1
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
2
|
Idiago-López J, Ferreira D, Asín L, Moros M, Armenia I, Grazú V, Fernandes AR, de la Fuente JM, Baptista PV, Fratila RM. Membrane-localized magnetic hyperthermia promotes intracellular delivery of cell-impermeant probes. NANOSCALE 2024; 16:15176-15195. [PMID: 39052238 DOI: 10.1039/d4nr01955e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this work, we report the disruptive use of membrane-localized magnetic hyperthermia to promote the internalization of cell-impermeant probes. Under an alternating magnetic field, magnetic nanoparticles (MNPs) immobilized on the cell membrane via bioorthogonal click chemistry act as nanoheaters and lead to the thermal disruption of the plasma membrane, which can be used for internalization of different types of molecules, such as small fluorescent probes and nucleic acids. Noteworthily, no cell death, oxidative stress and alterations of the cell cycle are detected after the thermal stimulus, although cells are able to sense and respond to the thermal stimulus through the expression of different types of heat shock proteins (HSPs). Finally, we demonstrate the utility of this approach for the transfection of cells with a small interference RNA (siRNA), revealing a similar efficacy to a standard transfection method based on the use of cationic lipid-based reagents (such as Lipofectamine), but with lower cell toxicity. These results open the possibility of developing new procedures for "opening and closing" cellular membranes with minimal disturbance of cellular integrity. This on-demand modification of cell membrane permeability could allow the direct intracellular delivery of biologically relevant (bio)molecules, drugs and nanomaterials, thus overcoming traditional endocytosis pathways and avoiding endosomal entrapment.
Collapse
Affiliation(s)
- Javier Idiago-López
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Daniela Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Laura Asín
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - María Moros
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Alexandra R Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Pedro V Baptista
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Orgánica, Facultad de Ciencias, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
3
|
Sikorska M, Ruzycka-Ayoush M, Rios-Mondragon I, Longhin EM, Meczynska-Wielgosz S, Wojewodzka M, Kowalczyk A, Kasprzak A, Nowakowska J, Sobczak K, Muszynska M, Cimpan MR, Runden-Pran E, Shaposhnikov S, Kruszewski M, Dusinska M, Nowicka AM, Grudzinski IP. Lack of cytotoxic and genotoxic effects of mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium despite cellular uptake in cancerous and noncancerous lung cells. Toxicol In Vitro 2024; 99:105850. [PMID: 38801838 DOI: 10.1016/j.tiv.2024.105850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Cytotoxic and genotoxic effects of novel mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium (Mg0.1-γ-Fe2O3(mPEG-silane)0.5) have been investigated on human adenocarcinomic alveolar basal epithelial (A549) and human normal bronchial epithelial (BEAS-2B) cells. In the studies several molecular and cellular targets addressing to cell membrane, cytoplasm organelles and nucleus components were served as toxicological endpoints. The as-synthesized nanoparticles were found to be stable in the cell culture media and were examined for different concentration and exposure times. No cytotoxicity of the tested nanoparticles was found although these nanoparticles slightly increased reactive oxygen species in both cell types studied. Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles did not produce any DNA strand breaks and oxidative DNA damages in A549 and BEAS-2B cells. Different concentration of Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles and different incubation time did not affect cell migration. The lung cancer cells' uptake of the nanoparticles was more effective than in normal lung cells. Altogether, the results evidence that mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium do not elucidate any deleterious effects on human normal and cancerous lung cells despite cellular uptake of these nanoparticles. Therefore, it seems reasonable to conclude that these novel biocompatible nanoparticles are promising candidates for further development towards medical applications.
Collapse
Affiliation(s)
- Malgorzata Sikorska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL-02-097 Warsaw, Poland.
| | - Monika Ruzycka-Ayoush
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL-02-097 Warsaw, Poland
| | - Ivan Rios-Mondragon
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien. 19, Bergen 5009, Norway
| | - Eleonora Marta Longhin
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Sylwia Meczynska-Wielgosz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna Str. 16, PL-03-195, Warsaw, Poland
| | - Maria Wojewodzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna Str. 16, PL-03-195, Warsaw, Poland
| | - Agata Kowalczyk
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL-02-093 Warsaw, Poland
| | - Artur Kasprzak
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL-00-664 Warsaw, Poland
| | - Julita Nowakowska
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Miecznikowa Str.1, PL-02-096 Warsaw, Poland
| | - Kamil Sobczak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101 Str., PL 02-089 Warsaw, Poland
| | - Magdalena Muszynska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101 Str., PL 02-089 Warsaw, Poland; Pro-Environment Poland Sp. z o. o., Zwirki i Wigury Str. 101, PL 02-098 Warsaw, Poland
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien. 19, Bergen 5009, Norway
| | - Elise Runden-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | | | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna Str. 16, PL-03-195, Warsaw, Poland; Department of Medical Biology and Translational Research, Institute of Rural Health,Jaczewskiego Str. 2, PL-20-090 Lublin, Poland
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Anna M Nowicka
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL-02-093 Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL-02-097 Warsaw, Poland
| |
Collapse
|
4
|
Irrsack E, Aydin S, Bleckmann K, Schuller J, Dringen R, Koch M. Local Administrations of Iron Oxide Nanoparticles in the Prefrontal Cortex and Caudate Putamen of Rats Do Not Compromise Working Memory and Motor Activity. Neurotox Res 2023; 42:6. [PMID: 38133743 PMCID: PMC10746586 DOI: 10.1007/s12640-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Iron oxide nanoparticles (IONPs) have come into focus for their use in medical applications although possible health risks for humans, especially in terms of brain functions, have not yet been fully clarified. The present study investigates the effects of IONPs on neurobehavioural functions in rats. For this purpose, we infused dimercaptosuccinic acid-coated IONPs into the medial prefrontal cortex (mPFC) and caudate putamen (CPu). Saline (VEH) and ferric ammonium citrate (FAC) were administered as controls. One- and 4-week post-surgery mPFC-infused animals were tested for their working memory performance in the delayed alternation T-maze task and in the open field (OF) for motor activity, and CPu-infused rats were tested for their motor activity in the OF. After completion of the experiments, the brains were examined histologically and immunohistochemically. We did not observe any behavioural or structural abnormalities in the rats after administration of IONPs in the mPFC and the CPu. In contrast, administration of FAC into the CPu resulted in decreased motor activity and increased the number of microglia in the mPFC. Perls' Prussian blue staining revealed that FAC- and IONP-treated rats had more iron-containing ramified cells than VEH-treated rats, indicating iron uptake by microglia. Our results demonstrate that local infusions of IONPs into selected brain regions have no adverse impact on locomotor behaviour and working memory.
