pathway perturbation bulk RNA-seq experiments. We complement the simulated data with real scRNA-seq data upon CRISPR-mediated knock-out. Our benchmarks on simulated and real data reveal comparable performance to the original bulk data. Additionally, we show that the TF and pathway activities preserve cell type-specific variability by analyzing a mixture sample sequenced with 13 scRNA-seq protocols. We also provide the benchmark data for further use by the community. CONCLUSIONS Our analyses suggest that bulk-based functional analysis tools that use manually curated footprint gene sets can be applied to scRNA-seq data, partially outperforming dedicated single-cell tools. Furthermore, we find that the performance of functional analysis tools is more sensitive to the gene sets than to the statistic used.
Collapse
Affiliation(s)
- Christian H Holland
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Jovan Tanevski
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Javier Perales-Patón
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Gleixner
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Manu P Kumar
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Elisabetta Mereu
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Brian A Joughin
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Biology, MIT, Cambridge, MA, USA
| | - Oliver Stegle
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bence Szalai
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany.
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, Aachen, Germany.
| |
Collapse
|