1
|
Abadie K, Clark EC, Valanparambil RM, Ukogu O, Yang W, Daza RM, Ng KKH, Fathima J, Wang AL, Lee J, Nasti TH, Bhandoola A, Nourmohammad A, Ahmed R, Shendure J, Cao J, Kueh HY. Reversible, tunable epigenetic silencing of TCF1 generates flexibility in the T cell memory decision. Immunity 2024; 57:271-286.e13. [PMID: 38301652 PMCID: PMC10922671 DOI: 10.1016/j.immuni.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/09/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
The immune system encodes information about the severity of a pathogenic threat in the quantity and type of memory cells it forms. This encoding emerges from lymphocyte decisions to maintain or lose self-renewal and memory potential during a challenge. By tracking CD8+ T cells at the single-cell and clonal lineage level using time-resolved transcriptomics, quantitative live imaging, and an acute infection model, we find that T cells will maintain or lose memory potential early after antigen recognition. However, following pathogen clearance, T cells may regain memory potential if initially lost. Mechanistically, this flexibility is implemented by a stochastic cis-epigenetic switch that tunably and reversibly silences the memory regulator, TCF1, in response to stimulation. Mathematical modeling shows how this flexibility allows memory T cell numbers to scale robustly with pathogen virulence and immune response magnitudes. We propose that flexibility and stochasticity in cellular decisions ensure optimal immune responses against diverse threats.
Collapse
Affiliation(s)
- Kathleen Abadie
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Elisa C Clark
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Rajesh M Valanparambil
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Obinna Ukogu
- Department of Applied Mathematics, University of Washington, Seattle, WA 98105, USA
| | - Wei Yang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kenneth K H Ng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jumana Fathima
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Allan L Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Judong Lee
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tahseen H Nasti
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Armita Nourmohammad
- Department of Applied Mathematics, University of Washington, Seattle, WA 98105, USA; Department of Physics, University of Washington, Seattle, WA 98105, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY 10065, USA.
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Hume DA, Millard SM, Pettit AR. Macrophage heterogeneity in the single-cell era: facts and artifacts. Blood 2023; 142:1339-1347. [PMID: 37595274 DOI: 10.1182/blood.2023020597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
In this spotlight, we review technical issues that compromise single-cell analysis of tissue macrophages, including limited and unrepresentative yields, fragmentation and generation of remnants, and activation during tissue disaggregation. These issues may lead to a misleading definition of subpopulations of macrophages and the expression of macrophage-specific transcripts by unrelated cells. Recognition of the technical limitations of single-cell approaches is required in order to map the full spectrum of tissue-resident macrophage heterogeneity and assess its biological significance.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Susan M Millard
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Allison R Pettit
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
3
|
Klymkowsky MW. Rethinking (again) Hardy-Weinberg and genetic drift in undergraduate biology. Front Genet 2023; 14:1199739. [PMID: 37359366 PMCID: PMC10285527 DOI: 10.3389/fgene.2023.1199739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Designing effective curricula is challenging. Content decisions can impact both learning outcomes and student engagement. As an example consider the place of Hardy-Weinberg equilibria (HWE) and genetic drift calculations in introductory biology courses, as discussed by Masel (2012). Given that population genetics, "a fairly arcane speciality", can be difficult to grasp, there is little justification for introducing introductory students to HWE calculations. It is more useful to introduce them to the behavior of alleles in terms of basic features of biological systems, and that in the absence of selection recessive alleles are no "weaker" or preferentially lost from a population than are dominant alleles. On the other hand, stochastic behaviors, such as genetic drift, are ubiquitous in biological systems and often play functionally significant roles; they can be introduced to introductory students in mechanistic and probabilistic terms. Specifically, genetic drift emerges from the stochastic processes involved in meiotic chromosome segregation and recombination. A focus on stochastic processes may help counteract naive bio-deterministic thinking and can reinforce, for students, the value of thinking quantitatively about biological processes.
