1
|
Yang L, Zhang D, Li X, Qian L, Zhang H, Fang P, He C. Pore Characteristics and Dye Adsorption Mechanism of Functionalized UiO-66s with Various Ratios of Amino Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21395-21406. [PMID: 39365936 DOI: 10.1021/acs.langmuir.4c02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
A series of UiO-66 samples with various amino functional group ratios were prepared by modulating the proportion of terephthalic acid (H2BDC) and aminoterephthalic acid (H2BDC-NH2) ligands, and the microstructure of the samples and dependence of methyl orange (MO) adsorption properties on the amino group content were investigated by X-ray diffraction, scanning electron microscopy, FTIR spectra, nitrogen adsorption, positron annihilation lifetime spectroscopy, and UV-vis spectra. The results showed that as the ratio of amino groups increased, the specific surface area and total porosity of the samples decreased, primarily due to decrement in the crystallinity as well as the bulky effect of amino groups in inherent pores. Interestingly, the amino-functionalized samples possessed considerable adsorption capacity of MO even in alkaline conditions due to the hydrogen bonding between the MO and -NH2 groups. The adsorption kinetics, isotherms, and thermodynamics revealed that MOs' adsorption process in amino-functionalized UiO-66s was exothermic, obeying a Langmuir-type adsorption dominated by chemisorption. UiO-66-NH2-0.4 (H2BDC:H2BDC-NH2 = 2:3) exhibited the best adsorption performance, with a maximum adsorption capacity of 336.7 mg/g, and the adsorption capacity was slightly decreased with increasing salt concentration in solution. UiO-66-NH2-0.4 could be easily regenerated by washing with a mixed solution of ethanol and water. The results demonstrated that although amino groups led to relatively less crystallinity and lower micropore volumes, the strong electrostatic attraction and hydrogen bonding between amino groups and MOs enhanced the adsorption capacity of MOs in amino-functionalized UiO-66s, in which MOs were adsorbed in two types of inherent pores, as shown by a significant decrement in positronium annihilation in them upon MO adsorption.
Collapse
Affiliation(s)
- Lan Yang
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Dongwei Zhang
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xu Li
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Libing Qian
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Haoliang Zhang
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Pengfei Fang
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chunqing He
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Hu J, Mi B, Chen L, Yuan Y, Zhang J, Wu F. An economical preparation strategy of magnetic biochar with high specific surface area for efficient removal of methyl orange. Int J Biol Macromol 2024; 276:134156. [PMID: 39098458 DOI: 10.1016/j.ijbiomac.2024.134156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Magnetic biochar (MBC) was obtained from pepper straw by impregnation-microwave pyrolysis method. The pyrolysis temperature and FeCl3 impregnation concentration were investigated on the structural properties of MBC and the adsorption of methyl orange (MO) in water. Characterization results showed that pyrolysis temperature and iron species significantly increased the specific surface area of MBC, which could reach the maximum of 2038.61 m2/g, and also provided more active adsorption sites by promoting the generation of graphitized structures and surface polar functional groups. MBC0.2-900 was selected as the adsorbent for MO with the maximum adsorption capacity reached 437.18 mg·g-1, 3.4 times higher than the virgin biochar. The adsorption process was dominated by chemisorption as well as spontaneous and exothermic. The adsorption mechanisms included pore-filling interaction, π-π EDA interaction, electrostatic interaction, hydrogen bonding, and Lewis acid-base electron interaction. In addition, MBC also exhibited excellent separability and reusability as a low-cost adsorbent. This study provided some theoretical foundation and technological support for producing high-performance biochar and developing pollutant removal technology in wastewater.
