1
|
Kumar S, Kohlbrecher J, Aswal VK. Competing Effects of Temperature and Polymer Concentration on Evolution of Re-entrant Interactions in the Nanoparticle-Block Copolymer System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14888-14899. [PMID: 38976366 DOI: 10.1021/acs.langmuir.4c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
An interesting evolution of the re-entrant interaction has been observed in an anionic silica nanoparticle (NP)-block copolymer (P85) dispersion due to mutually competing effects of temperature and polymer concentration. It has been demonstrated that a rise in the temperature leads to an evolution of attraction in the system, which interestingly diminishes on increasing the polymer concentration. Consequently, the system exhibits a re-entrant transition from repulsive to attractive and back to repulsive at a given temperature but with respect to the increasing polymer concentration, within a selected region of concentration and temperature. The intriguing observations have been elucidated based on the temperature/concentration-dependent modifications in the interactions governing the system, as probed by contrast-variation small-angle neutron scattering. The initial transition from the repulsive to attractive system is attributed to the temperature-driven enhancement in the hydrophobicity of the amphiphilic triblock copolymer (P85) adsorbed on nanoparticles. The strength and range of this attraction are found to be more than van der Waals attraction while relatively less than electrostatic interaction. At higher polymer concentrations, the saturation of polymer adsorption on nanoparticles introduces additional steric repulsion along with electrostatic interaction between their conjugates, effectively reducing the strength of the attraction. However, with a significant increase in temperature (>75 °C), the attraction again dominates the system, which eventually leads to the particle aggregation at all the measured polymer concentrations (>0.1 wt %). Our study provides useful inputs to develop smart NP-polymer composites having capabilities to respond to external stimuli such as temperature/concentration variation.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400 094, India
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut (PSI), Villigen CH-5232, Switzerland
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
2
|
Kämmerer PW, Heimes D, Zaage F, Ganz C, Frerich B, Gerber T, Dau M. Improving material properties of a poloxamer P407 hydrogel-based hydroxyapatite bone substitute material by adding silica-A comparative in vivo study. J Biomed Mater Res B Appl Biomater 2024; 112:e35405. [PMID: 38701384 DOI: 10.1002/jbm.b.35405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
The structure and handling properties of a P407 hydrogel-based bone substitute material (BSM) might be affected by different poloxamer P407 and silicon dioxide (SiO2) concentrations. The study aimed to compare the mechanical properties and biological parameters (bone remodeling, BSM degradation) of a hydroxyapatite: silica (HA)-based BSM with various P407 hydrogels in vitro and in an in vivo rat model. Rheological analyses for mechanical properties were performed on one BSM with an SiO2-enriched hydrogel (SPH25) as well on two BSMs with unaltered hydrogels in different gel concentrations (PH25 and PH30). Furthermore, the solubility of all BSMs were tested. In addition, 30 male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. Defects were filled randomly with PH30 (n = 15) or SPH25 (n = 15). Animals were sacrificed after 12 (n = 5 each), 21 (n = 5 each), and 63 days (n = 5 each). Histological evaluation and histomorphometrical quantification of new bone formation (NB;%), residual BSM (rBSM;%), and soft tissue (ST;%) was conducted. Rheological tests showed an increased viscosity and lower solubility of SPH when compared with the other hydrogels. Histomorphometric analyses in cancellous bone showed a decrease of ST in PH30 (p = .003) and an increase of NB (PH30: p = .001; SPH: p = .014) over time. A comparison of both BSMs revealed no significant differences. The addition of SiO2 to a P407 hydrogel-based hydroxyapatite BSM improves its mechanical stability (viscosity, solubility) while showing similar in vivo healing properties compared to PH30. Additionally, the SiO2-enrichment allows a reduction of poloxamer ratio in the hydrogel without impairing the material properties.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Mainz, Mainz, Germany
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Diana Heimes
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| | | | - Cornelia Ganz
- Institute of Physics, Rostock University, Rostock, Germany
| | - Bernhard Frerich
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Thomas Gerber
- Institute of Physics, Rostock University, Rostock, Germany
| | - Michael Dau
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
3
|
Kumar S, Ganguly R, Nath S, Aswal VK. Pluronic Induced Interparticle Attraction and Re-entrant Liquid-Liquid Phase Separation in Charged Silica Nanoparticle Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37269303 DOI: 10.1021/acs.langmuir.3c00491] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tuning surface properties of nanoparticles by introducing charge, surface functionalization, or polymer grafting is central to their stability and applications. Here, we show that introducing non-DLVO forces like steric and hydrophobic effects in charged silica nanoparticle suspensions through interaction with a nonionic surfactant brings about interesting modulations in their interparticle interaction and phase behavior. The Ludox TM-40 negatively charged silica suspensions thus exhibit liquid-liquid phase separation driven by the onset of interparticle attraction in the system in the presence of the triblock copolymer Pluronic P123. The observed phase separations are thermoresponsive in nature, as they are associated with lower consolute temperatures and a re-entrant behavior as a function of temperature. The nanoparticle-Pluronic system thus undergoes transformation from one-phase to two-phase and then back to one-phase with monotonic increase in temperature. Evolution of the interparticle interaction in the composite system is investigated by dynamic light scattering (DLS), small angle neutron scattering (SANS), zeta potential, rheological, and fluorescence spectroscopy studies. Zeta potential studies show that the charge interaction in the system is partially mitigated through adsorption of a Pluronic micellar layer on the nanoparticle surfaces. Contrast-matching SANS studies suggest that hydrophobic interactions between the adsorbed micellar layer bring about the onset of interparticle attraction in the system. The results are unique and not reported hitherto in charged silica nanoparticle systems.
