1
|
Chen L, Gao T, Wu X, He M, Wang X, Teng F, Li Y. Polycarboxylate functionalized magnetic nanoparticles Fe 3O 4@SiO 2@CS-COOH: Preparation, characterization, and immobilization of bovine serum albumin. Int J Biol Macromol 2024; 260:129617. [PMID: 38266861 DOI: 10.1016/j.ijbiomac.2024.129617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Magnetic nanoparticles with increasing superparamagnetism and magnetic targeting have found widespread application in fields such as food and medicine. In this study, polycarboxylated magnetic nanoparticles (Fe3O4@SiO2@CS-COOH) were prepared by surface functionalizing iron tetraoxide (Fe3O4) nanoparticles with ethylenediaminetetraacetic acid (EDTA) as a modifier. The appropriate degree of functionalization modification was obtained by adjusting the EDTA concentration and the ratio of cross-linking agents. The prepared magnetic nanoparticles were analyzed with structural and property characterization. The results showed that the Fe3O4@SiO2@CS-COOH magnetic nanoparticles prepared with 4 % EDTA and cross-linking agents at a molar ratio of 3:4 were uniform in particle size, with an average size of roughly 7 nm, and possessed an abundant carboxylate content (310.8064 μmol/g) and a high magnetization intensity (35.05 emu/g). As a model protein, bovine serum albumin (BSA) was immobilized on the surface of magnetic particles. The largest amount of immobilized protein was 500.4376 mg BSA/g at pH 4.0 and no extra salt ions. According to molecular docking simulations, its immobilization was due to the interaction of amino and carboxyl groups at the Fe3O4@SiO2@CS-COOH/BSA interface. Fe3O4@SiO2@CS-COOH possesses a large number of carboxyl groups, strong protein immobilization, and magnetic responsiveness, which may have potential applications in biomedical and food fields.
Collapse
Affiliation(s)
- Le Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian Gao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xixi Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mingyu He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiangyu Wang
- COFCO Nutrition and Health Research Institute Co., Ltd, No.4 Road, Future Science and Technology Park South, Beiqijia, Changping, Beijing 102209, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Merzougui CE, Aimar P, Bacchin P, Causserand C. pH-Dependent Adsorption of Human Serum Albumin Protein on a Polystyrene-Block-Poly(acrylic acid)-Coated PVDF Membrane. MEMBRANES 2023; 13:886. [PMID: 38132890 PMCID: PMC10744623 DOI: 10.3390/membranes13120886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
This study reports the investigation of human serum albumin (HSA) adsorption on a poy-styrene-block-poly(acrylic acid) (PS-b-PAA)-coated PVDF membrane, which is a potential smart material for biomedical applications. First, copolymer coating on the membrane surface was successfully performed, due to the hydrophobic interaction of the PS anchoring group with the PVDF membrane. This was confirmed by Fourier transform infrared spectroscopy (FTIR) characterization of the membrane. Then, HSA adsorption onto the coated membrane was assessed and was proved to be strongly dependent on the pH of the protein solution. Indeed, both FTIR mapping and mass balance calculation using UV-visible spectroscopy displayed a greater HSA adsorption on the membrane at pH 5, even though it still took place at higher pH, but to a lower extent. Afterwards, an ionic strength influence study evinced the role of electrostatic interactions between HSA and the PAA layer on HSA adsorption. Dead-end filtration of HSA through the coated membrane confirmed the pH dependence of HSA adsorption on the coated membrane.
Collapse
Affiliation(s)
- Charaf-Eddine Merzougui
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, 31062 Toulouse, France; (P.A.); (P.B.)
| | | | | | - Christel Causserand
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, 31062 Toulouse, France; (P.A.); (P.B.)
| |
Collapse
|
3
|
Newman G, Leclerc A, Arditi W, Calzuola ST, Feaugas T, Roy E, Perrault CM, Porrini C, Bechelany M. Challenge of material haemocompatibility for microfluidic blood-contacting applications. Front Bioeng Biotechnol 2023; 11:1249753. [PMID: 37662438 PMCID: PMC10469978 DOI: 10.3389/fbioe.2023.1249753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Biological applications of microfluidics technology is beginning to expand beyond the original focus of diagnostics, analytics and organ-on-chip devices. There is a growing interest in the development of microfluidic devices for therapeutic treatments, such as extra-corporeal haemodialysis and oxygenation. However, the great potential in this area comes with great challenges. Haemocompatibility of materials has long been a concern for blood-contacting medical devices, and microfluidic devices are no exception. The small channel size, high surface area to volume ratio and dynamic conditions integral to microchannels contribute to the blood-material interactions. This review will begin by describing features of microfluidic technology with a focus on blood-contacting applications. Material haemocompatibility will be discussed in the context of interactions with blood components, from the initial absorption of plasma proteins to the activation of cells and factors, and the contribution of these interactions to the coagulation cascade and thrombogenesis. Reference will be made to the testing requirements for medical devices in contact with blood, set out by International Standards in ISO 10993-4. Finally, we will review the techniques for improving microfluidic channel haemocompatibility through material surface modifications-including bioactive and biopassive coatings-and future directions.