Collapse
Affiliation(s)
- Jian Hu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Baobin Mi
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Research Institute of Vegetables, Hunan Academy of Agriculture Sciences, Changsha 410125, China.
| | - Long Chen
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yifan Yuan
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jilong Zhang
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fangfang Wu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
3
|
Jin H, Xu X, Yu X, Yu S, Wang S, Qu X. Bimetallic Organic Gel for Effective Methyl Orange Dye Adsorption. Gels 2024; 10:208. [PMID: 38534626 DOI: 10.3390/gels10030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
A bimetallic organic gel (MOG-Fe/Al) was synthesized through the solvothermal method. The gel state of the product obtained under optimized gel formation conditions is sufficient to carry 2 g of weight for a long time. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Brunauer-Emmett-Teller (BET) technique, and X-ray photoelectron spectroscopy (XPS) analysis confirmed the structures and morphologies of the synthesized materials. MOG-Fe/Al, with good stability, excellent durability, and wide applicability, exhibited efficient MO adsorption capacity as high as 335.88 mg/g at 25 °C. Adsorption-influencing factors including solution pH, contact time, and temperature were investigated. The adsorption performance of the bimetallic organic gel was better than that of the monometallic organic gels (MOG-Fe and MOG-Al), and its adsorption processes were in accordance with the pseudo-second-order kinetic and Langmuir isothermal models. The excellent adsorption capacity of the MOG-Fe/Al is due to its surface structure, pore volume, π-π interactions, hydrogen bonds, and electrostatic interactions.
Collapse
Affiliation(s)
- Hua Jin
- Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132073, China
| | - Xinyuan Xu
- Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132073, China
| | - Xiaoyang Yu
- Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132073, China
| | - Shihua Yu
- Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132073, China
| | - Shanshan Wang
- Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132073, China
| | - Xiaoshu Qu
- Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132073, China
| |
Collapse
|
4
|
Zhang Y, Tao CA. Metal-Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review. Gels 2023; 9:815. [PMID: 37888388 PMCID: PMC10606365 DOI: 10.3390/gels9100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Chemical warfare agents (CWAs) have brought great threats to human life and social stability, and it is critical to investigate protective materials. MOF (metal-organic framework) gels are a class with an extended MOF architecture that are mainly formed using metal-ligand coordination as an effective force to drive gelation, and these gels combine the unique characteristics of MOFs and organic gel materials. They have the advantages of a hierarchically porous structure, a large specific surface area, machinable block structures and rich metal active sites, which inherently meet the requirements for adsorption and catalytic detoxification of CWAs. A series of advances have been made in the adsorption and catalytic detoxification of MOF gels as chemical warfare agents; however, overall, they are still in their infancy. This review briefly introduces the latest advances in MOF gels, including pure MOF gels and MOF composite gels, and discusses the application of MOF gels in the adsorption and catalytic detoxification of CWAs. Meanwhile, the influence of microstructures (pore structures, metal active site, etc.) on the detoxification performance of protective materials is also discussed, which is of great significance in the exploration of high-efficiency protective materials. Finally, the review looks ahead to next priorities. Hopefully, this review can inspire more and more researchers to enrich the performance of MOF gels for applications in chemical protection and other purification and detoxification processes.
Collapse
Affiliation(s)
| | - Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha 410073, China;
| |
Collapse
|
5
|
Yang X, Wang C, Zhou B, Cheng S. Characterization of an Iron-Copper Bimetallic Metal-Organic Framework for Adsorption of Methyl Orange in Aqueous Solution. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:9985984. [PMID: 37663128 PMCID: PMC10471454 DOI: 10.1155/2023/9985984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023]
Abstract
Iron-based organic frame material MIL-53 (Fe) was synthesized by the hydrothermal method with Cu2+ incorporated to obtain bimetallic composite MIL-53 (Fe, Cu). The structure and morphology of the material were characterized by SEM, XRD, BET, FTIR, XPS, and zeta potential. The adsorption performance of MIL-53 (Fe, Cu) on methyl orange was tested under a variety of conditions, including the effects of pH and material dosage, by the static adsorption test. The results show that under the condition of pH = 7, a temperature of 30°C, and an adsorbent dosage of 20 mg, the removal rate of MIL-53 (Fe, Cu) for methyl orange can reach more than 96% within 4 h, and the maximum adsorption capacity after fitting by the thermodynamic model can reach 294.43 mg/g, showing the excellent adsorption performance of MIL-53 (Fe, Cu) on methyl orange. In addition, by exploring the adsorption mechanism of MIL-53 (Fe, Cu) on methyl orange, it is found that the adsorption of MIL-53 (Fe, Cu) on methyl orange depends on chemical adsorption, as evidenced by combining Fe3+ and Cu2+ in the material with methyl orange molecules to form complexes to achieve adsorption. While the specific surface area of the material had no obvious effect on adsorption, the effects of pH, temperature, and concentration were explored. At a pH of 6.5, greater adsorption occurred at higher temperatures, as determined by thermodynamic model fitting, as well as with higher initial methyl orange molecule concentration.
