1
|
Arabmofrad S, Lazzara G, Miller R, Jafari SM. Surface modification of bentonite and montmorillonite as novel nano-adsorbents for the removal of phenols, heavy metals and drug residues. Adv Colloid Interface Sci 2024; 334:103334. [PMID: 39489119 DOI: 10.1016/j.cis.2024.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Montmorillonite (Mt) is one of the eco-friendly and low-cost nano-adsorbents for water and wastewater treatment. Interactions of Mt. with various modifiers such as surfactants and polymers make it an ideal adsorbent with good selectivity for the removal of phenols, heavy metals and drug residues from water and wastewater. Surface modification can improve the adsorption potential of Mt. due to increasing the number of adsorption sites and functional groups to remove a wide variety of contaminants. This paper shows a general overview of the structure, adsorptive characteristics, and applications of Mt. and modified Mt. (m-Mt). Also, recent progress made in using of natural and modified bentonite and Mt. for removing phenols, heavy metals and pharmaceuticals from water and wastewater are explained. Furthermore, it discusses the strategies used to increase the adsorption capacity of Mt. by surface modification with cationic surfactants, acids, and polymers. This article delivers an exploration of the current uses of bentonite and Mt. for water and wastewater treatment and encouraging results obtained in this review could aid in the application Mt. and m-Mt for the recovery of high added value compounds and removal of contaminants from aquatic systems.
Collapse
Affiliation(s)
- Sara Arabmofrad
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Giuseppe Lazzara
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - Reinhard Miller
- TU Darmstadt, Institute for Condensed Matter Physics, Hochschulstrasse 8, 64289 Darmstadt, Germany
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Ma Y, Yao Y, Deng Z, Zeng C, Liu Y, Ma J, Zhang Z. Hydrothermal N-doping, magnetization and ball milling co-functionalized sludge biochar design and its selective adsorption of trace concentration sulfamethoxazole from waters. CHEMOSPHERE 2024; 363:142855. [PMID: 39019195 DOI: 10.1016/j.chemosphere.2024.142855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
This study aimed to design an efficient and easily collected/regenerated adsorbent for trace concentration sulfamethoxazole (SMX) removal to eliminate its negative impacts on human health, reduce the risk of adsorbed SMX release and boost the reusability of adsorbent. Various multiple modified sludge-derived biochars (SBC) were synthesized in this work and applied to adsorb trace level SMX. The results demonstrated that hydrothermal N-doping, magnetization coupled with ball milling co-functionalized SBC (BMNSBC) displayed the greater adsorption ability for SMX. The maximum adsorption capacity of BMNSBC for SMX calculated by Langmuir model was 1.02 × 105 μg/g, which was 12.9 times of SBC. Characterization combined with adsorption experiments (e.g., models fitting) and DFT calculation confirmed that π-π conjugation, Lewis acid-base, pore filling and Fe3O4 complexation were the primary forces driving SMX binding to BMNSBC. These diversified physicochemical forces contributed to the fine anti-interference of BMNSBC to background substances (e.g., inorganic compounds and organic matter) and its remarkable adsorption ability for SMX in diverse real waters. The great magnetization strength of BMNSBC was advantage for its collection and efficient regeneration by NaOH desorption. Additionally, BMNSBC exhibited an outstanding security in view of its low leaching levels of iron (Fe) and total nitrogen (TN). The multiple superiority of BMNSBC enable it to be a prospective material for emerging contaminants (e.g., SMX) purification, also offering a feasible disposal approach for municipal waste (e.g., sludge).
Collapse
Affiliation(s)
- Yongfei Ma
- Xianghu Laboratory, Hangzhou, 311231, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou, 311231, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | | | | | - Yan Liu
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
3
|
López-Cabeza R, Cox L, Gámiz B, Galán-Pérez JA, Celis R. Adsorption of sulfamethoxazole and ethofumesate in biochar- and organoclay-amended soil: Changes with adsorbent aging in the laboratory and in the field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173501. [PMID: 38797398 DOI: 10.1016/j.scitotenv.2024.173501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Biochars and organoclays have been proposed as efficient adsorbents to reduce the mobility of agrochemicals in soils. However, following their application to soils, these adsorbents undergo changes in their physicochemical properties over time due to their interaction with soil components. In this study, the adsorption capacity of a commercial biochar and a commercial organoclay for the antibiotic sulfamethoxazole (SFMX) and the pesticide ethofumesate (ETFM) was evaluated over aging periods of 3 months in the laboratory and 1 year in the field, subsequent to their application to a Mediterranean soil. The results showed that the adsorption of SFMX and ETFM in the soil amended with the adsorbents was greater than in the unamended soil, but for both chemicals, adsorption decreased with aging of the adsorbents in the soil. Characterization of the adsorbents before and after aging revealed physical blocking of adsorption sites by soil components. The loss of adsorption capacity of the adsorbents upon aging led to higher leaching of SFMX and ETFM in the soil containing field-aged adsorbents, although leaching remained lower than in unamended soil. Our findings reveal that, under the Mediterranean environment studied, the efficacy of the studied materials as adsorbents is maintained to a considerable extent for at least one year after their field application, which would have positive implications in their use for attenuating the dispersion of agricultural contaminants in the environment.
