1
|
Yuan B, Jin H, Kong Y, Xu X, Yang M. Gelatin-based ionic hydrogel for intelligent fire-alarm system with considerable toughness, flame retardancy, and thermoelectric performance. Int J Biol Macromol 2024; 278:135006. [PMID: 39181363 DOI: 10.1016/j.ijbiomac.2024.135006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Temperature-responsive materials with excellent reliability, sensitivity, and flame-retardant properties have always been an urgent need in the field of intelligent fire protection. In this discourse, we introduce a novel thermosensitive ionic hydrogel coating (gelatin/poly(acrylamide-co-acrylic acid)/CaCl2/spindle-shaped aluminum hydroxide nanosheet/glycerol, HCA) synthesized via free radical polymerization. HCA not only demonstrates considerable mechanical properties with a fracture strain of up to 842.5 % and a maximum tensile strength of 0.77 MPa but also exhibits notable flame retardancy and adhesion. It effectively covers combustible surfaces, providing outstanding fire protection. Notably, HCA boasts a Seebeck coefficient of up to 10.1 mV/K, significantly surpassing conventional thermoelectric materials. The well-established linear relationship between the generated voltage and temperature variation enables HCA-based intelligent fire-alarm system to accurately emit continuous alerts during fire incidents and swiftly transmit alarm signals to terminal devices. The development of this intelligent fire-alarm system presents new avenues in intelligent fire-safety technologies.
Collapse
Affiliation(s)
- Bihe Yuan
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China.
| | - Hang Jin
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Yue Kong
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Xichen Xu
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Man Yang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China.
| |
Collapse
|
2
|
Zhu J, Zhang Z, Wen Y, Song X, Tan WK, Ong CN, Li J. Recent Advances in Superabsorbent Hydrogels Derived from Agro Waste Materials for Sustainable Agriculture: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39215710 PMCID: PMC11487571 DOI: 10.1021/acs.jafc.4c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Superabsorbent hydrogels made from agro waste materials have the potential to promote sustainable agriculture and environmental sustainability. These hydrogels not only help reduce water consumption and increase crop yields but also contribute to minimizing waste and lowering greenhouse gas emissions. Recent research on superabsorbent hydrogels derived from agro wastes has focused on the preparation of hydrogels based on natural polymers isolated from agro wastes, such as cellulose, hemicellulose, and lignin. This review provides an in-depth examination of hydrogels developed from raw agro waste materials and natural polymers extracted from agro wastes, highlighting that these studies start with raw wastes as the main materials. The utilization strategies for specific types of agro wastes are comprehensively described. This review outlines different methods utilized in the production of these hydrogels, including physical cross-linking techniques such as dissolution-regeneration and freeze-thawing, as well as chemical cross-linking methods involving various cross-linking agents and graft polymerization techniques such as free radical polymerization, microwave-assisted polymerization, and γ radiation graft polymerization. Specifically, this review explores the applications of agro waste-based superabsorbent hydrogels in enhancing soil properties such as water retention and slow-release of fertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Jingling Zhu
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
| | - Zhongxing Zhang
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Yuting Wen
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- National
University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China
- National
University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China
| | - Xia Song
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Wee Kee Tan
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
| | - Choon Nam Ong
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
- Saw Swee
Hock School of Public Health, National University
of Singapore, 12 Science
Drive 2, Singapore 117549, Singapore
| | - Jun Li
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
- National
University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China
- National
University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China
| |
Collapse
|
3
|
Khatoon M, Ali A, Hussain MA, Haseeb MT, Sher M, Alsaidan OA, Muhammad G, Hussain SZ, Hussain I, Bukhari SNA. A superporous and pH-sensitive hydrogel from Salvia hispanica (chia) seeds: stimuli responsiveness, on-off switching, and pharmaceutical applications. RSC Adv 2024; 14:27764-27776. [PMID: 39224645 PMCID: PMC11367392 DOI: 10.1039/d4ra04770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The use of plant seed-based hydrogels to design drug delivery systems (DDSs) has increased due to their swellable, pH-responsive, biocompatible, biodegradable, and non-toxic nature. Herein, the chia seeds hydrogel (CSH) was extracted through an aqueous extraction method to explore its pH and salt-responsive swelling behavior and sustained release potential. The CSH was characterized using Fourier transform infrared (FT-IR) and solid-state cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (solid/state CP-MAS 13C/NMR) spectra. Thermal analysis indicated that the CSH is a thermally stable material and decomposes in two steps. The scanning electron microscope (SEM) images of CSH witnessed the existence of microscopic channeling and a superporous nature with average pore sizes of 18 ± 11 μm (transverse cross-sections) and 23 ± 15 μm (longitudinal cross-sections). The CSH is a haemocompatible material. The CSH revealed pH and saline-responsive swelling in powder and compressed form (tablet) in the following order; distilled water (DW) > pH 7.4 > pH 6.8 > pH 1.2. Moreover, the swelling of CSH followed second-order kinetics. The swelling of CSH powder and tablets was decreased with increasing salt concentration. The pH, solvent, and saline responsive on/off switching (swelling/deswelling) results of the CSH and tablets disclosed its stimuli-responsive nature. The CSH prolonged the release of valsartan for 5 h at pH 7.4, whereas, negligible release (19.3%) was noted at pH 1.2. The valsartan release followed first-order kinetics and the non-Fickian diffusion. In conclusion, the CSH is a stimuli-responsive smart material with great potential to develop pH-sensitive and targeted DDSs.
