1
|
Ali S, Tyagi A, Park S, Bae H. Understanding the mechanobiology of phytoacoustics through molecular Lens: Mechanisms and future perspectives. J Adv Res 2024; 65:47-72. [PMID: 38101748 PMCID: PMC11518948 DOI: 10.1016/j.jare.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND How plants emit, perceive, and respond to sound vibrations (SVs) is a long-standing question in the field of plant sensory biology. In recent years, there have been numerous studies on how SVs affect plant morphological, physiological, and biochemical traits related to growth and adaptive responses. For instance, under drought SVs navigate plant roots towards water, activate their defence responses against stressors, and increase nectar sugar in response to pollinator SVs. Also, plants emit SVs during stresses which are informative in terms of ecological and adaptive perspective. However, the molecular mechanisms underlying the SV perception and emission in plants remain largely unknown. Therefore, deciphering the complexity of plant-SV interactions and identifying bonafide receptors and signaling players will be game changers overcoming the roadblocks in phytoacoustics. AIM OF REVIEW The aim of this review is to provide an overview of recent developments in phytoacoustics. We primarily focuss on SV signal perception and transduction with current challenges and future perspectives. KEY SCIENTIFIC CONCEPTS OF REVIEW Timeline breakthroughs in phytoacoustics have constantly shaped our understanding and belief that plants may emit and respond to SVs like other species. However, unlike other plant mechanostimuli, little is known about SV perception and signal transduction. Here, we provide an update on phytoacoustics and its ecological importance. Next, we discuss the role of cell wall receptor-like kinases, mechanosensitive channels, intracellular organelle signaling, and other key players involved in plant-SV receptive pathways that connect them. We also highlight the role of calcium (Ca2+), reactive oxygen species (ROS), hormones, and other emerging signaling molecules in SV signal transduction. Further, we discuss the importance of molecular, biophysical, computational, and live cell imaging tools for decoding the molecular complexity of acoustic signaling in plants. Finally, we summarised the role of SV priming in plants and discuss how SVs could modulate plant defense and growth trade-offs during other stresses.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
2
|
Son JS, Jang S, Mathevon N, Ryu CM. Is plant acoustic communication fact or fiction? THE NEW PHYTOLOGIST 2024; 242:1876-1880. [PMID: 38424727 DOI: 10.1111/nph.19648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
In recent years, the idea has flourished that plants emit and perceive sound and could even be capable of exchanging information through the acoustic channel. While research into plant bioacoustics is still in its infancy, with potentially fascinating discoveries awaiting ahead, here we show that the current knowledge is not conclusive. While plants do emit sounds under biotic and abiotic stresses such as drought, these sounds are high-pitched, of low intensity, and propagate only to a short distance. Most studies suggesting plant sensitivity to airborne sound actually concern the perception of substrate vibrations from the soil or plant part. In short, while low-frequency, high-intensity sounds emitted by a loudspeaker close to the plant seem to have tangible effects on various plant processes such as growth - a finding with possible applications in agriculture - it is unlikely that plants can perceive the sounds they produce, at least over long distances. So far, there is no evidence of plants communicating with each other via the acoustic channel.
Collapse
Affiliation(s)
- Jin-Soo Son
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Seonghan Jang
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Nicolas Mathevon
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, University of Saint-Etienne, 42100, Saint-Etienne, France
- Institut universitaire de France, 75231, Paris, France
- Ecole Pratique des Hautes Etudes, CHArt Lab, PSL University, 75014, Paris, France
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School, University of Science and Technology, Daejeon, 34141, South Korea
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
3
|
Wu L, Yang N, Guo M, Zhang D, Ghiladi RA, Bayram H, Wang J. The role of sound stimulation in production of plant secondary metabolites. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:40. [PMID: 37847483 PMCID: PMC10581969 DOI: 10.1007/s13659-023-00409-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Sound vibration is one of natural stimuli trigging physiological changes in plants. Recent studies showed that sound waves stimulated production of a variety of plant secondary metabolites, including flavonoids, in order to enhance seed germination, flowering, growth or defense. In this review, we examine the potential role of sound stimulation on the biosynthesis of secondary metabolites and the followed cascade of physiological changes in plants, from the perspective of transcriptional regulation and epigenetic regulation for the first time. A systematic summary showed that a wide range of factors may regulate the production of secondary metabolites, including plant species, growth stage, sound types, sound frequency, sound intensity level and exposure time, etc. Biochemical and physiological changes due to sound stimulation were thoroughly summarized as well, for secondary metabolites can also act as a free radical scavenger, or a hormone signaling molecule. We also discussed the limits of previous studies, and the future application of sound waves in biosynthesis of plant secondary metabolites.