Collapse
Affiliation(s)
- Rocío López-Cabeza
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Lucía Cox
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Beatriz Gámiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain; Departamento de Química Inorgánica, Instituto de Química para la Energía y Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, 14014 Córdoba, Spain
| | - Jose Antonio Galán-Pérez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain; Environmental Sustainability and Health Institute, Technological University of Dublin, Greenway Hub, Grangegorman, Dublin, Ireland
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Zhu Y, Wang B, Farooq U, Li Y, Qi Z, Zhang Q. Effects of surfactants on the adsorption of norfloxacin onto ferrihydrite: comparison between anionic and cationic surfactants. ENVIRONMENTAL TECHNOLOGY 2024:1-11. [PMID: 38770654 DOI: 10.1080/09593330.2024.2354056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
There is little information on how widespread surfactants affect the adsorption of norfloxacin (NOR) onto iron oxide minerals. In order to elucidate the effects of various surfactants on the adsorption characteristics of NOR onto typical iron oxides, we have explored the different influences of sodium dodecylbenzene sulfonate (SDBS), an anionic surfactant, and didodecyldimethylammonium bromide (DDAB), a cationic surfactant, on the interactions between NOR and ferrihydrite under different solution chemistry conditions. Interestingly, SDBS facilitated NOR adsorption, whereas DDAB inhibited NOR adsorption. The adsorption-enhancement effect of SDBS was ascribed to the enhanced electrostatic attraction, the interactions between the adsorbed SDBS on ferrihydrite surfaces and NOR molecules, and the bridging effect of SDBS between NOR and iron oxide. In comparison, the adsorption-inhibition effect of DDAB owning to the adsorption site competitive adsorption between NOR and DDAB for the effective sites as well as the steric hindrance between NOR-DDAB complexes and the adsorbed DDAB on ferrihydrite surfaces. Additionally, the magnitude of the effects of surfactants on NOR adsorption declined with increasing pH values from 5.0 to 9.0, which was related to the amounts of surfactant binding to ferrihydrite surfaces. Moreover, when the background electrolyte was Ca2+, the enhanced effect of SDBS on NOR adsorption was caused by the formation of NOR-Ca2+-SDBS complexes. The inhibitory effect of DDAB was due to the DDAB coating on ferrihydrite, which undermined the cation-bridging effect. Together, the findings from this work emphasize the essential roles of widely existing surfactants in controlling the environmental fate of quinolone antibiotics.
Collapse
Affiliation(s)
- Yuwei Zhu
- Ecology Institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Bin Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Yanxiang Li
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan, People's Republic of China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Qiang Zhang
- Ecology Institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
5
|
Jiang Y, Zhang Y, Liang Y, Liu W, Wang Y, Yang J, Qiu R, Di HJ, A D. Migration of nanocolloid-carrying antibiotics in paddy red soil during the organic fertilization process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168204. [PMID: 37918725 DOI: 10.1016/j.scitotenv.2023.168204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Soil nanocolloids are highly mobile and can act as carriers for the transport of antibiotics to a wider and deeper range of soils; however, the inherent behavior and mechanism of nanocolloid-carrying antibiotics in soil remain unclear. In this study, we conducted a comprehensive investigation of the migration of antibiotics in paddy red soil during the organic fertilization process using four common soil nanocolloids: kaolin (KL), montmorillonite (MT), hematite (HT), and humic acid (HA). The results showed that nanocolloid carriers promoted the intra-medium (from soil surface to the bottom) and inter-medium transfer (from organic fertilizers to soil) of antibiotics. The migration mechanisms of antibiotics carried by the nanocolloids differed: the phenolic hydroxyl and carboxyl groups of HA esterified with the carboxyl groups of quinolones and phenolic hydroxyl groups of tetracyclines, respectively, while the oxygen atoms of HT formed stabilizing complexes with the soil, which could further adsorb antibiotics using their functional group-rich complexes. Smaller antibiotic compounds were adsorbed in the metal oxide interlayer of MT via cation exchange, whereas KL adsorbed antibiotics on its metal oxide surface layer in the same way but were susceptible to desorption. Additionally, nanocolloids changed the adsorption capacity of soil for antibiotics and influenced the enrichment of dominant/functional bacteria (e.g., Burkholderiaceae) and thus varied the vertical distribution of antibiotics in soil. These findings enhance our understanding of the migration behavior and mechanism of nanocolloid-carrying antibiotics in red paddy soil and provide a theoretical foundation for preventing and controlling antibiotic pollution in arable systems.
Collapse
Affiliation(s)
- Yu Jiang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yifei Zhang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuanyuan Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wen Liu
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yu Wang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiewen Yang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hong J Di
- Soil & Physical Science Department, Lincoln University, Lincoln, 7647, Christchurch, New Zealand
| | - Dan A
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention, Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
6
|
Hira NE, Lock SSM, Arshad U, Asif K, Ullah F, Farooqi AS, Yiin CL, Chin BLF, Huma ZE. Screening of Metal Oxides and Hydroxides for Arsenic Removal from Water Using Molecular Dynamics Simulations. ACS OMEGA 2023; 8:48130-48144. [PMID: 38144150 PMCID: PMC10734295 DOI: 10.1021/acsomega.3c07014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Arsenic in groundwater is a harmful and hazardous substance that must be removed to protect human health and safety. Adsorption, particularly using metal oxides, is a cost-effective way to treat contaminated water. These metal oxides must be selected systematically to identify the best material and optimal operating conditions for the removal of arsenic from water. Experimental research has been the primary emphasis of prior work, which is time-consuming and costly. The previous simulation studies have been limited to specific adsorbents such as iron oxides. It is necessary to study other metal oxides to determine which ones are the most effective at removing arsenic from water. In this work, a molecular simulation computational framework using molecular dynamics and Monte Carlo simulations was developed to investigate the adsorption of arsenic using various potential metal oxides. The molecular structures have been optimized and proceeded with sorption calculations to observe the adsorption capabilities of metal oxides. In this study, 15 selected metal oxides were screened at a pressure of 100 kPa and a temperature of 298 K for As(V) in the form of HAsO4 at pH 7. Based on adsorption capacity calculations for selected metal oxides/hydroxides, aluminum hydroxide (Al(OH)3), ferric hydroxide (FeOOH), lanthanum hydroxide La(OH)3, and stannic oxide (SnO2) were the most effective adsorbents with adsorption capacities of 197, 73.6, 151, and 42.7 mg/g, respectively, suggesting that metal hydroxides are more effective in treating arsenic-contaminated water than metal oxides. The computational results were comparable with previously published literature with a percentage error of 1%. Additionally, SnO2, which is rather unconventional to be used in this application, demonstrates potential for arsenic removal and could be further explored. The effects of pH from 1 to 13, temperature from 281.15 to 331.15 K, and pressure from 100 to 350 kPa were studied. Results revealed that adsorption capacity decreased for the high-temperature applications while experiencing an increase in pressure-promoted adsorption. Furthermore, response surface methodology (RSM) has been employed to develop a regression model to describe the effect of operating variables on the adsorption capacity of screened adsorbents for arsenic removal. The RSM models utilizing CCD (central composite design) were developed for Al(OH)3, La(OH)3, and FeOOH, having R2 values 0.92, 0.67, and 0.95, respectively, suggesting that the models developed were correct.