Collapse
Affiliation(s)
- Maria Khatoon
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Arshad Ali
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab Lahore 54590 Pakistan +923468614959
| | | | - Muhammad Sher
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Omar A Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore Lahore 54000 Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management Sciences Lahore Cantt. 54792 Pakistan
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management Sciences Lahore Cantt. 54792 Pakistan
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka Aljouf 72388 Saudi Arabia
| |
Collapse
|
4
|
Liu X, Xu X, Xu R, Wang N, Yang F, Yang C, Kong Y, Litaor MI, Lei Z. Preparation and properties of a metal-organic frameworks polymer material based on Sa-son seed gum capable of simultaneously absorbing liquid water and water vapor. Int J Biol Macromol 2024; 269:132158. [PMID: 38718997 DOI: 10.1016/j.ijbiomac.2024.132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Atmospheric water harvesting (AWH) technology has attracted significant attention as an effective strategy to tackle the global shortage of freshwater resources. Work has focused on the use of hydrogel-based composite adsorbents in water harvesting and water conservation. The approaches adopted to make use of hygroscopic inorganic salts which subject to a "salting out" effect. In this study, we report the first use of modified UIO-66-NH2 as a functional steric cross-linker and Sa-son seed gum was used as polymeric substrate to construct super hygroscopic hydrogels by free radical copolymerization. The maximum water uptake on SMAGs (572 cm3·g-1) outperforms pure UIO-66-NH2 (317 cm3·g-1). Simultaneously, our first attempt to use it for anti-evaporation applications in an arid environment (Lanzhou, China) simulating sandy areas. The evaporation rate of the anti-evaporation material treated with 0.20 % super moisture-absorbent gels (SMAGs) decreased by 6.1 % over 64 h period under natural condition in Lanzhou, China. The prepared material can not only absorb liquid water but also water vapor, which can provide a new way for water collection and conservation technology. The design strategy of this material has wide applications ranging from atmospheric water harvesting materials to anti-evaporation technology.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xueqing Xu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rongnian Xu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Na Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Fenghong Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cailing Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yanrong Kong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - M Iggy Litaor
- Department of Precision Agriculture, MIGAL Galilee Research Institute, P.O.B. 831, 11016 Kiryat Shmona, Israel; Department of Environmental Sciences, Tel Hai College, 1220800, Upper Galilee, Israel
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Yu C, Han Z, Sun H, Tong J, Hu Z, Wang Y, Fang X, Yue W, Qian S, Nie G. Balancing mechanical property and swelling behavior of bacterial cellulose film by in-situ adding chitosan oligosaccharide and covalent crosslinking with γ-PGA. Int J Biol Macromol 2024; 267:131280. [PMID: 38640644 DOI: 10.1016/j.ijbiomac.2024.131280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024]
Abstract
Bacterial cellulose (BC) is an ideal candidate material for drug delivery, but the disbalance between the swelling behavior and mechanical properties limits its application. In this work, covalent crosslinking of γ-polyglutamic acid (γ-PGA) with the chitosan oligosaccharide (COS) embedded in BC was designed to remove the limitation. As a result, the dosage, time, and batch of COS addition significantly affected the mechanical properties and the yield of bacterial cellulose complex film (BCCF). The addition of 2.25 % COS at the incubation time of 0.5, 1.5, and 2 d increased the Young's modulus and the yield by 5.65 and 1.42 times, respectively, but decreased the swelling behavior to 1774 %, 46 % of that of native BC. Covalent γ-PGA transformed the dendritic structure of BCCF into a spider network, decreasing the porosity and increasing the swelling behavior by 3.46 times. The strategy balanced the swelling behavior and mechanical properties through tunning hydrogen bond, electrostatic interaction, and amido bond. The modified BCCF exhibited a desired behavior of benzalkonium chlorides transport, competent for drug delivery. Thereby, the strategy will be a competent candidate to modify BC for such potential applications as wound dressing, artificial skin, scar-inhibiting patch, and so on.