Collapse
Affiliation(s)
- Li Wu
- Department of Music, South-Central Minzu University, Wuhan, Hubei, China
| | - Ning Yang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Meng Guo
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Didi Zhang
- Department of Music, South-Central Minzu University, Wuhan, Hubei, China
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Hasan Bayram
- Department of Pulmonary Medicine, Koç University Hospital, Koç University, Istanbul, Turkey
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
El-Sattar AMA, Tawfik E. Effects of ultrasonic waves on seedling growth, biochemical constituents, genetic stability of fenugreek (Trigonella foenum-graecum) under salinity stress. VEGETOS 2022. [DOI: 10.1007/s42535-022-00545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 09/02/2023]
Abstract
AbstractFenugreek is a globally important legume that is widely cultivated for its therapeutic benefits in most parts of the world. Seeds on the other hand have a poor germination and growth rate when exposed to salinity. The effect of ultrasonic exposure period on germination and early seedling behaviors of fenugreek seeds under salt stress was investigated in a laboratory experiment. During germination and early seedling stages, all tests were conducted at 40 kHz in a water bath ultrasonic device with two durations (10 and 20 min) under salinity stress using different concentrations of NaCl (0, 1000, 3000, and 5000 mg/l). The results revealed a substantial decrease in germination percentage, all growth criteria, with increasing NaCl concentration and a significant increase in biomass produced by the Fenugreek (total soluble protein, total soluble carbohydrate, and proline), all of which are thought to be mechanisms for salinity resistance. Ultrasonication of fenugreek seeds for 10 and 20 min has a significant impact on seed germination, early seedling development and biochemical constituents under normal and stress conditions. The genetic stability of fenugreek DNA content was affected by these different treatments. This variation was estimated by RAPD-PCR molecular marker, and resulted in a total polymorphism percentage of 49.72% from all the primers. All these different treatments caused variation in the physiological responses and DNA content. This variation enhanced with more ultrasonic and salt treatments. Hence, these stresses can be used for enhancing the variable metabolic processes in fenugreek plant and stimulate its medicinal properties.
Collapse
|
5
|
Brenya E, Pervin M, Chen ZH, Tissue DT, Johnson S, Braam J, Cazzonelli CI. Mechanical stress acclimation in plants: Linking hormones and somatic memory to thigmomorphogenesis. PLANT, CELL & ENVIRONMENT 2022; 45:989-1010. [PMID: 34984703 DOI: 10.1111/pce.14252] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
A single event of mechanical stimulation is perceived by mechanoreceptors that transduce rapid transient signalling to regulate gene expression. Prolonged mechanical stress for days to weeks culminates in cellular changes that strengthen the plant architecture leading to thigmomorphogenesis. The convergence of multiple signalling pathways regulates mechanically induced tolerance to numerous biotic and abiotic stresses. Emerging evidence showed prolonged mechanical stimulation can modify the baseline level of gene expression in naive tissues, heighten gene expression, and prime disease resistance upon a subsequent pathogen encounter. The phenotypes of thigmomorphogenesis can persist throughout growth without continued stimulation, revealing somatic-stress memory. Epigenetic processes regulate TOUCH gene expression and could program transcriptional memory in differentiating cells to program thigmomorphogenesis. We discuss the early perception, gene regulatory and phytohormone pathways that facilitate thigmomorphogenesis and mechanical stress acclimation in Arabidopsis and other plant species. We provide insights regarding: (1) the regulatory mechanisms induced by single or prolonged events of mechanical stress, (2) how mechanical stress confers transcriptional memory to induce cross-acclimation to future stress, and (3) why thigmomorphogenesis might resemble an epigenetic phenomenon. Deeper knowledge of how prolonged mechanical stimulation programs somatic memory and primes defence acclimation could transform solutions to improve agricultural sustainability in stressful environments.
Collapse
Affiliation(s)
- Eric Brenya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mahfuza Pervin
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- School of Science, Western Sydney University, Richmond, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Scott Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Janet Braam
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
6
|
Kafash ZH, Khoramnejadian S, Ghotbi-Ravandi AA, Dehghan SF. Traffic noise induces oxidative stress and phytohormone imbalance in two urban plant species. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Dobránszki J. Application of naturally occurring mechanical forces in in vitro plant tissue culture and biotechnology. PLANT SIGNALING & BEHAVIOR 2021; 16:1902656. [PMID: 33902398 PMCID: PMC8143234 DOI: 10.1080/15592324.2021.1902656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Cues and signals of the environment in nature can be either beneficial or detrimental from the growth and developmental perspectives. Plants, despite their limited spatial mobility, have developed advanced strategies to overcome the various and changing environmental impacts including stresses. In vitro plantlets, tissues and cells are constantly exposed to the influence of their environment that is well controlled. Light has a widely known morphogenetic effect on plants; however, other physical cues and signals are at least as important but were often neglected. In this review, I summarize our knowledge about the role of the mechanical stimuli, like sound, ultrasound, touch, or wounding in in vitro plant cultures. I summarize the molecular, biochemical, physiological, growth, and developmental changes they cause and how these processes are controlled; moreover, how their regulating or stimulating roles are applied in various plant biotechnological applications. Recent studies revealed that mechanical forces can be used for affecting the plant development and growth in plant tissue culture efficiently, and for increasing the efficacy of other plant biotechnological methods, like genetic transformation and secondary metabolite production.