Collapse
Affiliation(s)
- Noor E. Hira
- CO2
Research Centre (CO2RES), Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Serene Sow Mun Lock
- CO2
Research Centre (CO2RES), Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Ushtar Arshad
- CO2
Research Centre (CO2RES), Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Khadija Asif
- CO2
Research Centre (CO2RES), Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Farman Ullah
- Centre
of Innovative Nanostructures & Nanodevices, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Abid Salam Farooqi
- CO2
Research Centre (CO2RES), Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- Centre
of Innovative Nanostructures & Nanodevices, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Chung Loong Yiin
- Department
of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
- Institute of Sustainable and Renewable Energy (ISuRE), Universiti
Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Bridgid Lai Fui Chin
- Department
of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
- Energy
and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Zill e Huma
- University
of the Punjab, Canal Rd, Quaid-i-Azam Campus, Lahore 54590, Punjab, Pakistan
| |
Collapse
|
7
|
El Messaoudi N, El Mouden A, Fernine Y, El Khomri M, Bouich A, Faska N, Ciğeroğlu Z, Américo-Pinheiro JHP, Jada A, Lacherai A. Green synthesis of Ag 2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic adsorption: characterization, experimental study, modeling, and DFT calculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81352-81369. [PMID: 35729389 DOI: 10.1007/s11356-022-21554-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Silver oxide (Ag2O) nanoparticles (NPs) were generated by synthesizing green leaf extract of Punica granatum, and afterwards they were used as adsorbent to remove the antibiotic additive sulfamethoxazole (SMX) from aqueous solutions. Prior of their use as adsorbent, the Ag2O NPs were characterized by various methods such as X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX), and transmission electron microscopy (TEM). The Ag2O NPs were found to be spherically shaped and stabilized by the constituents of the extract. Further, at SMX antibiotic concentration of 100 mg L-1, the Ag2O NPs achieved almost complete removal of 98.93% within 90 min, and by using 0.8 g L-1 of adsorbent dose at pH=4 and temperature T=308 K. In addition, the experimental data were well fitted with the theoretical Langmuir model indicating homogeneous adsorbed layer of the SMX antibiotic on the Ag2O NPs surface. The maximum uptake capacity was 277.85 mg g-1. A good agreement was also found between the kinetic adsorption data and the theoretical pseudo-second-order model. Regarding the thermodynamic adsorption aspects, the data revealed an endothermic nature and confirmed the feasibility and the spontaneity of the adsorption reaction. Furthermore, the regeneration study has shown that the Ag2O NPs could be efficiently reused for up to five cycles. The geometric structures have been optimized and quantum chemical parameters were calculated for the SMX unprotonated (SMX+/-) and protonated (SMX+) using density functional theory (DFT) calculation. The DFT results indicated that the unprotonated SMX+/- reacts more favorably on the Ag2O surface, as compared to the protonated SMX+. The SMX binding mechanism was predominantly controlled by the electrostatic attraction, hydrogen bond, hydrophobic, and π-π interactions. The overall data suggest that the Ag2O NPs have promising potential for antibiotic removal from wastewater.
Collapse
Affiliation(s)
- Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco.
| | - Abdelaziz El Mouden
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Yasmine Fernine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| | - Mohammed El Khomri
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Amal Bouich
- Department of Applied Physics, Institute of Design and Manufacturing (IDF), Polytechnic University of Valencia, 46000, Valencia, Spain
| | - Nadia Faska
- Laboratory of Process Engineering, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
- Faculty of applied sciences, Ibn Zohr University, 86153, Ait Melloul, Morocco
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | | | - Amane Jada
- Institute of Materials Science of Mulhouse (IS2M), High Alsace University, 68100, Mulhouse, France
| | - Abdellah Lacherai
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
| |
Collapse
|
8
|
Chen J, Zhang Q, Zhu Y, Zhang M, Zhu Y, Farooq U, Lu T, Qi Z, Chen W. Adsorption of fluoroquinolone antibiotics onto ferrihydrite under different anionic surfactants and solution pH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28059-x. [PMID: 37269523 DOI: 10.1007/s11356-023-28059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
To date, little information is available regarding the impacts of the widespread anionic surfactants on the adsorption behaviors of antibiotics onto typical iron oxides. Herein, we have investigated the effects of two typical surfactants (sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS)) on the adsorption of two widely used antibiotics (i.e., levofloxacin (LEV) and ciprofloxacin (CIP)) onto ferrihydrite. Results of kinetic experiments showed that the adsorption of antibiotics was well fitted by the pseudo-second-order kinetic models, indicating that the adsorption process might be controlled by chemisorption. The affinity of ferrihydrite toward CIP was greater than that toward LEV, which was ascribed to the higher hydrophobicity of CIP than LEV. Both surfactants enhanced antibiotic adsorption owing to SDS or SDBS molecules as bridge agents between ferrihydrite particles and antibiotics. Interestingly, the extent of the enhanced effects of surfactants on antibiotic adsorption declined as the background solution pH increased from 5.0 to 9.0, which was mainly due to the weaker hydrophobic interactions between antibiotics and the adsorbed surfactants on the iron oxide surfaces as well as the greater electrostatic repulsion between the anionic species of antibiotics and the negatively charged ferrihydrite particles at higher pH. Together, these findings emphasize the importance of widespread surfactants for illustrating the interactions between fluoroquinolone antibiotics and iron oxide minerals in the natural environment.