Collapse
Affiliation(s)
- Chenrui Yu
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China; College of Biological Science and Medical Engineering, Donghua University, 201620, Shanghai, China
| | - Zhenxing Han
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Hongxia Sun
- College of Chemistry and Materials Science, Anhui Normal University, 241002 Wuhu, China.
| | - Jie Tong
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Ziwei Hu
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Yu Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wenjin Yue
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| | - Senhe Qian
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| | - Guangjun Nie
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| |
Collapse
|
6
|
Afewerki S, Edlund U. Unlocking the Power of Multicatalytic Synergistic Transformation: toward Environmentally Adaptable Organohydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306657. [PMID: 37824080 DOI: 10.1002/adma.202306657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Indexed: 10/13/2023]
Abstract
A sustainable and efficient multicatalytic chemical transformation approach is devised for the development of all-biobased environmentally adaptable polymers and gels with multifunctional properties. The catalytic system, utilizing Lignin aluminum nanoparticles (AlNPs)-aluminum ions (Al3+ ), synergistically combines multiple catalytic cycles to create robust, mechanically stable, and versatile organohydrogels. Single catalytic cycles alone fail to achieve desired results, highlighting the importance of cooperatively combining different cycles for successful outcomes. The transformation involves free radical crosslinking, reversible quinone-catechol reactions, and an autocatalytic mechanism, resulting in a dual crosslinking strategy that incorporates both covalent and ionic crosslinking. This approach creates a dynamic gel system with combined energy dissipation and storage mechanisms. The engineered organohydrogels demonstrate vital multifunctionalities such as good thermal stability, self-healing, and adhesive properties, flame-retardancy, mechanical resilience and durability, conductivity, viscoelastic properties, environmental adaptability, and resistance to extreme conditions such as freezing and drying. The developed catalytic technology and resulting gels hold significant potential for applications in flexible electronics, energy storage, actuators, and sensors.
Collapse
Affiliation(s)
- Samson Afewerki
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| | - Ulrica Edlund
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| |
Collapse
|
7
|
Jiao Y, Su T, Chen Y, Long M, Luo X, Xie X, Qin Z. Enhanced Water Absorbency and Water Retention Rate for Superabsorbent Polymer via Porous Calcium Carbonate Crosslinking. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2575. [PMID: 37764604 PMCID: PMC10536887 DOI: 10.3390/nano13182575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
To improve the water absorbency and water-retention rate of superabsorbent materials, a porous calcium carbonate composite superabsorbent polymer (PCC/PAA) was prepared by copolymerization of acrylic acid and porous calcium carbonate prepared from ground calcium carbonate. The results showed that the binding energies of C-O and C=O in the O 1s profile of PCC/PAA had 0.2 eV and 0.1-0.7 eV redshifts, respectively, and the bonding of -COO- groups on the surface of the porous calcium carbonate led to an increase in the binding energy of O 1s. Furthermore, the porous calcium carbonate chelates with the -COO- group in acrylic acid through the surface Ca2+ site to form multidirectional crosslinking points, which would increase the flexibility of the crosslinking network and promote the formation of pores inside the PCC/PAA to improve the water storage space. The water absorbency of PCC/PAA with 2 wt% porous calcium carbonate in deionized water and 0.9 wt% NaCl water solution increased from 540 g/g and 60 g/g to 935 g/g and 80 g/g, respectively. In addition, since the chemical crosslinker N,N'-methylene bisacrylamide is used in the polymerization process of PCC/PAA, N,N'-methylene bisacrylamide and porous calcium carbonate enhance the stability of the PCC/PAA crosslinking network by double-crosslinking with a polyacrylic acid chain, resulting in the crosslinking network of PCC/PAA not being destroyed after water absorption saturation. Therefore, PCC/PAA with 2 wt% porous calcium carbonate improved the water-retention rate by 244% after 5 h at 60 °C, and the compressive strength was approximately five-times that of the superabsorbent without porous calcium carbonate.