Collapse
Affiliation(s)
- Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
8
|
Sound Waves Promote Arabidopsis thaliana Root Growth by Regulating Root Phytohormone Content. Int J Mol Sci 2021; 22:ijms22115739. [PMID: 34072151 PMCID: PMC8199107 DOI: 10.3390/ijms22115739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
Sound waves affect plants at the biochemical, physical, and genetic levels. However, the mechanisms by which plants respond to sound waves are largely unknown. Therefore, the aim of this study was to examine the effect of sound waves on Arabidopsis thaliana growth. The results of the study showed that Arabidopsis seeds exposed to sound waves (100 and 100 + 9k Hz) for 15 h per day for 3 day had significantly longer root growth than that in the control group. The root length and cell number in the root apical meristem were significantly affected by sound waves. Furthermore, genes involved in cell division were upregulated in seedlings exposed to sound waves. Root development was affected by the concentration and activity of some phytohormones, including cytokinin and auxin. Analysis of the expression levels of genes regulating cytokinin and auxin biosynthesis and signaling showed that cytokinin and ethylene signaling genes were downregulated, while auxin signaling and biosynthesis genes were upregulated in Arabidopsis exposed to sound waves. Additionally, the cytokinin and auxin concentrations of the roots of Arabidopsis plants increased and decreased, respectively, after exposure to sound waves. Our findings suggest that sound waves are potential agricultural tools for improving crop growth performance.
Collapse
|
9
|
Frongia F, Forti L, Arru L. Sound perception and its effects in plants and algae. PLANT SIGNALING & BEHAVIOR 2020; 15:1828674. [PMID: 33048612 PMCID: PMC7671032 DOI: 10.1080/15592324.2020.1828674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Life evolved in an acoustic world. Sound is perceived in different ways by the species that inhabit the Planet. Among organisms, also some algal species seem to respond to sound stimuli with increased cell growth and productivity. The purpose of this Short Communication is to provide an overview of the current literature about various organisms and sound, with particular attention to algal organisms, which, when subjected to sound applications, can change their metabolism accordingly.
Collapse
Affiliation(s)
- Francesca Frongia
- Department of Life Science, University of Modena and Reggio Emilia, Modena/Reggio Emilia, Italy
| | - Luca Forti
- Department of Life Science, University of Modena and Reggio Emilia, Modena/Reggio Emilia, Italy
| | - Laura Arru
- Department of Life Science, University of Modena and Reggio Emilia, Modena/Reggio Emilia, Italy
- CONTACT Laura Arru Department of Life Science, University of Modena and Reggio Emilia, Modena/Reggio Emilia, Italy
| |
Collapse
|
10
|
Kim JY, Kang YE, Lee SI, Kim JA, Muthusamy M, Jeong M. Sound waves affect the total flavonoid contents in Medicago sativa, Brassica oleracea and Raphanus sativus sprouts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:431-440. [PMID: 31598969 PMCID: PMC6899831 DOI: 10.1002/jsfa.10077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Sound waves are emerging as a potential biophysical alternative to traditional methods for enhancing plant growth and phytochemical contents. However, little information is available on the improvement of the concentration of functional metabolites like flavonoids in sprouts using sound waves. In this study, different frequencies of sound waves with short and long exposure times were applied to three important varieties to improve flavonoid content. The aim of this study was to investigate the effect of sound waves on flavonoid content on the basis of biochemical and molecular characteristics. RESULTS We examined the effects of various sound wave treatments (250 Hz to 1.5 kHz) on flavonoid production in alfalfa (Medicago sativa), broccoli (Brassica oleracea) and red young radish (Raphanus sativus). The results showed that sound wave treatments differentially altered the total flavonoid contents depending upon the growth stages, species and frequency of and exposure time to sound waves. Sound wave treatments of alfalfa (250 Hz), broccoli sprouts (800 Hz) and red young radish sprouts (1 kHz) increased the total flavonoid content by 200%, 35% and 85%, respectively, in comparison with untreated control. Molecular analysis showed that sound waves induce the expression of genes of the flavonoid biosynthesis pathway, which positively corresponds to the flavonoid content. Moreover, the sound wave treatment significantly improves the antioxidant efficiency of sprouts. CONCLUSIONS The significant improvement of flavonoid content in sprouts with sound waves makes their use a potential and promising technology for the production of agriculture-based functional foods. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Joo Yeol Kim
- Department of Agricultural BiotechnologyNational Institute of Agricultural Science, Rural Development Administration370 Nongsaengmyoeng‐ro, Deokjin‐gu, JeonjuJeollabuk‐do, 54874, Republic of Korea
| | - Ye Eun Kang
- Department of Agricultural BiotechnologyNational Institute of Agricultural Science, Rural Development Administration370 Nongsaengmyoeng‐ro, Deokjin‐gu, JeonjuJeollabuk‐do, 54874, Republic of Korea