Collapse
Affiliation(s)
- Jiuyan Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian normal university, Fuzhou, 350007, Fujian, China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuwei Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Mengli Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yutong Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian normal university, Fuzhou, 350007, Fujian, China.
| |
Collapse
|
9
|
Mousavi SZ, Shadman HR, Habibi M, Didandeh M, Nikzad A, Golmohammadi M, Maleki R, Suwaileh WA, Khataee A, Zargar M, Razmjou A. Elucidating the Sorption Mechanisms of Environmental Pollutants Using Molecular Simulation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Seyedeh Zahra Mousavi
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, 1411944961, Iran
| | - Hamid Reza Shadman
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, 6351713178, Iran
| | - Meysam Habibi
- Department of Chemical Engineering, University of Tehran, Tehran, 6718773654, Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, 1411944961, Iran
| | - Arash Nikzad
- Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mahsa Golmohammadi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, 6351713178, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, 3313193685, Iran
| | - Wafa Ali Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha 23874, Qatar
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10 Turkey
| | - Masoumeh Zargar
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth WA 6027, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth WA 6027, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Leng Y, Wang W, Cai H, Chang F, Xiong W, Wang J. Sorption kinetics, isotherms and molecular dynamics simulation of 17β-estradiol onto microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159803. [PMID: 36397602 DOI: 10.1016/j.scitotenv.2022.159803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Microplastic is a new type of pollutant, which can act as a carrier for organic contaminants. It affects the migration and bioavailability of chemicals and potentially threatens the ecology. This work investigated the adsorption kinetics, isotherm and influencing factors of 17β-estradiol (E2) on three dominate microplastics. Then, used molecular dynamics (MD) simulation to analyze the adsorption mechanism. The results showed that E2 adsorption onto microplastics conformed well to the Pseudo-second-order kinetics and Redlich-Petersen isotherm model. The adsorption capacity of E2 on microplastics was polyethylene (PE) > polypropylene (PP) > polystyrene (PS). The small particle size of microplastics was conducive to the adsorption due to its large specific surface area. The thermodynamic parameters demonstrated the adsorption of E2 was a spontaneous and exothermic process, so low temperature was benefit for the adsorption. The MD simulation results indicated the adsorption of E2 on MPs belonged to surface adsorption. The order of E2 adsorption energy by three microplastics obtained by molecular dynamics simulation is consistent with the experimental results. This work may help to understand the molecular adsorption process and provide a theoretical basis for the combined ecotoxicity of microplastics.
Collapse
Affiliation(s)
- Yifei Leng
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, PR China
| | - Wei Wang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, PR China
| | - Huiping Cai
- Wuhan Municipal Ecology and Environment Bureau, Jianghan Branch, Wuhan 430015, PR China
| | - Fengyi Chang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, PR China
| | - Wen Xiong
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, PR China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
11
|
Silva do Nascimento D, Etcheverry M, Orduz AE, Waiman CV, Zanini GP. Adsorption of cationic surfactant as a probe of the montmorillonite surface reactivity in the alginate hydrogel composites. RSC Adv 2022; 12:35469-35476. [PMID: 36540257 PMCID: PMC9742988 DOI: 10.1039/d2ra07405b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2024] Open
Abstract
Adsorption of a cationic surfactant allowed to probe the surface reactivity of montmorillonite encapsulated in a composite of alginate hydrogels (A-MMT). Dodecylbenzyldimethylammonium chloride (BAC-12) was the surfactant used for these studies. BAC-12 is part of the widely used surfactant mixture known as benzalkonium chloride. XRD showed that up to three different types of basal spacing (d 001) were present within the composite indicating that as the concentration of adsorbed BAC-12 increases, populations with different adsorption conformational arrangements are present, even unexpanded clay remains. From the SEM-EDS spectra it is observed that the clay is distributed in the whole composite. In addition, the effect of the presence of cationic and anionic biocides on BAC-12 adsorption was studied. Cationic biocides such as tetradecyllbenzyldimethylammonium chlorides (BAC-14) and paraquat (PQ) show a competitive behavior for the clay adsorption sites at BAC-12 low concentration indicating an electrostatic adsorption mechanism. However, the presence of anionic contaminants such as 2,4-D and metsulfuron methyl do not affect surfactant adsorption. In all scenarios is observed an abrupt increase of BAC-12 adsorbed amount reaching values higher than the clay CEC suggesting strong tail-tail interactions. This occurs at concentrations 10 times lower than the CMC of BAC-12 promoted by clay encapsulation in the composite. In these composites the alginate does not affect the surface reactivity of the clay, but the formation of the hydrogel allows it to be easily extracted from aqueous media which makes it an interesting material with a potential use in water remediation.