Collapse
Affiliation(s)
- S Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - R Ganguly
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S Nath
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
4
|
More P, Sangitra SN, Bohidar HB, Pujala RK. Rheology and microstructure of thermoresponsive composite gels of hematite pseudocubes and Pluronic F127. J Chem Phys 2022; 157:214902. [PMID: 36511547 DOI: 10.1063/5.0109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Stimuli-responsive materials or smart materials are designed materials whose properties can be changed significantly by applying external stimuli, such as stress, electric or magnetic fields, light, temperature, and pH. We report the linear and nonlinear rheological properties of thermoresponsive composite gels based on submicron-sized hematite pseudocube-shaped particles and a triblock copolymer Pluronic F127 (PF127). These novel composites form hard gels at an elevated temperature of 37 °C. For certain concentrations (<20 w/v. %) of hematite pseudocubes in 17.5 w/v. % of PF127, the gel strength is enhanced and the brittleness of the gels decreases. Higher concentrations (>20 w/v. %) of hematite pseudocubes in PF127 result in weaker and fragile gels. We develop an extensive rheological fingerprint using linear and nonlinear rheological studies. Adsorption of PF127 copolymer molecules on the hematite cube surfaces would further assist the formation of particle clusters along with magnetic interactions to be held effectively in the PF127 micellar network at elevated temperatures. The microscopic structure of these composite gels is visualized through a confocal microscope. Our experiments show that addition of hematite cubes up to 20 w/v. % does not change the rapid thermal gelation of PF127 solutions; hence, the hematite-PF127 composite, which transforms into a hard gel near human body temperature of 37 °C, could be suitable for use in smart drug delivery systems.
Collapse
Affiliation(s)
- Prasanna More
- Soft and Active Matter Group, Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Surya Narayana Sangitra
- Soft and Active Matter Group, Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - H B Bohidar
- National Center for Excellence in Nanobiotechnology, TERI-Deakin Nanobiotechnology Center, Gurugram 121001, India
| | - Ravi Kumar Pujala
- Soft and Active Matter Group, Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
5
|
Wright L, Barnes TJ, Joyce P, Prestidge CA. Optimisation of a High-Throughput Model for Mucus Permeation and Nanoparticle Discrimination Using Biosimilar Mucus. Pharmaceutics 2022; 14:2659. [PMID: 36559151 PMCID: PMC9782027 DOI: 10.3390/pharmaceutics14122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
High-throughput permeation models are essential in drug development for timely screening of new drug and formulation candidates. Nevertheless, many current permeability assays fail to account for the presence of the gastrointestinal mucus layer. In this study, an optimised high-throughput mucus permeation model was developed employing a highly biorelevant mucus mimic. While mucus permeation is primarily conducted in a simple mucin solution, the complex chemistry, nanostructure and rheology of mucus is more accurately modelled by a synthetic biosimilar mucus (BSM) employing additional protein, lipid and rheology-modifying polymer components. Utilising BSM, equivalent permeation of various molecular weight fluorescein isothiocyanate-dextrans were observed, compared with native porcine jejunal mucus, confirming replication of the natural mucus permeation barrier. Furthermore, utilising synthetic BSM facilitated the analysis of free protein permeation which could not be quantified in native mucus due to concurrent proteolytic degradation. Additionally, BSM could differentiate between the permeation of poly (lactic-co-glycolic) acid nanoparticles (PLGA-NP) with varying surface chemistries (cationic, anionic and PEGylated), PEG coating density and size, which could not be achieved by a 5% mucin solution. This work confirms the importance of utilising highly biorelevant mucus mimics in permeation studies, and further development will provide an optimal method for high-throughput mucus permeation analysis.