Collapse
Affiliation(s)
- Gwenyth Newman
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
- Eden Tech, Paris, France
| | - Audrey Leclerc
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, Montpellier, France
- École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques, Université de Toulouse, Toulouse, France
| | - William Arditi
- Eden Tech, Paris, France
- Centrale Supélec, Gif-sur-Yvette, France
| | - Silvia Tea Calzuola
- Eden Tech, Paris, France
- UMR7648—LadHyx, Ecole Polytechnique, Palaiseau, France
| | - Thomas Feaugas
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
- Eden Tech, Paris, France
| | | | | | | | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, Montpellier, France
- Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| |
Collapse
|
4
|
A novel approach for determination of nucleation rates and interfacial energy of metallic magnesium nanoclusters at high temperature using non-isothermal TGA models. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Membranes for extracorporeal membrane oxygenator (ECMO): history, preparation, modification and mass transfer. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Schmidt M, Abdul Latif A, Prager A, Gläser R, Schulze A. Highly Efficient One-Step Protein Immobilization on Polymer Membranes Supported by Response Surface Methodology. Front Chem 2022; 9:804698. [PMID: 35118049 PMCID: PMC8804297 DOI: 10.3389/fchem.2021.804698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Immobilization of proteins by covalent coupling to polymeric materials offers numerous excellent advantages for various applications, however, it is usually limited by coupling strategies, which are often too expensive or complex. In this study, an electron-beam-based process for covalent coupling of the model protein bovine serum albumin (BSA) onto polyvinylidene fluoride (PVDF) flat sheet membranes was investigated. Immobilization can be performed in a clean, fast, and continuous mode of operation without any additional chemicals involved. Using the Design of Experiments (DoE) approach, nine process factors were investigated for their influence on graft yield and homogeneity. The parameters could be reduced to only four highly significant factors: BSA concentration, impregnation method, impregnation time, and electron beam irradiation dose. Subsequently, optimization of the process was performed using the Response Surface Methodology (RSM). A one-step method was developed, resulting in a high BSA grafting yield of 955 mg m−2 and a relative standard deviation of 3.6%. High efficiency was demonstrated by reusing the impregnation solution five times consecutively without reducing the final BSA grafting yield. Comprehensive characterization was conducted by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and measurements of zeta potential, contact angle and surface free energy, as well as filtration performance. In addition, mechanical properties and morphology were examined using mercury porosimetry, tensile testing, and scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Martin Schmidt
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | | | - Andrea Prager
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Roger Gläser
- Institute of Chemical Technology, Leipzig University, Leipzig, Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
- *Correspondence: Agnes Schulze,
| |
Collapse
|
7
|
Liu Y, Zhang WS, Tang ZH, Ye DD, Su S, Zhang SM, Qiu J. Anti-inflammatory effects of the immobilization of SEMA4D on titanium surfaces in an endothelial cell/macrophage indirect coculture model. Biomed Mater 2021; 17. [PMID: 34731839 DOI: 10.1088/1748-605x/ac3620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/03/2021] [Indexed: 11/12/2022]
Abstract
In this study, we established a procedure to prepare a Semaphorin4D (SEMA4D)-immobilized titanium surface and explored its effects on macrophage behaviors in an endothelial cell/macrophage indirect coculture model. The SEMA4D-bovine serum albumin complex was immobilized onto a preprocessed poly L-lysine titanium surface through NaOH hydrothermal treatment and self-assembly technology. All titanium specimens were examined for surface microstructure, surface element composition, and surface wettability by field emission scanning electron microscopy, x-ray photoelectron spectroscopy (XPS), and water contact angle measurement, respectively. Subsequently, we constructed an endothelial cell/macrophage indirect coculture model and evaluated the activation of NF-κB signaling pathway and the expression of proinflammatory cytokines (TNFα, IL-6, and IL-1β) in macrophages. In XPS analysis, the SEMA4D-immobilized titanium surface appeared as a loose porous structure covered with uniform film, which exhibited better hydrophilicity than the control smooth titanium surface. In the indirect coculture model, SEMA4D attenuated the activation of NF-κB signaling pathway of lipopolysaccharide-stimulated THP-1 macrophages, thereby downregulating the expression of proinflammatory cytokines in macrophages. In conclusion, SEMA4D could be immobilized on titanium surfaces through NaOH hydrothermal treatment and self-assembly technology. Meanwhile, SEMA4D immobilization altered the characteristics of the titanium surfaces, which negatively regulated macrophage behaviors in the endothelial cell/macrophage indirect coculture model.
Collapse
Affiliation(s)
- Yao Liu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China
| | - Wen-Si Zhang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China
| | - Ze-Hua Tang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China
| | - Di-di Ye
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China
| | - Shan Su
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China
| | - Song-Mei Zhang
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States of America
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| |
Collapse
|
8
|
He T, He J, Wang Z, Cui Z. Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO). ADVANCED COMPOSITES AND HYBRID MATERIALS 2021; 4:847-864. [PMID: 33969267 PMCID: PMC8091652 DOI: 10.1007/s42114-021-00244-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 05/26/2023]
Abstract
ABSTRACT Since extracorporeal membrane oxygenator (ECMO) has been utilized to save countless lives by providing continuous extracorporeal breathing and circulation to patients with severe cardiopulmonary failure. In particular, it has played an important role during the COVID-19 epidemic. One of the important composites of ECMO is membrane oxygenator, and the core composite of the membrane oxygenator is hollow fiber membrane, which is not only a place for blood oxygenation, but also is a barrier between the blood and gas side. However, the formation of blood clots in the oxygenator is a key problem in the using process. According to the study of the mechanism of thrombosis generation, it was found that improving the hemocompatibility is an efficient approach to reduce thrombus formation by modifying the surface of materials. In this review, the corresponding modification methods (surface property regulation, anticoagulant grafting, and bio-interface design) of hollow fiber membranes in ECMO are classified and discussed, and then, the research status and development prospects are summarized.