Collapse
Affiliation(s)
- Danielle Silva do Nascimento
- INQUISUR (UNS-CONICET), Departamento de Química, Universidad Nacional del Sur Av. Alem 1253 B8000CPB-Bahía Blanca Argentina
| | - Mariana Etcheverry
- INQUISUR (UNS-CONICET), Departamento de Química, Universidad Nacional del Sur Av. Alem 1253 B8000CPB-Bahía Blanca Argentina
| | - Angie E Orduz
- INQUISUR (UNS-CONICET), Departamento de Química, Universidad Nacional del Sur Av. Alem 1253 B8000CPB-Bahía Blanca Argentina
| | - Carolina V Waiman
- INQUISUR (UNS-CONICET), Departamento de Química, Universidad Nacional del Sur Av. Alem 1253 B8000CPB-Bahía Blanca Argentina
| | - Graciela P Zanini
- INQUISUR (UNS-CONICET), Departamento de Química, Universidad Nacional del Sur Av. Alem 1253 B8000CPB-Bahía Blanca Argentina
| |
Collapse
|
12
|
Ye G, Deng H, Zhou S, Gao Y, Yan C. Coupling humic acid in Fe-bearing montmorillonite for enhanced adsorption and catalytic degradation of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90984-90994. [PMID: 35881294 DOI: 10.1007/s11356-022-22082-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Clay-based materials have attracted attention owing to their dual effects of adsorption and advanced oxidation degradation in removing organic pollutants. In this study, the introduction of humic acid (HA) in the Fe-bearing montmorillonite (Fe-Mt) nano platform enhanced its tetracycline (TC) adsorption and degradation were investigated. The result showed that the adsorption and degradation efficiency of humic acid/poly-hydroxyl-iron/montmorillonite (HA-Fe-Mt) was greater than those of Fe-Mt. The adsorption performance and characterization confirmed that HA-Fe-Mt had more functional groups, stronger hydrophobic character, and higher specific surface area. The introduction of HA onto the Fe-Mt platform enhanced its specific surface area, electrostatic interaction, and hydrophobic character, therefore providing more active sites to interact with the carbonyl and amide groups of TC. Moreover, the catalytic performance and characterization results revealed that HA-Fe-Mt had greater persulfate (PS) activation, the coupled HA would speed up the transmission of electrons between Fe (III) and PS in the Fe (III) / Fe (II) cycle when PS was captured by the HA-Fe-Mt system, and the in situ generated Fe accelerates the generation of reactive oxygen species (ROS) to further degrade TC. Consequently, HA can not only promote the adsorption of TC but also promote the degradation of TC in the Fe-Mt nano platform. HA-Fe-Mt provided a feasible and promising platform with PS activation for TC adsorption and degradation.
Collapse
Affiliation(s)
- Guangyu Ye
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Heng Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Sen Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Yuting Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Chunjie Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
13
|
Yang H, Ding Z, Zou Y, Liu Y, Zhang Y, Xia S. Enhanced adsorption of tetracycline using modified second pyrolysis oil-based drill cutting ash. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81760-81776. [PMID: 35737264 DOI: 10.1007/s11356-022-21504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
In this work, second pyrolysis oil-based drill cutting ash (OBDCA-sp) was modified using NaOH and cetyltrimethylammonium bromide (CTAB), respectively. The modified OBDCA-sp was used as the novel adsorbent for adsorption of tetracycline (TC) in aqueous solutions. The original and modified OBDCA-sp were characterized by SEM, XRD, FTIR, zeta potential analysis, contact angle, and BET. The maximum theoretical adsorption quantity (45 ℃) for TC was calculated as 1.7 mg/g using CTAB-OBDCA-sp as the adsorbent. The adsorption isotherm of TC on OBDCA-sp was fitted well with Freundlich model and the adsorption kinetic was illustrated by pseudo-second-order model. Neutral condition was favorable for the adsorption of TC. The result of regeneration experiment indicated the reusability of OBDCA-sp. The hydrogen bonding was the possible mechanism for TC adsorption. This paper developed the novel surface modification methods of OBDCA-sp and provided an approach for the resource utilization of OBDCA-sp as an environmental functional material.
Collapse
Affiliation(s)
- Hang Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Zimao Ding
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yilingyun Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yangxiya Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
14
|
Ji L, Ren G, Xu D, Fan B, Zhang Z, Yuan T, Yan Z, Wang X. Selective adsorption of various phosphorus species coexistence in water-soluble ammonium polyphosphate on goethite: Experimental investigation and molecular dynamics simulation. CHEMOSPHERE 2022; 307:135901. [PMID: 35940408 DOI: 10.1016/j.chemosphere.2022.135901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The geochemical processes of polyphosphates (poly-Ps) are important for phosphorus (P) management and environmental protection. Water-soluble ammonium polyphosphate (APP) containing various P species has been increasingly used as an alternative P-fertilizer. The various P species coexistence and the chelation of poly-Ps with mental would trigger the P's competitive adsorption and affect the APP's adsorption intensity on goethite, compared to single orthophosphate (P1). P adsorption behaviors of APP1 with two P species and APP2 with seven P species on goethite were investigated via batch experiments in comparison to the traditional P-fertilizer of mono-ammonium phosphate (MAP). Coadsorption of P1 and pyrophosphate (P2) on goethite was investigated by molecular dynamics (MD) simulation. The more Fe3+ dissolved from goethite as a bridge due to the chelation of poly-Ps in APP and contributed to the stronger APP adsorption on goethite compared with MAP. Ion chromatography and spectral analysis showed P1 and P2 in APP were mainly adsorbed by goethite via mainly forming bidentate complexes. The goethite preferentially adsorbed P1 at lower APP concentration but increased the poly-Ps' adsorption at higher APP concentration. MD simulation showed that electrostatic interaction and hydrogen bonds played a key role in water-phosphates-goethite systems. The P1 pre-adsorbed on goethite could be replaced by P2 at high P2 concentration. The results develop new insights regarding the selective adsorption of various P species coexistence in goethite-rich environments.