| | - Soo In Lee
- Department of Agricultural BiotechnologyNational Institute of Agricultural Science, Rural Development Administration370 Nongsaengmyoeng‐ro, Deokjin‐gu, JeonjuJeollabuk‐do, 54874, Republic of Korea
| | - Jin A Kim
- Department of Agricultural BiotechnologyNational Institute of Agricultural Science, Rural Development Administration370 Nongsaengmyoeng‐ro, Deokjin‐gu, JeonjuJeollabuk‐do, 54874, Republic of Korea
| | - Muthusamy Muthusamy
- Department of Agricultural BiotechnologyNational Institute of Agricultural Science, Rural Development Administration370 Nongsaengmyoeng‐ro, Deokjin‐gu, JeonjuJeollabuk‐do, 54874, Republic of Korea
| | - Mi‐Jeong Jeong
- Department of Agricultural BiotechnologyNational Institute of Agricultural Science, Rural Development Administration370 Nongsaengmyoeng‐ro, Deokjin‐gu, JeonjuJeollabuk‐do, 54874, Republic of Korea
| |
Collapse
|
11
|
Veits M, Khait I, Obolski U, Zinger E, Boonman A, Goldshtein A, Saban K, Seltzer R, Ben-Dor U, Estlein P, Kabat A, Peretz D, Ratzersdorfer I, Krylov S, Chamovitz D, Sapir Y, Yovel Y, Hadany L. Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecol Lett 2019; 22:1483-1492. [PMID: 31286633 PMCID: PMC6852653 DOI: 10.1111/ele.13331] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/07/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
Can plants sense natural airborne sounds and respond to them rapidly? We show that Oenothera drummondii flowers, exposed to playback sound of a flying bee or to synthetic sound signals at similar frequencies, produce sweeter nectar within 3 min, potentially increasing the chances of cross pollination. We found that the flowers vibrated mechanically in response to these sounds, suggesting a plausible mechanism where the flower serves as an auditory sensory organ. Both the vibration and the nectar response were frequency‐specific: the flowers responded and vibrated to pollinator sounds, but not to higher frequency sound. Our results document for the first time that plants can rapidly respond to pollinator sounds in an ecologically relevant way. Potential implications include plant resource allocation, the evolution of flower shape and the evolution of pollinators sound. Finally, our results suggest that plants may be affected by other sounds as well, including anthropogenic ones.
Collapse
Affiliation(s)
- Marine Veits
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Itzhak Khait
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Uri Obolski
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Eyal Zinger
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Arjan Boonman
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Aya Goldshtein
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Kfir Saban
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Rya Seltzer
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Udi Ben-Dor
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Paz Estlein
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Areej Kabat
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Dor Peretz
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Ittai Ratzersdorfer
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Slava Krylov
- School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniel Chamovitz
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Yuval Sapir
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
12
|
Dobránszki J, Hidvégi N, Gulyás A, Teixeira da Silva JA. mRNA transcription profile of potato (Solanum tuberosum L.) exposed to ultrasound during different stages of in vitro plantlet development. PLANT MOLECULAR BIOLOGY 2019; 100:511-525. [PMID: 31037600 PMCID: PMC6586710 DOI: 10.1007/s11103-019-00876-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/19/2019] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE In response to an ultrasound pulse, several hundred DEGs, including in response to stress, were up- or down-regulated in in vitro potato plantlets. Despite this abiotic stress, plantlets survived. Ultrasound (US) can influence plant growth and development. To better understand the genetic mechanism underlying the physiological response of potato to US, single-node segments of four-week-old in vitro plantlets were subjected to US at 35 kHz for 20 min. Following mRNA purification, 10 cDNA libraries were assessed by RNA-seq. Significantly differentially expressed genes (DEGs) were categorized by gene ontology or Kyoto Encyclopedia of Genes and Genomes identifiers. The expression intensity of 40,430 genes was studied. Several hundred DEGs associated with biosynthesis, carbohydrate metabolism and catabolism, cellular protein modification, and response to stress, and which were expressed mainly in the extracellular region, nucleus, and plasma membrane, were either up- or down-regulated in response to US. RT-qPCR was used to validate RNA-seq data of 10 highly up- or down-regulated DEGs, and both Spearman and Pearson correlations between SeqMonk LFC and RT-qPCR LFC were highly positive (0.97). This study examines how some processes evolved over time (0 h, 24 h, 48 h, 1 week and 4 weeks) after an abiotic stress (US) was imposed on in vitro potato explants, and provides clues to the temporal dynamics in DEG-based enzyme functions in response to this stress. Despite this abiotic stress, plantlets survived.