Collapse
Affiliation(s)
| | | | | | - Clive A. Prestidge
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
6
|
Zhang L, Zhang G, Ge J, Jiang P, Ding L. pH- and thermo-responsive Pickering emulsion stabilized by silica nanoparticles and conventional nonionic copolymer surfactants. J Colloid Interface Sci 2022; 616:129-140. [DOI: 10.1016/j.jcis.2022.02.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
|
7
|
Kancharla S, Jahan R, Bedrov D, Tsianou M, Alexandridis P. Role of chain length and electrolyte on the micellization of anionic fluorinated surfactants in water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
|
9
|
Abstract
The concepts hybrid and hybridization are common in many scientific fields, as in the taxonomic parts of botany and zoology, in modern genetic, and in the quantum–mechanical theory of atomic–molecular orbitals, which are of foremost relevance in most aspects of modern chemistry. Years later, scientists applied the concept hybrid to colloids, if the particles’ domains are endowed with functionalities differing each from the other in nature and/or composition. For such denomination to be fully valid, the domains belonging to a given hybrid must be recognizable each from another in terms of some intrinsic features. Thus, the concept applies to particles where a given domain has its own physical state, functionality, or composition. Literature examples in this regard are many. Different domains that are present in hybrid colloids self-organize, self-sustain, and self-help, according to the constraints dictated by kinetic and/or thermodynamic stability rules. Covalent, or non-covalent, bonds ensure the formation of such entities, retaining the properties of a given family, in addition to those of the other, and, sometimes, new ones. The real meaning of this behavior is the same as in zoology; mules are pertinent examples, since they retain some features of their own parents (i.e., horses and donkeys) but also exhibit completely new ones, such as the loss of fertility. In colloid sciences, the concept hybrid refers to composites with cores of a given chemical type and surfaces covered by moieties differing in nature, or physical state. This is the result of a mimicry resembling the ones met in a lot of biological systems and foods, too. Many combinations may occur. Silica nanoparticles on which polymers/biopolymers are surface-bound (irrespective of whether binding is covalent or not) are pertinent examples. Here, efforts are made to render clear the concept, which is at the basis of many applications in the biomedical field, and not only. After a historical background and on some features of the species taking part to the formation of hybrids, we report on selected cases met in modern formulations of mixed, and sometimes multifunctional, colloid entities.
Collapse
|
10
|
Fluorinated Surfactant Adsorption on Mineral Surfaces: Implications for PFAS Fate and Transport in the Environment. SURFACES 2020. [DOI: 10.3390/surfaces3040037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorinated surfactants, which fall under the class of per- and polyfluoroalkyl substances (PFAS), are amphiphilic molecules that comprise hydrophobic fluorocarbon chains and hydrophilic head-groups. Fluorinated surfactants have been utilized in many applications, e.g., fire-fighting foams, paints, household/kitchenware items, product packaging, and fabrics. These compounds then made their way into the environment, and have been detected in soil, fresh water, and seawater. From there, they can enter human bodies. Fluorinated surfactants are persistent in water and soil environments, and their adsorption onto mineral surfaces contributes to this persistence. This review examines how fluorinated surfactants adsorb onto mineral surfaces, by analyzing the thermodynamics and kinetics of adsorption, and the underlying mechanisms. Adsorption of fluorinated surfactants onto mineral surfaces can be explained by electrostatic interactions, hydrophobic interactions, hydrogen bonding, and ligand and ion exchange. The aqueous pH, varying salt or humic acid concentrations, and the surfactant chemistry can influence the adsorption of fluorinated surfactants onto mineral surfaces. Further research is needed on fluorinated surfactant adsorbent materials to treat drinking water, and on strategies that can modulate the fate of these compounds in specific environmental locations.
Collapse
|
11
|
Kancharla S, Zoyhofski NA, Bufalini L, Chatelais BF, Alexandridis P. Association between Nonionic Amphiphilic Polymer and Ionic Surfactant in Aqueous Solutions: Effect of Polymer Hydrophobicity and Micellization. Polymers (Basel) 2020; 12:polym12081831. [PMID: 32824165 PMCID: PMC7464887 DOI: 10.3390/polym12081831] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/02/2023] Open
Abstract
The interaction in aqueous solutions of surfactants with amphiphilic polymers can be more complex than the surfactant interactions with homopolymers. Interactions between the common ionic surfactant sodium dodecyl sulfate (SDS) and nonionic amphiphilic polymers of the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) type have been probed utilizing a variety of experimental techniques. The polymer amphiphiles studied here are Pluronic F127 (EO100PO65EO100) and Pluronic P123 (EO19PO69EO19), having the same length PPO block but different length PEO blocks and, accordingly, very different critical micellization concentrations (CMC). With increasing surfactant concentration in aqueous solutions of fixed polymer content, SDS interacts with unassociated PEO-PPO-PEO molecules to first form SDS-rich SDS/Pluronic assemblies and then free SDS micelles. SDS interacts with micellized PEO-PPO-PEO to form Pluronic-rich SDS/Pluronic assemblies, which upon further increase in surfactant concentration, break down and transition into SDS-rich SDS/Pluronic assemblies, followed by free SDS micelle formation. The SDS-rich SDS/Pluronic assemblies exhibit polyelectrolyte characteristics. The interactions and mode of association between nonionic macromolecular amphiphiles and short-chain ionic amphiphiles are affected by the polymer hydrophobicity and its concentration in the aqueous solution. For example, SDS binds to Pluronic F127 micelles at much lower concentrations (~0.01 mM) when compared to Pluronic P123 micelles (~1 mM). The critical association concentration (CAC) values of SDS in aqueous PEO-PPO-PEO solutions are much lower than CAC in aqueous PEO homopolymer solutions.