Collapse
Affiliation(s)
- Yixin Jiao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (Y.J.); (T.S.); (X.L.); (X.X.)
| | - Tongming Su
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (Y.J.); (T.S.); (X.L.); (X.X.)
| | - Yongmei Chen
- Guilin Zhuorui Food Ingredients Co., Ltd., Guilin 541001, China; (Y.C.); (M.L.)
| | - Minggui Long
- Guilin Zhuorui Food Ingredients Co., Ltd., Guilin 541001, China; (Y.C.); (M.L.)
| | - Xuan Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (Y.J.); (T.S.); (X.L.); (X.X.)
| | - Xinling Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (Y.J.); (T.S.); (X.L.); (X.X.)
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (Y.J.); (T.S.); (X.L.); (X.X.)
| |
Collapse
|
8
|
Hu Z, Liu D, Wang M, Yu C, Han Z, Xu M, Yue W, Nie G. β-Alanine enhancing the crosslink of chitosan/poly-(γ-glutamic acid) hydrogel for a potential alkaline-adapted wound dressing. Int J Biol Macromol 2023; 231:123157. [PMID: 36649867 DOI: 10.1016/j.ijbiomac.2023.123157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Tiny crosslink in chitosan (CS)/poly-(γ-glutamic acid) (γ-PGA) hydrogel leads to some disadvantages including low mechanical strength and high swelling. To enhance the crosslink of CS/γ-PGA hydrogel, amino acid (AA) was introduced to remove the drawbacks. The results indicated that AA can dramatically increase the crosslink and mechanical properties of CS/γ-PGA hydrogel, and AA chain length and concentration have a drastic effect on them. Particularly, 0.5 % β-Alanine (β-Ala) decreased the hydrogel by 70 % in porosity, 52 % in water solubility, and 30 % in swelling, but increased by 2.2-fold in elastic modulus, 2.08-fold in stress, and 1.53-fold in water retention. The porosity of the hydrogel correlates positively with the elastic modulus but negatively with the crosslinking degree. The effect of pH on CS/β-Ala/γ-PGA hydrogel was investigated in the load and release of benzalkonium chlorides (BAC). β-Ala strengthened pH response of the hydrogel in BAC load and release. The loading capacity increased with pH value, and 0.5 % β-Ala increased the hydrogel by 1.25-fold in the release capacity in alkaline environment, suggesting a good buffering effect of β-Ala on pH variation to accelerate the transportation of BAC. CS/β-Ala/γ-PGA hydrogel will be competently applied as a potential material for wound dressing in alkaline environment.