Collapse
Affiliation(s)
- Ting He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| | - Jinhui He
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, 210009 Nanjing, China
| | - Zhaohui Wang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 210009 Nanjing, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| |
Collapse
|
9
|
Merzougui CE, Roblin P, Aimar P, Venault A, Chang Y, Causserand C, Bacchin P. Pearl-necklace assembly of human serum albumin with the poly(acrylic acid) polyelectrolyte investigated using small angle X-ray scattering (SAXS). SOFT MATTER 2020; 16:9964-9974. [PMID: 33034602 DOI: 10.1039/d0sm01221a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this comprehensive study, the interaction of human serum albumin (HSA) with poly(acrylic acid) (PAA) was explored using small angle X-ray scattering (SAXS) combined with chromatography. The results revealed the formation of a complex between HSA macromolecules and PAA chains but solely under some specific conditions of the ionic strength and pH of the medium. In fact, this binding was found to take place only at pH close to 5 and at low ionic strength (0.15 M). Otherwise, for a higher pH and a salt concentration of 0.75 M the HSA-PAA complex tends to dissociate completely showing the reversibility of the complexation. The assessment of the influence of the HSA/PAA molar ratio on the radius of gyration of the complex suggests that 4 HSA molecules could bind to each 100 kDa PAA chain. In addition, the Porod volume evaluation for the same range of the HSA/PAA ratio confirms this assumption. Finally, an all-atom SAXS modelling study using the BUNCH program was conducted to find a compatible model that fits the HSA-PAA complex scattering data. This model allows us to portray the HSA/PAA complex as a pearl-necklace assembly with 4 HSA molecules on the 100 kDa PAA chain.
Collapse
Affiliation(s)
- Charaf E Merzougui
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Pierre Roblin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Pierre Aimar
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Antoine Venault
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chung Li, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chung Li, Taiwan
| | - Christel Causserand
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
10
|
Mayuri PV, Bhatt A, Parameswaran R. Investigation of the potency of leukodepletion filter membranes immobilized with bovine serum albumin via polydopamine spacer. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03515-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
11
|
Wang J, Qiu M, He C. A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118119] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Talebi A, Labbaf S, Karimzadeh F, Masaeli E, Nasr Esfahani MH. Electroconductive Graphene-Containing Polymeric Patch: A Promising Platform for Future Cardiac Repair. ACS Biomater Sci Eng 2020; 6:4214-4224. [DOI: 10.1021/acsbiomaterials.0c00266] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Alireza Talebi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elahe Masaeli
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad-Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
13
|
Lien CC, Chen PJ, Venault A, Tang SH, Fu Y, Dizon GV, Aimar P, Chang Y. A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Jin J, Ma J, Song L, Jiang W, Ederth T. Fabrication of a polypropylene immunoassay platform by photografting reaction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:492-501. [PMID: 31147020 DOI: 10.1016/j.msec.2019.04.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/23/2019] [Accepted: 04/24/2019] [Indexed: 10/27/2022]
Abstract
The technology of an immunoassay detection platform is critical to clinical disease diagnoses, especially for developing a medical diagnostic system. A polymer-based immunoassay platform was fabricated on nonwoven fabric polypropylene (PP) using a photografting reaction to graft 2-hydroxyethyl methacrylate (HEMA) and sulfobetaine (SBMA). The antifouling properties of PP-g-P(HEMA-co-SBMA) were investigated by fibrinogen adsorption and platelet adhesion. Carbonyldiimidazole was employed to activate the pendant hydroxyl groups in HEMA moieties and covalently coupled antibody molecules. The detection of the limit of the immunoassay platform was as low as 10 pg/mL. Antibody amount and bioactivity affected the availability of antibody and the sensitivity of immunoassay. The immune efficiency was dependent on the strategies of antibody immobilization. The immune efficiency of Au-g-P(SBMA-co-HEMA) and Au-SH surfaces measured by QCM-D was 165% and 35.7%, respectively. The covalently binding antibody via hydrophilic polymer chains as spacers could retain fragment antigen-binding up orientation, maintain the bioactivity of antibody, and mainly improve the accessibility of antibody molecules via adjusting the conformations of polymer chains when the antibodies recognized the antigens. Therefore, grafting hydrophilic polymers, such as zwitterionic PSBMA and reactive PHEMA onto nonwoven fabric PP, and binding antibody by covalent strategy had the potential to be developed as a commercial immunoassay platform.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Division of Molecular Physics, IFM, Linköping University, 58183 Linköping, Sweden
| | - Jiao Ma
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials and Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Thomas Ederth
- Division of Molecular Physics, IFM, Linköping University, 58183 Linköping, Sweden.