Collapse
Affiliation(s)
- Ellen Irrsack
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany.
| | - Sidar Aydin
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Katja Bleckmann
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Julia Schuller
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable, Technology, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Michael Koch
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| |
Collapse
|
5
|
Shiu BC, Wulin S, Yuan QY, Zhang Y, Yu Z. Zn 2+ @Polyvinylpyrrolidone and Urushiol Preparation of Nanofibrous Membranes and Their Synergistic Effect. Macromol Biosci 2023; 23:e2300233. [PMID: 37483109 DOI: 10.1002/mabi.202300233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
In this study, lacquer is gathered from a lacquer tree and rotary evaporation is used to remove impurities to obtain urushiol. Next, 10 mL of anhydrous ethanol serves as the solvent for blending polyvinylpyrrolidone (PVP) at a specified content (0.7 g and 0.2-0.7 g urushiol) to form an electrospinning solution. Electrospinning is carried out with a voltage of 18 kV to prepare PVP/urushiol nanofibrous membranes. At a ratio of 7/4, the PVP/urushiol nanofibrous membranes are not eroded in 98% sulfuric acid and these membranes also demonstrate a 50-60% antibacterial effect against Staphylococcus aureus and Escherichia coli. Moreover, the antibacterial effect can be boosted to 98% with the incorporation of zinc ions. The results indicate that anhydrous ethanol can remove the sensitization of urushiol from PVP/urushiol membranes. Furthermore, animal test results indicate that when rats are in contact with PVP/urushiol anhydrous ethanol for 48 h, their skins are free from dark brown skin allergy. The presence of PVP eliminates the sensitization of urushiol, and the nanofibrous membranes demonstrate low toxicity. Hence, urushiol is the only natural material that enables PVP to withstand 98% sulfuric acid as well as acquire hydrolyzability, thereby qualify PVP as a medical material.
Collapse
Affiliation(s)
- Bing-Chiuan Shiu
- Fujian Engineering Research Center of New Chinese lacquer Material College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Shihan Wulin
- Fujian Engineering Research Center of New Chinese lacquer Material College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Qian-Yu Yuan
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Ying Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhicai Yu
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, Fujian, 350108, China
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| |
Collapse
|
6
|
Gerken LRH, Gerdes ME, Pruschy M, Herrmann IK. Prospects of nanoparticle-based radioenhancement for radiotherapy. MATERIALS HORIZONS 2023; 10:4059-4082. [PMID: 37555747 PMCID: PMC10544071 DOI: 10.1039/d3mh00265a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Maren E Gerdes
- Karolinska Institutet, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
7
|
Chauhan M, Basu SM, Qasim M, Giri J. Polypropylene sulphide coating on magnetic nanoparticles as a novel platform for excellent biocompatible, stimuli-responsive smart magnetic nanocarriers for cancer therapeutics. NANOSCALE 2023; 15:7384-7402. [PMID: 36751724 DOI: 10.1039/d2nr05218k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticle (MNP) delivery systems are promising for targeted drug delivery, imaging, and chemo-hyperthermia of cancer; however, their uses remain limited primarily due to their toxicity associated with reactive oxygen species (ROS) generation, targeted delivery, and biodegradation. Attempts employing polymer coatings to minimize the toxicity, along with other challenges, have had limited success. We designed a novel yet generic 'one-for-all' polypropylene sulphide (PPS) coated magnetic nano-delivery system (80 ± 15 nm) as a multi-faceted approach for significant biocompatibility improvement, loading of multiple drugs, ROS-responsive delivery, and combined chemo-hyperthermia therapy for biomedical applications. Three distinct MNP systems (15 ± 1 nm) were fabricated, coated with PPS polymer, and investigated to validate our hypothesis and design. Simultaneous degradation of MNPs and PPS coatings with ROS-scavenging characteristics boosted the biocompatibility of MNPs 2-3 times towards non-cancerous fibroblasts (NIH3T3) and human epithelial cells (HEK293). In an alternating magnetic field, PPS-MNPs (MnFe) had the strongest heating characteristics (SAR value of 240 W g-1). PPS-MNP drug-loaded NPs were efficiently internalised into cells and released 80% of the drugs under tumor microenvironment-mimicking (pH 5-7, ROS) conditions, and demonstrated effective chemo-hyperthermia (45 °C) application for breast cancer cells with 95% cell death in combined treatment vs. 55% and 30% cell death in only hyperthermia and chemotherapy respectively.
Collapse
Affiliation(s)
- Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Mohd Qasim
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
8
|
Paul P, Nicholson M, Hilt JZ. Magnetic Nanocomposites for the Remote Activation of Sulfate Radicals for the Removal of Rhodamine B. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1151. [PMID: 37049245 PMCID: PMC10097114 DOI: 10.3390/nano13071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The widespread presence of numerous organic contaminants in water poses a threat to the ecological environment and human health. Magnetic nanocomposites exposed to an alternating magnetic field (AMF) have a unique ability for magnetically mediated energy delivery (MagMED) resulting from the embedded magnetic nanoparticles; this localized energy delivery and associated chemical and thermal effects are a potential method for removing contaminants from water. This work developed a novel magnetic nanocomposite-a polyacrylamide-based hydrogel loaded with iron oxide nanoparticles. For this magnetic nanocomposite, persulfate activation and the contamination removal in water were investigated. Magnetic nanocomposites were exposed to AMF with a model organic contaminant, rhodamine B (RhB) dye, with or without sodium persulfate (SPS). The removal of RhB by the nanocomposite without SPS as a sorbent was found to be proportional to the concentration of magnetic nanoparticles (MNPs) in the nanocomposite. With the addition of SPS, approximately 100% of RhB was removed within 20 min. This removal was attributed primarily to the activation of sulfate radicals, triggered by MNPs, and the localized heating resulted from the MNPs when exposed to AMF. This suggests that this magnetic nanocomposite and an AMF could be a unique environmental remediation technique for hazardous contaminants.