Collapse
|
12
|
Petry R, Saboia VM, Franqui LS, Holanda CDA, Garcia TR, de Farias MA, de Souza Filho AG, Ferreira OP, Martinez DS, Paula AJ. On the formation of protein corona on colloidal nanoparticles stabilized by depletant polymers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110080. [DOI: 10.1016/j.msec.2019.110080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023]
|
13
|
Papadimitriou M, Avranas A. Surface tension studies of binary and ternary mixtures of tetradecyltrimethylammonium bromide, ditetradecyldimethylammonium bromide and synperonic PE/F68. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1578664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Maria Papadimitriou
- Laboratory of Physical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Avranas
- Laboratory of Physical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Li J, Rudraraju S, Zheng S, Jaiswal A. Adsorption of polypropylene oxide-polyethylene oxide type surfactants at surfaces of pharmaceutical relevant materials: effect of surface energetics and surfactant structures. Pharm Dev Technol 2019; 24:70-79. [PMID: 29304723 DOI: 10.1080/10837450.2018.1425431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein therapeutics are exposed to various surfaces during product development, where their adsorption possibly causes unfolding, denaturation, and aggregation. In this paper, we aim to characterize four types of typical surfaces used in the development of biologics: polycarbonate, polyethersulfone, borosilicate glass, and cellulose. Contact angles of these surfaces were measured using three probing liquids: water, formamide, and diidomethane, from which acid/base (AB) and Lifshitz-van der Waals (LW) interaction components were derived. To explore the interactions of surfactants of Pluronics/Poloxamers (PEO-PPO-PEO copolymers) with these surfaces, the adsorption of three Pluronics (F68, F127, and L44) at these surfaces was determined using a quartz crystal microbalance with dissipation technique (QCM-D). For hydrophobic surfaces without AB component (polycarbonate and polyethersulfone), these copolymers exhibited significant adsorption with a little dissipation at low concentrations. For hydrophilic surfaces with AB component (cellulose and borosilicate), the adsorption at low-surfactant concentration is low while dissipation is relatively high. Additionally, the chemical properties of Pluronics such as the ratio of PPO to PEO, along with the interaction of PPO with surfaces were observed to play a critical role in adsorption. Furthermore, the interfacial structure of the adsorbed layer was affected by both AB interaction and the presence of PEO block.
Collapse
Affiliation(s)
- Jinjiang Li
- a Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , NJ , USA
| | - Sneha Rudraraju
- b Department of Biomedical Engineering , University of Texas at Dallas , Richardson , TX , USA
| | - Songyan Zheng
- a Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , NJ , USA
| | | |
Collapse
|
15
|
Environmentally friendly platforms for encapsulation of an essential oil: Fabrication, characterization and application in pests control. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Kim M, Vala M, Ertsgaard CT, Oh SH, Lodge TP, Bates FS, Hackel BJ. Surface Plasmon Resonance Study of the Binding of PEO-PPO-PEO Triblock Copolymer and PEO Homopolymer to Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6703-6712. [PMID: 29787676 PMCID: PMC6055929 DOI: 10.1021/acs.langmuir.8b00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Poloxamer 188 (P188), a poly(ethylene oxide)- b-poly(propylene oxide)- b-poly(ethylene oxide) triblock copolymer, protects cell membranes against various external stresses, whereas poly(ethylene oxide) (PEO; 8600 g/mol) homopolymer lacks protection efficacy. As part of a comprehensive effort to elucidate the protection mechanism, we used surface plasmon resonance (SPR) to obtain direct evidence of binding of the polymers onto supported lipid bilayers. Binding kinetics and coverage of P188 and PEO were examined and compared. Most notably, PEO exhibited membrane association comparable to that of P188, evidenced by comparable association rate constants and coverage. This result highlights the need for additional mechanistic understanding beyond simple membrane association to explain the differential efficacy of P188 in therapeutic applications.