| |
Collapse
|
15
|
Shao D, Zhang H, Tao L, Cao K, Wei Q. A Facile Approach for Preparing Ag Functionalized Nonwoven Polypropylene Membrane to Improve Its Electrical Conductivity and Electromagnetic Shielding Performance. MATERIALS 2019; 12:ma12020296. [PMID: 30669271 PMCID: PMC6356743 DOI: 10.3390/ma12020296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
The commonly used preparation methods of polypropylene functionalization require special equipment to be put into use or take a long time, which limits its application. Therefore, a simple and economical method for preparing silver functionalized nonwoven polypropylene membrane was studied herein. Triethanolamine was first coated on the surface of the polypropylene, and then Ag was deposited on the surface of polypropylene using a continuous reduction reaction of triethanolamine and silver ions. Surface morphology, crystal structure, and surface chemistry during the preparation of Ag functionalized nonwoven polypropylene were investigated. The electrical conductivity, electromagnetic shielding properties, and washing durability of the treated nonwoven polypropylene were also studied. It was found that Ag was uniformly deposited on the surface of the nonwoven polypropylene, and the coating reaction did not change the chemical structure of the polypropylene. The crystallinity and thermal stability of polypropylene were improved after silver coated polypropylene. The washing experiment results showed that the weight gain rate of the treated nonwoven relative to the untreated sample after the 90 min washing ranged from 6.72% to 9.64%. The resistance test results showed that the maximum surface resistivity of Ag coated nonwoven polypropylene was about 1.95 × 105 Ω, which was 64,615 times lower than the original. In addition, the results showed that the maximum electromagnetic shielding effectiveness of the Ag coated nonwoven polypropylene was about 71.6 dB, showing a very good electromagnetic shielding effect.
Collapse
Affiliation(s)
- Dongfeng Shao
- Changzhou Vocational Institute of Textile and Garment, Changzhou 213164, China.
- Changzhou Key Laboratory of eco Textile Technology, Changzhou 213164, China.
| | - Hongwei Zhang
- Changzhou Vocational Institute of Textile and Garment, Changzhou 213164, China.
- Changzhou Key Laboratory of eco Textile Technology, Changzhou 213164, China.
| | - Lizhen Tao
- Changzhou Vocational Institute of Textile and Garment, Changzhou 213164, China.
- Changzhou Key Laboratory of eco Textile Technology, Changzhou 213164, China.
| | - Kan Cao
- Changzhou Vocational Institute of Textile and Garment, Changzhou 213164, China.
- Changzhou Key Laboratory of eco Textile Technology, Changzhou 213164, China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
16
|
Wang L, He M, Gong T, Zhang X, Zhang L, Liu T, Ye W, Pan C, Zhao C. Introducing multiple bio-functional groups on the poly(ether sulfone) membrane substrate to fabricate an effective antithrombotic bio-interface. Biomater Sci 2018; 5:2416-2426. [PMID: 29115308 DOI: 10.1039/c7bm00673j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been widely recognized that functional groups on biomaterial surfaces play important roles in blood compatibility. To construct an effective antithrombotic bio-interface onto the poly(ether sulfone) (PES) membrane surface, bio-functional groups of sodium carboxylic (-COONa), sodium sulfonic (-SO3Na) and amino (-NH2) groups were introduced onto the PES membrane surface in three steps: the synthesis of PES with carboxylic (-COOH) groups (CPES) and water-soluble PES with sodium sulfonic (-SO3Na) groups and amino (-NH2) groups (SNPES); the introduction of carboxylic groups onto the PES membrane by blending CPES with PES; and the grafting of SNPES onto CPES/PES membranes via the coupling of amino groups and carboxyl groups. The physical/chemical properties and bioactivities were dependent on the proportions of the additives. After introducing bio-functional groups, the excellent hemocompatibility of the modified membranes was confirmed by the inhibited platelet adhesion and activation, prolonged clotting times, suppressed blood-related complement and leukocyte-related complement receptor activations. Furthermore, cell tests indicated that the modified membranes showed better cytocompatibility in endothelial cell proliferation than the pristine PES membrane due to the synergistic promotion of the functional groups. To sum up, these results suggested that modified membranes present great potential in fields using blood-contacting materials, such as hemodialysis and surface endothelialization.
Collapse
Affiliation(s)
- Lingren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices. Huaiyin Institute of Technology, Huaian 223003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kondaveeti S, Kakarla R, Kim HS, Kim BG, Min B. The performance and long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells. ENVIRONMENTAL TECHNOLOGY 2018; 39:288-297. [PMID: 28278086 DOI: 10.1080/09593330.2017.1299223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
This study evaluates long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells with domestic wastewater. Low-cost separators tested in this study were nonwoven fabrics (NWF) of polypropylene (PP80, PP100), textile fabrics of polyphenylene sulfide (PPS), sulfonated polyphenylene sulfide (SPPS), and cellulose esters. NWF PP80 separator generated the highest power density of 280 mW/m2, which was higher than with ion-exchange membranes (cation exchange membrane; CEM = 271 mW/m2, cation exchange membrane; CMI = 196 mW/m2, Nafion = 260 mW/m2). MFC operations with other size-selective separators such as SPPS, PPS, and cellulose esters exhibited power densities of 261, 231, and 250 mW/m2, respectively. During a 280-day operation, initial power density of PP80 (278 mW/m2) was decreased to 257 mW/m2, but this decrease was smaller than with others (Nafion: 265-230 mW/m2; PP100: 220-126 mW/m2). The anode potential of around -430 mV did not change much with all separators in the long-term operation, but the initial cathode potential gradually decreased. Fouling analysis suggested that the presence of carbonaceous substance on Nafion and PP80 after 280 days of operation and Nafion was subject to be more biofouling.