Collapse
Affiliation(s)
| | | | - J. Zach Hilt
- Department of Chemical & Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, USA
| |
Collapse
|
9
|
Vedarethinam V, Jeevanandam J, Acquah C, Danquah MK. Magnetic Nanoparticles for Protein Separation and Purification. Methods Mol Biol 2023; 2699:125-159. [PMID: 37646997 DOI: 10.1007/978-1-0716-3362-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Proteins are essential for various functions such as brain activity and muscle contraction in humans. Even though food is a source of proteins, the bioavailability of proteins in most foods is usually limited due to matrix interaction with other biomolecules. Thus, it is essential to extract these proteins and provide them as a nutraceutical supplement to maintain protein levels and avoid protein deficiency. Hence, protein purification and extraction from natural sources are highly significant in biomedical applications. Chromatography, crude mechanical disruption, use of extractive chemicals, and electrophoresis are some of the methods applied to isolate specific proteins. Even though these methods possess several advantages, they are unable to extract specific proteins with high purity. A suitable alternative is the use of nanoparticles, which can be beneficial in protein purification and extraction. Notably, magnetic iron and iron-based nanoparticles have been employed in protein extraction processes and can be reused via demagnetization due to their magnetic property, smaller size, morphology, high surface-to-volume ratio, and surface charge-mediated property. This chapter is a summary of various magnetic nanoparticles (MNPs) that can be used for the biomolecular separation of proteins.
Collapse
Affiliation(s)
- Vadanasundari Vedarethinam
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Caleb Acquah
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, USA.
| |
Collapse
|
10
|
Paul P, Edmonds KL, Baldridge KC, Bhattacharyya D, Dziubla T, Dutch RE, Hilt JZ. Enhanced Inactivation of Pseudoparticles Containing SARS-CoV-2 S Protein Using Magnetic Nanoparticles and an Alternating Magnetic Field. ACS APPLIED BIO MATERIALS 2022; 5:5140-5147. [PMID: 36314574 PMCID: PMC9691609 DOI: 10.1021/acsabm.2c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2's (SARS-CoV-2) rapid global spread has posed a significant threat to human health, and similar outbreaks could occur in the future. Developing effective virus inactivation technologies is critical to preventing and overcoming pandemics. The infection of SARS-CoV-2 depends on the binding of the spike glycoprotein (S) receptor binding domain (RBD) to the host cellular surface receptor angiotensin-converting enzyme 2 (ACE2). If this interaction is disrupted, SARS-CoV-2 infection could be inhibited. Magnetic nanoparticle (MNP) dispersions exposed to an alternating magnetic field (AMF) possess the unique ability for magnetically mediated energy delivery (MagMED); this localized energy delivery and associated mechanical, chemical, and thermal effects are a possible technique for inactivating viruses. This study investigates the MNPs' effect on vesicular stomatitis virus pseudoparticles containing the SARS-CoV-2 S protein when exposed to AMF or a water bath (WB) with varying target steady-state temperatures (45, 50, and 55 °C) for different exposure times (5, 15, and 30 min). In comparison to WB exposures at the same temperatures, AMF exposures resulted in significantly greater inactivation in multiple cases. This is likely due to AMF-induced localized heating and rotation of MNPs. In brief, our findings demonstrate a potential strategy for combating the SARS-CoV-2 pandemic or future ones.
Collapse
Affiliation(s)
- Pranto Paul
- Department of Chemical & Materials Engineering, University of Kentucky, Lexington, Kentucky40506-0046, United States
| | - Kearstin L Edmonds
- Molecular & Cellular Biochemistry, University of Kentucky, Lexington, Kentucky40536, United States
| | - Kevin C Baldridge
- Department of Chemical & Materials Engineering, University of Kentucky, Lexington, Kentucky40506-0046, United States
| | - Dibakar Bhattacharyya
- Department of Chemical & Materials Engineering, University of Kentucky, Lexington, Kentucky40506-0046, United States
| | - Thomas Dziubla
- Department of Chemical & Materials Engineering, University of Kentucky, Lexington, Kentucky40506-0046, United States
| | - Rebecca Ellis Dutch
- Molecular & Cellular Biochemistry, University of Kentucky, Lexington, Kentucky40536, United States
| | - J Zach Hilt
- Department of Chemical & Materials Engineering, University of Kentucky, Lexington, Kentucky40506-0046, United States
| |
Collapse
|
11
|
K. S. MK, Nagaraju DH, Yhobu Z, H. N. NK, Budagumpi S, Kumar Bose S, P. S, Palakollu VN. Tuning the Surface Functionality of Fe 3O 4 for Sensitive and Selective Detection of Heavy Metal Ions. SENSORS (BASEL, SWITZERLAND) 2022; 22:8895. [PMID: 36433488 PMCID: PMC9695242 DOI: 10.3390/s22228895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The functionalization of materials for ultrasensitive detection of heavy metal ions (HMIs) in the environment is crucial. Herewith, we have functionalized inexpensive and environmentally friendly Fe3O4 nanoparticles with D-valine (Fe3O4-D-Val) by a simple co-precipitation synthetic approach characterized by XRD, FE-SEM, and FTIR spectroscopy. The Fe3O4-D-Val sensor was used for the ultrasensitive detection of Cd+2, Pb+2, and Cu+2 in water samples. This sensor shows a very low detection limit of 11.29, 4.59, and 20.07 nM for Cd+2, Pb+2, and Cu+2, respectively. The detection limits are much lower than the values suggested by the world health Organization. The real water samples were also analyzed using the developed sensor.