Collapse
|
17
|
Salunkhe AA, Overney RM, Berg JC. The use of boundary lubricants for the reduction of shear thickening and jamming in abrasive particle slurries. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Wegner S, Janiak C. Metal Nanoparticles in Ionic Liquids. Top Curr Chem (Cham) 2017; 375:65. [PMID: 28589266 DOI: 10.1007/s41061-017-0148-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
During the last years ionic liquids (ILs) were increasingly used and investigated as reaction media, hydrogen sources, catalysts, templating agents and stabilizers for the synthesis of (monometallic and bimetallic) metal nanoparticles (M-NPs). Especially ILs with 1,3-dialkyl-imidazolium cations featured prominently in the formation and stabilization of M-NPs. This chapter summarizes studies which focused on the interdependencies of the IL with the metal nanoparticle and tried to elucidate, for example, influences of the IL-cation, -anion and alkyl chain length. Qualitatively, the size of M-NPs was found to increase with the size of the IL-anion. The influence of the size of imidazolium-cation is less clear. The M-NP size was both found to increase and to decrease with increasing chain lengths of the 1,3-dialkyl-imidazolium cation. It is evident from such reports on cation and anion effects of ILs that the interaction between an IL and a (growing) metal nanoparticle is far from understood. Factors like IL-viscosity, hydrogen-bonding capability and the relative ratio of polar and non-polar domains of ILs may also influence the stability of nanoparticles in ionic liquids and an improved understanding of the IL-nanoparticle interaction would be needed for a more rational design of nanomaterials in ILs. Furthermore, thiol-, ether-, carboxylic acid-, amino- and hydroxyl-functionalized ILs add to the complexity by acting also as coordinating capping ligands. In addition imidazolium cations are precursors to N-heterocyclic carbenes, NHCs which form from imidazolium-based ionic liquids by in situ deprotonation at the acidic C2-H ring position as intermediate species during the nanoparticle seeding and growth process or as surface coordinating ligand for the stabilization of the metal nanoparticle.
Collapse
Affiliation(s)
- Susann Wegner
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
19
|
Petkova-Olsson Y, Altun S, Ullsten H, Järnström L. Temperature effect on the complex formation between Pluronic F127 and starch. Carbohydr Polym 2017; 166:264-270. [DOI: 10.1016/j.carbpol.2017.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 11/15/2022]
|
20
|
Bodratti AM, Sarkar B, Alexandridis P. Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid-liquid interfaces: Fundamentals and applications. Adv Colloid Interface Sci 2017; 244:132-163. [PMID: 28069108 DOI: 10.1016/j.cis.2016.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/30/2022]
Abstract
The adsorption of amphiphilic molecules of varying size on solid-liquid interfaces modulates the properties of colloidal systems. Nonionic, poly(ethylene oxide) (PEO)-based amphiphilic molecules are particularly useful because of their graded hydrophobic-hydrophilic nature, which allows for adsorption on a wide array of solid surfaces. Their adsorption also results in other useful properties, such as responsiveness to external stimuli and solubilization of hydrophobic compounds. This review focuses on the adsorption properties of PEO-based amphiphiles, beginning with a discussion of fundamental concepts pertaining to the adsorption of macromolecules on solid-liquid interfaces, and more specifically the adsorption of PEO homopolymers. The main portion of the review highlights studies on factors affecting the adsorption and surface self-assembly of PEO-PPO-PEO block copolymers, where PPO is poly(propylene oxide). Block copolymers of this type are commercially available and of interest in several fields, due to their low toxicity and compatibility in aqueous systems. Examples of applications relevant to the interfacial behavior of PEO-PPO-PEO block copolymers are paints and coatings, detergents, filtration, and drug delivery. The methods discussed herein for manipulating the adsorption properties of PEO-PPO-PEO are emphasized for their ability to shed light on molecular interactions at interfaces. Knowledge of these interactions guides the formulation of novel materials with useful mesoscale organization and micro- and macrophase properties.
Collapse
|
21
|
North SM, Jones ER, Smith GN, Mykhaylyk OO, Annable T, Armes SP. Adsorption of Small Cationic Nanoparticles onto Large Anionic Particles from Aqueous Solution: A Model System for Understanding Pigment Dispersion and the Problem of Effective Particle Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1275-1284. [PMID: 28075595 PMCID: PMC5299546 DOI: 10.1021/acs.langmuir.6b04541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/11/2017] [Indexed: 05/24/2023]
Abstract
The present study focuses on the use of copolymer nanoparticles as a dispersant for a model pigment (silica). Reversible addition-fragmentation chain transfer (RAFT) alcoholic dispersion polymerization was used to synthesize sterically stabilized diblock copolymer nanoparticles. The steric stabilizer block was poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and the core-forming block was poly(benzyl methacrylate) (PBzMA). The mean degrees of polymerization for the PDMA and PBzMA blocks were 71 and 100, respectively. Transmission electron microscopy (TEM) studies confirmed a near-monodisperse spherical morphology, while dynamic light scattering (DLS) studies indicated an intensity-average diameter of 30 nm. Small-angle X-ray scattering (SAXS) reported a volume-average diameter of 29 ± 0.5 nm and a mean aggregation number of 154. Aqueous electrophoresis measurements confirmed that these PDMA71-PBzMA100 nanoparticles acquired cationic character when transferred from ethanol to water as a result of protonation of the weakly basic PDMA chains. Electrostatic adsorption of these nanoparticles from aqueous solution onto 470 nm silica particles led to either flocculation at submonolayer coverage or steric stabilization at or above monolayer coverage, as judged by DLS. This technique indicated that saturation coverage was achieved on addition of approximately 465 copolymer nanoparticles per silica particle, which corresponds to a fractional surface coverage of around 0.42. These adsorption data were corroborated using thermogravimetry, UV spectroscopy and X-ray photoelectron spectroscopy. TEM studies indicated that the cationic nanoparticles remained intact on the silica surface after electrostatic adsorption, while aqueous electrophoresis confirmed that surface charge reversal occurred below pH 7. The relatively thick layer of adsorbed nanoparticles led to a significant reduction in the effective particle density of the silica particles from 1.99 g cm-3 to approximately 1.74 g cm-3, as judged by disk centrifuge photosedimentometry (DCP). Combining the DCP and SAXS data suggests that essentially no deformation of the PBzMA cores occurs during nanoparticle adsorption onto the silica particles.