Collapse
Affiliation(s)
- Sanath Kondaveeti
- a Department of Environmental Science and Engineering , Kyung Hee University , Yongin-si , Republic of Korea
| | - Ramesh Kakarla
- a Department of Environmental Science and Engineering , Kyung Hee University , Yongin-si , Republic of Korea
| | - Hong Suck Kim
- b MFC R & BD Center , Water Management & Research Center, K-water Institute, K-water , Daejeon , Korea
| | - Byung-Goon Kim
- b MFC R & BD Center , Water Management & Research Center, K-water Institute, K-water , Daejeon , Korea
| | - Booki Min
- a Department of Environmental Science and Engineering , Kyung Hee University , Yongin-si , Republic of Korea
| |
Collapse
|
18
|
Ye W, Wang N, Hu K, Zhang L, Liu A, Pan C, Gong T, Liu T, Ding H. Bio-inspired microcapsule for targeted antithrombotic drug delivery. RSC Adv 2018; 8:27253-27259. [PMID: 35539989 PMCID: PMC9083295 DOI: 10.1039/c8ra04273j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/02/2018] [Indexed: 01/13/2023] Open
Abstract
Thrombosis or embolism is the leading cause of death and long-term adult disability worldwide. To reduce the risk of thrombosis and hemorrhaging in patients, a facile and versatile method was developed to fabricate microcapsules for targeted antithrombotic drug delivery. The microcapsules were prepared via oxidative polymerization of dopamine on polystyrene microspheres, followed by immobilization of fibrinogen onto the surface of poly(dopamine) layers. Subsequently, microcapsules were obtained by removing the cores with THF. Nattokinase was loaded into the microcapsules via diffusion. The loading amount was approximately 0.05 mg g−1 at 37 °C, and the loading efficiency was nearly 75%, based on the initial concentration of nattokinase in PBS. The release of nattokinase was a gradual process at 37 °C, and the activity of the targeted activated platelets was highly efficient. The antithrombotic activity of the nattokinase microcapsules was evidenced by the sharp dissolution of fibrin clots and the blood clotting time indexes. A gradual release mechanism of platelet-inspired microcapsules used for targeted antithrombotic therapy was proposed. This strategy for targeted antithrombotic drug delivery, which lowers the demand dose and minimizes side effects while maximizing drug efficacy, provides a potential new way to treat life-threatening diseases caused by vascular disruption. NK-loaded hollow microcapsules were fabricated and assessed as a potential antithrombosis therapy.![]()
Collapse
Affiliation(s)
- Wei Ye
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Nan Wang
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Kebang Hu
- Department of Urology
- The First Hospital of Jilin University
- Changchun 130021
- PR China
| | - Lincai Zhang
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Aihui Liu
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Changjiang Pan
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Tao Gong
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Tao Liu
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Hongyan Ding
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| |
Collapse
|
19
|
A novel kind of polysulfone material with excellent biocompatibility modified by the sulfonated hydroxypropyl chitosan. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.103] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ferrari PF, Aliakbarian B, Lagazzo A, Tamayol A, Palombo D, Perego P. Tailored electrospun small-diameter graft for vascular prosthesis. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1252361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, Genoa, Italy
| | - Bahar Aliakbarian
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, Genoa, Italy
| | - Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| | - Ali Tamayol
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Domenico Palombo
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, Genoa, Italy
- Vascular and Endovascular Surgery Unit, Research Laboratory of Experimental and Clinical Vascular Biology, University of Genoa and IRCCS San Martino Hospital, Genoa, Italy
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, Genoa, Italy
| |
Collapse
|
21
|
Khakalo A, Filpponen I, Rojas OJ. Protein Adsorption Tailors the Surface Energies and Compatibility between Polylactide and Cellulose Nanofibrils. Biomacromolecules 2017; 18:1426-1433. [PMID: 28287713 DOI: 10.1021/acs.biomac.7b00173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The state of dispersion and the interactions between a polymer and a filler in a nanocomposite crucially define its properties and performance. The affinity of polylactide (PLA) with vegetable and animal proteins (casein, gelatin, soy protein isolate, and hydrolysate) is investigated and their role as eco-friendly dispersants and compatibilizers of cellulose nanofibrils (CNF) is elucidated. The affinity of the proteins with PLA is determined by using sensograms acquired by electroacoustic (quartz crystal microgravimetry) and optical (surface plasmon resonance) techniques. The surface energy of PLA increases upon protein adsorption while the opposite effect is observed for CNF, under identical experimental conditions. A significant improvement in the thermodynamic work of adhesion for PLA/CNF systems is predicted by application of the denatured proteins at low concentrations (∼20% and ∼15% enhancement with soy protein and casein at pH 3 and pH 8, respectively). We offer a robust method to screen denatured proteins and to tailor the wettability and material compatibility in the synthesis of bionanocomposites based on CNF and PLA.
Collapse
Affiliation(s)
- Alexey Khakalo
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , FI-00076, Espoo, Finland
| | - Ilari Filpponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , FI-00076, Espoo, Finland.,Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University , Auburn, Alabama 36849-5127, United States
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , FI-00076, Espoo, Finland.,Departments of Chemical and Bimolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
22
|
Chi H, Chen P, Cao L, Wu X, Wang J. Characterization and adsorptive properties of cross-linked poly (1-vinylimidazole)-iron (III) complex synthesized in supercritical carbon dioxide. E-POLYMERS 2016. [DOI: 10.1515/epoly-2016-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this study, poly (1-vinylimidazole)-iron(III) [PVIm-Fe(III)] complex was investigated along with adsorption behavior of bovine serum albumin (BSA). The cross-linked PVIm-Fe(III) was synthesized in supercritical carbon dioxide by using N,N′-methylenebisacrylamide (BIS) as a cross-linker. The obtained products were analyzed using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) analysis. The results reveal that iron ion is complexed by coordination with basic (-N) functional groups of 1-vinylimidazole successfully. The effects of the operating pressure, the ratio of iron and cross-linker concentration were investigated. A fine and yellow powder was obtained at high yield and crosslinking degrees at 20 MPa, 70°C. Additionally, the property of PVIm-Fe(III) complexes in terms of BSA adsorption has been studied, and the higher adsorption capacity was 660 mg/g.