Collapse
Affiliation(s)
- Lingmei Ji
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China
| | - GenKuan Ren
- Material and Chemical Engineering College, Yibin University, No. 24 Wuliangye Avenue, Yibin, 644000, PR China
| | - Dehua Xu
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China
| | - Bingqian Fan
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, PR China
| | - Zhiye Zhang
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China
| | - Taiyan Yuan
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China
| | - Zhengjuan Yan
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| | - Xinlong Wang
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources of Ministry of Education, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| |
Collapse
|
15
|
Wei Q, Chen J, Zhang Q, Lu T, Farooq U, Chen W, Qi Z. Insight into the effect of phosphate on ferrihydrite colloid-mediated transport of tetracycline in saturated porous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80693-80704. [PMID: 35727510 DOI: 10.1007/s11356-022-21536-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Colloid-mediated contaminant mobility is absolutely critical for the environmental behavior of contaminants such as antibiotics in water resources. In this study, the influences of phosphate (a commonly inorganic ligand in the environment) on the ferrihydrite colloid-mediated transport of tetracycline (TC, a typical antibiotic) in porous media were investigated. In the absence of colloids, phosphate promoted TC mobility due to the competitive deposition of phosphate and TC on the sand surface as well as the electrostatic repulsion. Interestingly, ferrihydrite colloids could inhibit TC transport; however, the inhibitory effect of the colloids was weakened by the addition of phosphate. This phenomenon stemmed from colloid-associated TC mobility, the increased electrostatic repulsion induced by adsorbed phosphate, and deposition site competition effect. Another interesting finding was that the impacts of phosphate on the colloid-mediated mobility of TC were pH-dependent. That is, phosphate exhibited a weaker effect on the inhibitory role of ferrihydrite colloids in TC mobility at pH 5.0 than that at pH 7.0; specially, ferrihydrite colloids acted as possible carriers of TC and facilitated antibiotic transport at pH 9.0. The observations were ascribed to different influences of phosphate on the binding affinity of ferrihydrite toward TC and the mobility of free TC under different pH conditions. Therefore, the findings of this study provide useful information about the fate and co-transport of antibiotics and natural mineral colloids in the presence of inorganic ligands in the aquatic environment.
Collapse
Affiliation(s)
- Qiqi Wei
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Taotao Lu
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-Physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
16
|
The mechanisms involved into the inhibitory effects of ionic liquids chemistry on adsorption performance of ciprofloxacin onto inorganic minerals. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Liang L, Yao Y, Zhu X, Wang S, Yin X, Xiao Y, Ding Y, Du Z. Preparation of hypercrosslinked polymer with benzotriazole and its derivatives as monomers and high-efficiency adsorption of tetracycline. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04981-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Hu X, Peng K, Chen Y, Chen X, Liu S, Zhao Y, Wu Y, Xu Z. Effect of g-C 3N 4 on biodiversity and structure of bacterial community in sediment of Xiangjiang River under tetracycline pressure. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:503-515. [PMID: 35181861 DOI: 10.1007/s10646-022-02525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Photocatalysts have been widely prepared and used in wastewater treatment. Although the influence of photocatalyst application on survival and activity of organisms has been examined, its impact on composition and diversity of microbial community is not fully understood. In this study, the impact of photocatalyst g-C3N4 (Graphitic carbon nitride) on microbial communities in riverbed sediments polluted by antibiotic tetracycline (TC) was investigated. The sediment samples collected from the Xiangjiang River of China were exposed to different concentrations of TC, g-C3N4 and TC/g-C3N4 and the bacterial community were analyzed by Illumina sequencing. The results showed that the dominant bacterial phyla were Acidobacteriota, Proteobacteria, Actinobacteriota, and Chloroflexi in the study site. When compared to the control treatments, the application of TC, g-C3N4 and TC/g-C3N4 exhibited distinguishable effects on bacterial community structure in sediments. The presence of TC had greater influence on bacterial composition, while g-C3N4 and TC/g-C3N4 had less influence on bacteria. The diversity and richness of microorganisms in sediment increased under g-C3N4 application and reached the highest values when g-C3N4 was 75 mg/kg. The photocatalyst g-C3N4 restored bacterial community diversity affected by TC, reduced the TC residues in aquatic environment, and eliminated the side effects of TC application in sediments. Our study indicated that g-C3N4 was an environmentally friendly photocatalyst with lightly negative effects on microbial community in riverbed sediments, and could be used for effective remediation of TC-contaminated environments.
Collapse
Affiliation(s)
- Xuemei Hu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Kuan Peng
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yijun Chen
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL, 60484, USA
| | - Shuguang Liu
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yaohui Wu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China.
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China.
| | - Zhenggang Xu
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A and F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
19
|
Wei Q, Zhang Q, Chen J, Lu T, Zhou K, Chen W, Qi Z, Li D. Insight into the inhibitory mechanism of inorganic ligands on the adsorption of tetracycline onto hematite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114056. [PMID: 34741949 DOI: 10.1016/j.jenvman.2021.114056] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Inorganic ligands, ubiquitous in the natural environment, can interact with iron oxide minerals. To date, our knowledge regarding the effects of inorganic ligands on the adsorption properties of antibiotics onto iron oxides is still limited. In this work, the influences of different inorganic ligands (chosen iodate, silicate, and phosphate as the model ligands) on the adsorption of tetracycline (TC) onto hematite were examined. Adsorption isotherms indicated that inorganic ligands inhibited TC adsorption. The observations were attributed to the increase of electrostatic repulsion between anionic species (i.e., TC-) and negatively charged hematite particles as well as the competition between TC- species and inorganic ligand anions for the adsorption sites on hematite surfaces. Interestingly, the inhibitory effects of the three inorganic ligands were in the order of phosphate > silicate > iodate; the trend was stemmed from their differences in the binding affinities to hematite and the molecular size. When the background solutions contained divalent cations (e.g., Ca2+), surface precipitation of Ca-inorganic ligand compounds on hematite was another important mechanism for the inhibitory effects. Furthermore, adsorption of TC onto hematite with or without inorganic ligands was strongly affected by solution pH, which was due to the combination of the amphoteric behavior of TC and highly pH-dependent surface charges of the hematite mineral. Current results highlight the critical roles of ubiquitous inorganic ligands in revealing the fate of tetracycline antibiotics in natural systems.