Collapse
Affiliation(s)
- Xiuzhen Yang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Changye Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Bin Zhou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Shuangchan Cheng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| |
Collapse
|
6
|
Wang Y, Gao Y, Gu J, Liu Z, Li N, Liu Z, Li Y. Comprehensive insight into adsorption of chlortetracycline hydrochloride by room-temperature synthesized water-stable Zr-based metal-organic gel/sodium alginate beads. ENVIRONMENTAL RESEARCH 2023:116339. [PMID: 37290628 DOI: 10.1016/j.envres.2023.116339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Chlortetracycline hydrochloride (CTC) is one of the prevailing antibiotic pollutants that harm both environmental ecosystem and human health. Herein, Zr-based metal-organic gels (Zr-MOGs) with lower-coordinated active sites and hierarchically porous structures are fabricated via a facile straightforward room-temperature strategy for CTC treatment. More importantly, we incorporated the powder Zr-MOGs into low-cost sodium alginate (SA) matrix to achieve shaped Zr-based metal-organic gel/SA beads for enhancing the adsorption ability and ameliorating the recyclability. The Langmuir maximum adsorption capacities of Zr-MOGs and Zr-MOG/SA beads could reach 143.9 mg/g and 246.9 mg/g, respectively. What's more, in the manual syringe unit and continuous bead column experiments, Zr-MOG/SA beads could achieve an eluted CTC removal ratio as high as 93.6% and 95.5% in the real water sample, respectively. On top of that, the adsorption mechanisms were put forward as a combination of pore filling, electrostatic interaction, hydrophilic-lipophilic balance, coordination, π-π interaction as well as hydrogen bonding interaction. This study outlines a workable strategy for the facile preparation of candidate adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Yiqi Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Yiwen Gao
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Junhong Gu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, PR China
| | - Zhi Liu
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, PR China
| | - Ningning Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Zhisheng Liu
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, PR China
| | - Yangxue Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; Chongqing Research Institute, Jilin University, Chongqing 401123, PR China.
| |
Collapse
|
7
|
A novel citric acid facilitated supramolecular Zinc(II)-metallogel: Toward semiconducting device applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Liu G, Li S, Shi C, Huo M, Lin Y. Progress in Research and Application of Metal-Organic Gels: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1178. [PMID: 37049272 PMCID: PMC10096755 DOI: 10.3390/nano13071178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In recent years, metal-organic gels (MOGs) have attracted much attention due to their hierarchical porous structure, large specific surface area, and good surface modifiability. Compared with MOFs, the synthesis conditions of MOGs are gentler and more stable. At present, MOGs are widely used in the fields of catalysis, adsorption, energy storage, electrochromic devices, sensing, analysis, and detection. In this paper, literature metrology and knowledge graph visualization analysis are adopted to analyze and summarize the literature data in the field of MOGs. The visualization maps of the temporal distribution, spatial distribution, authors and institutions' distribution, influence of highly cited literature and journals, keyword clustering, and research trends are helpful to clearly grasp the content and development trend of MOG materials research, point out the future research direction for scholars, and promote the practical application of MOGs. At the same time, the paper reviews the research and application progress of MOGs in recent years by combining keyword clustering, time lines, and emergence maps, and looks forward to their challenges, future development trend, and application prospects.