Collapse
Affiliation(s)
- Judit Dobránszki
- Research Institute of Nyíregyháza, IAREF, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary.
| | - Norbert Hidvégi
- Research Institute of Nyíregyháza, IAREF, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary
| | - Andrea Gulyás
- Research Institute of Nyíregyháza, IAREF, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary
| | - Jaime A Teixeira da Silva
- Research Institute of Nyíregyháza, IAREF, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary.
| |
Collapse
|
13
|
Khait I, Obolski U, Yovel Y, Hadany L. Sound perception in plants. Semin Cell Dev Biol 2019; 92:134-138. [PMID: 30965110 DOI: 10.1016/j.semcdb.2019.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
Can plants perceive sound? And what sounds are they likely to be "listening" to? The environment of plants includes many informative sounds, produced by biotic and abiotic sources. An ability to respond to these sounds could thus have a significant adaptive value for plants. We suggest the term phytoacoustics to describe the emerging field exploring sound emission and sound detection in plants, and review the recent studies published on these topics. We describe evidence of plant responses to sounds, varying from changes in gene expression to changes in pathogen resistance and nectar composition. The main focus of this review is the effect of airborne sounds on living plants. We also review work on sound emissions by plants, and plant morphological adaptations to sound. Finally, we discuss the ecological contexts where response to sound would be most advantageous to plants.
Collapse
Affiliation(s)
- I Khait
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - U Obolski
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Y Yovel
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - L Hadany
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
14
|
Kawakami D, Yoshida T, Kanemaru Y, Huarhua Zaquinaula MH, Mizukami T, Arimoto M, Shibata T, Goto A, Enami Y, Amano H, Teraoka T, Komatsu K, Arie T. Induction of resistance to diseases in plant by aerial ultrasound irradiation. JOURNAL OF PESTICIDE SCIENCE 2019; 44:41-47. [PMID: 30820172 PMCID: PMC6389833 DOI: 10.1584/jpestics.d18-064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ultrasound, which refers to frequencies above the audible limit of human hearing, is a candidate for inducing resistance to pathogens in plants. We revealed that aerial ultrasound of 40.5 kHz could induce disease resistance in tomatoes and rice when the plants were irradiated with ultrasound of ca. 100 dB for 2 weeks during nursery season and reduced the incidence of Fusarium wilt and blast diseases, respectively, when plants were inoculated with pathogen 0 or 1 week after terminating irradiation. Disease control efficacy was also observed with ultrasound at frequencies of 19.8 and 28.9 kHz. However, cabbage yellows and powdery mildew on lettuce were not suppressed by ultrasound irradiation. No significant positive or negative effect on growth was observed in tomato and rice plants. RT-qPCR showed that the expression of PR1a involved in the salicylic acid (SA) signaling pathway was upregulated in the ultrasound-irradiated tomato.
Collapse
Affiliation(s)
- Daichi Kawakami
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183–8509, Japan
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183–8509, Japan
| | - Takanobu Yoshida
- Institute of Agricultural Machinery NARO, Saitama 331–8537, Japan
| | - Yutaro Kanemaru
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183–8509, Japan
| | | | | | - Michiko Arimoto
- Shiga Prefecture Agricultural Technology Promotion Center, Omihachiman 521–1301, Japan
| | - Takahiro Shibata
- Shiga Prefecture Agricultural Technology Promotion Center, Omihachiman 521–1301, Japan
| | | | - Yoshinari Enami
- Shiga Prefecture Agricultural Technology Promotion Center, Omihachiman 521–1301, Japan
| | | | - Tohru Teraoka
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183–8509, Japan
| | - Ken Komatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183–8509, Japan
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183–8509, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183–8509, Japan
| | - Tsutomu Arie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183–8509, Japan
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183–8509, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183–8509, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Kim JY, Kim SK, Jung J, Jeong MJ, Ryu CM. Exploring the sound-modulated delay in tomato ripening through expression analysis of coding and non-coding RNAs. ANNALS OF BOTANY 2018; 122:1231-1244. [PMID: 30010774 PMCID: PMC6324751 DOI: 10.1093/aob/mcy134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/10/2018] [Indexed: 05/26/2023]
Abstract
Background and Aims Sound is omnipresent in nature. Recent evidence supports the notion that naturally occurring and artificially generated sound waves induce inter- and intracellular changes in plants. These changes, in turn, lead to diverse physiological changes, such as enhanced biotic and abiotic stress responses, in both crops and model plants. Methods We previously observed delayed ripening in tomato fruits exposed to 1 kHz sound vibrations for 6 h. Here, we evaluated the molecular mechanism underlying this delaying fruit ripening by performing RNA-sequencing analysis of tomato fruits at 6 h, 2 d, 5 d and 7 d after 1 kHz sound vibration treatment. Key Results Bioinformatic analysis of differentially expressed genes and non-coding small RNAs revealed that some of these genes are involved in plant hormone and cell wall modification processes. Ethylene and cytokinin biosynthesis and signalling-related genes were downregulated by sound vibration treatment, whereas genes involved in flavonoid, phenylpropanoid and glucan biosynthesis were upregulated. Furthermore, we identified two sound-specific microRNAs and validated the expression of the pre-microRNAs and the mRNAs of their target genes. Conclusions Our results indicate that sound vibration helps to delay fruit ripening through the sophisticated regulation of coding and non-coding RNAs and transcription factor genes.
