1
|
Yang Q, Tan J, Tao S, Qiu H, Zhou W, Zhu J, Zhang H, Pei L, Zhou T, Wang J. Fabrication and properties of conductive films based on bacterial cellulose and poly-N-isopropylacrylamide-modified graphene oxide. Int J Biol Macromol 2024; 278:134867. [PMID: 39163963 DOI: 10.1016/j.ijbiomac.2024.134867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
A conductive film (PNIPAM-rGO/BC) was fabricated combining bacterial cellulose (BC) with poly-N-isopropylacrylamide-modified graphene oxide (PNIPAM-GO) through vacuum filtration and steam reduction techniques. The conductivity and performance of PNIPAM-GO composite and the resulting conductive film were studied. The key findings revealed that PNIPAM-GO composite exhibited a reversible temperature-sensitive behavior. Specifically, the lower critical solution temperature (LCST) increased upon the introduction of graphene oxide (GO). Detailed analyses confirmed uniform dispersion of GO nanosheets within the BC matrix. The incorporation of 10.0 % PNIPAM-GO (containing 7.0 % GO) led to a remarkable 19.6 % increase in tensile strength and approximately 37.0 % enhancement in elongation at break for the conductive film (PNIPAM-rGO/BC) compared to BC. After steam reduction, the electrical conductivity of PNIPAM-rGO/BC exhibited significant improvement over BC. Furthermore, the conductive film demonstrated temperature-dependent conductivity, with a resistivity value approximately 5.2 ± 0.2 KΩ at 25 °C. As the test temperature above the LCST of PNIPAM-GO composite, the resistance decreased. These intriguing temperature-sensitive conductive properties position PNIPAM-rGO/BC as a promising material for smart switches.
Collapse
Affiliation(s)
- Qun Yang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Hubei Key Laboratory of Biomass Fibers & Eco-Dyeing &Finishing, Wuhan Textile University, Wuhan 430200, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China.
| | - Jinhong Tan
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Sixuan Tao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huili Qiu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weimian Zhou
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongjuan Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| | - Liujun Pei
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| | - Tianchi Zhou
- Institute of Flexible Functional Materials, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Jiping Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| |
Collapse
|
2
|
Qi L, Wang Z, Chen J, Xie JW. Development and validation of a QuEChERS-HPLC-DAD method using polymer-functionalized melamine sponges for the analysis of antipsychotic drugs in milk. Food Chem 2024; 444:138553. [PMID: 38309075 DOI: 10.1016/j.foodchem.2024.138553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The prohibition of antipsychotic drugs in animal foodstuffs has raised significant concerns. In this study, a novel matrix purification adsorbent comprising a polymer (polyaniline and polypyrrole)-functionalized melamine sponge (Ms) was employed for the high performance liquid chromatography-diode array detector (HPLC-DAD) detection of three phenothiazines (chlorpromazine, thioridazine, and promethazine), and a tricyclic imipramine in milk. The as-prepared functionalized Ms was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. Excellent linearity with a coefficient of determination (R2) of 0.999 was achieved for all drugs within the concentration range of 0.01-47.00 μg mL-1. The recoveries of the four analytes ranged from 92.1 % to 106.9 % at the three spiked levels. These results demonstrate the successful application of the proposed method for the determination of the four drugs. Cost-effective polymer-functionalized Ms is a viable alternative for matrix purification, enabling rapid determination of drug residues in diverse food samples.
Collapse
Affiliation(s)
- Liang Qi
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Zhe Wang
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jian Chen
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jian-Wu Xie
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Skorupska M, Ilnicka A, Lukaszewicz JP. Modified graphene foam as a high-performance catalyst for oxygen reduction reaction. RSC Adv 2023; 13:25437-25442. [PMID: 37636512 PMCID: PMC10448118 DOI: 10.1039/d3ra04203k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023] Open
Abstract
Gelatine and chitosan were used as natural precursors for nitrogen-doping of the graphene foam structure, creating specific types of active sites. The quantitative and qualitative content of nitrogen groups in the carbon structure was determined, which, under the influence of high temperature, were incorporated and transformed into forms of functional groups favorable for electrochemical application. Electrochemical studies proved that the form of pyridine-N, pyrrole-N, and quaternary-N groups have favorable electrochemical properties in the oxygen reduction reaction comparable to commercial platinum-based electrode materials. Using these materials as electrodes in metal-air batteries or fuel cells may eliminate the use of noble metal-based electrodes.