Collapse
Affiliation(s)
- Gen Liu
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Siwen Li
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chunyan Shi
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yingzi Lin
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
9
|
Tamjid Farki NNANL, Abdulhameed AS, Surip SN, ALOthman ZA, Jawad AH. Tropical fruit wastes including durian seeds and rambutan peels as a precursor for producing activated carbon using H 3PO 4-assisted microwave method: RSM-BBD optimization and mechanism for methylene blue dye adsorption. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1567-1578. [PMID: 36794599 DOI: 10.1080/15226514.2023.2175780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, tropical fruit biomass wastes including durian seeds (DS) and rambutan peels (RP) were used as sustainable precursors for preparing activated carbon (DSRPAC) using microwave-induced H3PO4 activation. The textural and physicochemical characteristics of DSRPAC were investigated by N2 adsorption-desorption isotherms, X-ray diffraction, Fourier transform infrared, point of zero charge, and scanning electron microscope analyses. These findings reveal that the DSRPAC has a mean pore diameter of 3.79 nm and a specific surface area of 104.2 m2/g. DSRPAC was applied as a green adsorbent to extensively investigate the removal of an organic dye (methylene blue, MB) from aqueous solutions. The response surface methodology Box-Behnken design (RSM-BBD) was used to evaluate the vital adsorption characteristics, which included (A) DSRPAC dosage (0.02-0.12 g/L), (B) pH (4-10), and (C) time (10-70 min). The BBD model specified that the DSRPAC dosage (0.12 g/L), pH (10), and time (40 min) parameters caused the largest removal of MB (82.1%). The adsorption isotherm findings reveal that MB adsorption pursues the Freundlich model, whereas the kinetic data can be well described by the pseudo-first-order and pseudo-second-order models. DSRPAC exhibited good MB adsorption capability (118.5 mg/g). Several mechanisms control MB adsorption by the DSRPAC, including electrostatic forces, π-π stacking, and H-bonding. This work shows that DSRPAC derived from DS and RP could serve as a viable adsorbent for the treatment of industrial effluents containing organic dye.
Collapse
Affiliation(s)
| | - Ahmed Saud Abdulhameed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad, Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - S N Surip
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, Australia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
10
|
Majdoubi H, Alqadami AA, Billah RELK, Otero M, Jeon BH, Hannache H, Tamraoui Y, Khan MA. Chitin-Based Magnesium Oxide Biocomposite for the Removal of Methyl Orange from Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20010831. [PMID: 36613153 PMCID: PMC9819834 DOI: 10.3390/ijerph20010831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 06/01/2023]
Abstract
In this work, a cost-effective chitin-based magnesium oxide (CHt@MgO) biocomposite with excellent anionic methyl orange (MO) dye removal efficiency from water was developed. The CHt@MgO biocomposite was characterized by FT-IR, XRD, SEM-EDX, and TGA/DTG. Results proved the successful synthesis of CHt@MgO biocomposite. Adsorption of MO on the CHt@MgO biocomposite was optimized by varying experimental conditions such as pH, amount of adsorbent (m), contact time (t), temperature (T), and initial MO concentration (Co). The optimized parameters for MO removal by CHt@MgO biocomposite were as follows: pH, 6; m, 2 g/L; t, 120 min. Two common isotherm models (Langmuir and Freundlich) and three kinetic models (pseudo-first-order (PFO), pseudo-second-order (PSO), and intraparticle diffusion (IPD)) were tested for experimental data fitting. Results showed that Langmuir and PFO were the most suitable to respectively describe equilibrium and kinetic results on the adsorption of MO adsorption on CHt@MgO biocomposite. The maximum Langmuir monolayer adsorption capacity (qm) on CHt@MgO biocomposite toward MO dye was 252 mg/g at 60 °C. The reusability tests revealed that CHt@MgO biocomposite possessed high (90.7%) removal efficiency after the fifth regeneration cycle.