Collapse
Affiliation(s)
- Joo Yeol Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, South Korea
| | - Jihye Jung
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Mi-Jeong Jeong
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| |
Collapse
|
16
|
Jung J, Kim SK, Kim JY, Jeong MJ, Ryu CM. Beyond Chemical Triggers: Evidence for Sound-Evoked Physiological Reactions in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:25. [PMID: 29441077 PMCID: PMC5797535 DOI: 10.3389/fpls.2018.00025] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 05/26/2023]
Abstract
Sound is ubiquitous in nature. Recent evidence supports the notion that naturally occurring and artificially generated sound waves contribute to plant robustness. New information is emerging about the responses of plants to sound and the associated downstream signaling pathways. Here, beyond chemical triggers which can improve plant health by enhancing plant growth and resistance, we provide an overview of the latest findings, limitations, and potential applications of sound wave treatment as a physical trigger to modulate physiological traits and to confer an adaptive advantage in plants. We believe that sound wave treatment is a new trigger to help protect plants against unfavorable conditions and to maintain plant fitness.
Collapse
Affiliation(s)
- Jihye Jung
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Joo Y. Kim
- National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
| | - Mi-Jeong Jeong
- National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| |
Collapse
|
17
|
López-Ribera I, Vicient CM. Drought tolerance induced by sound in Arabidopsis plants. PLANT SIGNALING & BEHAVIOR 2017; 12:e1368938. [PMID: 28829683 PMCID: PMC5647969 DOI: 10.1080/15592324.2017.1368938] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 05/26/2023]
Abstract
We examined the responses of sound-treated arabidopsis adult plants to water deprivation and the associated changes on gene expression. The survival of drought-induced plants was significantly higher in the sound treated plants (24,8%) compared with plants kept in silence (13,3%). RNA-seq revealed significant upregulation of 87 genes including 32 genes involved in abiotic stress responses, 31 involved in pathogen responses, 11 involved in oxidation-reduction processes, 5 involved in the regulation of transcription, 2 genes involved in protein phosphorylation/dephosphorylation and 13 involved in jasmonic acid or ethylene synthesis or responses. In addition, 2 genes involved in the responses to mechanical stimulus were also induced by sound, suggesting that touch and sound have at least partially common perception and signaling events.
Collapse
Affiliation(s)
- Ignacio López-Ribera
- Department of Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Carlos M. Vicient
- Department of Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
18
|
Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection. Sci Rep 2017; 7:2527. [PMID: 28559545 PMCID: PMC5449397 DOI: 10.1038/s41598-017-02556-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 04/13/2017] [Indexed: 01/24/2023] Open
Abstract
Sound vibration (SV), a mechanical stimulus, can trigger various molecular and physiological changes in plants like gene expression, hormonal modulation, induced antioxidant activity and calcium spiking. It also alters the seed germination and growth of plants. In this study, we investigated the effects of SV on the resistance of Arabidopsis thaliana against Botrytis cinerea infection. The microarray analysis was performed on infected Arabidopsis plants pre-exposed to SV of 1000 Hertz with 100 decibels. Broadly, the transcriptomic analysis revealed up-regulation of several defense and SA-responsive and/or signaling genes. Quantitative real-time PCR (qRT-PCR) analysis of selected genes also validated the induction of SA-mediated response in the infected Arabidopsis plants pre-exposed to SV. Corroboratively, hormonal analysis identified the increased concentration of salicylic acid (SA) in the SV-treated plants after pathogen inoculation. In contrast, jasmonic acid (JA) level in the SV-treated plants remained stable but lower than control plants during the infection. Based on these findings, we propose that SV treatment invigorates the plant defense system by regulating the SA-mediated priming effect, consequently promoting the SV-induced resistance in Arabidopsis against B. cinerea.
Collapse
|
19
|
Ghosh R, Gururani MA, Ponpandian LN, Mishra RC, Park SC, Jeong MJ, Bae H. Expression Analysis of Sound Vibration-Regulated Genes by Touch Treatment in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:100. [PMID: 28197168 PMCID: PMC5281610 DOI: 10.3389/fpls.2017.00100] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/18/2017] [Indexed: 05/18/2023]
Abstract
Sound vibration (SV) is considered to be a mechanical stimulus which gives rise to various physiological and molecular changes in plants. Previously, we identified 17 SV-regulated genes (SRGs) which were up-regulated by SV treatments in Arabidopsis. Here, we analyzed the expression pattern of similar genes after an exposure of 500 Hertz at 80 decibels, for various time periods. Simultaneously, we confirmed the SV-mediated expression of these genes under lighted condition as many of them were reported to be dark-induced. For this, we designed an improved SV treatment chamber. Additionally, we checked the electrolyte leakage (EL), photosynthetic performance and expression of mechanosensitive (MS) ion channel genes after 5 days of SV treatment in the illuminated chamber. EL was higher, and the photosynthetic performance index was lower in the SV-treated plants compared to control. Seven out of the 13 MS ion channel genes were differentially expressed after the SV treatment. Simultaneously, we checked the touch-mediated expression pattern of 17 SRGs and 13 MS ion channel genes. The distinct expression pattern of 6 SRGs and 1 MS ion channel gene generate an idea that SV as a stimulus is different from touch. Developmental stage-specific expression profiling suggested that the majority of the SRGs were expressed spatiotemporally in different developmental stages of Arabidopsis, especially in imbibed seed, seedlings and leaves.