Collapse
Affiliation(s)
- S. M. North
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - E. R. Jones
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - G. N. Smith
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - O. O. Mykhaylyk
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - T. Annable
- Lubrizol
Limited, Hexagon Tower, P.O. Box 42, Blackley, Manchester M9
8ZS, U.K.
| | - S. P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
22
|
Petkova-Olsson Y, Ullsten H, Järnström L. Thermosensitive silica-pluronic-starch model coating dispersion-part I: The effect of Pluronic block copolymer adsorption on the colloidal stability and rheology. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Quignard S, Frébourg G, Chen Y, Fattaccioli J. Nanometric emulsions encapsulating solid particles as alternative carriers for intracellular delivery. Nanomedicine (Lond) 2016; 11:2059-72. [PMID: 27465123 DOI: 10.2217/nnm-2016-0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Formulate nanometric oil droplets for encapsulating solid nanoparticles and assess their interactions with cells. MATERIALS & METHODS Soybean oil droplets, stabilized by Pluronic F68 surfactant, incorporating hydrophobically modified fluorescent silica, nanoparticles were obtained. Cytotoxicity over time, internalization, subsequent intracellular localization and internalization pathways were assessed by microscopy (fluoresence and TEM) in vitro with HeLa cells. RESULTS Oil droplets encapsulating solid nanoparticles are readily internalized by HeLa cells like free nanoparticles but the intracellular localization differs (nanoemulsions less colocalized with lysosomes) as well as internalization pathway is used (nanoemulsions partially internalized by nonendocytic transport). No cytotoxicity could be observed for either particles tested. CONCLUSION Our results confirm that nanometric emulsions encapsulating solid nanoparticles can be used for alternative and multifunctional intracellular delivery.
Collapse
Affiliation(s)
- Sandrine Quignard
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France.,Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005 Paris, France.,CNRS, UMR 8640 PASTEUR, F-75005 Paris, France
| | - Ghislaine Frébourg
- Institut de Biologie Paris-Seine FR3631, Service de Microscopie Electronique, Université Pierre et Marie Curie, 9 Quai Saint Bernard, 75005 Paris, France
| | - Yong Chen
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France.,Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005 Paris, France.,CNRS, UMR 8640 PASTEUR, F-75005 Paris, France
| | - Jacques Fattaccioli
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France.,Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005 Paris, France.,CNRS, UMR 8640 PASTEUR, F-75005 Paris, France
| |
Collapse
|
24
|
Liu Y, Qiao L, Xiang Y, Guo R. Adsorption Behavior of Low-Concentration Imidazolium-Based Ionic Liquid Surfactant on Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2582-2590. [PMID: 26923264 DOI: 10.1021/acs.langmuir.6b00302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The adsorption behavior of imidazolium-based ionic liquid surfactant ([C12mim]Br) on silica nanoparticles (NPs) has been studied with turbidity, isothermal titration microcalorimetry, fluorescence spectroscopy, and dynamic light scattering (DLS) measurements. Both the electrostatic attraction and the hydrogen bonding interaction between silica NP and [C12mim]Br play crucial roles during [C12mim]Br monomers binding to silica NPs at low surfactant concentration, and the hydrophobic effect leads to formation of micelle-like aggregates on silica NP surfaces with the further increase of surfactant concentration. Furthermore, it is found that sodium halide salts favor the adsorption of [C12mim]Br on silica NP surfaces by decreasing the electrostatic repulsions. Anions with more hydrophobicity and the ability to form hydrogen bonding have more pronounced effect. Compared with DTAB, [C12mim]Br has much stronger binding ability with silica NPs at pH 7.0. More interestingly, [C12mim]Br can still form micelle-like aggregates on silica NP surfaces, but DTAB cannot at pH 2.0. The hydrogen bonding between the imidazolium ring and silica NPs is the principal contributor to these observations. Our results will contribute to the elucidation of silica NP/cationic surfactant interaction from molecular scale and the widely applications of silica NP/surfactant systems in practice.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University , Yangzhou 225002, Jiangsu P. R. China
| | - Longjiao Qiao
- School of Chemistry and Chemical Engineering, Yangzhou University , Yangzhou 225002, Jiangsu P. R. China
| | - Yinping Xiang
- School of Chemistry and Chemical Engineering, Yangzhou University , Yangzhou 225002, Jiangsu P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University , Yangzhou 225002, Jiangsu P. R. China
| |
Collapse
|
25
|
Ostolska I, Wiśniewska M, Nosal-Wiercińska A, Szabelska A, Gołębiowska B. Adsorption layer structure in the system of the ionic block polyamino acid copolymers/SiO2 particles. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Song J, Salas C, Rojas OJ. Role of textile substrate hydrophobicity on the adsorption of hydrosoluble nonionic block copolymers. J Colloid Interface Sci 2015; 454:89-96. [PMID: 26004573 DOI: 10.1016/j.jcis.2015.04.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
The adsorption of polyalkylene glycols and co-polymers of ethylene oxide and propylene oxide on substrates relevant to textiles with varying surface energies (cellulose, polypropylene, nylon and polyester) was studied by using quartz crystal microgravimetry. Langmuirian-type isotherms were observed for the adsorption profiles of nonionic block polymers of different architectures. The affinity with the surfaces is discussed based on experimental observations, which highlights the role of hydrophobic effects. For a given type of block polymer, micellar and monomeric adsorption is governed by the balance of polymer structure (mainly, chain length of hydrophobic segments) and substrate's surface energy.