Collapse
Affiliation(s)
| | - D. H. Nagaraju
- School of Applied Science, REVA University, Bengaluru 560064, India
| | - Zhoveta Yhobu
- Center for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Nayan Kumar H. N.
- Center for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Srinivasa Budagumpi
- Center for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Shubhankar Kumar Bose
- Center for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Shivakumar P.
- School of Applied Science, REVA University, Bengaluru 560064, India
| | | |
Collapse
|
12
|
Naghdi M, Ghovvati M, Rabiee N, Ahmadi S, Abbariki N, Sojdeh S, Ojaghi A, Bagherzadeh M, Akhavan O, Sharifi E, Rabiee M, Saeb MR, Bolouri K, Webster TJ, Zare EN, Zarrabi A. Magnetic nanocomposites for biomedical applications. Adv Colloid Interface Sci 2022; 308:102771. [PMID: 36113311 DOI: 10.1016/j.cis.2022.102771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mina Naghdi
- Department of Chemistry, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Keivan Bolouri
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
13
|
High Drug Capacity Doxorubicin-Loaded Iron Oxide Nanocomposites for Cancer Therapy. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Magnetic nanoparticles (MNPs) have great potential in the drug delivery area. Iron oxide (Fe3O4) MNPs have demonstrated a promising effect due to their ferrimagnetic properties, large surface area, stability, low cost, easy synthesis, and functionalization. Some coating procedures are required to improve stability, biocompatibility, and decrease toxicity for medical applications. Herein, the co-precipitation synthesis of iron oxide MNPs coated with four types of primary surfactants, polyethylene glycol 2000 (PEG 2000), oleic acid (OA), Tween 20 (Tw20), and Tween 80 (Tw80), were investigated. Dynamic light scattering (DLS), ζ-potential, and transmission electron microscopy (TEM) techniques were used for morphology, size, charge, and stability analysis. Methylene blue reactive oxygen species (ROS) detection assay and the toxicity experiment on the lung adenocarcinoma A549 cell line were conducted. Two loading conditions for anticancer drug doxorubicin (DOX) on MNPs were proposed. The first one provides high loading efficiency (~90%) with up to 870 μg/mg (DOX/MNPs) drug capacity. The second is perspective for extremely high capacity 1757 μg/mg with drug wasting (DOX loading efficiency ~24%). For the most perspective MNP_OA and MNP_OA_DOX in cell media, pH 7.4, 5, and 3, the stability experiments are also presented. MNP_OA_DOX shows DOX pH-dependent release in the acidic pH and effective inhibition of A549 cancer cell growth. The IC50 values were calculated as 1.13 ± 0.02 mM in terms of doxorubicin and 0.4 ± 0.03 µg/mL in terms of the amount of the nanoparticles. Considering this, the MNP_OA_DOX nano theranostics agent is a highly potential candidate for cancer treatment.
Collapse
|
14
|
Cervantes O, Lopez ZDR, Casillas N, Knauth P, Checa N, Cholico FA, Hernandez-Gutiérrez R, Quintero LH, Paz JA, Cano ME. A Ferrofluid with Surface Modified Nanoparticles for Magnetic Hyperthermia and High ROS Production. Molecules 2022; 27:544. [PMID: 35056860 PMCID: PMC8781673 DOI: 10.3390/molecules27020544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
A ferrofluid with 1,2-Benzenediol-coated iron oxide nanoparticles was synthesized and physicochemically analyzed. This colloidal system was prepared following the typical co-precipitation method, and superparamagnetic nanoparticles of 13.5 nm average diameter, 34 emu/g of magnetic saturation, and 285 K of blocking temperature were obtained. Additionally, the zeta potential showed a suitable colloidal stability for cancer therapy assays and the magneto-calorimetric trails determined a high power absorption density. In addition, the oxidative capability of the ferrofluid was corroborated by performing the Fenton reaction with methylene blue (MB) dissolved in water, where the ferrofluid was suitable for producing reactive oxygen species (ROS), and surprisingly a strong degradation of MB was also observed when it was combined with H2O2. The intracellular ROS production was qualitatively corroborated using the HT-29 human cell line, by detecting the fluorescent rise induced in 2,7-dichlorofluorescein diacetate. In other experiments, cell metabolic activity was measured, and no toxicity was observed, even with concentrations of up to 4 mg/mL of magnetic nanoparticles (MNPs). When the cells were treated with magnetic hyperthermia, 80% of cells were dead at 43 °C using 3 mg/mL of MNPs and applying a magnetic field of 530 kHz with 20 kA/m amplitude.
Collapse
Affiliation(s)
- Oscar Cervantes
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1421, Col. Olímpica, Guadalajara C.P. 44430, Jalisco, Mexico; (O.C.); (N.C.)
| | - Zaira del Rocio Lopez
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Norberto Casillas
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1421, Col. Olímpica, Guadalajara C.P. 44430, Jalisco, Mexico; (O.C.); (N.C.)