Collapse
Affiliation(s)
- Ziwei Hu
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Dandan Liu
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Mengmeng Wang
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Chenrui Yu
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Zhenxing Han
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Maodong Xu
- School of chemical and environmental engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Wenjin Yue
- School of chemical and environmental engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| | - Guangjun Nie
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| |
Collapse
|
9
|
Ali A, Haseeb MT, Hussain MA, Tulain UR, Muhammad G, Azhar I, Hussain SZ, Hussain I, Ahmad N. A pH responsive and superporous biocomposite hydrogel of Salvia spinosa polysaccharide- co-methacrylic acid for intelligent drug delivery. RSC Adv 2023; 13:4932-4948. [PMID: 36762082 PMCID: PMC9906000 DOI: 10.1039/d2ra05240g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Herein, a drug delivery system (SSH-co-MAA) based on the mucilage from seeds of Salvia spinosa (SSH; polymer) and methacrylic acid (MAA; monomer) is introduced for the controlled delivery of venlafaxine HCl using a sustainable chemical approach. The optimized conditions for the designing of the ideal formulation (M4) of SSH-co-MAA were found to be 2.5% (w/w) of SSH, 30.0% (w/w) of MAA, 0.4% (w/w) of both N,N'-methylene-bis-acrylamide (MBA; cross-linker) and potassium persulfate (KPS; initiator). The structure characterization of SSH-co-MAA by Fourier transform infrared and solid-state CP/MAS 13C-NMR spectroscopy has confirmed the grafting of MAA onto SSH. The thermogravimetric analysis revealed that SSH-co-MAA is a stable entity before and after loading of the venlafaxine HCl-loaded SSH-co-MAA (VSSH-co-MAA). Scanning electron microscopy images of SSH-co-MAA after swelling then freeze drying showed the superporous nature of the hydrogel. The gel fraction (%) of SSH-co-MAA depended upon concentration of SSH, MAA, and MBA. The porosity (%) was increased with the increase in the concentration of SSH and decreased with the decrease in the concentration of MAA and MBA. The swelling indices, venlafaxine HCl loading, and release (24 h at the pH of the gastrointestinal tract) from VSSH-co-MAA were found to be dependent on the pH of the swelling media and the concentration of SSH, MAA, and MBA. The release of venlafaxine HCl followed non-Fickian diffusion mechanism. Conclusively, SSH-co-MAA is a novel material for potential application in targeted drug delivery applications.
Collapse
Affiliation(s)
- Arshad Ali
- Institute of Chemistry, University of SargodhaSargodha 40100Pakistan
| | | | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab Lahore 54590 Pakistan
| | - Ume Ruqia Tulain
- Faculty of Pharmacy, University of SargodhaSargodha 40100Pakistan
| | | | - Irfan Azhar
- Department of Chemistry, College of Science, Southern University of Science and TechnologyShenzhen518055China
| | - Syed Zajif Hussain
- Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management SciencesLahore Cantt. 54792Pakistan
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management SciencesLahore Cantt. 54792Pakistan
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, AljoufSakaka 72388Saudi Arabia
| |
Collapse
|
10
|
Hocine S, Ghemati D, Aliouche D. Synthesis, characterization and swelling behavior of pH-sensitive polyvinylalcohol grafted poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid) hydrogels for protein delivery. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-022-04664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Liu X, Feng T, Ding W, Zeng W, Wang N, Yang F, Yang C, Yang S, Kong Y, Lei Z. Synthesis of tamarind seed gum‐based
semi‐IPN
hydrogels with integration of fertilizer retention and anti‐evaporation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Tao Feng
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Wenbin Ding
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Wei Zeng
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Na Wang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Fenghong Yang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Cailing Yang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Shenghua Yang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Yanrong Kong
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Ziqiang Lei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| |
Collapse
|
12
|
Ghadami A, Taheri S, Alinejad Z, Dinari M. Preparation of acrylate‐based double and triple interpenetrating polymer networks hydrogels: Rheological, thermal, and swelling behavior. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Azam Ghadami
- Department of Chemical and Polymer Engineering, Central Tehran Branch Islamic Azad University Tehran Iran
| | | | - Zeinab Alinejad
- Polymer Science Department Iran Polymer, and Petrochemical Institute Tehran Iran
| | - Mohammad Dinari
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| |
Collapse
|
13
|
Chu Y, Chai S, Li F, Han C, Sui X, Liu T. Combined Strategy of Wound Healing Using Thermo-Sensitive PNIPAAm Hydrogel and CS/PVA Membranes: Development and In-Vivo Evaluation. Polymers (Basel) 2022; 14:polym14122454. [PMID: 35746028 PMCID: PMC9230777 DOI: 10.3390/polym14122454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
Past studies have shown that the hot spring effect can promote wound healing. Mild thermal stimulation and metal ions can promote angiogenesis. In this study, the hot spring effect was simulated by thermosensitive PNIPAAm hydrogel loaded with copper sulfide nanoparticles. Heat stimulation could be generated through near-infrared irradiation, and copper ions solution could be pulsed. On the other hand, the CS/PVA nanofiber membrane was attached to the bottom of the hydrogel to simulate the extracellular matrix structure, thus improving the wound healing ability. The CS/PVA nanofiber membrane was prepared by electrospinning, and the appropriate prescription and process parameters were determined. The nanofiber membrane has uniform pore size, good water absorption and permeability. The poor mechanical properties of PNIPAAm hydrogel were improved by adding inorganic clay. The temperature of the hydrogel loaded with CuS nanoparticles reached 40 °C under near-infrared light irradiation for 20 min, and the release rate of Cu2+ reached 26.89%. The wound-healing rate of the rats in the combined application group reached 79.17% at 13 days, demonstrating superior results over the other control groups. Histological analyses show improved inflammatory response at the healed wound area. These results indicate that this combined application approach represents a promising wound treatment strategy.