Collapse
Affiliation(s)
- Hui Chi
- 1Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, P.R. China
| | - Pei Chen
- 1Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, P.R. China
| | - Liqin Cao
- 2Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, P.R. China, Tel.: +86 991 8581018, Fax: +86 991 8582807
| | - Xiujuan Wu
- 1Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, P.R. China
| | - Jide Wang
- 1Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, P.R. China
| |
Collapse
|
23
|
Venault A, Ye CC, Lin YC, Tsai CW, Jhong JF, Ruaan RC, Higuchi A, Chinnathambi A, Ho HT, Chang Y. Zwitterionic fibrous polypropylene assembled with amphiphatic carboxybetaine copolymers for hemocompatible blood filtration. Acta Biomater 2016; 40:130-141. [PMID: 26826530 DOI: 10.1016/j.actbio.2016.01.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 01/10/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED The present study serves three main functions. First, it presents a novel random copolymer, made of octadecyl acrylate hydrophobic blocks and 2-(dimethylamino)ethyl methacrylate hydrophilic groups, and it zwitterionic form. Second, random copolymer and zwitterionic random copolymer, OmDn and Z-OmDn, are used to modify polypropylene membranes by evaporation coating. Our investigations unveil that this method leads to sufficiently stable self-assembling provided a minimum number of hydrophobic repeat units of 77, which also corresponds to a hydrophobic degree of 74%. Third, antifouling and hemocompatible properties of membranes are thoroughly investigated using all types of blood cells separately, as well as challenging membranes against whole blood in static and dynamic conditions. Membranes modified with zwitterionic copolymer containing 26% of zwitterionic groups are shown to be highly antifouling and hemocompatible, for a coating density as low as 0.2mg/cm(2). Their application in a specially designed blood filtration module enabled to almost totally inhibit blood cells interactions with membrane material, as well as to importantly reduce platelet activation in the permeate (2.5-fold reduction). STATEMENT OF SIGNIFICANCE The design of new zwitterionic copolymer material is proposed and demonstrated in this study. It was showed that hydrophobicoctadecyl acrylate segments can be introduced in the zwitterioniccarboxybetaine polymer chain with a well-controlled random sequence. Stable, efficient, and effective surface zwitterionization of hydrophobic polypropylene are obtained via grafting onto approach by evaporation-induced self-assembling coating. In the perspective of potential application, hemocompatible blood filtration was demonstrated with the excellent results of non-activated platelets obtained. SUMMARY OF IMPACTS DESIGN New zwitterionicmaterial, amphiphatic carboxybetaine copolymers. DEVELOPMENT Evaporation-induced self-assembling grafting. APPLICATION Hemocompatible blood filtration.
Collapse
|
24
|
Xi M, Zhang B. Interaction of Plasma Proteins with Tri-quaternary Ammonium Salt Cationic Surfactant Studied by QCM-D. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201400690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
26
|
Yang Y, Shi D, Wang X, Shi H, Jiang T, Yang Y, Luan S, Yin J, Li RKY. Preparation of poly(cyclooctene)-g-poly(ethylene glycol) (PCOE-g-PEG) graft copolymers with tunable PEG side chains via ROMP and its protein adsorption and platelet adhesion properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:539-45. [PMID: 25491862 DOI: 10.1016/j.msec.2014.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 08/19/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022]
Abstract
In our previous work [H. Shi, D. Shi et al., Polymer Chemistry 2(2011)679-684], polycyclooctene-g-PEG (PCOE-g-PEG) copolymers were synthesized via ring opening metathesis polymerization (ROMP) from PEG functionalized cyclic olefin macromonomers and cyclooctene. The grafting degree and the grafting site were easily controlled through the "grafting through" approach. The PCOE-g-PEG film surface was imparted excellent anti-protein adsorption properties. In that work, the molecular weight of PEG side chain was fixed at 750 g/mol and the neat PEG content in the copolymer was lower than 50 wt.%. In this work, both the effects of PEG side chain lengths (350 to 1000 g/mol) at a fixed PEG content (50 wt.%) and the neat PEG content (30 wt.% to 70 wt.%) at a fixed PEG molecular weight (750 g/mol) on the anti-protein adsorption and anti-platelet adhesion properties are studied. It is shown that the copolymer with 60 wt.% PEG side chains of 750 g/mol, where both PEG and PCOE form continuous morphology, is optimal to reduce the adsorption of both the bovine serum albumin (BSA) and platelet. When the PEG content reaches 70 wt.%, phase inversion happens. PEG is the continuous phase but PCOE becomes the dispersed phase. The surface roughness of the casting PCOE-g-PEG film increases. In this case, both BSA adsorption and platelet adhesion will slightly increase comparing to the sample with 60 wt.% PEG.