| | - Peter Knauth
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Nayeli Checa
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Francisco Apolinar Cholico
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Rodolfo Hernandez-Gutiérrez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas 800 Colinas de La Normal, Guadalajara C.P. 44270, Jalisco, Mexico;
| | - Luis Hector Quintero
- Centro Universitario de Ciencias Económico Administrativas, Universidad de Guadalajara, Periférico Norte 799, Col. Los Belenes, Zapopan C.P. 45100, Jalisco, Mexico;
| | - Jose Avila Paz
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Mario Eduardo Cano
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| |
Collapse
|
15
|
Kumar N, Tyeb S, Verma V. Recent advances on Metal oxide-polymer systems in targeted therapy and diagnosis: Applications and toxicological perspective. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Irrsack E, Schuller J, Petters C, Willmann W, Dringen R, Koch M. Effects of Local Administration of Iron Oxide Nanoparticles in the Prefrontal Cortex, Striatum, and Hippocampus of Rats. Neurotox Res 2021; 39:2056-2071. [PMID: 34705254 PMCID: PMC8639550 DOI: 10.1007/s12640-021-00432-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 10/26/2022]
Abstract
Iron oxide nanoparticles (IONPs) are used for diverse medical approaches, although the potential health risks, for example adverse effects on brain functions, are not fully clarified. Several in vitro studies demonstrated that the different types of brain cells are able to accumulate IONPs and reported a toxic potential for IONPs, at least for microglia. However, little information is available for the in vivo effects of direct application of IONPs into the brain over time. Therefore, we examined the cellular responses and the distribution of iron in the rat brain at different time points after local infusion of IONPs into selected brain areas. Dispersed IONPs or an equivalent amount of low molecular weight iron complex ferric ammonium citrate or vehicle were infused into the medial prefrontal cortex (mPFC), the caudate putamen (CPu), or the dorsal hippocampus (dHip). Rats were sacrificed 1 day, 1 week, or 4 weeks post-infusion and brain sections were histologically examined for treatment effects on astrocytes, microglia, and neurons. Glial scar formation was observed in the mPFC and CPu 1 week post-infusion independent of the substance and probably resulted from the infusion procedure. Compared to vehicle, IONPs did not cause any obvious additional adverse effects and no additional tissue damage, while the infusion of ferric ammonium citrate enhanced neurodegeneration in the mPFC. Results of iron staining indicate that IONPs were mainly accumulated in microglia. Our results demonstrate that local infusions of IONPs in selected brain areas do not cause any additional adverse effects or neurodegeneration compared to vehicle.
Collapse
Affiliation(s)
- Ellen Irrsack
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany.
| | - Julia Schuller
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Charlotte Petters
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Wiebke Willmann
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Michael Koch
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| |
Collapse
|
17
|
Effect of dispersants on cytotoxic properties of magnetic nanoparticles: a review. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
The Effect of pH and Buffer on Oligonucleotide Affinity for Iron Oxide Nanoparticles. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7090128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic Fe3O4 nanoparticles (MNPs) have great potential in the nucleic acid delivery approach for therapeutic applications. Herein, the formation of a stable complex of iron oxide nanoparticles with oligonucleotides was investigated. Several factors, such as pH, buffer components, and oligonucleotides sequences, were chosen for binding efficiency studies and oligonucleotide binding constant calculation. Standard characterization techniques, such as dynamic light scattering, zeta potential, and transmission electron microscopy, provide MNPs coating and stability. The toxicity experiments were performed using lung adenocarcinoma A549 cell line and high reactive oxygen species formation with methylene blue assay. Fe3O4 MNPs complexes with oligonucleotides show high stability and excellent biocompatibility.
Collapse
|
19
|
Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artif Organs 2021; 45:1272-1299. [PMID: 34245037 DOI: 10.1111/aor.14027] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Nanoscience has been considered as one of the most substantial research in modern science. The utilization of nanoparticle (NP) materials provides numerous advantages in biomedical applications due to their unique properties. Among various types of nanoparticles, the magnetic nanoparticles (MNPs) of iron oxide possess intrinsic features, which have been efficiently exploited for biomedical purposes including drug delivery, magnetic resonance imaging, Magnetic-activated cell sorting, nanobiosensors, hyperthermia, and tissue engineering and regenerative medicine. The size and shape of nanostructures are the main factors affecting the physicochemical features of superparamagnetic iron oxide nanoparticles, which play an important role in the improvement of MNP properties, and can be controlled by appropriate synthesis strategies. On the other hand, the proper modification and functionalization of the surface of iron oxide nanoparticles have significant effects on the improvement of physicochemical and mechanical features, biocompatibility, stability, and surface activity of MNPs. This review focuses on popular methods of fabrication, beneficial surface coatings with regard to the main required features for their biomedical use, as well as new applications.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Nanotechnology, School of Advance Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Pop D, Buzatu R, Moacă EA, Watz CG, Cîntă Pînzaru S, Barbu Tudoran L, Nekvapil F, Avram Ș, Dehelean CA, Crețu MO, Nicolov M, Szuhanek C, Jivănescu A. Development and Characterization of Fe 3O 4@Carbon Nanoparticles and Their Biological Screening Related to Oral Administration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3556. [PMID: 34202095 PMCID: PMC8269588 DOI: 10.3390/ma14133556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
The current study presents the effect of naked Fe3O4@Carbon nanoparticles obtained by the combustion method on primary human gingival fibroblasts (HGFs) and primary gingival keratinocytes (PGKs)-relevant cell lines of buccal oral mucosa. In this regard, the objectives of this study were as follows: (i) development via combustion method and characterization of nanosized magnetite particles with carbon on their surface, (ii) biocompatibility assessment of the obtained magnetic nanoparticles on HGF and PGK cell lines and (iii) evaluation of possible irritative reaction of Fe3O4@Carbon nanoparticles on the highly vascularized chorioallantoic membrane of a chick embryo. Physicochemical properties of Fe3O4@Carbon nanoparticles were characterized in terms of phase composition, chemical structure, and polymorphic and molecular interactions of the chemical bonds within the nanomaterial, magnetic measurements, ultrastructure, morphology, and elemental composition. The X-ray diffraction analysis revealed the formation of magnetite as phase pure without any other secondary phases, and Raman spectroscopy exhibit that the pre-formed magnetic nanoparticles were covered with carbon film, resulting from the synthesis method employed. Scanning electron microscopy shown that nanoparticles obtained were uniformly distributed, with a nearly spherical shape with sizes at the nanometric level; iron, oxygen, and carbon were the only elements detected. While biological screening of Fe3O4@Carbon nanoparticles revealed no significant cytotoxic potential on the HGF and PGK cell lines, a slight sign of irritation was observed on a limited area on the chorioallantoic membrane of the chick embryo.
Collapse
Affiliation(s)
- Daniel Pop
- Department of Prosthodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300580 Timișoara, Romania; (D.P.); (A.J.)