Collapse
Affiliation(s)
- Qiqi Wei
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Kun Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Deliang Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
20
|
Wang M, Zhang Q, Lu T, Chen J, Wei Q, Chen W, Zhou Y, Qi Z. Colloid-mediated transport of tetracycline in saturated porous media: Comparison between ferrihydrite and montmorillonite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113638. [PMID: 34488115 DOI: 10.1016/j.jenvman.2021.113638] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Given the ubiquitous mineral (e.g., clays and iron oxides) playing critical roles in impacting the fate of antibiotics in the subsurface environment, the effects of two mineral colloids (i.e., ferrihydrite and montmorillonite) on tetracycline (TC, a representative of antibiotic) transport in sand columns were investigated in this study. Interestingly, the results clearly showed that ferrihydrite colloids inhibited TC transport, while montmorillonite colloids enhanced TC mobility under neutral conditions (pH 7.0). This phenomenon resulted from the positively charged ferrihydrite colloids with weak mobility, which assisted TC deposition; besides, providing additional deposition sites for TC by the deposited ferrihydrite colloids was another important mechanism. In contrast, the transport-enhancement effect of montmorillonite on TC was attributed to the strong binding affinity of TC to clay particles as well as the competition between colloids and TC for deposition sites on sand surfaces. Moreover, the transport-inhibition effect of ferrihydrite at pH 7.0 was greater than that at pH 5.0, mainly due to more colloid-associated TC under neutral conditions. Surprisingly, ferrihydrite colloids could act as carriers of antibiotics and enhanced TC transport at pH 9.0. Because the surface charge of colloids was altered to negative and could break through the column. Meanwhile, the transport-enhancement effect of montmorillonite decreased with increasing pH from 5.0 to 9.0, resulting from the decrease of colloid-adsorbed TC. Furthermore, colloid-mediated transport of TC was influenced by ionic strength, which affected the aggregation characteristics of colloids and the binding affinities of TC to minerals. These findings provide critical information for assessing the risks of antibiotics in aquatic ecosystems where abundant natural minerals are present.
Collapse
Affiliation(s)
- Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China; Department of Hydrology, University of Bayreuth, Bayreuth, D, 95440, Germany
| | - Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiqi Wei
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
21
|
Juela D, Vera M, Cruzat C, Alvarez X, Vanegas E. Mathematical modeling and numerical simulation of sulfamethoxazole adsorption onto sugarcane bagasse in a fixed-bed column. CHEMOSPHERE 2021; 280:130687. [PMID: 33964744 DOI: 10.1016/j.chemosphere.2021.130687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Having rigorous mathematical models is essential for the design and scaling of adsorption columns. In this study, the dynamic behavior of the sulfamethoxazole adsorption on sugarcane bagasse was studied and compared using analytical models and a theoretical mechanistic model. Initially, fixed-bed column tests were carried out at different flow rates and bed heights. Then, the experimental data were fitted with the most widely used analytical kinetic models, and their fit and fixed-bed parameters were compared with the mechanistic model. Of all analytical models analyzed, the Log-Gompertz model was the one that had the best agreed with experimental data. Although some analytical models fitted the experimental data accurately, their usefulness was questionable. Their parameters did not show a clear relationship with the change in operating conditions, and in certain cases had different behavior from that observed in experimentation. Conversely, the mechanistic model not only predicted the breakthrough curves with great accuracy in the initial and transition stage (R2 > 0.92; SSE < 0.06), but it also estimated relevant parameters. Additionally, the effects of the global mass transfer coefficient (Ki) and the axial dispersion coefficient (Dz) on breakthrough curves were studied using the mechanistic model. Increasing Ki increased the slope of the breakthrough curves with a faster adsorption rate. Similarly, high values of Dz produced lower adsorption capacities of the adsorbent; and it was established that the axial dispersion is relevant in SMX adsorption on SB. The theoretical model presented can be used for the design, scaling, and optimization of adsorption columns.
Collapse
Affiliation(s)
- Diego Juela
- Chemical Engineering, Faculty of Chemical Sciences, University of Cuenca, 010203, Cuenca, Ecuador
| | - Mayra Vera
- Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, 010203, Cuenca, Ecuador
| | - Christian Cruzat
- Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, 010203, Cuenca, Ecuador
| | - Ximena Alvarez
- Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, 010203, Cuenca, Ecuador
| | - Eulalia Vanegas
- Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, 010203, Cuenca, Ecuador.
| |
Collapse
|
22
|
Liao Q, Rong H, Zhao M, Luo H, Chu Z, Wang R. Interaction between tetracycline and microorganisms during wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143981. [PMID: 33316507 DOI: 10.1016/j.scitotenv.2020.143981] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Tetracycline (TC) is a commonly used human and veterinary antibiotic that is mostly discharged into wastewater in the form of the parent compounds. At present, wastewater treatment plants (WWTPs) use activated sludge processes that are not specifically designed to remove such pollutants. Considering the biological toxicity of TC in aquatic environment, the migration and fate of TC in the process of wastewater treatment deserve attention. This paper reviews the influence of TC on the functional bacteria in the sludge matrix and the development of tetracycline-resistant genes, and also discusses their adsorption removal rates, their adsorption kinetics and adsorption isotherm models, and infers their adsorption mechanism. In addition, the biodegradation of TC in the process of biological treatment is reviewed. Co-metabolism and the role of dominant bacteria in the degradation process are described, along with the formation of degradation byproducts and their toxicity. Furthermore, the current popular integrated coupling-system for TC degradation is also introduced. This paper systematically introduces the interaction between TC and activated sludge in WWTPs. The review concludes by providing directions to address research and knowledge gaps in TC removal from wastewater.