Collapse
|
14
|
Bagasse Cellulose Composite Superabsorbent Material with Double-Crosslinking Network Using Chemical Modified Nano-CaCO 3 Reinforcing Strategy. NANOMATERIALS 2022; 12:nano12091459. [PMID: 35564167 PMCID: PMC9104651 DOI: 10.3390/nano12091459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 01/13/2023]
Abstract
To improve the salt resistance of superabsorbent materials and the gel strength of superabsorbent materials after water absorption, a bagasse cellulose-based network structure composite superabsorbent (CAAMC) was prepared via graft copolymerization of acrylamide/acrylic acid (AM/AA) onto bagasse cellulose using silane coupling agent modified nano-CaCO3 (MNC) and N,N′-methylene bisacrylamide (MBA) as a double crosslinker. The acrylamide/acrylic acid was chemically crosslinked with modified nano-CaCO3 by C-N, and a stable double crosslinked (DC) network CAAMC was formed under the joint crosslinking of N,N′-methylene bisacrylamide and modified nano-CaCO3. Modified nano-CaCO3 plays a dual role of crosslinking agent and the filler, and the gel strength of composite superabsorbent is two times higher than that of N,N′-methylene bisacrylamide single crosslinking. The maximum absorbency of CAAMC reached 712 g/g for deionized water and 72 g/g for 0.9 wt% NaCl solution. The adsorption process of CAAMC was simulated by materials studio, and the maximum adsorption energy of amino and carboxyl groups for water molecules is −2.413 kJ/mol and −2.240 kJ/mol, respectively. According to the results of CAAMC soil water retention, a small amount of CAAMC can greatly improve the soil water retention effect.
Collapse
|
15
|
Meyer J, Meyer L, Kara S. Enzyme immobilization in hydrogels: A perfect liaison for efficient and sustainable biocatalysis. Eng Life Sci 2022; 22:165-177. [PMID: 35382546 PMCID: PMC8961036 DOI: 10.1002/elsc.202100087] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Biocatalysis is an established chemical synthesis technology that has by no means been restricted to research laboratories. The use of enzymes for organic synthesis has evolved greatly from early development to proof-of-concept - from small batch production to industrial scale. Different enzyme immobilization strategies contributed to this success story. Recently, the use of hydrogel materials for the immobilization of enzymes has been attracting great interest. Within this review, we pay special attention to recent developments in this key emerging field of research. Firstly, we will briefly introduce the concepts of both biocatalysis and hydrogel worlds. Then, we list recent interesting publications that link both concepts. Finally, we provide an outlook and comment on future perspectives of further exploration of enzyme immobilization strategies in hydrogels.