Collapse
Affiliation(s)
- Malgorzata Skorupska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun Gagarina 7 87-100 Torun Poland
| | - Anna Ilnicka
- Faculty of Chemistry, Nicolaus Copernicus University in Torun Gagarina 7 87-100 Torun Poland
| | - Jerzy P Lukaszewicz
- Faculty of Chemistry, Nicolaus Copernicus University in Torun Gagarina 7 87-100 Torun Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun Wilenska 4 87-100 Torun Poland
| |
Collapse
|
4
|
Awais Ahmad S, Zia Ullah Shah M, Arif M, Sana Ullah Shah M, Ullah E, Shah A, Sajjad M, Aftab J, Song P. Rational design of a novel MnO2-FeSe2 nanohybrid with nanowires/cubic architecture as promising supercapattery electrode materials. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
5
|
A Comprehensive Compilation of Graphene/Fullerene Polymer Nanocomposites for Electrochemical Energy Storage. Polymers (Basel) 2023; 15:polym15030701. [PMID: 36772001 PMCID: PMC9920128 DOI: 10.3390/polym15030701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023] Open
Abstract
Electricity consumption is an integral part of life on earth. Energy generation has become a critical topic, addressing the need to fuel the energy demands of consumers. Energy storage is an offshoot of the mainstream process, which is now becoming a prime topic of research and development. Electrochemical energy storage is an attractive option, serving its purpose through fuel cells, batteries and supercapacitors manipulating the properties of various materials, nanomaterials and polymer substrates. The following review presents a comprehensive report on the use of carbon-based polymer nanocomposites, specifically graphene and fullerene-based polymer nanocomposites, towards electrochemical energy storage. The achievements in these areas, and the types of polymer nanocomposites used are listed. The areas that lack of clarity and have a dearth of information are highlighted. Directions for future research are presented and recommendations for fully utilizing the benefits of the graphene/fullerene polymer nanocomposite system are proposed.
Collapse
|
6
|
Cui Y, Zhao C, Zhao L, Zhang X, Wang J. Preparation of porous layered cobalt-zinc sulfide nanostructures based on graphene oxide supported ZIF-8 template for high-performance supercapacitors. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Synthesis and characterization of multi-responsive poly(N-isopropylacrylamide)-sodium alginate-graphene oxide composite hydrogels. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Fu J, Cai C, Zhang Z, Wang X, Wang C, Tu H, Wu H, Zhao Y, Zhang C, Zhu J, Zhao X, Xu R, Wang M, Sherrell P, Chen J. Free-standing sulfonated graphene-polypyrrole-polyethylene glycol foam for highly flexible supercapacitors. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Zhang G, Zhang J, Li W, Wang J, Li X. Flexible core/shelled PPy@PANI nanotube porous films for hybrid supercapacitors. NANOTECHNOLOGY 2021; 33:065407. [PMID: 34700312 DOI: 10.1088/1361-6528/ac3359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Flexibility of the films and the limited ion transport in the vertical direction of film highly restrict the development of flexible supercapacitors. Herein, we have developed hybrid porous films consisting of N-doped holey graphene nanosheets (NHGR) with abundant in-plane nanopores and the vertically aligned polyaniline nanowires arrays on polypyrrole nanotubes (PPy@PANI) via a two-step oxidative polymerization strategy and vacuum filtration. The rational design can efficiently shorten the diffusion path of electrons/ions, alleviate volume variation of electrodes during cycling, enhance electric conductivity of the hybrids, and while offer abundant active interfacial sites for electrochemical reaction. Benefiting from the distinctive structural and compositional merits, the obtained PPy@PANI/NHGR film electrode manifests an excellent electrochemical properties in terms of specific capacity (1348 mF cm-2at a current density of 1 mA cm-2), rate capability (81.2% capacitance retention from 1 to 30 mA cm-2), and cycling stability (capacitance retention of 73.7% at 20 mA cm-2after 7000 cycles). Matched with NHGR negative electrode, the assembled flexible all-solid-state asymmetric supercapacitor displays a remarkable areal capacitance of 359 mF cm-2at 5 mA cm-2, maximum areal energy density of 112.2μWh cm-2at 3.747 mW cm-2, and good flexibility at various bending angles while preserving stable cycling performance. The result shows the PPy@PANI/NHGR film with high flexibility and 3D ions transport channels is highly attractive for flexible energy storage devices.
Collapse
Affiliation(s)
- Gaini Zhang
- Xi'an Key Laboratory of New Energy Materials and Devices, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, People's Republic of China
| | - Jianhua Zhang
- Xi'an Key Laboratory of New Energy Materials and Devices, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, People's Republic of China
| | - Wenbin Li
- Xi'an Key Laboratory of New Energy Materials and Devices, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, People's Republic of China
| | - Jingjing Wang
- Xi'an Key Laboratory of New Energy Materials and Devices, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, People's Republic of China
| | - Xifei Li
- Xi'an Key Laboratory of New Energy Materials and Devices, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, People's Republic of China
| |
Collapse
|
10
|
|