Collapse
Affiliation(s)
- Quan Liao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Huayong Luo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhaorui Chu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Randeng Wang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
23
|
A simple cation exchange model to assess the competitive adsorption between the herbicide paraquat and the biocide benzalkonium chloride on montmorillonite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Zhu Y, Yang Q, Lu T, Qi W, Zhang H, Wang M, Qi Z, Chen W. Effect of phosphate on the adsorption of antibiotics onto iron oxide minerals: Comparison between tetracycline and ciprofloxacin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111345. [PMID: 32961496 DOI: 10.1016/j.ecoenv.2020.111345] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
With the broadly application of antibiotics to treat infectious diseases in humans and animals, antibiotic contaminants such as tetracycline (TC) and ciprofloxacin (CIP) have been detected in soil environments, where iron oxide minerals and phosphate are ubiquitous. To date, the influence of phosphate on the adsorption behaviors of TC/CIP onto iron oxides is still poorly understood. In this study, the effects of phosphate on the adsorptions of TC and CIP onto iron oxide minerals were investigated. Adsorption isotherms showed that the adsorption affinities of TC and CIP onto the three iron oxide minerals were in the order of goethite > hematite > magnetite with or without phosphate, the trend was dominated by different surface area and amount of surface hydroxyl groups of iron oxide minerals. Meanwhile, TC contains more functional groups than CIP for bonding, which resulted in greater adsorption affinity of three iron oxides to TC than that to CIP. Interestingly, phosphate weakened TC adsorption, while enhanced CIP adsorption, on the three iron oxides. This observation was ascribed to that phosphate anion enhanced the surface negative charge of iron oxides, which reinforced the electrostatic repulsion between iron oxides and negatively charged TC, also reinforced the electrostatic attraction between iron oxides and positively charged CIP. Furthermore, the inhibitory effect of phosphate on TC adsorption was dramatically enhanced at high pH, while the promoting effect of phosphate on CIP adsorption was slightly changed with various pH. Our results highlight the importance of phosphate in exploring the environmental fate of antibiotics in natural environment.
Collapse
Affiliation(s)
- Yuwei Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qingxin Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China; Department of Hydrology, University of Bayreuth, Bayreuth D, 95440, Germany
| | - Wei Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
25
|
Zhang H, Lu T, Zhang R, Wang M, Krishnan S, Liu S, Zhou Y, Li D, Qi Z. Effects of clay colloids on ciprofloxacin transport in saturated quartz sand porous media under different solution chemistry conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110754. [PMID: 32446105 DOI: 10.1016/j.ecoenv.2020.110754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/23/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics, a highly prevalent class of environmental organic pollutants, are becoming a matter of global concern. Clay minerals that are ubiquitous in subsurface environments may play an important role in the fate and transport of antibiotics. Taking ciprofloxacin (CIP) as a model antibiotic, this work explored the role of clay colloids (kaolinite and montmorillonite) on the adsorption and transport of CIP under different chemical solution conditions. The adsorption isotherms showed that montmorillonite colloids had a larger CIP sorption capacity than kaolinite colloids. The results of transport experiments indicated that montmorillonite colloids could promote CIP transport in saturated sand columns, but the addition of kaolinite colloids affected CIP mobility to a much smaller extent. The much stronger transport-enhancement effect of montmorillonite colloids was due to CIP adsorbed strongly to the colloids and desorption hysteresis of colloid-adsorbed CIP, likely stemming from the intercalation of this antibiotic in the interlayer of montmorillonite. Interestingly, transport of clay colloids increased with the increasing pH from 5.0 to 9.0; however, CIP transport decreased with the increasing pH in the presence of clay colloids. The observations were likely attributable to pH-dependent ciprofloxacin adsorption/desorption to clay minerals. Increasing the concentrations of NaCl and CaCl2 generally decreased the contaminant-mobilizing ability of montmorillonite colloids, mainly by increasing the aggregation of colloids and thus, decreasing the transport of colloid-adsorbed CIP. Moreover, under the test conditions (1 mM NaCl and pH 7.0), the presence of CIP inhibited the transport of clay colloids due to the increase in aggregate size of clay colloids with the addition of CIP. Overall, these findings suggest that clay colloids with high adsorption abilities for antibiotics in the subsurface environment may act as a carrier for certain antibiotic compounds.
Collapse
Affiliation(s)
- Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China; Department of Hydrology, University of Bayreuth, Bayreuth D, 95440, Germany
| | - Ruoyu Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Srinivasan Krishnan
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Shanhu Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Deliang Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
26
|
Ma Y, Yang L, Wu L, Li P, Qi X, He L, Cui S, Ding Y, Zhang Z. Carbon nanotube supported sludge biochar as an efficient adsorbent for low concentrations of sulfamethoxazole removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137299. [PMID: 32088478 DOI: 10.1016/j.scitotenv.2020.137299] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 05/12/2023]
Abstract
A novel adsorbent of sludge biochar (SBC) and multi-walled carbon nanotube (CNT) composite was synthesized (CNT-SBC) to remove low concentrations of sulfamethoxazole (SMX) from water. The key factors of dose, contact time, pH and temperature were investigated. Higher dose of adsorbents provided more active sites for SMX adsorption. The effect of pH was due to the electrostatic interaction. Increasing the temperature was beneficial to SMX adsorption, which was a spontaneous endothermic process and the strength of the spontaneous increased with CNT supporting. As pseudo-second-order, Elovich, Langmuir and Freundlich models fitted the experimental data better, this suggested that both physisorption and chemisorption played vital roles during the adsorption process. In addition, liquid film diffusion was the main rate-limiting step of adsorption. Compared with SBC (5.43 × 103 μg g-1), CNT-SBC-1 (CNT:SBC = 1:2), CNT-SBC-2 (CNT:SBC = 1:4) and CNT-SBC-3 (CNT:SBC = 1:6) exhibited better adsorption performance with up to 2.35 × 104, 1.49 × 104 and 1.22 × 104 μg g-1 at 25 °C, respectively. The characterization analysis demonstrated that the stronger adsorption capacity of CNT-SBC was mainly attributed to the pore filling, functional groups complexation and π-π interaction. In summary, as an efficient and environment-friendly adsorbent, CNT-SBC has promising potential for low concentrations of SMX and other emerging contaminants removal from water.
Collapse
Affiliation(s)
- Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, Tianjin 300191, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
27
|
Parvizi Ghaleh S, Khodapanah E, Tabatabaei-Nezhad SA. Comprehensive monolayer two-parameter isotherm and kinetic studies of thiamine adsorption on clay minerals: Experimental and modeling approaches. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Kong Y, Zhuang Y, Han K, Shi B. Enhanced tetracycline adsorption using alginate-graphene-ZIF67 aerogel. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124360] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Study on ionic liquid modified montmorillonite and molecular dynamics simulation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124311] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|