Collapse
Affiliation(s)
- Hicham Majdoubi
- Materials Science Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | | | - Rachid EL Kaim Billah
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, Avenue Jabran Khalil Jabran, B.P 299, El Jadida 24000, Morocco
| | - Marta Otero
- Departmento de Química y Física Aplicadas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hassan Hannache
- Materials Science Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
- Laboratory of Engineering and Materials LIMAT, Faculty of Science Ben M’Sik, Hassan II University, Casablanca 2600, Morocco
| | - Youssef Tamraoui
- Materials Science Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Abdulhameed AS, Jawad AH, Kashi E, Radzun KA, ALOthman ZA, Wilson LD. Insight into adsorption mechanism, modeling, and desirability function of crystal violet and methylene blue dyes by microalgae: Box-Behnken design application. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Xia S, Sun J, Sun W. Bimetallic metal-organic gel for effective removal of chlortetracycline hydrochloride from aqueous solution:Adsorption isotherm, kinetic and mechanism studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Dye Degradation by Heterogeneous and Homogeneous Photocatalysis Processes. A Scaled-up Approach for a CPC Solar Reactor. Top Catal 2022. [DOI: 10.1007/s11244-022-01692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Khan M, Shanableh A, Elboughdiri N, Lashari MH, Manzoor S, Shahida S, Farooq N, Bouazzi Y, Rejeb S, Elleuch Z, Kriaa K, ur Rehman A. Adsorption of Methyl Orange from an Aqueous Solution onto a BPPO-Based Anion Exchange Membrane. ACS OMEGA 2022; 7:26788-26799. [PMID: 35936400 PMCID: PMC9352241 DOI: 10.1021/acsomega.2c03148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 05/02/2023]
Abstract
In this research, the development of a novel brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO)-based homogeneous anion exchange membrane (AEM) via the solution casting method was reported. Fourier transform infrared spectroscopy was used to confirm the successful development of the BPPO-based AEM. The prepared AEM showed excellent thermal stability. It exhibited an ion exchange capacity of 2.66 mg/g, a water uptake (W R) of 68%, and a linear swelling ratio of 31%. Methyl orange (MO), an anionic dye, was used as a model pollutant to evaluate the ion exchange ability of the membrane. The adsorption capacity of MO increased with the increase in contact time, membrane dosage (adsorbent), temperature, and pH while declined with the increase in initial concentration of MO in an aqueous solution and molarity of NaCl. Adsorption isotherm study showed that adsorption of MO was fitted well to the Freundlich adsorption isotherm because the value of the correlation coefficient (R 2 = 0.974) was close to unity. Adsorption kinetics study showed that adsorption of MO fitted well to the pseudo-second-order kinetic model. Adsorption thermodynamics evaluation represented that adsorption of MO was an endothermic (ΔH° = 18.72 kJ/mol) and spontaneous process. The AEM presented a maximum adsorption capacity of 18 mg/g. Moreover, the regeneration of the prepared membrane confirmed its ability to be utilized for three consecutive cycles. The developed BPPO-based AEM was an outstanding candidate for adsorption of MO from an aqueous solution.
Collapse
Affiliation(s)
- Muhammad
Imran Khan
- Research
Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abdallah Shanableh
- Research
Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noureddine Elboughdiri
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box
2440, Ha’il 81441, Saudi Arabia
- Chemical
Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | | | - Suryyia Manzoor
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Shabnam Shahida
- Department
of Chemistry, University of Poonch, Rawalakot 12350, Azad Kashmir, Pakistan
| | - Nosheen Farooq
- Department
of Chemistry, The Government Sadiq College
Women University, Bahawalpur 63100, Pakistan
| | - Yassine Bouazzi
- Industrial
Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia
| | - Sarra Rejeb
- Laboratory
of Metrology and Energy Systems, National Engineering School of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Zied Elleuch
- College
of Community, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia
| | - Karim Kriaa
- Chemical
Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
- Chemical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), PO Box 5701, Riyadh 11432, Saudi Arabia
| | - Aziz ur Rehman
- Institute of Chemistry, The Islamia University
of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
15
|
Lignin-inspired porous polymer networks as high-performance adsorbents for the efficient removal of malachite green dye. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Jawad AH, Abdulhameed AS, Selvasembian R, ALOthman ZA, Wilson LD. Magnetic biohybrid chitosan-ethylene glycol diglycidyl ether/magnesium oxide/Fe3O4 nanocomposite for textile dye removal: Box–Behnken design optimization and mechanism study. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03067-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Tang Z, Guo H, Xu J, Li Z, Sun G. Cationic poly(diallyldimethylammonium chloride) based hydrogel for effective anionic dyes adsorption from aqueous solution. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|