- TADERP Reseach Center—Advanced and Digital Techniques for Endodontic, Restorative and Prosthetic Treatment, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania
| | - Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
| | - Claudia Geanina Watz
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Simona Cîntă Pînzaru
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, RO-400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Fran Nekvapil
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Ștefana Avram
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy “Victor Babeș” Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
| | - Marius Octavian Crețu
- Department of Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Mirela Nicolov
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Camelia Szuhanek
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Revolutiei Ave. 1989, No. 9, RO-300041 Timisoara, Romania;
| | - Anca Jivănescu
- Department of Prosthodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300580 Timișoara, Romania; (D.P.); (A.J.)
- TADERP Reseach Center—Advanced and Digital Techniques for Endodontic, Restorative and Prosthetic Treatment, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania
| |
Collapse
|
21
|
Li T, Yu J, Sui H, Zhang T, Zhou R. Bovine Serum Albumin-Directed Fabrication of Nanohydroxyapatite with Improved Stability and Biocompatibility. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21500289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nanohydroxyapatite (nHAp) has gained considerable concerns due to its vast potential in biomedical applications such as drug delivery, tissue engineering and bone repair. However, the preparation of HAp nanostructures in a controllable manner under environment-friendly reaction conditions remains a challenge. In recent years, the use of biological macromolecules or proteins as templates in the production of nanomaterials has gained more attention due to the relatively mild physical conditions needed for biomimetic synthesis. In this study, a novel nHAp was fabricated by employing bovine serum albumin (BSA) as template under mild condition. After that, the as-obtained nanostructured materials which have well-defined structures and morphologies were characterized by various methods. Furthermore, the rod-like shaped hydroxyapatite demonstrated improved stability properties, as well as cell viability and biocompatibility, compared to BSA free synthesized c-HAp. We expect that this pleasantly novel research will render new insights into the fabrication strategies of nanomaterials and be of practical importance for the expanding biological application.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Jialu Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Hao Sui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
22
|
Patiño-Ruiz D, Meramo-Hurtado SI, González-Delgado ÁD, Herrera A. Environmental Sustainability Evaluation of Iron Oxide Nanoparticles Synthesized via Green Synthesis and the Coprecipitation Method: A Comparative Life Cycle Assessment Study. ACS OMEGA 2021; 6:12410-12423. [PMID: 34056392 PMCID: PMC8154134 DOI: 10.1021/acsomega.0c05246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/15/2021] [Indexed: 05/24/2023]
Abstract
Green synthesis, based on green chemistry, is replacing the traditional methods, aiming to contribute with an enhanced environmental sustainability, which can be achieved using nontoxic compounds from biological resources, such as natural extracts from plants. In this study, the life cycle assessment (LCA) of iron oxide nanoparticles prepared through the green synthesis and the coprecipitation method is reported by following a cradle-to-gate approach. The LCA allowed quantifying and normalized the environmental impacts produced by the green synthesis (1.0 × 10-9), which used a Cymbopogon citratus (C. citratus) extract and sodium carbonate (Na2CO3). The impacts were also determined for the coprecipitation method (1.4 × 10-8) using the iron(II) salt precursor and sodium hydroxide (NaOH). The contribution of C. citratus extract and Na2CO3 as the precursor and pH-stabilizing agents, respectively, was compared regarding the iron(II) and NaOH compounds. Environmental sustainability was evaluated in human toxicity, ecosystem quality, and resource depletion. The major environmental contribution was found in the marine aquatic ecotoxicity (7.6 × 10-10 and 1.22 × 10-8 for green synthesis and the coprecipitation method) due to the highest values for ethanol (3.5 × 10-10) and electricity (1.4 × 10-8) usage since fossil fuels and wastewater are involved in their production. The C. citratus extract (2.5 × 10-12) presented a better environmental performance, whereas Na2CO3 (4.3 × 10-11) showed a slight increase contribution compared to NaOH (4.1 × 10-11). This is related to their fabrication, involving toxic compounds, land occupation, and excessive water usage. In general, the total environmental impacts are lower for the green synthesis, suggesting the implementation of environmentally friendlier compounds based on natural sources for the production of nanomaterials.
Collapse
Affiliation(s)
- David
Alfonso Patiño-Ruiz
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
| | - Samir Isaac Meramo-Hurtado
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
- Departamento
de Ingeniería Químmica, Grupo de Investigación
Tecnológico Ontare, Universidad EAN, Bogotá 111311, Colombia
| | - Ángel Dario González-Delgado
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
| | - Adriana Herrera
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, Cartagena 130010, Colombia
| |
Collapse
|
23
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
24
|
Moacă EA, Watz CG, Socoliuc V, Racoviceanu R, Păcurariu C, Ianoş R, Cîntă-Pînzaru S, Tudoran LB, Nekvapil F, Iurciuc S, Șoica C, Dehelean CA. Biocompatible Magnetic Colloidal Suspension Used as a Tool for Localized Hyperthermia in Human Breast Adenocarcinoma Cells: Physicochemical Analysis and Complex In Vitro Biological Profile. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1189. [PMID: 33946316 PMCID: PMC8145112 DOI: 10.3390/nano11051189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 01/13/2023]
Abstract
Magnetic iron oxide nanoparticles are the most desired nanomaterials for biomedical applications due to their unique physiochemical properties. A facile single-step process for the preparation of a highly stable and biocompatible magnetic colloidal suspension based on citric-acid-coated magnetic iron oxide nanoparticles used as an effective heating source for the hyperthermia treatment of cancer cells is presented. The physicochemical analysis revealed that the magnetic colloidal suspension had a z-average diameter of 72.7 nm at 25 °C with a polydispersity index of 0.179 and a zeta potential of -45.0 mV, superparamagnetic features, and a heating capacity that was quantified by an intrinsic loss power analysis. Raman spectroscopy showed the presence of magnetite and confirmed the presence of citric acid on the surfaces of the magnetic iron oxide nanoparticles. The biological results showed that breast adenocarcinoma cells (MDA-MB-231) were significantly affected after exposure to the magnetic colloidal suspension with a concentration of 30 µg/mL 24 h post-treatment under hyperthermic conditions, while the nontumorigenic (MCF-10A) cells exhibited a viability above 90% under the same thermal setup. Thus, the biological data obtained in the present study clearly endorse the need for further investigations to establish the clinical biological potential of synthesized magnetic colloidal suspension for magnetically triggered hyperthermia.