Collapse
Affiliation(s)
- Junlong Song
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science & Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA.
| | - Carlos Salas
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Orlando J Rojas
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA; Bio-based Colloids and Materials, School of Chemical Technology, Aalto University, P.O. Box 16300, Aalto FIN-00076, Finland.
| |
Collapse
|
27
|
Bodratti AM, Wu J, Jahan R, Sarkar B, Tsianou M, Alexandridis P. Mono- and Di-valent Salts as Modifiers of PEO-PPO-PEO Block Copolymer Interactions with Silica Nanoparticles in Aqueous Dispersions. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2015.1011273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Ostolska I, Wiśniewska M. The impact of polymer structure on the adsorption of ionic polyamino acid homopolymers and their diblock copolymers on colloidal chromium(iii) oxide. RSC Adv 2015. [DOI: 10.1039/c5ra02146d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the presented study was to investigate the influence of the structure and ionic nature of polymers on the adsorption layer architecture.
Collapse
Affiliation(s)
- Iwona Ostolska
- Maria Curie-Sklodowska University
- Faculty of Chemistry
- Department of Radiochemistry and Colloids Chemistry
- Lublin
- Poland
| | - Małgorzata Wiśniewska
- Maria Curie-Sklodowska University
- Faculty of Chemistry
- Department of Radiochemistry and Colloids Chemistry
- Lublin
- Poland
| |
Collapse
|
29
|
He Z, Alexandridis P. Nanoparticles in ionic liquids: interactions and organization. Phys Chem Chem Phys 2015; 17:18238-61. [DOI: 10.1039/c5cp01620g] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interactions between nanoparticles and ionic liquids can lead to a variety of organized structures.
Collapse
Affiliation(s)
- Zhiqi He
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York (SUNY)
- Buffalo
- USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York (SUNY)
- Buffalo
- USA
| |
Collapse
|
30
|
Liu P, Viitala T, Kartal-Hodzic A, Liang H, Laaksonen T, Hirvonen J, Peltonen L. Interaction Studies Between Indomethacin Nanocrystals and PEO/PPO Copolymer Stabilizers. Pharm Res 2014; 32:628-39. [DOI: 10.1007/s11095-014-1491-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/15/2014] [Indexed: 11/24/2022]
|
31
|
Kupetz E, Bunjes H. Lipid nanoparticles: drug localization is substance-specific and achievable load depends on the size and physical state of the particles. J Control Release 2014; 189:54-64. [PMID: 24933601 DOI: 10.1016/j.jconrel.2014.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022]
Abstract
Lipid nanoemulsions and -suspensions are being intensively investigated as carriers for poorly water soluble drugs. The question on where model compounds or probes are localized within the dispersions has been the subject of several studies. However, only little data exists for pharmaceutically relevant molecules in dispersions composed of pharmaceutically relevant excipients. In this work, the localization of drugs and drug-like substances was studied in lipid nanoemulsions and -suspensions. Conclusions about the drug localization were drawn from the relations between lipid mass, specific particle surface area and drug load in the dispersions. Additionally, the achievable drug loads of the liquid and the solid lipid particles were compared. Nanoemulsions and -suspensions comprised trimyristin as lipid matrix and poloxamer 188 as emulsifier and were prepared with different well-defined particle sizes. These pre-formed dispersions were passively loaded with either amphotericin B, curcumin, dibucaine, fenofibrate, mefenamic acid, propofol, or a porphyrin derivative. The physico-chemical properties of the particles were characterized; drug load and lipid content were quantified by UV spectroscopy and high performance liquid chromatography, respectively. For all drugs the passive loading procedure was successful in both emulsions and suspensions. Solid particles accommodate drug molecules preferably at the particle surface. Liquid particles can accommodate drugs at the particle surface as well as in the core; the distribution between the two sites is drug specific. It is also drug specific whether solid or liquid particles yield higher drug loads. As a general rule, smaller particles led to higher drug loads than larger ones. Propofol and the porphyrin derivative displayed eutectic interaction with the lipid and crystal growth after loading, respectively.