Collapse
Affiliation(s)
- Johanna Meyer
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Lars‐Erik Meyer
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | - Selin Kara
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| |
Collapse
|
16
|
Darvishi R, Moghadas H, Moshkriz A. Oxidized gum arabic cross-linked pectin/O-carboxymethyl chitosan: An antibiotic adsorbent hydrogel. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
|
18
|
Sharma M, Chouksey S, Gond L, Bajpai A. A hybrid bionanocomposite for Pb (II) ion removal from water: synthesis, characterization and adsorption kinetics studies. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04073-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Rodrigues Sousa H, Lima IS, Neris LML, Silva AS, Santos Nascimento AMS, Araújo FP, Ratke RF, Silva DA, Osajima JA, Bezerra LR, Silva-Filho EC. Superabsorbent Hydrogels Based to Polyacrylamide/Cashew Tree Gum for the Controlled Release of Water and Plant Nutrients. Molecules 2021; 26:2680. [PMID: 34063701 PMCID: PMC8125684 DOI: 10.3390/molecules26092680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/27/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Agricultural production is influenced by the water content in the soil and availability of fertilizers. Thus, superabsorbent hydrogels, based on polyacrylamide, natural cashew tree gum (CG) and potassium hydrogen phosphate (PHP), as fertilizer and water releaser were developed. The structure, morphology, thermal stability and chemical composition of samples of polyacrylamide and cashew tree gum hydrogels with the presence of fertilizer (HCGP) and without fertilizer (HCG) were investigated, using X-ray diffractometry (XRD), Fourier Transformed Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA/DTG) and Energy Dispersive Spectroscopy (EDS). Swelling/reswelling tests, textural analysis, effect of pH, release of nutrients and kinetics were determined; the ecotoxicity of the hydrogels was investigated by the Artemia salina test. The results showed that PHP incorporation in the hydrogel favored the crosslinking of chains. This increased the thermal stability in HCGP but decreased the hardness and adhesion properties. The HCGP demonstrated good swelling capacity (~15,000 times) and an excellent potential for reuse after fifty-five consecutive cycles. The swelling was favored in an alkaline pH due to the ionization of hydrophilic groups. The sustained release of phosphorus in HCGP was described by the Korsmeyer-Peppas model, and Fickian diffusion is the main fertilizer release mechanism. Finally, the hydrogels do not demonstrate toxicity, and HCGP has potential for application in agriculture.
Collapse
Affiliation(s)
- Heldeney Rodrigues Sousa
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Idglan Sá Lima
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Lucas Matheus Lima Neris
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Albert Santos Silva
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Ariane Maria Silva Santos Nascimento
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Francisca Pereira Araújo
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Rafael Felippe Ratke
- Graduate Studies in Agronomy, Mato Grosso of Soulth Federal University, Chapadão do Sul 76560-000, Mato Grosso do Sul, Brazil;
| | - Durcilene Alves Silva
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
- Research Center on Biodiversity and Biotechnolog, Delta do Parnaíba Federal University, Parnaíba 64202-020, Piaui, Brazil
| | - Josy Anteveli Osajima
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Leilson Rocha Bezerra
- Veterinary Medicine Academic Unit, Campina Grande Federal University, Patos 58708-110, Paraíba, Brazil;
| | - Edson Cavalcanti Silva-Filho
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| |
Collapse
|
20
|
Highly efficient and rapid adsorption of methylene blue dye onto vinyl hybrid silica nano-cross-linked nanocomposite hydrogel. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Hong SJ, Kwon YR, Lim SH, Kim JS, Choi J, Chang YW, Park H, Kim DH. Improved absorption performance of itaconic acid based superabsorbent hydrogel using vinyl sulfonic acid. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1888982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Seok Ju Hong
- Department of Human Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansansi, Republic of Korea
- Department of Material Chemical Engineering, Hanyang University, Ansansi, Republic of Korea
| | - Yong Rok Kwon
- Department of Human Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansansi, Republic of Korea
- Department of Material Chemical Engineering, Hanyang University, Ansansi, Republic of Korea
| | - Seung Ho Lim
- Department of Human Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansansi, Republic of Korea
- Department of Material Chemical Engineering, Hanyang University, Ansansi, Republic of Korea
| | - Jung Soo Kim
- Department of Human Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansansi, Republic of Korea
- Department of Packaging, Yonsei University, Wonjusi, Republic of Korea
| | - Jun Choi
- Department of Human Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansansi, Republic of Korea
| | - Young Wook Chang
- Department of Material Chemical Engineering, Hanyang University, Ansansi, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, College of Engineering, Chung-Ang University, Dongjakgu, Korea
| | - Dong Hyun Kim
- Department of Human Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansansi, Republic of Korea
- Department of Bio-nano Engineering, Hanyang University, Ansansi, Republic of Korea
| |
Collapse
|
22
|
Kim JS, Kim DH, Lee YS. The Influence of Monomer Composition and Surface-CrossLinking Condition on Biodegradation and Gel Strength of Super Absorbent Polymer. Polymers (Basel) 2021; 13:polym13040663. [PMID: 33672256 PMCID: PMC7927004 DOI: 10.3390/polym13040663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, a superabsorbent polymer (SAP) comprising poly (IA-co-cellulose-co-VSA-co-AA; ICVA) core-SAP (CSAP) was synthesized through radical polymerization using itaconic acid (IA), acrylic acid (AA), cellulose, and vinyl sulfonic acid (VSA) as monomers. The absorption performances and relative biodegradability of various compositions prepared by adjusting the amounts of cellulose and VSA with constant IA and AA content were compared. Increasing the cellulose content in CSAP contributed to improved biodegradation of the surface-crosslinked SAP (SSAP) and gel strength, although the free absorbency (FA) and centrifuge retention capacity (CRC) decreased. Increasing the VSA content resulted in strong anionicity, which enables the absorption of large amounts of water. Surface-crosslinking technology was applied to the CSAP synthesized with the optimal composition ratio to increase its absorption performance and gel strength. Improved performance of the synthesized SSAP (a CRC of 30.4 g/g, absorbency under load (AUL) of 23.3 g/g, and permeability of 55 s) was achieved by selecting the optimal surface-crosslinking treatment time and the amount of distilled water in the surface-crosslinking solution: as the latter was increased in the surface-crosslinking solution, the AUL and permeability of the SSAP were improved, and its biodegradability was found to be 54% compared to the 100% biodegradable cellulose hydrogel in the control group.