Collapse
Affiliation(s)
- Elena-Alina Moacă
- Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (C.-G.W.); (C.Ș.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Claudia-Geanina Watz
- Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (C.-G.W.); (C.Ș.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Vlad Socoliuc
- Romanian Academy—Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, 24 M. Viteazu Ave., RO-300223 Timisoara, Romania
- Research Center for Complex Fluids Systems Engineering, Politehnica University of Timisoara, 1 M. Viteazu Ave., RO-300222 Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (C.-G.W.); (C.Ș.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Cornelia Păcurariu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2nd Victoriei Square, RO-300223 Timisoara, Romania; (C.P.); (R.I.)
| | - Robert Ianoş
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2nd Victoriei Square, RO-300223 Timisoara, Romania; (C.P.); (R.I.)
| | - Simona Cîntă-Pînzaru
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.-P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, RO-400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Fran Nekvapil
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.-P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Stela Iurciuc
- Department of Cardiology, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Codruța Șoica
- Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (C.-G.W.); (C.Ș.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Cristina-Adriana Dehelean
- Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (C.-G.W.); (C.Ș.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| |
Collapse
|
25
|
Yu S, Zhang H, Zhang S, Zhong M, Fan H. Ferrite Nanoparticles-Based Reactive Oxygen Species-Mediated Cancer Therapy. Front Chem 2021; 9:651053. [PMID: 33987168 PMCID: PMC8110829 DOI: 10.3389/fchem.2021.651053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Ferrite nanoparticles have been widely used in the biomedical field (such as magnetic targeting, magnetic resonance imaging, magnetic hyperthermia, etc.) due to their appealing magnetic properties. In tumor acidic microenvironment, ferrite nanoparticles show intrinsic peroxidase-like activities, which can catalyze the Fenton reaction of hydrogen peroxide (H2O2) to produce highly toxic hydroxyl free radicals (•OH), causing the death of tumor cell. Recent progresses in this field have shown that the enzymatic activity of ferrite can be improved via converting external field energy such as alternating magnetic field and near-infrared laser into nanoscale heat to produce more •OH, enhancing the killing effect on tumor cells. On the other hand, combined with other nanomaterials or drugs for cascade reactions, the production of reactive oxygen species (ROS) can also be increased to obtain more efficient cancer therapy. In this review, we will discuss the current status and progress of the application of ferrite nanoparticles in ROS-mediated cancer therapy and try to provide new ideas for this area.
Collapse
Affiliation(s)
- Shancheng Yu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Huan Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Shiya Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Mingli Zhong
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiming Fan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.,College of Chemistry and Materials Science, Northwest University, Xi'an, China
| |
Collapse
|
26
|
Solano R, Patiño-Ruiz D, Tejeda-Benitez L, Herrera A. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16962-16981. [PMID: 33638785 DOI: 10.1007/s11356-021-12996-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The production and demand of nanoparticles in the manufacturing sector and personal care products, release a large number of engineered nanoparticles (ENPs) into the atmosphere, aquatic ecosystems, and terrestrial environments. The intentional or involuntary incorporation of ENPs into the environment is carried out through different processes. The ENPs are combined with other compounds and release into the atmosphere, settling on the ground due to the water cycle or other atmospheric phenomena. In the case of aquatic ecosystems, the ENPs undergo hetero-aggregation and sedimentation, reaching different living organisms and flora, as well as groundwater. Accordingly, the high mobility of ENPs in diverse ecosystems is strongly related to physical, chemical, and biological processes. Recent studies have been focused on the toxicological effects of a wide variety of ENPs using different validated biological models. This literature review emphasizes the study of toxicological effects related to using the most common ENPs, specifically metal and metal/oxides-based nanoparticles, addressing different synthesis methodologies, applications, and toxicological evaluations. The results suggest negative impacts on biological models, such as oxidative stress, metabolic and locomotive toxicity, DNA replication dysfunction, and bioaccumulation. Finally, it was consulted the protocols for the control of risks, following the assessment and management process, as well as the classification system for technological alternatives and risk management measures of ENPs, which are useful for the transfer of technology and nanoparticles commercialization.
Collapse
Affiliation(s)
- Ricardo Solano
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - David Patiño-Ruiz
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Lesly Tejeda-Benitez
- Chemical Engineering Program, Process Design and Biomass Utilization Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Adriana Herrera
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
- Chemical Engineering Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
| |
Collapse
|
27
|
Shah RA, Frazar EM, Hilt JZ. Recent developments in stimuli responsive nanomaterials and their bionanotechnology applications. Curr Opin Chem Eng 2020; 30:103-111. [PMID: 34307003 PMCID: PMC8300877 DOI: 10.1016/j.coche.2020.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bionanotechnology is an ever-expanding field as innovations in nanotechnology continue to be developed based on biological systems or to be applied to address unmet needs in biology, biomedicine, etc., including various sensor and drug delivery solutions. Amidst the wide range of bionanomaterials that have been developed, stimuli responsive bionanomaterials are of particular interest and are thus emphasized within this review. Here, we have highlighted the most recent advances for stimuli responsive bionanomaterials with focus on those possessing responses based on activation, expansion/contraction and self-assembly/disassembly. The aim of this review is to bring attention to some of the most current bionanotechnology research and the interesting applications within this field.