Collapse
Affiliation(s)
- Eva Kupetz
- Institute of Pharmaceutical Technology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany.
| | - Heike Bunjes
- Institute of Pharmaceutical Technology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany.
| |
Collapse
|
32
|
Growney DJ, Mykhaylyk OO, Armes SP. Micellization and adsorption behavior of a near-monodisperse polystyrene-based diblock copolymer in nonpolar media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6047-6056. [PMID: 24818878 DOI: 10.1021/la501084a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The micellar self-assembly behavior of a near-monodisperse polystyrene-hydrogenated polyisoprene (PS-PEP) diblock copolymer is examined in non-polar media (either n-heptane or n-dodecane). Direct dissolution of this diblock copolymer leads to the formation of relatively large polydisperse colloidal aggregates that are kinetically frozen artifacts of the solid-state copolymer morphology. Dynamic light scattering (DLS) and transmission electron microscopy studies indicate that heating such copolymer dispersions up to 90-110 °C leads to a structural rearrangement, with the generation of relatively small, well-defined spherical micelles that persist on cooling to 20 °C. Variable temperature (1)H NMR studies using deuterated n-alkanes confirm that partial solvation (plasticization) of the polystyrene micelle cores occurs on heating. This increased mobility of the core-forming polystyrene chains is consistent with the evolution from a kinetically-trapped to a thermodynamically-favored copolymer morphology via exchange of individual copolymer chains, which are observed by DLS. These micellar self-assembly observations are also consistent with small-angle X-ray scattering (SAXS) studies, which indicate the formation of star-like micelles in n-heptane, with a mean polystyrene core diameter of about 20 nm and an overall diameter (core plus corona) of about 80 nm. Micelle dissociation occurs on addition of chloroform, which is a good solvent for both blocks. Finally, physical adsorption of this PS-PEP diblock copolymer onto a model colloidal substrate (carbon black) has been confirmed using X-ray photoelectron spectroscopy. A Langmuir-type adsorption isotherm has been constructed using a supernatant depletion assay based on UV spectroscopy analysis of the aromatic chromophore in the polystyrene block. Comparable results were obtained using thermogravimetric analysis to directly determine the amount of adsorbed copolymer. Based on the maximum adsorbed amounts observed at 20 °C, these studies strongly suggest that individual PS-PEP copolymer chains adsorb onto carbon black from chloroform, whereas micellar adsorption occurs from n-alkanes.
Collapse
Affiliation(s)
- David J Growney
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | | | | |
Collapse
|
33
|
Bodratti AM, Sarkar B, Song D, Tsianou M, Alexandridis P. Competitive Adsorption Between PEO-Containing Block Copolymers and Homopolymers at Silica. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2014.880847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Chin LS, Lim M, Hung TT, Marquis CP, Amal R. Perfluorodecalin nanocapsule as an oxygen carrier and contrast agent for ultrasound imaging. RSC Adv 2014. [DOI: 10.1039/c3ra47595f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
35
|
Aqueous solutions of the double chain cationic surfactants didodecyldimethylammonium bromide and ditetradecyldimethylammonium bromide with Pluronic F68: Dynamic surface tension measurements. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.08.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Sarkar B, Venugopal V, Bodratti AM, Tsianou M, Alexandridis P. Nanoparticle surface modification by amphiphilic polymers in aqueous media: Role of polar organic solvents. J Colloid Interface Sci 2013; 397:1-8. [DOI: 10.1016/j.jcis.2013.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
|
37
|
Ayandele E, Sarkar B, Alexandridis P. Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2012; 2:445-475. [PMID: 28348318 PMCID: PMC5304604 DOI: 10.3390/nano2040445] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/20/2012] [Accepted: 11/26/2012] [Indexed: 11/28/2022]
Abstract
Hybrid materials with superior structural and functional properties can be obtained by incorporating nanofillers into polymer matrices. Polyhedral oligomeric silsesquioxane (POSS) nanoparticles have attracted much attention recently due to their nanometer size, the ease of which these particles can be incorporated into polymeric materials and the unique capability to reinforce polymers. We review here the state of POSS-containing polymer nanocomposites. We discuss the influence of the incorporation of POSS into polymer matrices via chemical cross-linking or physical blending on the structure of nanocomposites, as affected by surface functional groups, and the POSS concentration.
Collapse
Affiliation(s)
- Ebunoluwa Ayandele
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| | - Biswajit Sarkar
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| |
Collapse
|