Collapse
Affiliation(s)
- Ritesh Ghosh
- Department of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Mayank A. Gururani
- Department of Biology, College of Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | | | - Ratnesh C. Mishra
- Department of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Soo-Chul Park
- National Institute of Agricultural Sciences, Rural Development AdministrationWanju, South Korea
| | - Mi-Jeong Jeong
- National Institute of Agricultural Sciences, Rural Development AdministrationWanju, South Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
- *Correspondence: Hanhong Bae,
| |
Collapse
|
20
|
Ghosh R, Mishra RC, Choi B, Kwon YS, Bae DW, Park SC, Jeong MJ, Bae H. Exposure to Sound Vibrations Lead to Transcriptomic, Proteomic and Hormonal Changes in Arabidopsis. Sci Rep 2016; 6:33370. [PMID: 27665921 PMCID: PMC5036088 DOI: 10.1038/srep33370] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/22/2016] [Indexed: 11/09/2022] Open
Abstract
Sound vibration (SV) is considered as an external mechanical force that modulates plant growth and development like other mechanical stimuli (e.g., wind, rain, touch and vibration). A number of previous and recent studies reported developmental responses in plants tailored against SV of varied frequencies. This strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signal transduction. Despite this there exists a huge gap in our understanding regarding the SV-mediated molecular alterations, which is a prerequisite to gain insight into SV-mediated plant development. Herein, we investigated the global gene expression changes in Arabidopsis thaliana upon treatment with five different single frequencies of SV at constant amplitude for 1 h. As a next step, we also studied the SV-mediated proteomic changes in Arabidopsis. Data suggested that like other stimuli, SV also activated signature cellular events, for example, scavenging of reactive oxygen species (ROS), alteration of primary metabolism, and hormonal signaling. Phytohormonal analysis indicated that SV-mediated responses were, in part, modulated by specific alterations in phytohormone levels; especially salicylic acid (SA). Notably, several touch regulated genes were also up-regulated by SV treatment suggesting a possible molecular crosstalk among the two mechanical stimuli, sound and touch. Overall, these results provide a molecular basis to SV triggered global transcriptomic, proteomic and hormonal changes in plant.
Collapse
Affiliation(s)
- Ritesh Ghosh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Bosung Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Young Sang Kwon
- Environmental Biology and Chemistry Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Dong Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soo-Chul Park
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Mi-Jeong Jeong
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
21
|
Mishra RC, Ghosh R, Bae H. Plant acoustics: in the search of a sound mechanism for sound signaling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4483-94. [PMID: 27342223 DOI: 10.1093/jxb/erw235] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Being sessile, plants continuously deal with their dynamic and complex surroundings, identifying important cues and reacting with appropriate responses. Consequently, the sensitivity of plants has evolved to perceive a myriad of external stimuli, which ultimately ensures their successful survival. Research over past centuries has established that plants respond to environmental factors such as light, temperature, moisture, and mechanical perturbations (e.g. wind, rain, touch, etc.) by suitably modulating their growth and development. However, sound vibrations (SVs) as a stimulus have only started receiving attention relatively recently. SVs have been shown to increase the yields of several crops and strengthen plant immunity against pathogens. These vibrations can also prime the plants so as to make them more tolerant to impending drought. Plants can recognize the chewing sounds of insect larvae and the buzz of a pollinating bee, and respond accordingly. It is thus plausible that SVs may serve as a long-range stimulus that evokes ecologically relevant signaling mechanisms in plants. Studies have suggested that SVs increase the transcription of certain genes, soluble protein content, and support enhanced growth and development in plants. At the cellular level, SVs can change the secondary structure of plasma membrane proteins, affect microfilament rearrangements, produce Ca(2+) signatures, cause increases in protein kinases, protective enzymes, peroxidases, antioxidant enzymes, amylase, H(+)-ATPase / K(+) channel activities, and enhance levels of polyamines, soluble sugars and auxin. In this paper, we propose a signaling model to account for the molecular episodes that SVs induce within the cell, and in so doing we uncover a number of interesting questions that need to be addressed by future research in plant acoustics.
Collapse
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 38541, Republic of Korea
| | - Ritesh Ghosh
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 38541, Republic of Korea
| |
Collapse
|
22
|
Schöner MG, Simon R, Schöner CR. Acoustic communication in plant-animal interactions. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:88-95. [PMID: 27423052 DOI: 10.1016/j.pbi.2016.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/08/2016] [Accepted: 06/14/2016] [Indexed: 05/08/2023]
Abstract
Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals.