Collapse
Affiliation(s)
- Rishabh A Shah
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - James Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
28
|
Bi Q, Song X, Hu A, Luo T, Jin R, Ai H, Nie Y. Magnetofection: Magic magnetic nanoparticles for efficient gene delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Majumdar M, Khan SA, Nandi NB, Roy S, Panja AS, Roy DN, Misra TK. Green Synthesis of Iron Nanoparticles for Investigation of Biofilm Inhibition Property. ChemistrySelect 2020. [DOI: 10.1002/slct.202003033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Moumita Majumdar
- Department of Chemistry National Institute of Technology Agartala Agartala Tripura 799046 India
| | - Shamim Ahmed Khan
- Department of Chemistry National Institute of Technology Agartala Agartala Tripura 799046 India
| | | | - Shaktibrata Roy
- Department of Chemistry National Institute of Technology Agartala Agartala Tripura 799046 India
| | | | - Dijendra Nath Roy
- Department of Bioengineering National Institute of Technology Agartala Agartala Tripura 799046 India
| | - Tarun Kumar Misra
- Department of Chemistry National Institute of Technology Agartala Agartala Tripura 799046 India
| |
Collapse
|
30
|
Enhancement of photodynamic antimicrobialtherapy through the use of cationic indium porphyrin conjugated to Ag/CuFe2O4 nanoparticles. Photodiagnosis Photodyn Ther 2020; 30:101736. [PMID: 32171876 DOI: 10.1016/j.pdpdt.2020.101736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
|
31
|
Liang YJ, Wang H, Yu H, Feng G, Liu F, Ma M, Zhang Y, Gu N. Magnetic navigation helps PLGA drug loaded magnetic microspheres achieve precise chemoembolization and hyperthermia. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Jaganjac M, Borovic Sunjic S, Zarkovic N. Utilizing Iron for Targeted Lipid Peroxidation as Anticancer Option of Integrative Biomedicine: A Short Review of Nanosystems Containing Iron. Antioxidants (Basel) 2020; 9:E191. [PMID: 32106528 PMCID: PMC7139573 DOI: 10.3390/antiox9030191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Traditional concepts of life sciences consider oxidative stress as a fundamental process of aging and various diseases including cancer, whereas traditional medicine recommends dietary intake of iron to support physiological functions of the organism. However, due to its strong pro-oxidative capacity, if not controlled well, iron can trigger harmful oxidative stress manifested eventually by toxic chain reactions of lipid peroxidation. Such effects of iron are considered to be major disadvantages of uncontrolled iron usage, although ferroptosis seems to be an important defense mechanism attenuating cancer development. Therefore, a variety of iron-containing nanoparticles were developed for experimental radio-, chemo-, and photodynamic as well as magnetic dynamic nanosystems that alter redox homeostasis in cancer cells. Moreover, studies carried over recent decades have revealed that even the end products of lipid peroxidation, represented by 4-hydroxynonenal (4-HNE), could have desirable effects even acting as kinds of selective anticancer substances produced by non-malignant cells for defense again invading cancer. Therefore, advanced nanotechnologies should be developed for using iron to trigger targeted lipid peroxidation as an anticancer option of integrative biomedicine.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Laboratory, Anti Doping Laboratory Qatar, Doha, Qatar;
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Suzana Borovic Sunjic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| |
Collapse
|
33
|
Cursaru LM, Piticescu RM, Dragut DV, Tudor IA, Kuncser V, Iacob N, Stoiciu F. The Influence of Synthesis Parameters on Structural and Magnetic Properties of Iron Oxide Nanomaterials. NANOMATERIALS 2020; 10:nano10010085. [PMID: 31906420 PMCID: PMC7022685 DOI: 10.3390/nano10010085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
Magnetic iron oxides have been used in biomedical applications, such as contrast agents for magnetic resonance imaging, carriers for controlled drug delivery and immunoassays, or magnetic hyperthermia for the past 40 years. Our aim is to investigate the effect of pressure and temperature on the structural, thermal, and magnetic properties of iron oxides prepared by hydrothermal synthesis at temperatures of 100–200 °C and pressures of 20–1000 bar. It has been found that pressure influences the type of iron oxide crystalline phase. Thus, the results obtained by Mössbauer characterization are in excellent agreement with X-ray diffraction and optical microscopy characterization, showing that, for lower pressure values (<100 bar), hematite is formed, while, at pressures >100 bar, the major crystalline phase is goethite. In addition, thermal analysis results are consistent with particle size analysis by X-ray diffraction, confirming the crystallization of the synthesized iron oxides. One order of magnitude higher magnetization has been obtained for sample synthesized at 1000 bar. The same sample provides after annealing treatment, the highest amount of good quality magnetite leading to a magnetization at saturation of 30 emu/g and a coercive field of 1000 Oe at 10 K and 450 Oe at 300 K, convenient for various applications.
Collapse
Affiliation(s)
- Laura Madalina Cursaru
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, Pantelimon, 077145 Ilfov, Romania; (D.V.D.); (I.A.T.); (F.S.)
- Correspondence: (R.M.P.); (L.M.C.); Tel.: +40-21-352-2048 (R.M.P.); +40-21-352-2048 (L.M.C.)
| | - Roxana Mioara Piticescu
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, Pantelimon, 077145 Ilfov, Romania; (D.V.D.); (I.A.T.); (F.S.)
- Correspondence: (R.M.P.); (L.M.C.); Tel.: +40-21-352-2048 (R.M.P.); +40-21-352-2048 (L.M.C.)
| | - Dumitru Valentin Dragut
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, Pantelimon, 077145 Ilfov, Romania; (D.V.D.); (I.A.T.); (F.S.)
| | - Ioan Albert Tudor
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, Pantelimon, 077145 Ilfov, Romania; (D.V.D.); (I.A.T.); (F.S.)
| | - Victor Kuncser
- National Institute of Materials Physics, Atomistilor 105bis, P.O. Box MG-7, 077125 Bucharest-Magurele, Romania; (V.K.); (N.I.)
| | - Nicusor Iacob
- National Institute of Materials Physics, Atomistilor 105bis, P.O. Box MG-7, 077125 Bucharest-Magurele, Romania; (V.K.); (N.I.)
| | - Florentin Stoiciu
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei blvd, Pantelimon, 077145 Ilfov, Romania; (D.V.D.); (I.A.T.); (F.S.)
| |
Collapse
|
34
|
Aisida SO, Akpa PA, Ahmad I, Zhao TK, Maaza M, Ezema FI. Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109371] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|