Collapse
Affiliation(s)
- Ying Yang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Dean Shi
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Xueli Wang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Tao Jiang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Yingkui Yang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Robert K Y Li
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China
| |
Collapse
|
27
|
Functionalization and hemocompatibility of a styrenic thermoplastic elastomer based on its epoxidized precursor. J Appl Polym Sci 2014. [DOI: 10.1002/app.40518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Chu KH, Park M, Kim HY, Jin FL, Park SJ. Preparation and Characterization of Polypropylene Non-woven Fabrics Prepared by Melt-blown Spinning for Filtration Membranes. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.6.1901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Shen X, Liu J, Feng X, Zhao Y, Chen L. Preliminary investigation on hemocompatibility of poly(vinylidene fluoride) membrane grafted with acryloylmorpholine via ATRP. J Biomed Mater Res A 2014; 103:683-92. [DOI: 10.1002/jbm.a.35213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 04/12/2014] [Accepted: 04/24/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Xiang Shen
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin China
| | - Jie Liu
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin China
| | - Xia Feng
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin China
| | - Yiping Zhao
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin China
| | - Li Chen
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin China
| |
Collapse
|
30
|
Haji-Valizadeh H, Modery-Pawlowski CL, Sen Gupta A. A factor VIII-derived peptide enables von Willebrand factor (VWF)-binding of artificial platelet nanoconstructs without interfering with VWF-adhesion of natural platelets. NANOSCALE 2014; 6:4765-73. [PMID: 24658160 PMCID: PMC4300948 DOI: 10.1039/c3nr06400j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is substantial clinical interest in synthetic platelet analogs for potential application in transfusion medicine. To this end, our research is focused on self-assembled peptide-lipid nanoconstructs that can undergo injury site-selective adhesion and subsequently promote site-directed active platelet aggregation, thus mimicking platelet's primary hemostatic actions. For injury site-selective adhesion, we have utilized a coagulation factor FVIII-derived VWF-binding peptide (VBP). FVIII binds to VWF's D'-D3 domain while natural platelet GPIbα binds to VWF's A1 domain. Therefore, we hypothesized that the VBP-decorated nanoconstructs will adhere to VWF without mutual competition with natural platelets. We further hypothesized that the adherent VBP-decorated constructs can enhance platelet aggregation when co-decorated with a fibrinogen-mimetic peptide (FMP). To test these hypotheses, we used glycocalicin to selectively block VWF's A1 domain and, using fluorescence microscopy, studied the binding of fluorescently labeled VBP-decorated nanoconstructs versus platelets to ristocetin-treated VWF. Subsequently, we co-decorated the nanoconstructs with VBP and FMP and incubated them with human platelets to study construct-mediated enhancement of platelet aggregation. Decoration with VBP resulted in substantial construct adhesion to ristocetin-treated VWF even if the A1-domain was blocked by glycocalicin. In comparison, such A1-blocking resulted in significant reduction of platelet adhesion. Without A1-blocking, the VBP-decorated constructs and natural platelets could adhere to VWF concomitantly. Furthermore, the constructs co-decorated with VBP and FMP enhanced active platelet aggregation. The results indicate significant promise in utilizing the FVIII-derived VBP in developing synthetic platelet analogs that do not interfere with VWF-binding of natural platelets but allow site-directed enhancement of platelet aggregation when combined with FMP.
Collapse
Affiliation(s)
- Hassan Haji-Valizadeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
31
|
Polypropylene non-woven meshes with conformal glycosylated layer for lectin affinity adsorption: The effect of side chain length. Colloids Surf B Biointerfaces 2014; 115:340-8. [DOI: 10.1016/j.colsurfb.2013.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/19/2022]
|
32
|
Larrañaga A, Guay-Bégin AA, Chevallier P, Sabbatier G, Fernández J, Laroche G, Sarasua JR. Grafting of a model protein on lactide and caprolactone based biodegradable films for biomedical applications. BIOMATTER 2014; 4:e27979. [PMID: 24509417 PMCID: PMC4014455 DOI: 10.4161/biom.27979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thermoplastic biodegradable polymers displaying elastomeric behavior and mechanical consistency are greatly appreciated for the regeneration of soft tissues and for various medical devices. However, while the selection of a suitable base material is determined by mechanical and biodegradation considerations, it is the surface properties of the biomaterial that are responsible for the biological response. In order to improve the interaction with cells and modulate their behavior, biologically active molecules can be incorporated onto the surface of the material. With this aim, the surface of a lactide and caprolactone based biodegradable elastomeric terpolymer was modified in two stages. First, the biodegradable polymer surface was aminated by atmospheric pressure plasma treatment and second a crosslinker was grafted in order to covalently bind the biomolecule. In this study, albumin was used as a model protein. According to X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), albumin was efficiently immobilized on the surface of the terpolymer, the degree of albumin surface coverage (ΓBSA) reached ~35%. Moreover, gel permeation chromatography (GPC) studies showed that the hydrolytic degradation kinetic of the synthesized polymer was slightly delayed when albumin was grafted. However, the degradation process in the bulk of the material was unaffected, as demonstrated by Fourier transform infrared (FTIR) analyses. Furthermore, XPS analyses showed that the protein was still present on the surface after 28 days of degradation, meaning that the surface modification was stable, and that there had been enough time for the biological environment to interact with the modified material.