Collapse
Affiliation(s)
- Michael W. Klymkowsky
- Molecular, Cellular, and Developmental Biology University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
4
|
Van Eyndhoven LC, Verberne VPG, Bouten CVC, Singh A, Tel J. Transiently heritable fates and quorum sensing drive early IFN-I response dynamics. eLife 2023; 12:83055. [PMID: 36629318 PMCID: PMC9910831 DOI: 10.7554/elife.83055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Type I interferon (IFN-I)-mediated antiviral responses are central to host defense against viral infections. Crucial is the tight and well-orchestrated control of cellular decision-making leading to the production of IFN-Is. Innovative single-cell approaches revealed that the initiation of IFN-I production is limited to only fractions of 1-3% of the total population, both found in vitro, in vivo, and across cell types, which were thought to be stochastically regulated. To challenge this dogma, we addressed the influence of various stochastic and deterministic host-intrinsic factors on dictating early IFN-I responses, using a murine fibroblast reporter model. Epigenetic drugs influenced the percentage of responding cells. Next, with the classical Luria-Delbrück fluctuation test, we provided evidence for transient heritability driving responder fates, which was verified with mathematical modeling. Finally, while studying varying cell densities, we substantiated an important role for cell density in dictating responsiveness, similar to the phenomenon of quorum sensing. Together, this systems immunology approach opens up new avenues to progress the fundamental understanding on cellular decision-making during early IFN-I responses, which can be translated to other (immune) signaling systems.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| | - Vincent PG Verberne
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| | - Carlijn VC Bouten
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
- Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of DelawareNewarkUnited States
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| |
Collapse
|
5
|
Van Eyndhoven LC, Tel J. Revising immune cell coordination: Origins and importance of single-cell variation. Eur J Immunol 2022; 52:1889-1897. [PMID: 36250412 PMCID: PMC10092580 DOI: 10.1002/eji.202250073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
Moving from the optimalization of single-cell technologies to the interpretation of the multi-complex single-cell data, the field of immunoengineering is granted with numerous important insights into the coordination of immune cell activation and how to modulate it for therapeutic purposes. However, insights come with additional follow-up questions that challenge our perception on how immune responses are generated and fine-tuned to fight a wide array of pathogens in ever-changing and often unpredictable microenvironments. Are immune responses really either being tightly regulated by molecular determinants, or highly flexible attributed to stochasticity? What exactly makes up the basic rules by which single cells cooperate to establish tissue-level immunity? Taking the type I IFN system and its newest insights as a main example throughout this review, we revise the basic concepts of (single) immune cell coordination, redefine the concepts of noise, stochasticity and determinism, and highlight the importance of single-cell variation in immunology and beyond.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Richard AC. Divide and Conquer: Phenotypic and Temporal Heterogeneity Within CD8 + T Cell Responses. Front Immunol 2022; 13:949423. [PMID: 35911755 PMCID: PMC9334874 DOI: 10.3389/fimmu.2022.949423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of technologies that can characterize the phenotypes, functions and fates of individual cells has revealed extensive and often unexpected levels of diversity between cells that are nominally of the same subset. CD8+ T cells, also known as cytotoxic T lymphocytes (CTLs), are no exception. Investigations of individual CD8+ T cells both in vitro and in vivo have highlighted the heterogeneity of cellular responses at the levels of activation, differentiation and function. This review takes a broad perspective on the topic of heterogeneity, outlining different forms of variation that arise during a CD8+ T cell response. Specific attention is paid to the impact of T cell receptor (TCR) stimulation strength on heterogeneity. In particular, this review endeavors to highlight connections between variation at different cellular stages, presenting known mechanisms and key open questions about how variation between cells can arise and propagate.
Collapse
|
7
|
Chu JM, Pease NA, Kueh HY. In search of lost time: Enhancers as modulators of timing in lymphocyte development and differentiation. Immunol Rev 2021; 300:134-151. [PMID: 33734444 PMCID: PMC8005465 DOI: 10.1111/imr.12946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Proper timing of gene expression is central to lymphocyte development and differentiation. Lymphocytes often delay gene activation for hours to days after the onset of signaling components, which act on the order of seconds to minutes. Such delays play a prominent role during the intricate choreography of developmental events and during the execution of an effector response. Though a number of mechanisms are sufficient to explain timing at short timescales, it is not known how timing delays are implemented over long timescales that may span several cell generations. Based on the literature, we propose that a class of cis-regulatory elements, termed "timing enhancers," may explain how timing delays are controlled over these long timescales. By considering chromatin as a kinetic barrier to state switching, the timing enhancer model explains experimentally observed dynamics of gene expression where other models fall short. In this review, we elaborate on features of the timing enhancer model and discuss the evidence for its generality throughout development and differentiation. We then discuss potential molecular mechanisms underlying timing enhancer function. Finally, we explore recent evidence drawing connections between timing enhancers and genetic risk for immunopathology. We argue that the timing enhancer model is a useful framework for understanding how cis-regulatory elements control the central dimension of timing in lymphocyte biology.
Collapse
Affiliation(s)
- Jonathan M Chu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | - Nicholas A Pease
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| |
Collapse
|
8
|
Nicholson LB, Blyuss KB, Fatehi F. Quantifying the Role of Stochasticity in the Development of Autoimmune Disease. Cells 2020; 9:E860. [PMID: 32252308 PMCID: PMC7226790 DOI: 10.3390/cells9040860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
In this paper, we propose and analyse a mathematical model for the onset and development of autoimmune disease, with particular attention to stochastic effects in the dynamics. Stability analysis yields parameter regions associated with normal cell homeostasis, or sustained periodic oscillations. Variance of these oscillations and the effects of stochastic amplification are also explored. Theoretical results are complemented by experiments, in which experimental autoimmune uveoretinitis (EAU) was induced in B10.RIII and C57BL/6 mice. For both cases, we discuss peculiarities of disease development, the levels of variation in T cell populations in a population of genetically identical organisms, as well as a comparison with model outputs.
Collapse
Affiliation(s)
- Lindsay B. Nicholson
- School of Cellular and Molecular Medicine & School of Clinical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | - Farzad Fatehi
- Department of Mathematics, University of York, York YO10 5DD, UK;
| |
Collapse
|