Collapse
Affiliation(s)
- Jung Soo Kim
- Department of Packaging, Yonsei University, Wonju 26493, Korea;
- Human Convergence Technology R&D Departments, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea;
| | - Dong Hyun Kim
- Human Convergence Technology R&D Departments, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea;
| | - Youn Suk Lee
- Department of Packaging, Yonsei University, Wonju 26493, Korea;
- Correspondence: ; Tel.: +82-33-760-2395
| |
Collapse
|
23
|
Chen M, Shen Y, Xu L, Xiang G, Ni Z. Synthesis of a super-absorbent nanocomposite hydrogel based on vinyl hybrid silica nanospheres and its properties. RSC Adv 2020; 10:41022-41031. [PMID: 35519214 PMCID: PMC9057712 DOI: 10.1039/d0ra07074b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/05/2020] [Indexed: 11/29/2022] Open
Abstract
Superabsorbent polymers as soft materials that can absorb water have aroused great interest in the fields of agriculture and forestry. Water absorption and water retention performance of a hydrogel are important indicators to evaluate its practical application. However, few reports show that hydrogels have both excellent water absorption and water retention properties. To date, superabsorbent hydrogels with a swelling capacity of more than 3000 g g−1 have rarely been reported. In this work, a novel superabsorbent poly(acrylic acid) (PAA)-based nanocomposite hydrogel (NC gel) was prepared via free radical polymerization of acrylic acid by using vinyl hybrid silica nanospheres (VSNPs) as the cross-linking agent. The PAA NC hydrogel achieved a great swelling ratio of more than 5000 times in deionized water at 323 K, and the swollen hydrogel could hold 60% moisture when it was exposed to the air at 303 K for 42 h. Moreover, the hydrogel also obtained a good swelling ratio of 136 g g−1 in NaCl solution. The PAA NC hydrogel showed excellent repetitive swelling ability. The influences of variable factors (acrylic acid, initiator and sodium hydroxide) on the swelling ratio of the NC hydrogel were researched. It can be speculated that the PAA NC hydrogel has potential application in agriculture and forestry areas due to its excellent water absorption and water retention properties. Superabsorbent polymers as soft materials that can absorb water have aroused great interest in the fields of agriculture and forestry.![]()
Collapse
Affiliation(s)
- Mingyang Chen
- School of Textile and Clothing, Shanghai University of Engineering Science Shanghai 201620 PR China +86-21-67791242
| | - Yong Shen
- School of Textile and Clothing, Shanghai University of Engineering Science Shanghai 201620 PR China +86-21-67791242
| | - Lihui Xu
- School of Textile and Clothing, Shanghai University of Engineering Science Shanghai 201620 PR China +86-21-67791242
| | - Guanghong Xiang
- School of Textile and Clothing, Shanghai University of Engineering Science Shanghai 201620 PR China +86-21-67791242
| | - Zhewei Ni
- School of Textile and Clothing, Shanghai University of Engineering Science Shanghai 201620 PR China +86-21-67791242
| |
Collapse
|