Collapse
Affiliation(s)
- Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science; POLYMAT; University of the Basque Country (UPV/EHU); School of Engineering; Bilbao, Spain; Laboratoire d'Ingénierie de Surface (LIS); Centre de recherche du CHU de Québec; Hôpital Saint-François d'Assise; Québec, QC Canada
| | - Andrée-Anne Guay-Bégin
- Department of Mining-Metallurgy Engineering and Materials Science; POLYMAT; University of the Basque Country (UPV/EHU); School of Engineering; Bilbao, Spain; Laboratoire d'Ingénierie de Surface (LIS); Centre de recherche du CHU de Québec; Hôpital Saint-François d'Assise; Québec, QC Canada
| | - Pascale Chevallier
- Laboratoire d'Ingénierie de Surface (LIS); Centre de recherche du CHU de Québec; Hôpital Saint-François d'Assise; Québec, QC Canada; Département de génie des mines, de la métallurgie et des matériaux; Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec, QC Canada
| | - Gad Sabbatier
- Laboratoire d'Ingénierie de Surface (LIS); Centre de recherche du CHU de Québec; Hôpital Saint-François d'Assise; Québec, QC Canada; Département de génie des mines, de la métallurgie et des matériaux; Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec, QC Canada
| | - Jorge Fernández
- Department of Mining-Metallurgy Engineering and Materials Science; POLYMAT; University of the Basque Country (UPV/EHU); School of Engineering; Bilbao, Spain
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface (LIS); Centre de recherche du CHU de Québec; Hôpital Saint-François d'Assise; Québec, QC Canada; Département de génie des mines, de la métallurgie et des matériaux; Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec, QC Canada
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science; POLYMAT; University of the Basque Country (UPV/EHU); School of Engineering; Bilbao, Spain
| |
Collapse
|
33
|
Xi M, Jin J, Zhang BY. Surface modification of poly(propylene carbonate) by layer-by-layer assembly and its hemocompatibility. RSC Adv 2014. [DOI: 10.1039/c4ra05982d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heparin and lysozyme were used to immobilize onto surface of poly(propylene carbonate) by layer-by-layer assembly to improve hemocompatibility.
Collapse
Affiliation(s)
- Man Xi
- The Research Center for Molecular Science and Engineering
- Northeastern University
- Shenyang 110819, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Bao-yan Zhang
- The Research Center for Molecular Science and Engineering
- Northeastern University
- Shenyang 110819, P. R. China
| |
Collapse
|
34
|
Li C, Jin J, Liu J, Xu X, Yin J. Improving hemocompatibility of polypropylene via surface-initiated atom transfer radical polymerization for covalently coupling BSA. RSC Adv 2014. [DOI: 10.1039/c4ra03652b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bovine serum albumin modified polypropylene for hemocompatibility was fabricated via surface-initiated atom transfer radical polymerization.
Collapse
Affiliation(s)
- Chunming Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, PR China
- Graduate University of Chinese Academy of Sciences
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, PR China
| | - Jingchuan Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, PR China
| | - Xiaodong Xu
- Polymer Materials Research Center
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, PR China
| |
Collapse
|
35
|
Ma J, Luan S, Jin J, Song L, Yuan S, Zheng W, Yin J. Surface modification of cycloolefin polymer via surface-initiated photoiniferter-mediated polymerization for suppressing bioadhesion. RSC Adv 2014. [DOI: 10.1039/c4ra02619e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cycloolefin polymer was modified via surface-initiated photoiniferter-mediated polymerization for suppressing bioadhesion.
Collapse
Affiliation(s)
- Jiao Ma
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences
| | - Shifang Luan
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| | - Jing Jin
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| | - Lingjie Song
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences
| | - Shuaishuai Yuan
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences
| | - Wanling Zheng
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| | - Jinghua Yin
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| |
Collapse
|
36
|
Cao J, Wu Z, Li S, Tang H, Mei Q. Site-selective adsorption of protein induced by a metal pattern on a poly(ethylene terephthalate) surface. Colloids Surf B Biointerfaces 2013; 111:418-22. [DOI: 10.1016/j.colsurfb.2013.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/27/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
|
37
|
Salas C, Genzer J, Lucia LA, Hubbe MA, Rojas OJ. Water-wettable polypropylene fibers by facile surface treatment based on soy proteins. ACS APPLIED MATERIALS & INTERFACES 2013; 5:6541-6548. [PMID: 23789986 DOI: 10.1021/am401065t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Modification of the wetting behavior of hydrophobic surfaces is essential in a variety of materials, including textiles and membranes that require control of fluid interactions, adhesion, transport processes, sensing, etc. This investigation examines the enhancement of wettability of an important class of textile materials, viz., polypropylene (PP) fibers, by surface adsorption of different proteins from soybeans, including soy flour, isolate,glycinin, and β-conglycinin. Detailed investigations of soy adsorption from aqueous solution (pH 7.4, 25 °C) on polypropylene thin films is carried out using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). A significant amount of protein adsorbs onto the PP surfaces primarily due to hydrophobic interactions. We establish that adsorption of a cationic surfactant, dioctadecyldimethylammonium bromide (DODA) onto PP surfaces prior to the protein deposition dramatically enhances its adsorption. The adsorption of proteins from native (PBS buffer, pH 7.4, 25 °C) and denatured conditions (PBS buffer, pH 7.4, 95 °C) onto DODA-treated PP leads to a high coverage of the proteins on the PP surface as confirmed by a significant improvement in water wettability. A shift in the contact angle from 128° to completely wettable surfaces (≈0°) is observed and confirmed by imaging experiments conducted with fluorescence tags. Furthermore, the results from wicking tests indicate that hydrophobic PP nonwovens absorb a significant amount of water after protein treatment, i.e., the PP-modified surfaces become completely hydrophilic.
Collapse
Affiliation(s)
- Carlos Salas
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | | | | | | |
Collapse
|