Collapse
Affiliation(s)
- Michael G Schöner
- Zoological Institute and Museum, University of Greifswald, J.-S.-Bach-Str. 11/12, 17489 Greifswald, Germany.
| | - Ralph Simon
- Department of Sensor Technology, University of Erlangen-Nuremberg, Paul-Gordan-Str. 3/5, 91052 Erlangen, Germany
| | - Caroline R Schöner
- Zoological Institute and Museum, University of Greifswald, J.-S.-Bach-Str. 11/12, 17489 Greifswald, Germany
| |
Collapse
|
23
|
Nazari M, Sharififar A, Asghari HR. Medicago Scutellata Seed Dormancy Breaking by Ultrasonic Waves. ACTA ACUST UNITED AC 2014. [DOI: 10.1515/plass-2015-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
ABSTRACTIn this study dormancy breaking of a hard-coated plant seed, Medicago scutellata, was investigated. The ultrasonic waves effect on the seed germination percentage, germination rate, radicle length and stalk length growth was assessed. Six treatments of waves exposure periods including 0, 1, 3, 5, 7, and 9 minutes were tested under laboratorial conditions. Statistical analyses were done at probability level of 0.01. Results revealed that the ultrasonic waves have a significantly positive effect on the seed dormancy breaking, but there was no linear correlation between the increasing times of exposure with any of the growth features. The best treatment for germination percentage and germination rate was the 7-minute one and the 3-minute one was the best for radicle length growth. Treatments of 3, 5 and 7 minutes had the same effect on stalk length growth and were better than all other treatments. The 9-minute treatment had a negative effect, even lessening the growth of all of the assessed features in comparison with the control treatment.
Collapse
|
24
|
Gagliano M. Green symphonies: a call for studies on acoustic communication in plants. Behav Ecol 2013; 24:789-796. [PMID: 23754865 PMCID: PMC3677178 DOI: 10.1093/beheco/ars206] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 10/08/2012] [Accepted: 10/26/2012] [Indexed: 11/12/2022] Open
Abstract
Sound and its use in communication have significantly contributed to shaping the ecology, evolution, behavior, and ultimately the success of many animal species. Yet, the ability to use sound is not a prerogative of animals. Plants may also use sound, but we have been unable to effectively research what the ecological and evolutionary implications might be in a plant's life. Why should plants emit and receive sound and is there information contained in those sounds? I hypothesize that it would be particularly advantageous for plants to learn about the surrounding environment using sound, as acoustic signals propagate rapidly and with minimal energetic or fitness costs. In fact, both emission and detection of sound may have adaptive value in plants by affecting responses in other organisms, plants, and animals alike. The systematic exploration of the functional, ecological, and evolutionary significance of sound in the life of plants is expected to prompt a reinterpretation of our understanding of these organisms and galvanize the emergence of novel concepts and perspectives on their communicative complexity.
Collapse
Affiliation(s)
- Monica Gagliano
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia , Crawley, Australia and ; Centre for Microscopy, Characterisation and Analysis, University of Western Australia , Crawley WA 6009, Australia
| |
Collapse
|
25
|
Kwon YS, Jeong MJ, Cha J, Jeong SW, Park SC, Shin SC, Chung WS, Bae H, Bae DW. Comparative proteomic analysis of plant responses to sound waves in Arabidopsis. ACTA ACUST UNITED AC 2012. [DOI: 10.5010/jpb.2012.39.4.261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Wei M, Yang CY, Wei SH. Enhancement of the differentiation of protocorm-like bodies of Dendrobium officinale to shoots by ultrasound treatment. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:770-774. [PMID: 22437146 DOI: 10.1016/j.jplph.2012.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 05/31/2023]
Abstract
An efficient micropropagation protocol has been developed for Dendrobium officinale, through protocorm-like bodies (PLBs). A correlation between enhanced differentiation of PLBs of D. officinale by ultrasound and changes in the levels of endogenous hormones and the antioxidant enzyme activities was described. Ultrasound treatments improved the conversion of PLBs of D. officinale to shoots. The highest conversion frequency of PLBs to shoots was obtained following the ultrasound treatment at 300 W for 5 min. Compared to the control, the enhanced conversion of PLBs to shoots following the ultrasound treatment was accompanied by an increase in the ratio of total cytokinins (CTKs) to indole-3-acetic acid (IAA), which was due to a decrease in the endogenous level of IAA and an increase in the endogenous level of total CTKs. Analysis of enzyme activities indicated that the increased endogenous level of total CTKs driven by ultrasound was associated with the inhibition of CTK decomposition by CTK oxidase (EC 1.4.3.6), while the decreased endogenous level of IAA was associated with the promotion of IAA decomposition by IAA oxidase (EC 1.10.3.3). In addition, ultrasound treatment increased the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.7) in the conversion process of PLBs to shoots.
Collapse
Affiliation(s)
- Ming Wei
- College of Biology and Chemistry, Anhui Polytechnic University, Wuhu 241000, People's Republic of China
| | | | | |
Collapse
|
27
|
Meng Q, Zhou Q, Zheng S, Gao Y. Responses on Photosynthesis and Variable Chlorophyll Fluorescence of Fragaria ananassa under Sound Wave. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.egypro.2012.01.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum. Colloids Surf B Biointerfaces 2008; 63:269-75. [DOI: 10.1016/j.colsurfb.2007.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/09/2007] [Accepted: 12/14/2007] [Indexed: 11/19/2022]
|